
Mathematical Methods of Operations Research (2021) 94:1–34
https://doi.org/10.1007/s00186-021-00744-y

ORIG INAL ART ICLE

Dynamic pricing with finite price sets: a non-parametric
approach

Athanassios N. Avramidis1 · Arnoud V. den Boer2,3

Received: 29 April 2020 / Revised: 21 March 2021 / Accepted: 31 May 2021 / Published online: 28 June 2021
© The Author(s) 2021

Abstract
We study price optimization of perishable inventory over multiple, consecutive selling
seasons in the presence of demand uncertainty. Each selling season consists of a finite
number of discrete time periods, and demand per time period is Bernoulli distributed
with price-dependent parameter. The set of feasible prices is finite, and the expected
demand corresponding to each price is unknown to the seller, whose objective is to
maximize cumulative expected revenue. We propose an algorithm that estimates the
unknown parameters in a learning phase, and in each subsequent season applies a
policy determined as the solution to a sample dynamic program, which modifies the
underlying dynamic program by replacing the unknown parameters by the estimate.
Revenue performance is measured by the regret: the expected revenue loss relative
to the optimal attainable revenue under full information. For a given number of sea-
sons n, we show that if the number of seasons allocated to learning is asymptotic to
(n2 log n)1/3, then the regret is of the same order, uniformly over all unknown demand
parameters. An extensive numerical study that compares our algorithm to six bench-
marks adapted from the literature demonstrates the effectiveness of our approach.
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1 Introduction

1.1 Background

Pricing of a perishable product is a central problem in many industries. As discussed
by Talluri and van Ryzin (2005), a classical setting involves a firm facing successive
seasons of finite length during which a finite fixed inventory is sold, and such that
at the end of the season, unsold inventory expires worthless. The firm seeks to set
prices in a way that maximizes the expected revenue. Instances of this problem are
found in many industries, including fashion, retail, air travel, hospitality, and leisure.
In Gallego and van Ryzin (1994), an optimal price is shown to be a function of the
state (t, c) of the system, where t denotes remaining time to the end of the season
and c denotes remaining inventory; this function increases with remaining time and
decreases with remaining inventory. To compute these optimal prices, it is essential to
know the relationship between price and expected demand—often referred to as the
demand function or demand curve.

In practice, decisionmakers seldom have full knowledge about the demand process.
The absence of full information about the demandprocess introduces a tension between
demand learning (‘exploration’, by experimenting with selling prices) and revenue
earning (‘exploitation’, i.e. using the estimated optimal prices). The longer one spends
learning the demand properties, the less time remains to exploit that knowledge and
earn revenue; on the other hand, less time spent on demand learning results in higher
uncertainty that could diminish the revenue earned during the exploitation phase. A
key feature of a good self-learning pricing algorithm is its ability to optimally balance
this tension.

The problem of designing asymptotically optimal self-learning pricing algorithms
has received considerable attention (see the literature review below). Several authors
(e.g. Besbes and Zeevi 2009; Wang et al. 2014; Lei et al. 2014) have analyzed optimal
pricing and learning with finite inventories in a particular asymptotic regime, where
the performance of a price policy is evaluated when both the expected demand per
season and the initial inventory grow large. In this so-called fluid regime, the problem
is simplified by essentially removing the stochasticity of demand. This regime is well
suited for applicationswhere initial inventory and length of the selling season are large.
However, in applications where initial inventory does not grow large, this asymptotic
regime is not informative for a policy’s performance. An informative example is ferry
services. These are services that are regularly offered, with a finite selling season
(tickets are sold until the departure of the ferry), finite inventory (determined by the
size of the ferry), and with multiple selling seasons (corresponding to different days of
departures). Another example comes fromgrocery retail: brick-and-mortar retail shops
typically have a small inventory of each specific product to sell, and face many selling
seasons during which a constant demand function might be postulated. Anecdotal
evidence from the United Kingdom shows that it is not uncommon that the price is
dropped several times, and, very near the closing time on the “use by” or “sell by”
date, it is a small fraction of the original. In these examples, the relevant regime to
study the performance of pricing algorithms is that of repeated seasons with bounded
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Dynamic pricing with finite price sets… 3

inventory, and not a regime where the size of the ferry, or the food inventory, goes to
infinity.

Perhaps closest to ourwork is the study by denBoer andZwart (2015), who consider
dynamic pricing with finite inventories in a setting with multiple, consecutive selling
seasons, each with fixed, finite inventory. The authors assume a parametric demand
model, characterized by two unknown parameters that are learned from accumulating
sales data, and design and analyze an asymptotically near-optimal pricing algorithm.
A disadvantage of their parametric approach is the risk of model mis-specification:
large losses can be incurred if the true demand function is not of the assumed form (see
Sect. 6 for a numerical illustration). To mitigate this risk a non-parametric approach is
needed, that (i) does not restrict itself to a parametrized sub-class of demand functions,
and (ii) performswell in a regimewith consecutive selling seasonswith bounded initial
inventory. Such an approach is taken by this paper.

1.2 Overview of contributions

We consider a monopolist seller of a finite inventory of a perishable product, which
is sold during consecutive selling seasons. In the same spirit as den Boer and Zwart
(2015), we formulate a discrete-time, finite-state Markov Decision Process (MDP) in
which the underlying state is the pair (inventory, time-to-perish); this MDP character-
izes optimal pricing under knowledge of the demand function; it is the central element
in our setting where the transition probabilities are unknown to the seller. We assume
a finite number κ of feasible prices. In our basic model, each season has a length of
T periods and the same initial inventory x—this assumption is later relaxed to allow
for non-identical selling seasons. In any period during which the i th price is offered,
the demand for the product is a Bernoulli(λi ) random variable. The vector of demand
rates (purchase probabilities) λ = (λ1, . . . , λκ) ∈ [0, 1]κ is unknown to the seller. We
emphasize that we make no assumptions on λ.

The algorithm that we propose separates a given selling horizon of n seasons into
an exploration and an exploitation phase. The exploration phase rotates the prices
throughout, so that each price is applied (nearly) the same number of times (periods);
it concludes with a (maximum likelihood) estimatêλ = (̂λ1, . . . ,̂λκ) of λ. A pricing
policy is then constructed from the corresponding dynamic programming recursion,
in which the unknown λ is replaced by the estimate ̂λ; we refer to this recursion as
the sample dynamic program. The exploitation phase applies this policy throughout
all the remaining time periods. It is noteworthy that this is not a fixed-price policy;
instead, the price depends on the system state (t, c) which is constantly evolving. Our
main result establishes that a carefully tuned length of the exploration phase implies
that our policy is consistent, and has regret O(n2 log n)1/3), uniformly over λ (see
Theorem 1). Thus, the revenue generated by the proposed algorithm gets arbitrary
close to the best achievable revenue under full knowledge of the unknown demand
parameters, as n grows large. It is worth noting that this result holds without assuming
that the initial inventory of some season grows large, as in antecedent literature. This
theorem is then extended to a sequence of seasons that need not have the same initial
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4 A. N. Avramidis, A. V. den Boer

inventory or length (see Theorem 2); the extension merely requires that the sequences
of inventory levels and season lengths are bounded.

We provide an extensive numerical study in which we compare the performance
of our algorithm to six alternatives, based on four papers in the literature: algorithms
based on the fluid approximation in Besbes and Zeevi (2012, Algorithm 1, Section
3.1); adaptations of the upper-confidence-bound approach of Babaioff et al. (2015);
Thompson sampling (Ferreira et al. 2018, Algorithm 2); and the method of den Boer
and Zwart (2015) adapted for a finite price set. For a wide variety of demand functions
we show that our policy outperforms these alternatives; see Sect. 6 for more details.

1.3 Related literature

The literature on pricing strategies is vast. We refer to Bitran and Caldentey (2003);
Elmaghraby and Keskinocak (2003); Talluri and van Ryzin (2005); Gallego and
Topaloglu (2019) for comprehensive reviews on the subject. A recent survey and
classification that focuses on pricing and learning appears in den Boer (2015).

This paper is related to literature that addresses demand learning in dynamic pric-
ing problems. For a single-product setting without an inventory constraint, examples
are Broder and Rusmevichientong (2012); den Boer and Zwart (2014); Besbes and
Zeevi (2015), and Keskin and Zeevi (2014), who design and analyze self-learning
pricing algorithms under a variety of demand models. Closer to this paper is a stream
of literature in which inventory is finite; implying that the optimal price is not a single
value but a function of the system state (remaining time and remaining inventory).
In Lin (2006), Aviv and Pazgal (2005), Araman and Caldentey (2009), and Farias and
Van Roy (2010), the demand function is characterized by a single unknown parameter
that is learned in a Bayesian fashion. Besbes and Zeevi (2009); Wang et al. (2014);
Lei et al. (2014) consider more general demand models, but assume an asymptotic
regime where inventory grows large; as explained above, results derived in this regime
are not informative for applications where inventory is bounded. Demand learning for
non-perishable products is also related to our work. A recent example is Chen et al.
(2019), who employ non-parametric demand learning towards joint pricing and inven-
tory decisions. The no-perish assumption means that demand may be instantly met by
an inventory unit that was procured at an arbitrary time point in the past, which makes
these types of problems different from the one considered in this paper.

In the literature that addresses demand learning, a common approach is to esti-
mate, based on accumulating sales data, the optimal solution to some fluid model
(approximation of the stochastic control problem) efficiently enough to (nearly) mini-
mize (revenue) losses asymptotically. One approach, exemplified by Besbes and Zeevi
(2009, 2012), separates the selling season into disjoint pure-exploration (learning) and
exploitation phases. A worst-case upper bound on losses is minimized by carefully
selecting the amount of time to spend on learning, in a regime where the total expected
demand and inventory level grow large at the same rate. A second approach formulates
a multi-armed bandit problem, and deals with the exploration-exploitation tradeoff via
a long-established method known as an upper-confidence-bound (Auer et al. 2002),
andwhose principle is “optimism in the face of uncertainty”. Here, the usualmaximum
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likelihood estimates of demand are replaced by upper confidence bounds, and explo-
ration and exploitation occur simultaneously. This approach is exemplified byBabaioff
et al. (2015); Badanidiyuru et al. (2013). Babaioff et al. (2015) address the case of
a continuous price set; their upper-confidence bounds apply to the expected revenue
associated to each price, where the set of prices is asymptotically dense on the price
domain. Badanidiyuru et al. (2013) address the case of a finite price set, and study a
general model where rewards (revenue) and resource consumption are sampled from
an unknown time-invariant distribution. Using upper- and lower-confidence bounds
on mean rewards and mean resource consumptions, respectively, they aim to deter-
mine an optimal time-invariant mix of prices; optimality is with respect to the linear
program (fluid approximation) in Besbes and Zeevi (2012). These papers characterize
the regret through upper and lower bounds in a regime where expected demand grows
to infinity. Ferreira et al. (2018) employ a randomized Bayesian method known as
Thompson sampling whose aim is to learn efficiently a mix of prices that is optimal
with respect to the same linear program. In a regime where mean demand grows to
infinity, they upper-bound the Bayesian regret: the conditional average regret given a
prior distribution on the demand vector.

The relationship between the current paper and this stream of literature can be
summarized as follows: in analogy with this literature, in our model the aggregate
amount of inventory and the aggregate mean demand over n seasons grow proportion-
ally to n; however, this growth does not occur within one season of “large size”, but
instead through a sequence of seasons with bounded inventory and season length, and
common demand function. This boundedness entails that even if one prices optimally
with respect to some fluid model, one has not closed the fluid gap: the difference in
expected revenue between the optimal policy and the fluid-optimal policy. This gap—
which essentially arises by neglecting randomness of demand—may be negligible in
cases where both inventory and length of the season are reasonably large. But, as
observed by Maglaras (2011) (page 6),

one would expect that the discrete and stochastic nature of the pricing problem
to be [sic] relevant when selling 4 newly constructed single family homes over
the course of 24 weeks, but it may be less relevant when selling 4000 pairs of
skis over a similar time duration from, say, October to March.

Our model is designed precisely for settings where the fluid regime is not informa-
tive: that is, when inventory does not grow large but is finite (such as, e.g., in ferry
services and grocery retail), and when neglecting the structure of the underlying MDP
is detrimental in terms of revenue performance.

Perhaps closest to ourwork is denBoer andZwart (2015),who study optimal pricing
withmultiple, consecutive selling seasons, eachwith finite initial inventory. In contrast
to our paper, they work with a demand function of a known parametric form with two
unknown parameters. They develop an (almost) certainty-equivalent strategy, which at
all times maintains a parametric (quasi-maximum likelihood) estimate of the demand
function, and prices optimally under the corresponding Markov decision process in
which the unknown demand function is replaced by its estimate. The authors provide
an upper bound on the regret after n selling seasons, and accompany this result by
a lower bound that holds for any policy. A drawback of their parametric approach
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6 A. N. Avramidis, A. V. den Boer

is the risk of model mis-specification: in reality, demand may not be of the assumed
parametric form, and pricing recommendations may be suboptimal. In our model we
mitigate this drawback by making no assumption whatsoever on the shape of the
demand function.

The remainder of this paper Section 2 formulates the problem, defines the regret,
and discusses key differences with alternative approaches. Section 3 presents the
proposed strategy, and Sect. 4 contains the asymptotic performance analysis. The
extension to non-identical seasons appears in Sect. 5. Section 6 presents the results of
our numerical study. A few auxiliary results appear in the Appendix.

Notation The notation “:=” stands for “is defined as”. A statement such as λ =
λ(p) := f (p)means that the function λ(p) is identical to f (p), and that wemaywrite
λ instead of λ(p) or f (p). We use N := {0, 1, 2, . . .} for the set of natural numbers.
For a set A, Ac denotes the complement. Given any sample space � of which the
generic element is denoted ω, and given a set A ⊆ �, we write 1[A] for 1[ω∈A], the
random variable taking value 1 if the event A occurs, and 0 otherwise. For any real z,
we write �z� for the floor, the largest integer that is no larger than z; �z� for the ceiling;
[z] for the integer nearest to z; and z+ for the positive part max{0, z}. For any vector
z = (zi ) we define ‖z‖ := maxi |zi |. A sum over an empty index set, for example
∑0

i=1 zi , is understood as zero.With an and bn being nonnegative sequences, we write
an = O(bn) if an/bn is bounded from above by a constant; we write an = �(bn) if
an/bn is bounded from below by a constant; and if an/bn is bounded from both above
and below, then we write an 	 bn .

2 Problem formulation

Basic elements We consider a monopolist seller of perishable products which are
sold during consecutive selling seasons. Each season has a positive integer length
of T (indivisible) time periods. At the start of each selling season the seller has a
positive integer inventory (inventory) of x units, which can only be sold during that
particular season. At the end of each season, any unsold inventory is worthless, and its
disposal costs nothing. In our basic model, identical such seasons occur in succession:
the i th season consists of the time periods indexed from (i − 1)T + 1 to iT , for all
i = 1, 2, . . . , n, where n is a selling horizon that is known at time zero. In Sect. 5 we
relax this assumption, and consider non-identical seasons.

There are κ distinct actions corresponding to prices that increase in the action index:
0 < p1 < p2 < . . . < pκ < ∞. There is additionally a shutoff action, indexed 0,
whose sole function is to shut off the demand; the price associated to this action is
immaterial (since no sale is ever made); thus we set p0 = 0 without loss of generality.
In each period u, the seller chooses an action Au ∈ A, where A = {0, 1, 2, . . . , κ},
and thus sets the price to pAu . After setting the price, a binary demand is observed,
which indicates whether one unit is sold or not.

The demand is stochastic and price-dependent. Write Du for the demand in period
u, and define the setHu := {(a1, . . . , au, d1, . . . , du) ∈ Au × {0, 1}u}, for all u ∈ N,
and H0 := ∅. For each u = 1, . . . , nT , each element (a1, . . . , au, d1, . . . , du) of
Hu is a potential history of prices and demand that the seller might observe in the
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first u time periods. A (pricing) strategy σ = (σu)u∈N is a collection of functions
σu : Hu−1 → A such that at each time u = 1, . . . , nT , the seller’s action is Au =
σu(A1, D1, . . . , Au−1, Du−1). Thus, the policy specifies, for each possible data set of
previously used prices and corresponding demand observations, which price should
be used in the next time period.

Our main assumption with respect to the demand mechanism is that each action
(price) a ∈ A is associated to a probability of purchase, λa , which is unknown to
the seller, except for the shut-off property λ0 = 0. Specifically, we assume that,
conditionally on Au = a, Du is Bernoulli distributed with mean λa , for all a ∈ A,
and is independent of past actions and demands {A1, . . . , Au−1, D1, . . . , Du−1}. The
vector of purchase probabilities, λ := (λ1, . . . , λκ), is unknown to the seller. We write
� := [0, 1]κ for the set of all possible purchase probability vectors.

To describe the dynamics of the seller’s remaining inventory, observe that any
period u is contained in the season numbered �u/T � and corresponds to the seasonal
remaining time tu := �u/T �T − u + 1 ∈ {1, . . . , T }, which is the number of periods
that remain in the season containing period u. For example, for T = 10, the period
indexed u = 11 is contained in season �u/T � = 2 and corresponds to a seasonal
remaining time t11 = 2 · 10 − 11 + 1 = 10. The end of any season coincides with
the beginning of a new season; at any such boundary, any unused inventory from the
ending season expires worthless and at no cost; the inventory of the new season is
replenished to x , and the seasonal remaining time tu becomes T . The inventory at
the beginning of period u is denoted Cu throughout; in the basic model, it evolves as
follows:

Cu =
{

x if tu = T
max{Cu−1 − Du−1, 0} otherwise

}

, u = 1, 2, . . . (1)

The revenue earned in any period u is pAu min{Cu, Du} = pAu1[Cu>0]Du . Given a
planning horizon of n seasons, the seller’s objective is to determine a strategy σ that
maximizes the expected revenue,

∑nT
u=1 Eσ [pAu min{Cu, Du}], where Eσ [·] denotes

the expectation under strategy σ .
Optimal solution under full information Provided the probability vector λ is

known, an optimal pricing strategy can be determined by solving a Markov Decision
Process (MDP) corresponding to a single selling season. The states, transitions, and
rewards of this MDP are defined as follows. A state (t, c) encodes that the seasonal
remaining time is t and the remaining inventory is c. The set of states is X = {(t, c) :
t ∈ {0, 1, . . . , T }, c ∈ {0, 1, . . . , x}}. The transition dynamics depend on the actions
taken, and are as follows. If action a is used in state (t, c), then with probability λa
a state transition (t, c) → (t − 1, (c − 1)+) occurs, and revenue pa1[c>0] is earned;
with probability 1 − λa a state transition (t, c) → (t − 1, c) occurs, and no revenue
is earned.

A policy π is a set of actions at all states: π = (πt,c)(t,c)∈X with πt,c ∈ A for each
(t, c) ∈ X . The set of all policies is denoted �, and is finite. Given any policy π and
state (t, c) ∈ X , the value of the state is the expected revenue-to-go (to the end of the
season) when starting in this state and using the actions of π ; it is denoted V π

t,c. These
values satisfy the recursion
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8 A. N. Avramidis, A. V. den Boer

{

V π
t,c = (1 − λπt,c )V

π
t−1,c + λπt,c [pπt,c + V π

t−1,c−1]
= λπt,c [pπt,c − 	V π

t−1,c] + V π
t−1,c

}

1 ≤ c ≤ x, t = 1, 2, . . . , T ,

(2)

where 	V π
t−1,c := V π

t−1,c − V π
t−1,c−1 for c ≥ 1; V π

t,0 := 0 for all t ; and 	V π
0,c :=

V π
0,c = 0 for all c.
By the finiteness of �, there exists an optimal policy π∗ ∈ � that maximizes V π

T ,x .
The optimal value at a state (t, c) is the maximum expected revenue-to-go, starting
from that state; it is denoted Vt,c. The values V and the policy π∗ are determined
recursively, backward in time:

{

Vt,c = maxa∈A λa[pa − 	Vt−1,c] + Vt−1,c
π∗
t,c = min arg max a∈Aλa[pa − 	Vt−1,c]

}

1 ≤ c ≤ x, t = 1, 2, . . . , T ,

(3)

where 	Vt,c := Vt,c − Vt,c−1 for c ≥ 1, Vt,0 = 0 for all t ; and 	V0,c = V0,c = 0
for all c. The number VT ,x := VT ,x (λ) is the maximum possible expected revenue of
a seller that knows λ, for a season of length T and inventory x . By the (conditional)
independence of demand across seasons, an optimal strategy consists of applying π∗
in each season s = 1, . . . , n.

Performance measure The regret of a strategy σ over the first n sell-
ing seasons is defined as Rn := Rn(σ ;λ) := Rn(σ,λ, x, T ) := nVT ,x −
∑nT

u=1 Eσ [pAu min{Cu, Du}]; it depends on the unknown λ, and also on x and T .
The regret is the (expected) revenue loss incurred by strategy σ relative to the optimal
strategy of using the policyπ∗ in each season. The regret is based on an integer number
of seasons, rather than an integer number of periods; this is natural, since policy (and
revenue) optimality is with respect to a whole season and not any individual period.
In our numerical study we mainly work with the relative regret, defined and denoted
as R′

n := R′
n(σ ) := R′

n(σ ;λ, x, T ) := Rn(σ,λ, x, T )/(nVT ,x ). By definition, the
value of the relative regret is a number that always lies in the interval [0, 1]; the smaller
its value, the better the performance of σ ; a value of zero indicates that σ extracts the
maximum possible revenue.

3 Proposed pricing strategy

In this section we propose a data-driven pricing strategy that learns the optimal policy
defined in Sect. 2. The strategy divides the time horizon into two phases, an exploration
phase and an exploitation phase. In the exploration phase, all prices are used a nearly
equal number of times, and the obtained sales data is used to construct an estimatêλ

of the unknown demand vector λ. In the exploitation phase, the policy π∗ defined in
Sect. 2, with λ replaced by its estimatêλ, is used in all remaining selling seasons.

More specifically, given an estimatêλ = (̂λ1, . . . ,̂λκ) (purely from the exploration
phase here; this is relaxed later), the policy that is used throughout the exploitation
phase is the solution of the sample dynamic program:
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{

̂Vt,c = maxa∈Âλa[pa − 	̂Vt−1,c] + ̂Vt−1,c,

π̂t,c = min arg max 1≤a≤κ
̂λa[pa − 	̂Vt−1,c]

}

1 ≤ c ≤ x, t = 1, 2, . . . , T ,

(4)

where 	̂Vt,c := ̂Vt,c − ̂Vt,c−1, ̂Vt,0 := 0 for all t , and 	̂V0,c := ̂V0,c = 0 for all c. In
particular, the shutoff action is excluded at all states with t ≥ 1 and c ≥ 1. We denote
this policy as π̂ , or, to make the dependence on̂λ explicit, as π(̂λ).

For i ∈ {1, . . . , κ} and τ ∈ N, the (price-specific) sample size is defined as Ni (τ ) :=
∑τ

u=1 1[Au=i]; it is the count of time periods up to (including) τ during which the price
is pi .

Strategy σ(τ).

Step 1 (Initialization). Let τ ∈ N, τ ≤ n.
Step 2 (Exploration).

(a) For all u = 1, . . . , τT : if Cu > 0, then set Au as the action i for which
Ni (u − 1) is the smallest (in case of a tie, select the price with the lowest
index); formally, Au := min{arg min {Ni (u − 1) : 1 ≤ i ≤ κ}}. If Cu = 0,
set Au = 0.

(b) For each i = 1, . . . , κ , let Ni := Ni (τT ) = ∑τT
u=1 1[Au=i] be the count

of time periods in the first τ seasons during which the price was pi , and let
Si := ∑τT

u=1 1[Au=i]Du be the count of sales obtained in these periods. Set
̂λi := Si N

−1
i 1[Ni>0], i = 1, . . . , κ, and̂λ := (̂λ1, . . . ,̂λκ).

Step 3 (Exploitation). For each season s = τ + 1, . . . , n, apply the policy π(̂λ)

defined in (4).

Step 2(a) ensures a near-parity of price-specific sample sizes at all times (the motiva-
tion for this is seen in proofs that follow). On a high level, this strategy is reminiscent of
classical explore-then-commit policies of multi-armed bandit problems; see, e.g., Lat-
timore and Szepesvári (2019), Chapter 6. These policies divide the time horizon into
two phases. In the first phase all actions are tried a number of times, in order to estimate
the expected revenue associated to each action. In the second phase, an action with the
highest estimated expected revenue is used at all times. Our strategy loosely adapts this
idea to the MDP in Sect. 2: an optimal ‘action’ (of the multi-armed bandit problem)
corresponds to an optimal policy for the MDP here. In the exploitation phase, we thus
use the estimated state-dependent optimal prices (i.e., the estimated optimal policy π̂)
and not a fixed price at all times.

4 Performance analysis

4.1 Upper bound

In this sectionwe show that the prices generated by our pricing strategy converge to the
optimal prices corresponding to the MDP defined in Sect. 2, as the number of selling
seasons n grows large. More precisely, we prove that the regret of strategy σ(τn)

is bounded above by a constant times n2/3 log(n)1/3, under a suitable choice of the
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10 A. N. Avramidis, A. V. den Boer

exploration length τn . The constant depends only on x and T and grows atmost linearly
in each. This bound holds uniformly over all probability vectors λ. Equivalently, the
relative regret converges to zero at rate O((log(n)/n)1/3), uniformly over all λ.

Theorem 1 Set τn 	 (n2 log n)1/3. Then, there exists a finite positive constant K1 such
that, for all n ≥ 2,

sup
λ∈�

Rn(σ (τn);λ) ≤ K1(n
2 log n)1/3.

To prove the theorem, we first provide a bound on the estimation error (Propo-
sition 1) and a bound on the effect of this error during the exploitation phase
(Proposition 2). Let ̂λn be the estimator of λ corresponding to σ(τn); that is,
obtained after an exploration period consisting of τn seasons. Recall that Ni (τnT ) =
∑τnT

u=1 1[Au=i], for i = 1, 2, . . . , κ , is the number of times up to the end of the learning
phase that the price on offer is pi .

Proposition 1 (Estimation error) Let f := min{x, T }/κ . For any n ∈ N and δ > 0,
we have

E
∥

∥̂λn − λ
∥

∥ ≤ δ + 2κ exp(−2� f τn�δ2). (5)

Proof of Proposition 1 Let n ∈ N and δ > 0. We first obtain a lower bound on Ni =
Ni (τnT ) for each i . Let u denote a period of the learning phase such that the inventory
is positive, that is, 1 ≤ u ≤ τnT and Cu > 0. Any such period u contributes one unit
to the sum

∑κ
i=1 Ni ; that is,

∑κ
i=1 Ni (u) = 1 + ∑κ

i=1 Ni (u − 1). We claim that

κ
∑

i=1

Ni =
κ

∑

i=1

Ni (τnT )
(a)≥ τn min{T , x}, and |Ni − N j |

(b)≤ 1 for i �= j . (6)

Inequality (a) holds because the learning phase consists of τn seasons, in each of
which there are at least min{T , x} periods u such that Cu > 0 (since there are x units
initially, T sale periods, and no more than one unit is sold per period). Inequality (b)
is the near-parity of sample sizes across prices, which is ensured by step 2(a) in the
definition of σ . Now (6) implies

Ni ≥ � f τn� for each i = 1, . . . , κ. (7)

Now define the event En := {∥∥̂λn − λ
∥

∥ ≤ δ}. We have

E
∥

∥̂λn − λ
∥

∥ = E[∥∥̂λn − λ
∥

∥ |Ec
n ]P(Ec

n ) + E[∥∥̂λn − λ
∥

∥ | � Ec
n ]P(�Ec

n )

≤ δ + P(�Ec
n )

(a)≤ δ + 2κ exp(−2� f τn�δ2), (8)

123



Dynamic pricing with finite price sets… 11

where step (a) is justified as follows:

P(�Ec
n ) = P

( ∪κ
i=1 {|̂λn,i − λi | > δ})

(b)≤
κ

∑

i=1

P(|̂λn,i − λi | > δ)
(c)≤ 2κ exp(−2� f τn�δ2), (9)

where step (b) follows from a union bound. To justify step (c), observe that ̂λn,i

is the sample mean of Ni ≥ � f τn� i.i.d. Bernoulli(λi ) random variables, and by
Hoeffding’s inequality, if {Ii }mi=1 are independent Bernoulli(q) random variables with
q ∈ (0, 1), then, for any m ≥ 1 and δ > 0 we have max

{

P
( ∑m

i=1 Ii − mq ≥
mδ

)

, P
( ∑m

i=1 Ii − mq ≤ −mδ
)} ≤ e−2mδ2 . ��

Next, we bound the loss incurred by policy π(̂λ) against the optimal one.

Proposition 2 (Effect of estimation error) Let p := maxa∈A pa. Then

max
c

(Vt,c − V π̂
t,c) ≤ 4pt max

a
|̂λa − λa | for all t = 1, 2, . . . , T . (10)

Proof of Proposition 2 Let ε := maxa |̂λa − λa |. We will prove two results: the value
estimates ̂V are close to the optimal values:

Vt,c − ̂Vt,c ≤ 2εt p for all t = 1, 2, . . . , T and all c = 0, 1, . . . , x; (11)

and the values V π̂ of the policy associated to ̂V are close to these estimates:

̂Vt,c − V π̂
t,c ≤ 2εt p for all t = 1, 2, . . . , T and all c = 0, 1, . . . , x . (12)

For all (t, c) such that t = 0 or c = 0, Vt,c = V̂t,c. In addition, for all c,

V1,c = max
a

λa pa ≤ max
a

(λ̂a + ε)pa ≤ V̂1,c + ε p,

so that V1,c − V̂1,c ≤ 2ε p. Now let t ≥ 1 and suppose that Vt,c − V̂t,c ≤ 2εt p, for all
c. Then, for all actions a,

λa(pa + Vt,c−1) + (1 − λa)Vt,c

= λ̂a(pa + V̂t,c−1) + (1 − λ̂a)V̂t,c

+ (λa − λ̂a)pa + (1 − λ̂a)(Vt,c − V̂t,c) + λ̂a(Vt,c−1 − V̂t,c−1)

+ (λ̂a − λa)(Vt,c − Vt,c−1)

≤ λ̂a(pa + V̂t,c−1) + (1 − λ̂a)V̂t,c + ε pa + (1 − λ̂a) · (2εt p) + λ̂a · (2εt p) + ε · p
≤ λ̂a(pa + V̂t,c−1) + (1 − λ̂a)V̂t,c + 2ε(t + 1)p,
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12 A. N. Avramidis, A. V. den Boer

using |Vt,c − Vt,c−1| ≤ p, so that for all c ≥ 1,

Vt+1,c = max
a

λa(pa + Vt,c−1) + (1 − λa)Vt,c

≤ max
a

λ̂a(pa + V̂t,c−1) + (1 − λ̂a)V̂t,c + 2ε(t + 1)p = V̂t+1,c + 2ε(t + 1)p.

This proves (11).
We now consider (12). For all (t, c) such that t = 0 or c = 0, V π̂

t,c = ̂Vt,c = 0.

Now suppose for induction that ̂Vt,c − V π̂
t,c ≤ 2εt p for all c ≥ 0. Then for all c ≥ 1,

V̂t+1,c = λ̂π̂t+1,c(pπ̂t+1,c + V̂t,c−1) + (1 − λ̂π̂t+1,c)V̂t,c

= λπ̂t+1,c(pπ̂t+1,c + V π̂
t,c−1) + (1 − λπ̂t+1,c)V

π̂
t,c

+ λπ̂t+1,c(V̂t,c−1 − V π̂
t,c−1) + (1 − λπ̂t+1,c)(V̂t,c − V π̂

t,c)

+ (λ̂π̂t+1,c − λπ̂t+1,c) · (pπ̂t+1,c + V̂t,c−1 − V̂t,c)

≤ λπ̂t+1,c(pπ̂t+1,c + V π̂
t,c−1) + (1 − λπ̂t+1,c)V

π̂
t,c

+ λπ̂t+1,c · 2εt p + (1 − λπ̂t+1,c) · 2εt p + ε · (2p)

= V π̂
t,c + 2ε(t + 1)p,

using |V̂t,c−1 − V̂t,c| ≤ p. This proves (12). Now (10) follows directly from (11)
and (12). ��

We now prove Theorem 1 in two steps. First, we apply Propositions 1 and Propo-
sition 2 to obtain an upper bound on the regret incurred during the exploitation phase.
The regret incurred during the exploration phase is upper-bounded by a constant times
the duration of this phase. Then, we show that the choice τn 	 (n2 log n)1/3 mini-
mizes the order of this upper bound, and obtain the O(n2 log n)1/3) upper bound on
the regret.

Proof of Theorem 1 Let n ∈ N, n ≥ 2. We proceed in two steps.
Step 1. Let̂λ = ̂λn = (̂λn,1, . . . ,̂λn,κ ) be the estimate obtained in the exploration

phase of σ(τn). Let V := VT ,x and V π̂ (̂λn) := V π̂
T ,x (

̂λn). Then

Rn(σ (τn);λ)
(a)≤ τnV + E

[

(n − τn)
(

V − V π̂ (̂λn)
)]

(b)≤ τnV + n · 4T p · E
∥

∥̂λn − λ
∥

∥ . (13)

Here (a) is argued as follows: the learning phase consists of τn seasons, in each of
which the expected loss relative to the optimum is at most V. The exploitation phase
consists of n−τn seasons, in each of which the conditional expected loss relative to the
optimum, given̂λn , is V −V π̂ (̂λn). Step (b) then follows directly from Proposition 2.

Step 2. From (13) and Proposition 1 we obtain

Rn ≤ τnV + n · 4T p · [

δ + 2κ exp(−2� f τn�δ2)
]

, (14)
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Dynamic pricing with finite price sets… 13

for any n and δ > 0. The assumption τn 	 (n2 log n)1/3 implies that there are positive
constants cτ and cτ , such that, for all n ≥ 1,

cτ (n
2 log n)1/3 ≤ τn ≤ cτ (n

2 log n)1/3. (15)

Each of the summands in the right side of (14) is O(n2 log n)1/3, provided that

δ = δn := cδ

(

log n

n

)1/3

, where cδ = (6 f cτ )
−1/2. (16)

For the term τnV in (14), this follows directly from (15). For the second term on the
right side of (14), note that n · 4T p · δn ≤ 4T p · cδ · (n2 log n)1/3, and

e−2� f τn�δ2n ≤ e−2( f τn−1)δ2n ≤ K0e
−2 f τnδ2n

(a)≤ K0e
−2 f cτ c

2
δ log n

(b)= K0n
−1/3; (17)

here K0 := supn≥2 exp(2δ
2
n) = exp(2c2δ (log(3)/3)

2/3), step (a) follows from the
lower bound in (15) combinedwith (16) (since τnδ

2
n ≥ cτ c

2
δ log n), and step (b) follows

from the definition of cδ . Putting all terms together, we obtain supλ∈� Rn(σ (τn);λ) ≤
K1(n2 log n)1/3, where

K1 := sup
λ∈�

V (λ)cτ + 4T p
[

(6 f cτ )
−1/2 + 2κK0(log 2)

−1/3].

But K1 < ∞, since supλ∈� V (λ) ≤ pmin{x, T }. ��
Remark 1 A choice of τn that is consistent with Theorem 1 is

τn = �cτ (n
2 log n)1/3�, where cτ = 1

2
(3 f )−1/3. (18)

To motivate the formula, observe that (17) shows that the exponential term exp
( −

2� f τn�δ2n
)

in (14) is O(n−1/3), and therefore

lim sup
n→∞

supλ∈� Rn(σ (τn);λ)

(n2 log n)1/3
≤ pmax{min{x, T }, 4T }[cτ + (6 f cτ )

−1/2]. (19)

The right side is minimized by setting cτ = cτ and minimizing with respect to this
single variable; this yields the value in (18).

4.2 Strength of bound

If T = 1, our problem reduces to a conventional multi-armed bandit problem. It is
known (see, e.g., Lattimore and Szepesvári (2019), Exercise 15.6) that in this setting,
the (worst-case) regret of explore-then-commit type of strategies grows as n2/3. This
implies that the n2/3 growth rate (up to logarithmic terms) in Theorem 1 cannot be
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14 A. N. Avramidis, A. V. den Boer

improved by more refined proof techniques, but is an intrinsic property of the strategy
σ .

It is also known that in multi-armed bandit problems with K ∈ N actions (arms),
strategies such as MOSS Audibert and Bubeck (2009) achieve O(

√
Kn) worst-case

regret, and this rate is the best possible (Vogel 1960; Auer et al. 2002). Neither this
policy nor this characterization of the best possible growth rate of regret are directly
transferable to an informative statement in our setting: if we would naively treat our
problem as a multi-armed bandit problem, then each of the K arms in the multi-armed
bandit problem would correspond to a policy π as defined in Sect. 2; as a result, the
number of actions would be K = κT ·x and hence the lower bound

√
Kn would be

prohibitively large in many instances that are practically relevant. For example, in
our numerical study in Sect. 6 we consider κ = 10, x = 100, and T = 65, which
could correspond to 106500 different policies. There do exist algorithms for multi-
armedbandit problemswith an underlyingMDPstructure (e.g.Burnetas andKatehakis
1997; Even-Dar et al. 2006; Auer and Ortner 2007). Specific to our problem is that the
transition probabilities of the MDP are unknown and governed by the same unknown
parameters λ, for each state (where inventory is available); this particular structure
is exploited by the design of σ . Furthermore, Even-Dar et al. (2006, Theorem 13)
provides upper and lower bounds (holdingwith high probability) on the value functions
of a finite-state MDP; these bounds grow linearly in the time horizon, matching the
growth rate of the multiplier (2pt) that we establish in Proposition 2. This suggests
that the linear dependence of regret on the time horizon cannot be improved.

It is also insightful to compare our regret bound of Theorem 1 to the logarithmic
regret obtained by den Boer and Zwart (2015). These authors study a parametric
model where the unknown demand function is characterized by two parameters. It is
shown that ‘learning takes care of itself’; a near-myopic policy with full emphasis on
‘exploitation’ performs very well and learns the parameters ‘on the fly’. This property
is not true in our case; a myopic policy that does not pay careful attention to exploring
all actions sufficiently often would incur a loss that grows linearly with n. The need
to put more emphasis on ‘exploration‘ naturally induces a higher regret rate.

An interesting direction for future research is to see whether the n2/3 rate of Theo-
rem 1 can be improved, and to prove a lower bound on the (worst-case) regret achieved
by any policy.

5 Extension

In this section, seasons are allowed to be non-identical: season length and initial
inventory are allowed to vary across different seasons. Two strategies are studied:
(i) strategy σ ′′ merely extends σ to allow non-identical seasons; when seasons are
identical, the two strategies coincide; (ii) strategy σ ′ extends σ in the same sense,
but also modifies it by requiring policy updates during exploitation. In our numerical
results (all of which use identical seasons), σ ′ outperforms σ formodest time horizons;
this is what motivates it. We prove a performance guarantee analogous to that in
Theorem 1 for both σ ′ and σ ′′.
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We revise the model of Sect. 2 as follows. At the beginning of any season s, the
inventory is replenished to xs ∈ N, and the seasonal remaining time is Ts ∈ N. The
terms initial inventory and season length, when speaking of season s, refer to xs and
Ts , respectively. The sequences of season lengths and initial inventories are bounded:
T := sup j∈N Tj < ∞, and x := sup j∈N x j < ∞. All seasons share the same set of
feasible prices, {p1, . . . , pκ}, and vector of purchase probabilities, λ = (λ1, . . . , λκ).
The inventory dynamics are

Cu =
{

xs if u = ∑s−1
k=1 Tk + 1

max{Cu−1 − Du−1, 0} if
∑s−1

k=1 Tk + 1 < u ≤ ∑s
k=1 Tk

}

, u = 1, 2, . . . . (20)

The regret of a strategy σ over the first n seasons isRn := Rn(σ ;λ) := ∑n
s=1

(

Vs −
Eσ [∑u∈Us

pAu min{Cu, Du}]
)

,whereUs := {u ∈ N : ∑s−1
k=1 Tk+1 ≤ u ≤ ∑s

k=1 Tk}
is the set of time periods belonging to season s, Eσ denotes expectation under σ , and
Vs := VTs ,xs is the optimal value for season s under full-information, as defined in
Sect. 2. The strategy with policy updates is:

Strategy σ ′(τ ).

Step 1 (Initialization). Let τ ∈ N, τ ≤ n.
Step 2 (Initial Exploration). For all u = 1, . . . ,

∑τ
k=1 Tk , set Au := min{arg min

{Ni (u − 1) : 1 ≤ i ≤ κ}} if Cu > 0, and set Au = 0 if Cu = 0.
Step 3a (Estimation). For each s ∈ {τ + 1, . . . , n} and i = 1, . . . , κ , let Ns−1,i :=
∑s−1

j=1
∑

u∈Uj
1[Au=i] be the count of time periods in the first s−1 seasons during

which the price was pi , and let Ss−1,i := ∑s−1
j=1

∑

u∈Uj
1[Au=i]Du be the count

of sales obtained in these periods. Set ̂λs,i := Ss−1,i N
−1
s−1,i1[Ns−1,i>0] for i =

1, . . . , κ and̂λs := (̂λs,1, . . . ,̂λs,κ ).
Step 3b (Exploitation). For each s ∈ {τ + 1, . . . , n}, apply the policy π̂s = π(̂λs)

defined in (4), during season s.

Theorem 2 Set τn 	 (n2 log n)1/3. Then, there exists a finite positive constant K2 such
that, for all n ≥ 2,

sup
λ∈�

Rn(σ
′(τn);λ) ≤ K2(n

2 log n)1/3. (21)

Proof of Theorem 2 The proof follows that of Theorem 1. Let n ≥ 2.
Step 1. For all s ∈ {τn + 1, . . . , n}, let̂λn,s be the estimate obtained in step (3a) of

σ ′(τn), and let π̂n,s be the policy applied in step (3b), with value Vn,s := V
π̂n,s
Ts ,xs

(̂λn,s)

as defined in (2). Then

Rn(σ
′(τn);λ)

(a)≤
τn

∑

s=1

Vs + E

⎡

⎣

n
∑

s=τn+1

(

Vs − Vn,s
)

⎤

⎦

(b)≤ τnx p +
n

∑

s=τn+1

4Ts p · E
∥

∥̂λn,s − λ
∥

∥
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16 A. N. Avramidis, A. V. den Boer

≤ τnx p + n · 4T p · max
τn<s≤n

E
∥

∥̂λn,s − λ
∥

∥ , (22)

where (a) and (b) are simple extensions to their counterparts in (13).
Step 2. We claim that for any δ > 0,

max
τn<s≤n

E
∥

∥̂λn,s − λ
∥

∥ ≤ δ + 2κ exp(−2� f τn�δ2), (23)

where f := min1≤s≤τn min{Ts, xs}/κ ≥ 1/κ > 0. To prove this, we bound the sample

sizes associated tôλn,s from below:

min
τn<s≤n

Ns−1,i ≥ Nτn ,i =: Ni
(a)≥ � f τn� for each i, (24)

where (a) uses the fact that in each season s ≤ τn , the inventory is positive during at
least min1≤s≤τn min{Ts, xs} = f κ periods, combined with the near-parity of sample
sizes (|Ni − N j | ≤ 1 for i �= j). Now (23) follows from (24) as in the proof of
Proposition 1 , with f replaced by f . The remainder of the proof mimics that of
Theorem 1, step 2, with f replaced by f . ��

Wenowdefine the strategyσ ′′ and state a performance guarantee for it inCorollary 1
below; the proof follows easily from that of Theorem 2.

Strategy σ ′′(τ ).

Steps 1-2. Identical to those of σ ′(τ ).
Step 3 For each season s = τ + 1, . . . , n, apply the policy π̂ = π(̂λτ+1) defined
in (4), wherêλτ+1 is defined as in strategy σ ′(τ ).

Corollary 1 Let τn 	 (n2 log n)1/3.Then, for all n ≥ 2, wehave supλ∈� Rn(σ
′′(τn);λ)

≤ K2(n2 log n)1/3, with K2 as in the proof of Theorem 2.

6 Numerical results

Strategies σ , σ ′ will be compared with six others, which are all recent and different
strategies with proven performance guarantees in particular settings: (1) two strategies
based on the fluid approximation in Besbes and Zeevi (2012, Algorithm 1, Section
3.1); (2) two strategies that adapt the upper-confidence-bound approach of Babaioff
et al. (2015); (3) Thompson sampling with inventory updating (Ferreira et al. 2018,
Algorithm 2); and (4) the method of den Boer and Zwart (2015), adapted for a finite
price set.

The next section elaborates these alternatives.

6.1 Alternative strategies

Fluid-based strategies σF and σ ′
F These strategies are inspired byBesbes and Zeevi

(2012, Algorithm 1, Section 3.1). With λ momentarily assumed known, consider the
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linear program

max
{

κ
∑

i=1

piλi ti :
κ

∑

i=1

λi ti ≤ x,
κ

∑

i=1

ti ≤ T , ti ≥ 0, i = 1, . . . , κ
}

, (25)

and define a fluid-optimal policy πF = πF (λ) as follows. Let t := (t1, . . . , tκ) = t(λ)

be an extreme-point optimal solution of the linear program. Let m be the number of
positive elements of t , and note m is either one or two. If m = 1, then apply, until
stock-out or the season’s end, the price that corresponds to the unique component of
t that is positive. In case that m = 2, let i1 and i2 be the indices of the two positive
elements of t , ordered in increasing revenue rate: λi1 pi1 ≤ λi2 pi2 , and apply, until
stock-out or the season’s end, price pi1 for the first [ti1] periods and price pi2 otherwise.
The ordering “first pi1 , then pi2” is chosen because it performed somewhat better than
the reverse one (first pi2 , then pi1 ) in our small-inventory cases (x = 10), while the
two were indistinguishable when x = 100. Besbes and Zeevi (2012) tacitly prove
that the ordering is immaterial (in their model) as inventory grows large: it appears
neither in Algorithm 1 there, nor in the associated regret bound (Besbes and Zeevi
2012, Theorem 1). We now define two explore-then-exploit strategies for a horizon of
n seasons:

Strategy σF = σF (τ ) and Strategy σ ′
F = σ ′

F (τ )

Step 1. During the first τ seasons, price to learn, maintaining near-parity of sample
sizes (similar as under σ ). Let̂λ be the estimate of λ based on the history up to the
end of season τ .
Step 2, Strategy σF . For each season s = τ + 1, . . . , n, apply the counterpart of
πF in which λ is replaced bŷλ.
Step 2, Strategy σ ′

F . For each season s = τ + 1, . . . , n:

(a) Let̂λs be the estimate of λ, based on the history up to season s.
(b) Apply the counterpart of πF in which λ is replaced bŷλs .

Note that σF fixes a single policy throughout the exploitation phase, whereas σ ′
F re-

estimates and updates the policy in each season. In choosing τ , we considered the
following variants: τ = �cτ (n2 log n)1/3ni/10� for i ∈ {−2,−1, 0, 1, 2}, with cτ as
in (18). For n = 106 (the largest value we considered), the regret was similar for
i ∈ {−2,−1, 0}, and larger otherwise. We therefore choose i = 0, i.e., set τ = τn as
in (18), and we claim that the performance and inconsistency reported below are not
artefacts of having chosen τ poorly as a function of n.

Fluid-based, upper-confidence-bound strategies σU and σ ′
U Babaioff et al.

(2015) approximate the total revenue over a season as r(p) = r(p; x, T ) =
r(p; x, T , λ(·)) := p ·min(x, Tλ(p)), where the price p lies in a continuous domain,
and λ(p) is the associated purchase probability. They pursue a fixed-price policy that
prices at the maximizer of r(·). Their method is asymptotically optimal in their setting,
and uses an upper confidence bound (UCB) for each r(p), for p in an appropriate finite
set that is asymptotically dense in the continuous domain. Translating this approach
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18 A. N. Avramidis, A. V. den Boer

to the finite-price setting, we seek to price at

i∗ := min arg max i∈Ar(pi ) (26)

through their UCB method detailed below. Babaioff et al. (2015, Section 4) also
mention a “tempting”, dynamic alternative, inwhich,at each timeu, the total remaining
revenue in the season is approximated by ru(pi ) = r(pi ;Cu, tu) := pi ·min(Cu, tuλi )
(where Cu is the remaining inventory and tu is the remaining time), and one aims to
price at the maximizer of ru(·), via the same UCB method. To implement both these
variants, we use the upper confidence bounds in Babaioff et al. (2015), as follows: let
Ni (u) denote the number of periods before u in which the chosen price was equal to
pi ; let Si (u) denote the total sales obtained during these periods; and define

̂λu,i = 1[Ni (u)>0]
Si (u)

Ni (u)
+ 1[Ni (u)=0],

ρu,i = α

Ni (u) + 1
+

√

α̂λu,i

Ni (u) + 1
for α := log(T ),

Iu,i = pi · min
{

x, T (̂λu,i + ρu,i )
}

. (27)

Here, Iu,i is an upper confidence bound on r(pi ), with the radius ρu,i motivated
in Babaioff et al. (2015). In addition, define an index I ′

u,i as in (27), with x and T
replaced by Cu and tu respectively; this index is an upper confidence bound on ru(pi ).
We now define two strategies for n seasons of length T .

Strategy σU For all u = 1, . . . , nT , set Au = min arg max 1≤i≤κ Iu,i if Cu > 0
and set Au = 0 if Cu = 0.

Strategy σ ′
U For all u = 1, . . . , nT , set Au = min arg max 1≤i≤κ I ′

u,i if Cu > 0,
and set Au = 0 if Cu = 0.

Thus, both these strategies seek to charge a price that maximizes the UCB on
corresponding expected revenue; in case of a tie, the smallest maximizing price is
selected.

Thompson-sampling strategy σT This strategy is an adaptation of Ferreira et al.
(2018, Algorithm 2), which is based on Bayesian estimation of λ, and, according to
the authors, ‘addresses the challenge of balancing the exploration-exploitation tradeoff
under the presence of inventory constraints’. Following them, the prior distribution
on λ consists of independent Uniform(0,1) marginals; and since λ is constant over
seasons, it is natural that we apply their (Bayesian) estimator to the data from all past
time periods.

Strategy σT Repeat the following steps for all u = 1, . . . , nT :

Sample Demand. For each i = 1, . . . , κ , let λ̃i be an independent sample from the
Beta(Si (u)+ 1, Ni (u)− Si (u)+ 1) distribution, where Ni (u) denotes the number
of periods before u such that the chosen price was pi , and Si (u) denotes the total
sales obtained during these periods.
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Price. Let t := (t1, . . . , tκ) be an optimal solution to the linear program

max
{

κ
∑

i=1

pi λ̃i ti :
κ

∑

i=1

λ̃i ti ≤ Cu/tu,
κ

∑

i=1

ti ≤ 1, ti ≥ 0, i = 1, . . . , κ
}

, (28)

where Cu and tu denote the season’s remaining inventory and remaining time in
period u, respectively. Set Au randomly to one of 1, 2, . . . , κ, 0 with respective
probabilities t1, t2, . . . , tκ , 1 − ∑κ

i=1 ti .
Update history. Observe the demand Du and update the history.

Parametric strategy σP This strategy is our adaptation of den Boer and Zwart
(2015) to the finite-price setting. Its basis is the assumption that any price p entails
the purchase probability λ(p) = η(β1 + β2 p), where η(z) := exp(z)/(1 + exp(z)),
and β := (β1, β2) are unknown parameters. By the conditional independence in our
model,

(Du |Au = p) ∼Bernoulli (λ(p)), independently of

{A1, . . . , Au−1, D1, . . . , Du−1}, for all u = 1, 2, . . . . (29)

This is a Generalized Linear Model (GLM) with (canonical) link function η(·); thus,
maximum-likelihood estimates of β are computable by standard methods.

Strategy σP Repeat the following steps for all u = 1, . . . , nT :

Estimate the purchase probabilities. Compute βu−1, j . as a maximum-likelihood
estimate of β j ( j = 1, 2) under the GLM (29) as of time u, i.e., based on the
data {A1, . . . , Au−1, D1, . . . , Du−1}. Let̂λu,a := η(̂βu−1,1 + ̂βu−1,2 pa) for a ∈
{1, . . . , κ} be the estimated probabilities.
Price. Let π̂u be the optimal action, defined as in (4) with probabilities there being
the estimateŝλu,a computed above. Set Au = π̂u , except only if π̂u is such that,
during the completed current season, no price-dispersion occurs (i.e., tu = 1,
Cu = 1, and setting Au = π̂u would make the actions, Au′ for all u′ of the
completed season, equal); in this case only, set Au by altering π̂u to the nearest
action towards the mid-point of the price domain.
Update history. Observe the demand Du and update the history.

6.2 Consistency

A strategy is said to be consistent if its relative regret converges to zero as n →
∞ (equivalently, its regret is o(n)) uniformly over λ ∈ �. Strategies σ and σ ′ are
consistent, by Theorem 1 and Theorem 2, respectively. In contrast, all six alternative
strategies may fail to be consistent.

Inconsistency of σF and σ ′
F Let V F = V F (λ) denote the expected per-season

revenue of policy πF . Loosely speaking, these strategies incur revenue losses of two
types relative to pricing optimally (i.e., using π∗ in all seasons): (i) the loss V −
V F = V (λ) − V F (λ); (ii) the loss due to not knowing πF exactly. More formally,
suppose that (i) for some λ0 ∈ � we have V (λ0) − V F (λ0) > 0; and (ii) the value
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of the policy applied in any exploitation season (the counterpart of πF ) does not
exceed V F (λ0), and τn/n → 0. Then, the exploitation phase incurs a loss at least
(n − τn)(V − V F ), which is �(n) (since V − V F > 0). In this setting, we have
lim infn→∞ Rn(·;λ0)/(nV ) ≥ 1−V F (λ0)/V (λ0) > 0 for these two strategies; thus,
the right side is a fundamental lower bound on the relative regret, and we call it the
fluid gap.

Inconsistency of σU and σ ′
U Let πU denote the (single-fixed-price) policy that

prices at pi∗ , where i∗ is defined in (26), and let VU = VU (λ) denote its expected
revenue, defined in (2). Assuming that there exists λ0 ∈ � such that VU (λ0) < V (λ0),
and that the (expected) per-season revenue under σU is at most VU (λ0) for all seasons
that are large enough (a reasonable assumption), then we have lack of consistency:
lim infn→∞ Rn(σU ;λ0)/(nV ) ≥ 1 − VU (λ0)/V (λ0) > 0. Thus, the right side is a
fundamental lower bound on the relative regret, and we call it the fixed-price gap.
Strategy σ ′

U does not lend itself to a similar argument (since the functions ru() involve
the stochastic process {(Cu, tu) : u ≥ 1}, which is difficult to analyze). Since it is
indifferent to the MDP, we expect that, for some λ0 ∈ �, its asymptotic per-season
revenue is smaller than V (λ0) , i.e., that it is inconsistent; our numerical results below
confirm this.

Inconsistency of σT The guarantee in Ferreira et al. (2018, Theorem 2) is incon-
sequential in our setting for two reasons: (i) their upper bound is on Bayesian regret,
while ours is on worst-case regret (over all possible values of λ ∈ �) and (ii) by
the boundedness of season lengths, the Bayesian regret need not vanish as the season
index n → ∞. Since σT is indifferent to the MDP, we expect that, for some λ0 ∈ �,
its asymptotic per-season revenue is smaller than V (λ0), i.e., that it is inconsistent;
our numerical results below confirm this.

Inconsistencyof σP This strategy runs the risk ofmodelmisspecificationdiscussed
earlier: if the demand function cannot be appropriately approximated by the assumed
parametric model, then, even with an abundance of sales data, the action it prescribes
may differ from the optimal one (entailing an asymptotic per-season revenue smaller
than the optimum). Our numerical results below confirm this, and include cases where
the inconsistency gap is large.

6.3 Numerical study

Main part: regret with emphasis on the effect of n We compare the performance
of σ , σ ′ with that of the six alternatives σF , σ ′

F , σU , σ ′
U , σT , and σP . We consider

identical seasons (Sect. 2) and the following demand functions:

– Step function: λ1(p) = μi whenever pi−1 ≤ p < pi , where pi = i/3 for
i = 0, 1, 2, 3; and μi = exp(−θ yi ), where θ = − log(1/100) = 4.6052 and
yi = (pi + pi−1)/2 (resulting in μ1 = 0.4642, μ2 = 1/10, μ3 = 0.0215).

– Linear: λ2(p) = 1 − p.
– Logistic (Logit): λ3(p) = η(β1 − β2 p), where η(z) := exp(z)/(1 + exp(z)), and
such that λ3(1) = 1 − λ3(0) = 1/100 (β1 = 4.5951, β2 = 9.1902).

– Exponential: λ4(p) = exp(−θ p), where θ = − log(1/100) (resulting in λ4(0) =
1, λ4(1) = 1/100).
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Fig. 1 The demand and revenue vectors, and the generating continuously-supported analogs for the step,
linear, logit, and exponential cases

The step function is chosen to have a small number of discontinuities of substantial size;
all other three demand functions are continuous. (See den Boer and Keskin (2019) for
several practical applications where demand discontinuitiesmay arise). The number of
prices is set to κ = 10, and the price points to pi := (i − 0.5)/κ for i = 1, 2, . . . , κ .
This results in the demand vectors λi = [λi (p1), . . . , λi (pκ)] for i ∈ {1, 2, 3, 4}.
Figure 1 depicts the demand vectors λi ; the revenue vectors {p jλi (p j )}10j=1; and the
underlying continuously-supported analogs (λi (p) and pλi (p) for p ∈ [0, 1]), for all
i . Onwards, the four demand vectors are treated in a unified manner.

Inventory is set at the levels x1 = 10 and x2 = 100.Weexamine the effect of demand
strength systematically as follows. For each demand vector λi , i ∈ {1, 2, 3, 4}, let pUi
be the revenue-rate maximizing price (i.e. λi (pUi )pUi = max j λi (p j )p j ). We want
the mean demand, when price pUi is applied throughout the season, to be as close as
possible to the inventory xk times a demand-strength factor c j ; this is achieved by
setting the season length as

Tk,i, j (x) = [c j xk/λi (pUi )]. (30)

We set c j = (3/4) · 2 j−1 for j = 1, 2, 3 to create scenarios of low, medium, and high
demand, respectively.

The planning horizon (number of seasons) n varies along powers of 10 from small
(10) to large (106).

Part 2 In this part we keep the inventory and demand vectors as previously; and
we modify the range of demand strength, making it far wider relative to the main
experiment: season lengths are set as usual by (30), but now across c j = (3/4) · 2 j

for j = −1, 0, 1, . . . , 6; thus, for j = −1 the mean demand is very weak (37.5%
of inventory), while for j = 6 the mean demand is extremely strong (48 times the
inventory). For each resulting case, we report: (a) the fluid gap and the fixed-price gap
(defined in Sect. 6.2); and (b) the estimated relative regret of selected strategies for
n = 102 and n = 104, with the latter serving as a large-n example (estimation details
are discussed in Sect. 6.4 below).

Computing costWe study the strategies’ computing cost, defined as the time spent
computing the price (Au for all relevant u), as measured within our matlab code via
the recommendedmethod, commands tic and toc. This is done in an experiment where
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variable independent factors are the inventory, taking values x1 = 50, x2 = 100, and
x3 = 200; the demand vector λi , i ∈ {1, 2, 3, 4}; and the demand strength, taking
values c j = (3/4) · 2 j for j ∈ {0, 1, 2, 3}; setting season lengths as in (30), the mean
demand is 75%, 150%, 300%, and 600% of the inventory, for each k and i . For the
dependence of the cost on n, our numerical experience suggests a clear distinction
between the ‘update’ strategies (σ ′, σ ′

F , σU , σ ′
U , σT and σP ) and the others (σ and

σF ); for the former, the cost is (nearly) linear in n, that is, very close to Cn, where C
is the expected cost per season and is strategy-specific, while for the latter it does not
change substantially with n. Now, the issues of main interest are (i) the dependence
of the update-type strategies’ C on the inventory x and season length T ; and (ii) the
cross-strategy comparison of these C’s. We answer these questions based on n = 100
seasons; based on unreported results with n = 103, we expect that these answers
would be essentially unchanged for all n ≥ 100.

6.4 Results

We sometimes refer to the eight strategies generically as σ�, � = 1, . . . , 8.
Main results: relative regret and consistency For each strategy we have 24

cases generated by inventory x ∈ {10, 100}; demand vector λi for i = 1, 2, 3, 4;
demand level c j , j = 1, 2, 3 (low, medium, and high). For each � and each n = 10k

with k = 1, . . . , 6 (except for σP with k = 5, 6) we compute an estimate of R′
n =

R′
n(σ�) that is as accurate as possible subject to our computer-time constraints (see

details in paragraph ‘Estimation and accuracy’ below). These estimates are denoted
̂R′
n = ̂R′

n(σ�) and are reported in Figs. 2 and 3, for x = 10 and x = 100 respectively.
Estimation andaccuracy For each � and each case, a case-specific number nrep =

nrep(σ�, x, i, j, n) of independent simulations (replications) (of n seasons) is run; each
replication yields one sample value of the revenue loss relative to the optimum, nVx,T ;
this, divided by this optimum, is a sample value ofR′

n = R′
n(σ�). The estimate ̂R′

n is
the average of these nrep samples; its relative error (inverse accuracy) is SE(̂R′

n)/
̂R′
n,

where SE(̂R′
n) is the sample standard deviation divided by

√
nrep. We do not simulate

σP for large n (n ∈ {105, 106}), because the simulation cost is exceptionally high,
except for the two cases where x = 10, demand vector is λ1, and demand strength is
medium or high (which demonstrate the large inconsistency gap); points missing in
the figures are due to this choice. Except for σT and σP , the accuracy is good for all
n (relative error less than 5%; for σ and σF , less than 2%). The accuracy decreases
somewhat for σT and σP as n increases, but only when ̂R′

n(·) is very small, in which
case our comparisons are unaffected, even if we replace this estimate by the normal-
based, 95%-confidence lower or upper bound. This limitation is unavoidable and due
to the excessive simulation cost (for example, for n = 106, a single replication of σT
for x = 100, i = 1, and j = 1 requires 3.5 ×105 seconds; and σP would require
much more).

Part-2 results Figures 5 and 6 show, for x = 10 and x = 100 respectively, the two
gaps and the relative regrets for n = 102 and n = 104. Since these gaps explain the
large-n regret of πF and πU , we examine themmore carefully.We define the fluid (LP)
slack and the fixed-price (FP) slack as the fraction of inventory that is unused under
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Fig. 2 The strategies’ estimated relative regrets,̂R′
n(·), (vertical axis) as functions of the number of seasons

n (horizontal axis) for x = 10. The figure in row i , column j corresponds to demand vector λi and season
length T1,i, j (low, medium, and high demand in the left, center, and right column, respectively)
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Fig. 3 The strategies’ estimated relative regrets,̂R′
n(·), (vertical axis) as functions of the number of seasons

n (horizontal axis) for x = 100. The figure in row i , column j corresponds to demand vector λi and season
length T2,i, j (low, medium, and high demand in the left, center, and right column, respectively)
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the optimal solution in the fluid model underlying πF and πU , respectively. Figure 7
gives a detailed view of these optimal solutions for each of the 8 cases (two x , four
λ), showing, in each case, the optimal price (or prices in the former case), the slack,
and the gap.

Insights obtained are: (a) these gaps are, respectively, tight lower bounds, on the
large-n relative regret of σF and σU ; and (b) at the extremes stated above, σ is not
competitive, which is explained by the fact that the optimal policy is nearly a fixed-
price one, and consequently the gaps nearly vanish. Since these results are secondary,
they are presented (and discussed) in the Appendix.

Results on computing cost We have defined 48 = 3 × 4 × 4 design points.
With C�

k,i, j denoting the cost of strategy σ� at the point (k, i, j) (i.e., with capacity
xk , demand function i , and demand strength c j ), we report the summary statistics
over the design, C�

min = mink,i, j Ck,i, j , C�
avg = 1

48

∑3
k=1

∑4
i=1

∑4
j=1 Ck,i, j , and

C�
max = maxk,i, j Ck,i, j .Moreover, we develop a costmodelC�(x, T ) ≈ 10β�

0 xβ�
x T β�

T ,
and estimate it by allowing random error over the design points:

log10 C
�
k,i, j = β�

0 + β�
xk log10 xk + β�

Tk,i, j log10 Tk,i, j + ε�
k,i, j (31)

where ε�
k,i, j are random errors. We compute (least-squares) estimates β̂�

0 , β̂
�
x , and β̂�

T ;

these imply the model C�(x, T ) ≈ 10β̂�
x β̂�

x T β̂�
T . For each � = 1, . . . , 6, the data

C�
k,i, j and the (estimated) model are visualized in Fig. 4; the model and the summary

statistics are reported in Table 1.

6.5 Discussion

This Sect. discusses results and insights from the numerical study. Our main results
are Figs. 2 and 3, showing for each � = 1, . . . , 8 the (estimated) relative regret ̂R′

n(σ�)

as a function of n, with both axes shown in logarithmic scale.
Regret consistency and rate of convergence For σ and σ ′, the relative regret is

nearly a straight line with slope −1/3 in all 24 cases, in line with Theorems 1 and 2.
For each alternative except σP , the relative regret flattens (the slope approaches zero)
as n increases in all cases except the low-demand ones, i.e., in all sub-figures except
those in the left column. For σP , a flattening of the relative regret is evident only for the
demand vector λ1. Whenever a flattening is evident, the flattened value, i.e., ̂R′

n(σ�)

for the largest available n, is a reasonable proxy for the inconsistency (gap), defined as
limn→∞ R′

n(σ�) (and also discussed in Sect. 6.2). The size of the gap varies with the
case and strategy, and is also discussed below. Crucially, σ and σ ′ enjoy a consistency
and convergence rate that hold uniformly across all cases (inventory, demand vector,
demand strength), while no other strategy achieves this uniform consistency, even if
some perform very well in some cases.

Inconsistent strategies: the sizeof thegapandconsequences thereofGiven
some inconsistent strategy σ�, i.e., with gap limn→∞ R′

n(σ�) > 0, each of σ and σ ′
outperforms σ� for all n ≥ n0, for some n0 = n0(�). Such n0 ≤ 106 are often exhibited
in these figures; for example, for x = 10,λ1, and high demand, choosing σ ′ against σT ,
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Fig. 4 In each figure, the height is log10(C), whereC is the (per-season) cost; the two axes in the horizontal
plane are log10(x) and log10(T ). Each figure � = 1, . . . , 6 shows the cost points log10(C

�
k,i, j ) for all (or

most) k, i, j . The plane shown is the estimated model. Figures correspond to strategies as follows: σ ′, σ ′
F

(first row, from left to right); σU , σ ′
U (second row); σT and σP (third row)
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Table 1 Summary of the computing cost of key strategies. Model parameters β0, βx , and βT ; coefficient
of multiple determination R2; and summary statistics

Strategy β0 βx βT R2 Cmin Cavg Cmax

σ ′ −5.365 0.314 1.040 0.996 7.76e−04 1.93e−02 1.73e−01

σ ′
F −2.508 0.028 0.002 0.050 3.26e−03 3.58e−03 4.62e−03

σU −7.668 0.073 0.955 0.947 1.25e−06 1.72e−05 1.82e−04

σ ′
U −7.584 0.024 0.990 0.971 1.37e−06 1.99e−05 1.76e−04

σT −2.378 −0.012 0.987 0.914 0.143 2.46 10.0

σP −4.393 0.297 1.650 0.988 0.100 14.56 194.0

we see that n0 is about 100; against any other strategy, n0 is at most 10. In a number
of cases, the gap is apparently small, so we do not obtain n0 ≤ 106. We see two
prominent groups with apparently small gap: (1) all strategies, the low-demand cases
(sub-figures in the left column of Figs. 2 and 3); and (2) strategy σP , under vectors
λ2 to λ4. These groups are discussed further, respectively, in the two paragraphs that
follow. Strategies σT and σP appear to be strong contenders: for vectors other than
λ1, and with medium or high demand, their gap is small and their relative regret is
smaller than that of σ and σ ′ for many n (n smaller than the n0 above). That said,
taking σT as the contender, we only fail to demonstrate n0 ≤ 106 in one out of the 16
non-low-demand cases (the case x = 100, λ3, and high demand).

Effect of extreme-demand scenarios The low-demand cases stand out in that a
flattening of the relative regret (of alternatives) is virtually absent; thus, the gaps appear
to be notably smaller compared to the other demand levels. Such an effect might occur
in both extremes, i.e, extreme-low and extreme-high demand (evidence that includes
both extremes is provided by Figs. 5 and 6 in the Appendix). To explain this effect,
note that in these extremes the solution to theMDP is nearly a fixed-price policy: under
extreme-low demand, it is the revenue-rate maximizer; under extreme-high demand,
it is the maximal price p. In these extremes, since a fixed price is nearly optimal, a
focus on the MDP may be unwarranted, and our approach may under-perform.

Strategy σP Figures 2 and 3 suggest that the gaps of σP under λ2 to λ4 tend
to be small. However, these gaps are hard to measure accurately, not only because
they are apparently small, but also because it is impractical to increase n further (as
discussed in Sect. 6.4, paragraph Estimation and accuracy). Remarkably, σP is the
worst performer (of all strategies) under demand vector λ1 and the best performer
otherwise (demand vectors λ2 to λ4). This contrast is explained by the parametric
nature on σP : the parametric demand model on which it is based fails to contain a
good approximation to λ1, while it apparently succeeds in the other cases.

The following two paragraphs discuss the effect of inventory; this discussion is
empirical and its importance secondary.

Effect of inventory on small-n regrets Inventory usually has a negative effect
on the finite-n relative regrets. Indicatively, we consider σ ′ and σT for n = 100. For
x = 10, ̂R′

n(σ
′) ranges across the 12 cases from (about) 6.4% to 9.5%; for x = 100

123



28 A. N. Avramidis, A. V. den Boer

the range is 3.3% to 4.4%. For σT , for x = 10 the range is 1.5% to 17.4%, and for
x = 100 the range is 0.23% to 2.4%.

Effect of inventory onworst-case gaps of σT and σP We consider the effect of
inventory on theworst (largest across the 12 cases) gaps of σT and σP , as approximated

by ̂R′
n(σ�) for the largest n in each case. For σT we obtain: maxi, j R̂′

106
(σT ;λi , x, j)

occurs, for both x , at i = 1 and j = 3 (step- and high-demand); it is about 4.1% for
x = 10 but only 0.67% for x = 100. For σP , the maxima also occur in the case i = 1,
j = 3, but the inventory has almost no effect (maxi, j ̂R′

n(σP ; x, i, j) is 34.9% for
x = 10 and 35.1% for x = 100).

Computing cost Figure 4 and Table 1 show that the cost of each strategy is
explained well, over the design range, by the three-parameter model (31), except only
for σ ′

F , whose main cost is that of solving a linear program (LP), which is insensitive
in x and T . Strategy σ ′ costs well above σU and σ ′

U , but well below σT and σP . The
cost of σP grows faster in T than that of any other strategy, as seen by its larger βT . To
summarize the elements of these costs, we define an active (time) period as one such
that neither time nor inventory has run out (in the current season). Then, σ ′ solves one
MDP in each season; σP solves one MDP, and in addition estimates a Generalized
Linear Model, in each active period; σ ′

F solves one LP in each season; σT solves
one LP in each active period; σU and σ ′

U only require a few elementary numerical
operations in each active period.

Summary and insights Our main conclusion is the uniform consistency and
convergence rate of our approach (σ and σ ′) across all possible demand (purchase
probability) vectors, a feature not enjoyed by any other strategy; this is evidenced by
considering the totality of cases in each of Figs. 2 and 3. The consistency implies that
our approach outperforms any inconsistent strategy for all planning horizons n ≥ n0,
for a suitable n0. These n0, often seen in these figures, depend on the strategy’s gap,
i.e., the limit of its n-season relative regret as n → ∞; the smaller the gap, the larger
n0 tends to be. It is noteworthy that relatively smaller gaps occur in specific cases: (a)
for all inconsistent strategies, under extreme-low or extreme-high demand, perhaps
because the optimal policy is then almost a fixed-price one; and (b) for strategy σP ,
but only when its parametric model contains a good approximation to the demand
vector. Regarding the strategies’ computing cost, our approach sits mid-range among
the alternatives we considered.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
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Appendix

We provide the results of ‘Part 2’ of our experiments and discussion thereof.
Figures 5 and 6 help quantify the relative regret of σF and σU via the respective

gaps (as predicted in Sect. 6.1). In the large-n case, n = 104 (right column), we see
that for all T the (estimated) relative regret of σU is nearly indistinguishable from the
fixed-price gap 1 − VU/V ; and that of σF is lower-bounded (fairly tightly) by the
fluid gap, 1 − V F/V .

Since these gaps are essential to the (large-n) regret of these strategies, we examine
them more carefully. In Fig. 7, the season length T (and thus the strength of demand)
varies over a dense set of points, and reported as functions of T are the following for
each of πU and πF : the optimal prices, i∗ for the former, and i1, i2 for the latter; the
slack; and the gap.

Effect of T on the gaps For πU , we see critical T points at which i∗ changes
upward, entailing a downward jump in demand rate and inventory consumption, and a
positive slack; the local maxima of the fixed-price gap are explained by corresponding
local maxima of the slack. For πF , there exist critical T points at which the optimal
solution changes; however, the presence of two prices in the solution means that the
slack is usually zero.

Effects of inventory x and demand vector λ on the worst-in-T gaps
For each of the 8 cases (sub-figures) in Fig. 7, we define the worst-in-T gaps
ρ(πF ;λ, x) := maxT (1 − V F (λ, x, T )/V (λ, x, T )) and ρ(πU ;λ, x) := maxT (1 −
VU (λ, x, T )/V (λ, x, T )). For each λ (row), ρ(πF ;λ, x) decreases with x . For each
x (column), the worst (largest) ρ(πU ;λ, x) (and the largest slacks) occur at λ1; the
larger sparsity of this vector, where sparsity of λ is defined as max1<i≤κ |λi − λi−1|,
may be the reason behind the larger slacks and gaps.
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Fig. 5 Gaps and estimated n-season relative regrets of strategies (vertical axis) as functions of season length
T (horizontal axis, logarithmic scale) for x = 10. The i th row of figures corresponds to demand vector λi .
Each figure includes the fluid gap and the fixed-price gap for comparisons. Figures in the center and right
column correspond to n = 102 and n = 104, respectively
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Fig. 6 Gaps and estimated n-season relative regrets of strategies (vertical axis) as functions of season length
T (horizontal axis, logarithmic scale) for x = 100. The i th row of figures corresponds to demand vector λi .
Each figure includes the fluid gap and the fixed-price gap for comparisons. Figures in the center and right
column correspond to n = 102 and n = 104, respectively
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Fig. 7 Properties of policies πF and πU as functions of season length T (horizontal axis, logarithmic scale):
optimal price indices (divided by (4κ)−1 for convenient scaling); the slack; and the gap. The i th row of
figures corresponds to demand vector λi . The left and right columns correspond to inventory x = 10 and
x = 100 respectively. Symbols ‘+’ and ‘◦’ mark the slack and gap of πF and πU , respectively, for the T
values in Figs. 5 and 6
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