
Mathematical Methods of Operations Research (2020) 92:249–283
https://doi.org/10.1007/s00186-020-00712-y

ORIG INAL ART ICLE

Minmaxmin robust (relative) regret combinatorial
optimization

Alejandro Crema1

Received: 20 March 2019 / Revised: 25 March 2020 / Published online: 19 May 2020
© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Abstract
We consider combinatorial optimization problems with uncertainty in the cost vector.
Recently, a novel approach was developed to deal with such uncertainties: instead
of a single one robust solution, obtained by solving a min max problem, the authors
consider a set of solutions obtained by solving a min max min problem. In this new
approach, the set of solutions is computed once and we can choose the best one in
real time each time a cost vector occurs yielding better solutions compared to the min
max approach. In this paper, we apply the new approach to the absolute and relative
regret cases. Algorithms to solve the min max min robust (relative) regret problems
are presented with computational experiments.

Keywords Minmax regret · Robust programming · Greedy algorithms ·
Multiparametric programming

1 Introduction

Data uncertainty appears in many optimization problems. In recent decades Robust
(Aissi et al. 2009; Averbakh 2005; Candia-Véjar et al. 2011; Kouvelis and Yu 2013;
Chassein and Goerigk 2016; Kasperski and Zielinski 2016), Stochastic (Li and Liu
2016),Multiparametric (Oberdieck et al. 2016) and fuzzy programming (Carlsson and
Fuller 2012) approaches have been developed to deal with such uncertainties. In this
paper we use the Robust approach.

There are several robust optimization concepts you may select. Some examples are
(Chassein and Goerigk 2016): classic robustness, absolute or relative regret robust-
ness, adjustable robustness, recoverable robustness, light robustness, soft robustness,

B Alejandro Crema
alejandro.crema@ciens.ucv.ve

1 Escuela de Computación, Facultad de Ciencias, Universidad Central de Venezuela, Caracas,
Venezuela

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00186-020-00712-y&domain=pdf

250 A. Crema

lexicographic α-robustness, recovery-to-optimality, or similarity-based robustness. In
this paper we consider the classic robustness and absolute or relative regret.

Let P be a combinatorial optimization problems in (x) with uncertainty in the cost
vector as follows:

(P(c)) min
x∈X ctx

where c ∈ Ω , Ω ⊆ R
n , X ⊆ {0, 1}n , X is not an empty set.

A few words about our notation: If R is an optimization problem then v(R) is its
optimal value and let [n] = {1, . . . , n} denote a set of indices.

A first approach of robust optimization (classic approach) is to find a solution that
is optimal in the worst case, known as robust solution, by solving the next problem in
(x):

min
x∈X max

c∈Ω
ctx.

Recently a novel approach has been presented considering a set of k solutions
instead of a single one (Buchheim and Kurtz 2016, 2017; Chassein et al. 2019). The
problem in (H) to be solved is:

min
H⊆X

{
max
c∈Ω

min
h∈H cth : |H | = k

}
.

The idea behind this approach is to find a set of solutions and choose the best one
each time a new scenario c appears.

As an application, imagine an emergency service designed based on the p-Medians
problem (Boffey and Karkazis 1984). Each time that changes the current situation a
new set of Medians could be computed. However, this may be a hard task. Even
if the computational effort is not large, an excessive number of solutions may be
unacceptable for human users. Instead, in this new approach a set of solutions is
computed once and then we can choose the best one in real time taken from a relatively
small set of solutions yielding better performance compared to the min max approach.

The regret approach, instead of classical robust approach, has been considered by
many authors (Chassein and Goerigk 2016) as a valid option for the k = 1 case in
order to take into account the deviation from the optimal values.

An approach of robust optimization taking into account the absolute deviation from
the optimal values is to find a solution with a minimum regret known as an absolute
robust solution. The regret of x is equal to

max
c∈Ω

ctx − v(P(c))

In this case the problem to be solved is the min max regret problem in (x):

min
x∈X max

c∈Ω
ctx − v(P(c))

123

Min max min robust (relative) regret combinatorial… 251

An approach of robust optimization taking into account the relative deviation from
the optimal values is to find a solution with a minimum relative regret known as a
relative robust solution. The relative regret of x is equal to

max
c∈Ω

ctx − v(P(c))
v(P(c))

.
In this case the problem to be solved is the min max relative regret problem in (x):

min
x∈X max

c∈Ω

ctx − v(P(c))
v(P(c))

To the best of our knowledge the regret approach with k > 1 solutions was not
studied so far. Our main contribution is to close this gap . In this paper, we extend the
novel approach presented above considering a set of k solutions and take into account
the absolute and relative deviations from the optimal values.

Let H ⊆ X with |H | ≥ 1. Let Q(H) be a problem in (c) defined as follows:

(Q(H)) max
c∈Ω

min
h∈H cth − v(P(c))

The regret of H is equal to v(Q(H)).
Let Qr (H) be a problem in (c) defined as follows:

(Qr (H)) max
c∈Ω

min
h∈H cth − v(P(c))

v(P(c))

The relative regret of H is equal to v(Qr (H)).
We are looking for the set with cardinality equal to k and with the minimum regret

(minimum relative regret) by solving the min max min robust (relative) regret prob-
lems, namely: min set-regret(k) problem (min relative set-regret(k) problem) in (H),
defined as follows:

(MSR(k)) min
H⊆X

{v(Q(H)) : |H | = k}
(MrelSR(k)) min

H⊆X
{v(Qr (H)) : |H | = k}

Note that if we use 1 ≤ |H | ≤ k instead of |H | = k we have exactly the same
problems.

There are several options to model the uncertainty. Some examples are (Chassein
and Goerigk 2016): finite uncertainty, interval uncertainty, bounded uncertainty, ellip-
soidal uncertainty and polytopal uncertainty.

Let us consider the interval uncertainty case as follows: Let Ω = {c : L ≤ c ≤ U},
L ∈ R

n ,U ∈ R
n with 0 ≤ L ≤ U. Let us suppose that ctx > 0 for all c ∈ Ω and for

all x ∈ X . Note that v(P(c)) > 0 for all c ∈ Ω .

123

252 A. Crema

For the interval uncertainty case the min max approach (for k = 1) and the min
max min approach (for k > 1) can be reduced easily to solve P(U).

In Sect. 2, we present an ε-optimal algorithm (with ε ≥ 0 a predefined tolerance)
to solve the MSR(k) problem that may be considered a generalization of a classical
approach where k = 1 (Aissi et al. 2009). Solving the MSR(k) problem it could be a
task that consumes a lot of computing time and a lot of memory, therefore it may be
useful to consider two greedy approaches, which will be presented in Sect. 3.

In Sect. 4, we consider the MrelSR(k) problem and we present an ε-optimal algo-
rithm to solve it. Our presentation follows the same scheme that we used for the
MSR(k) problem and the proof of some lemmas are analogous. Thus, for the sake
of simplicity and in order to save space, we omit some proofs. Again, two greedy
approaches will be presented in Sect. 5.

Computational results are presented in Sect. 6 for the Shortest Path problem (Mon-
temanni and Gambardella 2005) and the p-Medians problem. Conclusions and further
extensions are presented in Sect. 7.

2 An algorithm to solve theMSR(k) problem

In this section, we present an algorithm to obtain an optimal solution for the MSR(k)
problem. If H ⊆ X with |H | = k then v(Q(H)) is an upper bound of v(MSR(k)).
Let Y ⊆ X . We present later a problem S(Y) in (H) to obtain a lower bound. The
algorithm iterates between solving the problems S(Y) (to generate a new H) and
Q(H) (to generate a new y to be added to Y) until the gap is closed. If k = 1 the
algorithm becomes a known classical algorithm to obtain an absolute robust solution.
Some lemmas and auxiliary problems are necessary.

Let x ∈ X . The best scenario for x is defined as follows:

c+(x) j = L jx j + U j (1 − x j) for all j

We need some well known elementary properties as follows (for the sake of com-
pleteness we present a proof):

Proposition 1 (i) cth − ctx ≤ c+(x)th − c+(x)tx ∀c ∈ Ω ∀x,h ∈ X
(ii) If c+(x)tx > v(P(c+(x))) then ctx > v(P(c)) ∀x ∈ X ∀c ∈ Ω

(iii) c+(x)tx = Ltx ≤ ctx ∀c ∈ Ω ∀x ∈ X

Proof See “Appendix A”.
As an immediate consequence of Proposition 1(ii) we have that x is an optimal solution
for P(c) for some c ∈ Ω if and only if x is an optimal solution for P(c+(x)). That
suggests to solve Q(H) the search can be restricted to scenarios of the type c+(x)
such that x is an optimal solution for P(c+(x)). That is proved in Lemma 1(i), (ii). In
order to solve Q(H) we present in Lemma 1(iii) a reformulation named Q2(H) by
using a level set transformation. The relation between the optimal solutions for both
problems is presented in Lemma 2. ��
Lemma 1 Let H ⊆ X with |H | ≥ 1, then:

123

Min max min robust (relative) regret combinatorial… 253

(i) v(Q(H)) = max
x∈X min

h∈H c+(x)th − c+(x)tx

(ii) Let x∗ ∈ X. If v(Q(H)) = min
h∈H c+(x∗)th − c+(x∗)tx∗ then x∗ is an optimal

solution for P(c+(x∗)).
(iii) Given the problem Q2(H) in (σ, x) defined as follows:

(Q2(H)) max
σ∈R,x∈X{σ − Ltx : σ ≤ c+(x)th ∀h ∈ H}

then v(Q(H)) = v(Q2(H)).

Proof

(i) : v(Q(H))
(1)= max

c∈Ω
min
h∈H cth − v(P(c))

(2)=

max
c∈Ω, x∈X min

h∈H cth − ctx
(3)≤

max
x∈X min

h∈H c+(x)th − c+(x)tx
(4)≤ v(Q(H))

where

(1) From the definition of Q(H).
(2) From the definition of P(c).
(3) From Proposition 1(i).
(4) From the definition of Q(H) and since c+(x) ∈ Ω ∀x ∈ X .

(ii) Let us suppose that x̂ ∈ X is an optimal solution for P(c+(x∗)) with
c+(x∗)t x̂ < c+(x∗)tx∗. In that case we have that:
v(Q(H)) = min

h∈H c+(x∗)th − c+(x∗)tx∗ < min
h∈H c+(x∗)th − c+(x∗)t x̂ =

min
h∈H c+(x∗)th − v(P(c+(x∗)) ≤ v(Q(H)) and we have a contradiction.

(iii) Since c+(x)tx = Ltx for all x ∈ X we have that

v(Q(H)) = max
x∈X min

h∈H c+(x)th − c+(x)tx

= max
σ∈R,x∈X{σ − Ltx : σ ≤ c+(x)th ∀h ∈ H} = v(Q2(H)) •

��
Lemma 2 Let H ⊆ X with |H | ≥ 1.

(i) Let c∗ be an optimal solution for Q(H), let x∗ be an optimal solution for P(c∗)
and let σ ∗ = min

h∈H c+(x∗)th then (σ ∗, x∗) is an optimal solution for Q2(H).

(ii) Let (σ ∗, x∗) be an optimal solution for Q2(H) then c+(x∗) is an optimal solution
for Q(H).

123

254 A. Crema

Proof

(i) v(Q(H))
(1)= min

h∈H c∗th − v(P(c∗)) (2)= min
h∈H c∗th − c∗tx∗ (3)≤

min
h∈H c+(x∗

)
t
h − c+(x∗

)
t
x∗ (4)= σ ∗ − Ltx∗ (5)≤ v(Q2(H))

(6)= v(Q(H))

where

(1) Since c∗ is an optimal solution for Q(H).
(2) Since x∗ is an optimal solution for P(c∗).
(3) Since cth − ctx ≤ c+(x)th − c+(x)tx for all h ∈ X , x ∈ X , c ∈ Ω .
(4) From the definition of σ ∗ and since c+(x)tx = Ltx ∀x ∈ X .
(5) Since (σ ∗, x∗) is a feasible solution for Q2(H).
(6) From Lemma 1.

Therefore (σ ∗, x∗) is an optimal solution for Q2(H).

(ii) v(Q(H))
(1)= v(Q2(H))

(2)= σ ∗ − Ltx∗ (3)= min
h∈H c+(x∗)th − c+(x∗)tx∗

where

(1) From Lemma 1.
(2) Since (σ ∗, x∗) is an optimal solution for Q2(H).
(3) From the definition of Q2(H) and since Ltx = c+(x)tx ∀x ∈ X .

Therefore from Lemma 1 the scenario c+(x∗) is an optimal solution for Q(H) •.
We have designed Q2(H) to compute upper bounds to v(MSR(k)). If we have

another problem to compute lower bounds then we may design an algorithm that iter-
ates between both problems until the gap is closed. To do that we reformulate MSR(k)
by using a level set transformation. In the reformulation we have one constraint for
each x ∈ X . Let Y ⊆ X . If x /∈ Y we delete the constraint and we have a relaxation
named S(Y). Problem S(Y) is presented in Lemma 3. ��

Lemma 3 Let Y ⊆ X with |Y | ≥ 1. Let S(Y) be a problem in (δ, H) defined as
follows:

(S(Y)) min
δ∈R,H⊆X

{δ : δ ≥ c+(x)th − Ltx for some h ∈ H ∀x ∈ Y , |H | = k}

then v(MSR(k)) ≥ v(S(Y))

123

Min max min robust (relative) regret combinatorial… 255

Proof

v(MSR(k))
(1)= min

H⊆X
{v(Q(H)) : |H | = k} (2)=

min{max
x∈X min

h∈H c+(x)th − Ltx : H ⊆ X , |H | = k} (3)=

min
σ∈R,H⊆X

{δ : δ ≥ min
h∈H c+(x)th − Ltx ∀x ∈ X , |H | = k} (4)≥

min
σ∈R,H⊆X

{δ : δ ≥ min
h∈H c+(x)th − Ltx ∀x ∈ Y , |H | = k} (5)=

min
δ∈R,H⊆X

{δ : δ ≥ c+(x)th − Ltx for some h ∈ H ∀x ∈ Y , |H | = k} = v(S(Y))

where

(1) From the definition of MSR(k).
(2) From Lemma 1.
(3) By level set transformation.
(4) Since Y ⊆ X .
(5) A trivial equality.

Problem S(Y) has some disjunctive constraints and we need a reformulation to
solve it. In order to solve S(Y) we use the Big-M reformulation named S2(Y). S(Y)

may be rewritten as a problem in (δ, H , s, z) as follows:

(S2(Y)) min δ s.t .

δ ≥ sx − Ltx ∀x ∈ Y

sx ≥ c+(x)th j − (1 − z(j,x))Mx ∀x ∈ Y ∀ j ∈ [k]
k∑
j=1

z(j,x) = 1 ∀x ∈ Y

h(j) ∈ X ∀ j ∈ [k], z(j,x) ∈ {0, 1} ∀x ∈ Y ∀ j ∈ [k], δ ∈ R, sx ∈ R ∀x ∈ Y

where H = {h(1), . . . ,h(k)} and we use Mx = max
w∈X c+(x)tw as Big-M values with

optimality guaranteed.
Let x ∈ Y . Note that if z j,x = 1 then sx ≥ c+(x)th j and we have δ ≥ c(x)th−Ltx

for some h ∈ H . If z j,x = 0 then the big-M value ensures that the constraint is
satisfied. The relations between the optimal solutions for S(Y) and S2(Y) are presented
in Lemma 4. ��
Lemma 4 (i) If (δ, H , s, z) is a feasible solution for S2(Y) then (δ, H) is a feasible
solution for S(Y). (ii) If (δ, H) is a feasible solution for S(Y) then there exists (s, z)
such that (δ, H , s, z) is a feasible solution for S2(Y). (iii) v(S(Y)) = v(S2(Y))

Proof (i) Let (δ, H , s, z) be a feasible solution for S2(Y) then if z(j,x) = 1 we have
sx ≥ c+(x)thj and then δ ≥ c+(x)th − Ltx for some h ∈ H ∀x ∈ Y . Therefore
(δ, H) is a feasible solution for S(Y).

123

256 A. Crema

(ii) Let (δ, H) be a feasible solution for S(Y). Let j(x) and sx such that sx =
min
h∈H c+(x)th = c+(x)thj(x) ∀x ∈ Y . Let z(j(x),x) = 1. We have that (δ, H , s, z)

is a feasible solution for S2(Y) •.
(iii) Since (i) and (ii) are valid and δ is the value of the objective function for both

problems we have that v(S(Y)) = v(S2(Y)).
We derived problems to compute upper and lower bounds to v(MSR(k)). The S-Q

algorithm to be presented iterates between S2(Y) to obtain a lower bound and Q2(H)

to obtain an upper bound. Each time we solve S2(Y) we obtain a new lower bound
and a new H . Each time we solve Q2(H) we update the best upper bound and obtain
a new y ∈ X to be added to Y . Since X is a finite set the algorithm is finite. Now we
present the S-Q algorithm and Lemma 5 to prove its finitude.

The S-Q algorithm to solve the MSR(k) problem

Let ε ≥ 0. Let H ⊆ X with |H | = k. Let Y ⊆ X . Let UB = ∞. Let LB = 0. The
output is H∗ with v(Q(H∗)) − v(MSR(k)) ≤ ε.

1. Solve Q2(H).
Let (σ, y) be an optimal solution and let UB = min{UB, v(Q2(H))}.

2. If UB − LB ≤ ε let H∗ = H and stop, otherwise let Y = Y ∪ {y}.
3. Solve S2(Y).

Let (δ, H , s, z) be an optimal solution and let LB = δ.
4. If UB − LB ≤ ε let H∗ = H and stop, otherwise return to Step 1.

��
Lemma 5 Algorithm S-Q finds an ε-optimal solution for theMSR(k) problem in a finite
number of steps.

Proof Let (δ, H , s, z) be an optimal solution for S2(Y) and let (σ, y) be an optimal
solution for Q2(H). If y ∈ Y then:

LB
(1)= δ

(2)≥ min
h∈H c+(y)th − Lty

(3)= v(Q2(H))
(4)≥ UB

(5)≥ v(MSR(k))
(6)≥ v(S(Y))

(7)= v(S2(Y))
(8)= δ

(9)= LB

where

(1) see Step 3.
(2) since (δ, H , s, z) is a feasible solution for S2(Y) and y ∈ Y we have that

δ ≥ c+(y)th − Lty for some h ∈ H

(3) By Lemma 1 since (σ, y) is an optimal solution for Q2(H).
(4) See Step 1.
(5) By the definition of MSR(k) since UB = v(Q2(H)) = v(Q(H)) for some H

with H ⊆ X and |H | = k.
(6) From Lemma 3.

123

Min max min robust (relative) regret combinatorial… 257

(7) From Lemma 4.
(8) Since (δ, H , s, z) is an optimal solution for S2(Y).
(9) See Step 3.

Since X is a finite set then UB − LB ≤ ε in a finite number of steps.
Note that if k = 1 then the S-Q algorithm becomes a known classic algorithm to

find an absolute robust solution (Aissi et al. 2009). Also, if ε = 0 the algorithm finds
an optimal solution.

Solving the MSR(k) problem may be a task that consumes a lot of computing time
and a lot of memory so we consider two greedy approaches to be presented in the next
section. ��

3 Greedy aproaches for theMSR(k) problem

In this section, we present two greedy algorithms for the MSR(k) problem. The first
one (the T greedy algorithm) works as follows: let H ⊆ X , a problem T (H) in x is
solved to minimize the regret of H ∪{x}. If x is optimal to T (H) then x is added to H .
We solve T (H) iteratively until |H | = k. The second one (the Q greedy algorithm) is
a very simple application of the first k steps of a multiparametric algorithm to solve
P(c) for all c ∈ Ω . Some lemmas and auxiliary problems are necessary.

3.1 A greedy algorithm for the MSR(k) problem based on conditionated absolute
robust solutions

Let H ⊆ X and let T (H) be a problem in (x) defined as follows:

(T (H)) min
x∈X v(Q(H ∪ {x})

We say that v(Q(H∪x)) is the regret of x conditionated by H and if x∗ is an optimal
solution for T (H) then we say that x∗ is an absolute robust solution conditionated by
H .

The T-greedy algorithm for the MSR(k) problem

Let H ⊆ X .

1. Solve T (H) and let x be an optimal solution.
2. If v(T (H)) = 0 Stop.
3. If |H | = k then Stop, otherwise let H = H ∪ {x} and return to Step 1.

The T-greedy algorithm is designed in such a manner that the next solution to be
included in H is an absolute robust solution conditionated by H . If v(T (H)) = 0 at
Step 2 then we do not need another different solution even if |H | < k.

Note that the T-greedy algorithm may be seen as the first k steps of an algorithm to
find an optimal multiparametric solution for P relative to Ω (Crema 2000).

X̂ is an optimal multiparametrical solution for P relative to Ω if X̂ ⊆ X and
v(Q(X̂)) = 0. In that case min

x∈X̂
ctx = v(P(c)) for all c ∈ Ω . If we use the T-greedy

123

258 A. Crema

algorithm with k = ∞ then v(T (H)) = 0 at Step 2 in a finite number of steps because
X is a finite set.

In order to solve T (H) we present below an approach that may be seen, again, as
a generalization of a standard approach to find an absolute robust solution. For each
x ∈ X then v(Q(H ∪ {x}) is an upper bound for v(T (H)). Let Y ⊆ X . We present
below a problem to obtain a lower bound namedW (H ,Y). To do that we reformulate
T (H) by using a level set transformation. In the reformulation we have a constraint
for each x ∈ X . Then if x /∈ Y we delete the constraint and we a have a relaxation
which is a lower bound. Problem W (H ,Y) is presented in Lemma 6.

Lemma 6 Let H ⊆ X with |H | ≥ 1 and let Y ⊆ X with |Y | ≥ 1. Let W (H ,Y) be a
problem in (λ, x) defined as follows:

min
λ∈R,x∈X{λ : λ ≥ min

h∈H c+(y)th − Lty ∨ λ ≥ c+(y)tx − Lty ∀y ∈ Y }

then v(T (H)) ≥ v(W (H ,Y))

Proof

v(T (H))
(1)= min

x∈X max
y∈X min

h∈H∪{x}c
+(y)th − Lty

(2)≥

min
λ∈R,x∈X {λ : λ ≥ min

h∈H∪{x}c
+(y)th − Lty ∀y ∈ Y } (3)=

min
λ∈R,x∈X{λ : λ ≥ min

h∈H c+(y)th − Lty ∨ λ ≥ c+(y)tx − Lty ∀y ∈ Y } =
v(W (H ,Y))

where

(1) From Lemma 1 and the definition of T (H).
(2) Since Y ⊆ X and by level set transformation.
(3) A trivial equality.

We have disjunctive constraints inW (H ,Y). In order to solveW (H ,Y)we use the
Big-M formulation.W (H ,Y)may be rewritten as a problem in (λ, x, s, z) as follows:

(W2(H ,Y)) min λ s.t .

λ ≥ sy − Lty,

sy ≥ min
h∈H c+(y)thzy ∀y ∈ Y ,

sy ≥ c+(y)tx − Myzy ∀y ∈ Y ,

x ∈ X , zy ∈ {0, 1} ∀y ∈ Y , λ ∈ R, sy ∈ R ∀y ∈ Y

and we use My = max
w∈X c+(y)tw as Big-M values with optimality guaranteed.

Note that if zy = 1 then λ ≥ min
h∈H c+(y)th−Lty. If zy = 0 then λ ≥ c+(y)tx−Lty.

123

Min max min robust (relative) regret combinatorial… 259

Now we have problems to compute upper and lower bounds to v(T (H)). The W-
Q algorithm to be presented iterates between W (H ,Y) to obtain a lower bound and
Q2(H ∪{x}) to obtain an upper bound. Each time we solveW (H ,Y)we obtain a new
lower bound and a new x. Each time we solve Q2(H ∪ {x}) we update the best upper
bound and obtain a new y ∈ X to be added to Y . Since X is a finite set the algorithm
is finite. Now we present the W-Q algorithm and Lemma 7 to prove its finitude.

W-Q algorithm to solve the T(H) problem

Let ε ≥ 0. Let H ⊆ X with |H | ≥ 1. Let Y ⊆ X . Let x ∈ X . Let UB = ∞. Let
LB = 0. The output is x∗ with v(Q(H ∪ {x∗})) − v(T (H)) ≤ ε.

1. Solve Q2(H ∪ {x}). Let (σ, y) be an optimal solution and let UB = min
{UB, v(Q2(H ∪ {x})).

2. If UB − LB ≤ ε let x∗ = x and Stop, otherwise let Y = Y ∪ {y}.
3. Solve W2(H ,Y) and let (λ, x, s, z) be an optimal solution. Let LB = λ.
4. If UB − LB ≤ ε let x∗ = x and Stop, otherwise return to Step 1.

��
Lemma 7 Let H ⊆ X with |H | ≥ 1. Algorithm W-Q finds an ε-optimal solution for
T (H) in a finite number of steps.

Proof Let (λ, x, s, z) be an optimal solution forW2(H ,Y) and let (σ, y) be an optimal
solution for Q2(H ∪ {x}). If y ∈ Y then:

LB
(1)= λ

(2)≥ min{min
h∈H c+(y)th, c+(y)tx} − Lty

(3)= v(Q2(H ∪ {x}))
(4)≥ UB

(5)≥ v(T (H))
(6)≥ v(W (H ,Y))

(7)= v(W2(H ,Y))
(8)= λ

(9)= LB

where

(1) See Step 3.
(2) Since (λ, x, s, z) is an optimal solution for W2(H ,Y) and y ∈ Y .
(3) Since (σ, y) is an optimal solution for Q2(H ∪ {x})
(4) See Step 1.
(5) From the definition of T (H) and since UB = v(Q2(H ∪ x)) for some x ∈ X .
(6) From Lemma 6.
(7) Since W2(H ,Y) is the reformulation of W (H ,Y).
(8) Since (λ, x, s, z) is an optimal solution for W2(H ,Y).
(9) See Step 3.

Since X is a finite set thenUB− LB ≤ ε in a finite number of steps. Also, if ε = 0
the algorithm finds an optimal solution. ��

123

260 A. Crema

3.2 A greedy algorithm for the MSR(k) problem based on a simple
multiparametric algorithm

The Q-greedy algorithm for the MSR(k) problem

Let H ⊆ X with |H | = 1.

1. Solve Q2(H). Let (σ, x) be an optimal solution.
2. If v(Q2(H)) = 0 Stop.
3. If |H | = k Stop, otherwise let H = H ∪ {x} and return to Step 1.

The Q-greedy algorithm is defined as the first k steps of a simple multiparametric
algorithm (Crema 2000). In each step we are looking for the worst scenario for H . If
(σ ∗, x∗) is an optimal solution for Q2(H) then c+(x∗) is the worst scenario for H
and x∗ is chosen to be included in H .

For the same H if x1 is the solution generated by the Q-greedy algorithm and x2 is
the solution generated by the T-greedy algorithm then v(Q(H ∪ x(1))) ≥ v(Q(H ∪
x(2))). Thus, it can be expected, but it is not safe from the theoretical point of view,
that the regret achieved for the last H using the T-greedy algorithm will be better than
using the Q-greedy algorithm. The computational results presented in Sect. 6 confirm
that expectation. The trade off between the quality of the last H and the computational
effort must be considered by the decision maker.

4 An algorithm to solve theMrelSR(k) problem

In this section we present an algorithm to obtain an optimal solution for theMrelSR(k)
problem.

Our presentation follows the same scheme that we used for the MSR(k) problem
and the motivation and proof of some lemmas and algorithms are analogous. Thus,
for the sake of simplicity and in order to save space, we omit some motivation and
proofs.

If H ⊆ X with |H | = k then v(Qr (H)) is an upper bound of v(MrelSR(k). Let
Y ⊆ X . We present later a problem Sr (Y) to obtain a lower bound. The algorithm
iterates between solving the problems Sr (Y) (to generate a new H) and Qr (H) (to
generate a new y to be added to Y) until the gap is closed. Some lemmas and auxiliary
problems are necessary.

Lemma 8 Let H ⊆ X with |H | ≥ 1. Let QXr (H) be a problem in (x) defined as
follows:

max
x∈X

min
h∈H c+(x)th − c+(x)tx

c+(x)tx

then:

(i) v(Qr (H)) = v(QXr (H))

(ii) If c∗ is an optimal solution for Qr (H) and x∗ is an optimal solution for P(c∗)
then x∗ is an optimal solution for QXr (H).

123

Min max min robust (relative) regret combinatorial… 261

(iii) If x∗ is an optimal solution for QXr (H) then c∗ = c+(x∗) is an optimal solution
for Qr (H).

Proof (i) Let c∗ be an optimal solution for Qr (H) and let x∗ be an optimal solution
for P(c∗), then we have:

v(Qr (H))
(1)=

min
h∈H c∗th − c∗tx∗

c∗tx∗
(2)≤ max

c∈Ω, x∈X

min
h∈H cth − ctx

ctx

(3)≤ max
x∈X

min
h∈H c+(x)th − c+(x)tx

c+(x)tx
(4)= v(QXr (H))

where

(1) From the definition of Qr (H) and since c∗ is an optimal solution for Qr (H) and
x∗ is an optimal solution for P(c∗).

(2) a trivial inequality.
(3) Since cth − ctx ≤ c+(x)th − c+(x)tx for all x ∈ X , for all c ∈ Ω and for all

h ∈ X and ctx ≥ c+(x)tx for all x ∈ X and for all c ∈ Ω .
(4) From the definition of QXr (H).

Let x∗ be an optimal solution for QXr (H) then we have:

v(QXr (H))
(5)=

min
h∈H c+(x∗)th − c+(x∗)tx∗

c+(x∗)tx∗
(6)≤

min
h∈H c+(x∗)th − v(P(c+(x∗)))

v(P(c+(x∗)))

(7)≤ max
c∈Ω

min
h∈H cth − v(P(c))

v(P(c))
(8)= v(Qr (H))

where

(5) From the definition of QXr (H).
(6) Since v(P(c+(x∗))) ≤ c+(x∗)tx∗
(7) A trivial inequallity.
(8) From the definition of Qr (H).

(ii) Let c∗ be an optimal solution for Qr (H) and let x∗ be an optimal solution for
P(c∗), then

v(QXr (H))
(1)= v(Qr (H))

(2)=
min
h∈H c∗th − v(P(c∗))

v(P(c∗))
(3)=

min
h∈H c∗th − c∗tx∗

c∗tx∗

(4)≤
min
h∈H c+(x∗)th − c+(x∗)tx∗

c+(x∗)tx∗
(5)≤ v(QXr (H))

therefore x∗ is an optimal solution for QXr (H),
where

123

262 A. Crema

(1) From (i).
(2) Since c∗ is an optimal solution for Qr (H).
(3) Since x∗ is an optimal solution for P(c∗)
(4) Since c∗th − c∗tx∗ ≤ c+(x∗)th − c+(x∗)tx∗ and c+(x∗)tx∗ = Ltx∗ ≤ c∗tx∗
(5) From the definition of QXr (H).

(iii) Let x∗ be an optimal solution for QXr (H) and let c∗ = c+(x∗).

v(Qr (H))
(1)= v(QXr (H))

(2)=
min
h∈H c+(x∗)th − c+(x∗)tx∗

c+(x∗)tx∗
(3)=

min
h∈H c∗th − c∗tx∗

c∗tx∗

(4)≤
min
h∈H c∗th − v(P(c∗))

v(P(c∗))
(5)≤ v(Qr (H))

therefore c∗ is an optimal solution for Qr (H),
where

(1) From (i).
(2) Since x∗ is an optimal solution for QXr (H).
(3) Since c+(x∗) = c∗.
(4) Since v(P(c∗)) ≤ c∗tx∗.
(5) From the definition of Qr (H) •

QXr (H) is a combinatorial optimization problemwith a rational objective function
(Megiddo 1979). Hence, we know some basic properties as follows (for the sake of
completeness we present a proof): ��
Proposition 2 Let k ≥ 1, let H ⊆ X with |H | = k, let μ ≥ 1 and let RXr (μ, H) be
a problem in (x) defined as:

(RXr (μ, H)) max
x∈X min

h∈H c+(x)th − μc+(x)tx

then:

(i) v(RXr (μ, H)) = 0 if and only if μ = v(QXr (H)) + 1.
(ii) If v(RXr (μ, H)) = 0 and x∗ is an optimal solution for RXr (μ, H) then x∗ is an

optimal solution for QXr (H).
(iii) v(RXr (μ, H)) is a piecewise linear and decreasing convex function in μ.

Proof See “Appendix B”.
Therefore, in order to solve QXr (H) we may use a very simple algorithm to find

μ with v(RXr (μ, H)) = 0.
In order to solve RXr (μ, H) we may reformulate it as a problem in (φ, x) as

follows:

max
φ∈R,x∈X{φ − μLtx : φ ≤ c+(x)th ∀h ∈ H}

123

Min max min robust (relative) regret combinatorial… 263

Since X is a finite set and v(RXr (μ, H)) is a piecewise linear and decreasing convex
function in μ we have that the next algorithm finds μ∗ with v(RX(μ∗, H)) = 0 in a
finite number of steps. For the sake of completeness we present a proof. ��
Algorithm Find-μ∗
Let μ = 1. Let H ⊆ X with |H | = k. The output is μ∗ with v(RXr (μ

∗, H)) = 0 and
x∗ optimal for QXr (H).

1. Solve RXr (μ, H). Let x be an optimal solution.
2. If v(RXr (μ, H)) = 0 let μ∗ = μ, let x∗ = x and stop.

3. Let μ =
min
h∈H c+(x)th

c+(x)tx
and return to Step 1.

Proposition 3 Algorithm Find-μ∗ finds μ∗ with v(RXr (μ
∗, H)) = 0 and x∗ optimal

for QXr (H) in a finite number of steps.

Proof See “Appendix C”. ��
Lemma 9 Let Y ⊆ X with |Y | ≥ 1. Let Sr (Y) be a problem in (σr , H) defined as
follows:

(Sr (Y)) min
σr∈R,H⊆X

{σr : Ltx σr ≥ c+(x)th − Ltx for some h ∈ H ∀x ∈ Y , |H | = k}

then v(MrelSR(k)) ≥ v(Sr (Y))

We omit the proof.
In order to solve Sr (Y) we use the Big-M formulation. Sr (Y) may be rewritten as

a problem in (σr , H , s, z) as follows:

(Sr (Y)) min σr s.t .

Ltx σr ≥ sx − Ltx ∀x ∈ Y , ∀ j ∈ [k],
sx ≥ c+(x)th j − (1 − z(j,x))Mx ∀x ∈ Y ,

k∑
j=1

z(j,x) = 1 ∀x ∈ Y ,

h(j) ∈ X ∀ j ∈ [k], z(j,x) ∈ {0, 1} ∀x ∈ Y ∀ j ∈ [k], σr ∈ R, sx ∈ R ∀x ∈ Y

where H = {h(1), . . . ,h(k)} and we use Mx = max
w∈X c+(x)tw as Big-M values with

optimality guaranteed.

Sr-Qr algorithm to solve the MrelSR(k) problem

Let ε ≥ 0. Let H ⊆ X with |H | = k. Let Y ⊆ X . Let UB = ∞. Let LB = 0. The
output is H∗ with v(QXr (H∗)) − v(MrelSR(k)) ≤ ε.

1. Solve QXr (H). Let y be an optimal solution and letUB = min{UB, v(Qr (H))}.
2. If UB − LB ≤ ε let H∗ = H and stop, otherwise let Y = Y ∪ {y}.
3. Solve SXr (Y). Let (σr , H , s, z) be an optimal solution and let LB = σr .

123

264 A. Crema

4. If UB − LB ≤ ε let H∗ = H and stop, otherwise return to Step 1

Lemma 10 Algorithm Sr-Qr finlds an ε-optimal solution for MrelSR(k) in a finite
number of steps.

We omit the proof.

5 Greedy approaches for theMrelSR(k) problem

In this section we present two greedy algorithms for the MrelSR(k) problem.
Our presentation follows the same scheme that we used for the greedy approach to

MSR(k) problem and the motivation and proof of some lemmas and algorithms are
analogous. Thus, for the sake of simplicity and in order to save space, we omit some
motivation and proofs.

The first one (the Tr -greedy algorithm) works as follows: let H ⊆ X , a problem
Tr (H) in x is solved to minimize the relative regret of H ∪ {x}. If x is optimal to
Tr (H) then x is added to H . We solve Tr (H) iteratively until |H | = k. The second
one (the Qr -greedy algorithm) is analogous to the Q greedy algorithm. Some lemmas
and auxiliary problems are necessary.

5.1 A greedy algorithm for the MrelSR(k) problem based on conditionated relative
robust solutions

Let H ⊆ X and let Tr (H) be a problem in x defined as follows:

(Tr (H)) min
x∈X v(Qr (H ∪ {x}))

We say that v(Qr (H ∪ x)) is the relative regret of x conditionated by H and if
x∗ is an optimal solution for Tr (H) then we say that x∗ is a relative robust solution
conditionated by H

The Tr-greedy algorithm for the MrelSR(k) problem

Let H ⊆ X with |H | = 1.

1. Solve Tr (H) and let x be an optimal solution.
2. If v(Tr (H)) = 0 Stop.
3. If |H | = k then Stop, otherwise Let H = H ∪ {x} and return to Step 1.

The Tr-greedy algorithm is designed in such a manner that the next solution to be
included in H is a relative robust solution conditionated by H . If v(Tr (H)) = 0 at
Step 3 then we do not need another different solution even if |H | < k.

In order to solve Tr (H) we present below an approach that is analogous to the
approach presented to solve T (H).

123

Min max min robust (relative) regret combinatorial… 265

Lemma 11 Let Y ⊆ X with |Y | ≥ 1. Let Wr (H ,Y) be a problem in (σW , x) defined
as follows:

min
σW∈R,x∈X{σW : LtyσW ≥ min

h∈H c+(y)th − Lty ∨
LtyσW ≥ c+(y)tx − Lty ∀y ∈ Y }

then v(Tr (H)) ≥ v(Wr (H ,Y))

We omit the proof.
In order to solve Wr (H ,Y) we use the Big-M formulation. Wr (H ,Y) may be

rewritten as a problem in (σW , x, s, z) as follows:

(Wr (H ,Y)) min σW s.t

Lty σW ≥ sy − Lty,

sy ≥ min
h∈H c+(y)thzy ∀y ∈ Y ,

sy ≥ c+(y)tx − Myzy ∀y ∈ Y ,

x ∈ X , zy ∈ {0, 1} ∀y ∈ Y , σW ∈ R, sy ∈ R ∀y ∈ Y

and we use My = max
x∈X c+(y)tx as Big-M values with optimality guaranteed.

Wr-Qr algorithm to solve Tr (H)

Let ε ≥ 0. Let H ⊆ X . Let Y ⊆ X . Let x ∈ X . Let UB = ∞. Let LB = 0. The
output is x∗ with v(Qr (H ∪ {x∗})) − v(Tr (H)) ≤ ε.

1. Solve Qr (H ∪ {x}). Let (y) be an optimal solution and let UB = min{UB, v

(Qr (H ∪ {x})).
2. If UB − LB ≤ ε let x∗ = x and stop, otherwise let Y = Y ∪ {y}.
3. Solve Wr (H ,Y) and let (σW , x, s, z) be an optimal solution. Let LB = σW .
4. If UB − LB ≤ ε let x∗ = x and stop, otherwise return to Step 1.

Lemma 12 Algorithm Wr-Qr finds an ε-optimal solution for Tr (H) in a finite number
of steps.

We omit the proof.

5.2 A greedy algorithm for the MrelSR(k) problem based on a simple
multiparametric algorithm

The Qr-greedy algorithm

Let H ⊆ X with |H | = 1.

1. Solve QXr (H). Let x be an optimal solution.
2. If v(QXr (H)) = 0 Stop.
3. If |H | = k Stop, otherwise let H = H ∪ {x} and return to Step 1.

123

266 A. Crema

For the same H if x1 is the solution generated by the Qr-greedy algorithm and
x2 is the solution generated by the Tr-greedy algorithm then v(Qr (H ∪ x(1))) ≥
v(Qr (H ∪ x(2))). Thus, it can be expected, but it is not safe from the theoretical point
of view, that the regret achieved with the last H using the Tr-greedy algorithm will
be better than using the Qr-greedy algorithm. The trade off between the quality of the
last H and the computational effort must be considered by the decision maker.

6 Computational results

6.1 Computer environment and the notation

Our algorithms have been performed on a personal computer as follows:
Intel(R)Core(TM) i7-3630QM CPU, HP envy dv6, with 12.00 GB Ram, 2.40 GHz

and Windows 8.1 Operating System. All the instances have been processed through
the commercial ILOG-Cplex 12.4 (http://ibm-ilog-cplex-optimization-studio-acade.
software.informer.com/12.4/) from a MATLAB code by using the branch and cut
algorithmwith all the parameters of CPLEX in their default values with the exemption
of the tolerance to declare an integer value that was changed to 10−12 for the SP
problem with euclidean topology to avoid numerical difficulties that appeared by
using the default value. We use ε = 0.

We use the ∗ algorithm, with ∗ ∈ {Q-greedy,T-greedy,Qr-greedy,Tr-greedy}, begin-
ning with:

H = {h(1)} where h(1) is either an absolute robust solution or a relative robust
solution according the case and Y = ∅.

If k = 2 we use the S − Q and Sr − Qr algorithms beginning with H where H is
the output of the T-greedy (Tr-greedy) algorithm used for k = 2 and Y = ∅.

If k = 3 we use the S − Q and Sr − Qr algorithms beginning with H where H is
the output of the T-greedy (Tr-greedy) algorithm used for k = 3 and Y = ∅.

In order to solve T (H) (Tr (H)) by using the W-Q (Wr-Qr) algorithm the initial x
is an optimal solution for Q2(H) (QXr (H)).

The information to be presented is not the same for all tables but in order to
save space and simplify the exposition we present all the values reported (∗ ∈
{Q-greedy,T-greedy,Qr-greedy,Tr-greedy,S-Q,Sr-Qr }):

– k: the number of solutions to define H ,
– t*: the largest time in seconds to generate H where |H | = k with the * algorithm.
The time to obtain the first H is included,

– avet*: the times average for algorithm *,
– it*: the largest number of iterations (the iterations to obtain the first H is included)
with the * algorithm,

– red*k is the reduction percentage for the regret values if we use the set H (with
k solutions) generated by the algorithm * instead of the absolute(relative) robust
solution (the values presented in the tables are the average for the set considered),

– difk and difrk (with k ∈ {2, 3}) are the differences of the average values of
the reduction percentage for the regret values between the optimal solutions

123

http://ibm-ilog-cplex-optimization-studio-acade.software.informer.com/12.4/
http://ibm-ilog-cplex-optimization-studio-acade.software.informer.com/12.4/

Min max min robust (relative) regret combinatorial… 267

and the solutions generated with the T-greedy algorithms as follows: dif2=redS-
Q2-redT2,dif3=redS-Q3-redT3, dif2r=redSr-Qr2 - redTr2 and dif3r=redSr-Qr3 -
redTr3,

– f: the number of times that the S-Q(Sr-Qr) algorithm failed to obtain an optimal
solution with a time limit equal to 3600s (without including the time to obtain h(1)

and the initial H according the case).

Some remarks are necessary: If k ∈ {2, 3} we use a time limit equal to 3600 s for
the S-Q and Sr-Qr algorithms (without including the time to obtain h(1) and the initial
H according the case), that implies that the overall time may be greater than 3600.
There is no time limit for the heuristic algorithms for 2 ≤ k ≤ 6. If the S-Q (Sr-Qr)
algorithm failed to obtain an optimal solutionwe use the best lower bound generated to
compute the differences between optimal solutions and the solutions generated by the
greedy algorithms. If a problem was not solved the execution time and the iterations
are not included to compute averages and worst cases.

6.2 Data generation

At the present time we have computational results for the Shortest Path (SP) and the
p-Medians (p-M) problems.

6.2.1 Data for the shortest path problem

Consider a directed graph G = (V , E). Let v̂ ∈ V and ŵ ∈ V . We are looking for the
path from v̂ to ŵ with the minimum cost.

For each v ∈ V let E+(v) = {(v,w) : (v,w) ∈ E} and let E−(v) = {(w, v) :
(w, v) ∈ E}.

Let x ∈ {0, 1}|E | with xe = 1 if the edge e is selected.
Let X ⊆ {0, 1}|E | defined as follows:

X = {x :∑
e:e∈E+(v̂)

xe = 1,

∑
e:e∈E−(v)

xe −
∑

e∈E+(v)

xe = 0 ∀v ∈ V with v /∈ {v̂, ŵ},
∑

e:e∈E−(ŵ)

xe = 1,

x ∈ {0, 1}|E |}

Let L and U be known vectors in R
|E | with 0 ≤ L ≤ U. Let c ∈ R

|E | with:
L ≤ c ≤ U. The Shortest Path (SP) problem with cost c is a problem in x defined as
follows:

(P(c)) min
x∈X ctx

123

268 A. Crema

Since X may be written as a 0-1-Integer Programming model then P((c)), Q(H),
S(Y), W (H ,Y), Qr (H), Qr (μ, H), Sr (Y), and Wr (H ,Y) may be solved by using
CPLEX.

We define G with two different topologies: A Mesh topology and an Euclidean
topology as follows:

Mesh topology

We use G = (V , E) with a simple mesh topology: there is only one node at level
0, named (0, 1). Next we have m levels with r nodes at each level. Node (0, 1) is
connected with all the nodes of level 1: from (1, 1) to (1, r). Every node of level i
is connected with all nodes of level i + 1 (with i ∈ {1, . . . ,m}). That is: node (i, k)
(with k ∈ {1, . . . , r}) is connected with nodes (i + 1, 1), . . . , (i + 1, r). Finally, the
nodes of level m are connected with the only node at level m + 1 named (m + 1, 1).

We have |V | = 2 + rm and |E | = 2r + r2(m − 1). We use v̂ = (0, 1) and
ŵ = (m + 1, 1). Every path from v̂ to ŵ has m + 1 edges.

Let γ > 0. The data were generated as follows: for each e ∈ E we generate Le

from U (0, 1000). Let Ue = (1 + reγ)Le with re taken from U (0, 1).

Euclidean topology

The graphs are generated following Hanasusanto et al. (2015) as follows:
In each problem instance, the nodes correspond to |V | points with coordinates that

are chosen uniformly at random in the square [0, 10] × [0, 10]. We choose the pair of
nodes with the largest Euclidean distance as v̂ and ŵ (the start and terminal nodes).
Let 0 < p < 1. To generate E , we begin with a fully connected graph and remove
100 × p% of the arcs in order of decreasing Euclidean distance, that is, starting with
the longest arcs. If the graph is not connected we do not use it. The data were generated
as follows: for each e ∈ E the travel time between each pair of adjacent nodes varies
between 100% and 150% of the Euclidean distance between the nodes.

6.2.2 Data for the p-Medians problems

Let J = {1, . . . , s} a set of demand locations. Each demand location is a candidate
to be a service location (a median). Let LL,UU be known matrices such that 0 ≤
LL ≤ UU. If the demand location j is assigned to the median i the cost belongs to
[LLi j ,UUi j] (i, j ∈ J). Let p the number of medians to be selected.

Let zi ∈ {0, 1} (i ∈ J) with zi = 1 if and only if the demand location i is selected
to be a median.

Let wi j ∈ {0, 1} (i, j ∈ J) with wi j = 1 if and only if the demand location j is
assigned to a median located at i .

Let qi j such that LLi j ≤ qi j ≤ UUi j for all i, j ∈ J . The p-M problem with cost
q is a problem in w, z defined as follows:

min
∑
i∈J

∑
j∈J

qi jwi j s.t .

wi j ≤ zi ∀i, j ∈ J

123

Min max min robust (relative) regret combinatorial… 269

∑
i∈J

zi = p

∑
i∈J

wi j = 1 ∀ j ∈ J

zi ∈ {0, 1}, wi j ∈ {0, 1} ∀i, j ∈ J

Let n = s + s2. With very simple variable changes the p-M problem may be
rewritten as min

x∈X ctx where X ⊆ {0, 1}n and L ≤ c ≤ U for appropriate vectors

L,U ∈ R
n .

Since X may be written as a 0-1-Integer Programming model then P(c), Q(H),
S(Y), W (H ,Y), Qr (H), Qr (μ, H), Sr (Y), and Wr (H ,Y) may be solved by using
CPLEX.

The data were generated at random as follows: let (x1 j , x2 j) be the location j
taken from U ((0, 100) × (0, 100)), let D j be the demand of location j taken from
U (0, 100). Let di j be the distance from location i to location j computed as di j =
|x1i −x1 j |+|x2i −x2 j |. Let γ > 0. LetLLi j = di jD j and letUUi j = (1+ri jγ)LLi j

where ri j is taken from U (0, 1).

6.3 Performance of the algorithms

6.3.1 Absolute case (MSR(k))

Tables
Results associated with the use of the S-Q and T-Greedy algorithms for p-M and SP
problems (with a mesh topology and a euclidean topology) with k ∈ {2, 3} may be
seen in Table 1 (120 problems were considered). For each parameter combination 10
problems were solved.

Results associated with the use of the Q-greedy and T-Greedy algorithms with
k ∈ {2, . . . , 6} may be seen in Table 2 (170 problems were considered). We can see
times for k = 6 and the percentages of reduction of the regret values associated with
the two algorithms.

Complimentary details may be seen in Tables 4, 5, 6, 7, 8 and 9 (see “Appendix D”,
290 problemswere considered).We can see times, iterations and failures of the optimal
algorithm for the time limit considered. Also, we can see percentages of reduction of
the regret values and the difference between optimal and greedy algorithms.

Remarks We present in Table 1 the times average for algorithm S-Q (avetS-Q) and
the differences of the average values of the reduction percentage for the regret values
between the optimal solutions and the solutions generatedwith theT-greedy algorithms
(difk wit k ∈ {2, 3}).

S-Q algorithm failed 3 times to obtain an optimal solution for p-M problems
with (m, p, γ, k) = (60, 5, 0.15, 3) and for that cases the execution times are not
included to compute the average. None of problems were solved with (m, p, γ, k) =
(60, 5, 0.35, 3). When the S-Q algorithm fails we use the best lower bound generated

123

270 A. Crema

to compute the differences between optimal solutions and the solutions generated by
the T-greedy algorithm.

From Table 1 it is evident that when the dimensions and the size of the uncertainty
set increase, the computational effort increases.

See the columns with γ = 0.15 and γ = 0.35 with the rest of parameters
fixed for SP problems with mesh topology and p-M problems to note that the time
increases in general and sometimes considerably (for example for the SP problems
with (r ,m, γ, k) = (10, 50, 0.15, 3) and (r ,m, γ, k) = (10, 50, 0.35, 3) we have
53.30 and 256.62 seconds for the time averages).

With (γ, k) fixed move from one line to another with larger dimensions to
note that the time increases in general (for example for the p-M problems with
(m, p, γ, k) = (60, 2, 0.15, 2) and (m, p, γ, k) = (60, 5, 0.15, 2)wehave 118.45 and
563.49 seconds for the time averages). Also, with (p, k) fixed for the SP problemswith
euclidean topology see the times as |V | increases (for example if (p, k) = (0.70, 3)
the average times are 9.03,18.59,72.90 and 698.33 seconds for |V | = 15, 20, 25, 30).

For the problems included in Tables 1, 4, 5, 6, 7, 8 and 9 the T-Greedy algorithm
found near optimal solutions. For k = 2, the worst case for the average difference is
1.52% for the SP problems with the mesh topology. For k = 3, the worst case for the
average difference is 6% for the p-M problems.

For the problems included in Tables 1, 4, 5, 6, 7, 8 and 9 the S-Q algorithm was
used to solve 290 problems and found an optimal solution 287 times for k = 2 and
241 times for k = 3 with a time limit of 3600 s. The worst case was for the set with
(p,m, γ, k) = (60, 5, 0.35, 3) (p-M problems), in which none of the ten problems
included were solved.

It is evident (see Table 2) that as we can expect the reduction percentages and
the computational effort of the heuristic algorithms are larger, in general, using the
T-Greedy algorithm.

The use of the greedy approaches is justified because we can find near optimal
solutions with a tolerable computational effort. The percentages of reduction obtained
are, in general, large with some few exemptions.

6.3.2 Relative case (MrelSR(k))

Tables
Results associated with the use of the Qr-greedy and Tr-Greedy algorithms with

k ∈ {2, . . . , 6} may be seen in Table 3 (150 problems). We can see times and the
percentages of reduction of the regret values associated with the two algorithms.

Complimentary details may be seen in Tables 10, 11, 12, 13, 14 and 15 (see
“Appendix D”). Results associated with the use of the Sr-Qr, Qr-Greedy and Tr-
Greedy algorithms for p-M and SP problems (with a mesh topology and a euclidean
topology) with k ∈ {2, 3} are presented. We can see times, iterations and failures of
the optimal algorithm for the time limit considered for 180 problems. Also, we can
see percentages of reduction of the regret values and the difference between optimal
and greedy algorithms.

123

Min max min robust (relative) regret combinatorial… 271

Table 1 (i) SP problems with mesh topology and parameters (r ,m, γ), (ii) p-M problems with parameters
(m, p, γ) and (iii) SP problems with euclidean topology and parameter (|V |, p), where γ ∈ {0.15, 0.35},
p ∈ {0.35, 0.70}. T-Greedy and S-Q algorithms for the MSR(k) problem where k ∈ {2, 3}. 10 problems in
each set

avetS-Q difk

k 2 3 2 3

(i) r m; γ 0.15 0.35 0.15 0.35 0.15 0.35 0.15 0.35

10 25 4.12 7.68 8.75 22.38 0.00 0.79 0.00 5.16

50 26.47 542.39 53.30 256.62 0.00 2.99 1.84 9.14

15 25 8.03 15.03 13.44 41.34 1.32 1.36 4.32 2.18

50 34.58 159.83 70.17 341.38 0.00 7.42 5.75 7.22

(ii) m p; γ 0.15 0.35 0.15 0.35 0.15 0.35 0.15 0.35

30 2 15.60 11.82 18.92 25.74 0.05 0.09 7.56 2.44

5 10.53 25.42 18.82 124.84 3.85 0.83 4.44 7.55

60 2 118.45 108.08 344.83 643.08 2.49 0.37 7.20 0.75

5 563.49 546.48 1280.83 – 2.08 0.74 7.18 9.43

(iii) |V | ; p 0.35 0.70 0.35 0.70 0.35 0.70 0.35 0.70

15 2.84 3.21 4.79 9.03 0.42 2.45 2.52 3.18

20 8.79 6.66 162.40 18.59 1.53 2.03 2.67 2.63

25 9.07 39.35 219.22 72.90 1.02 1.56 0.27 1.35

30 15.90 11.58 587.11 698.33 0.86 1.21 4.50 3.39

Remarks The percentages of reduction obtained are, in general, large with some few
exemptions (see Table 3).

It is evident that as we can expect the reduction percentages and the computational
effort of the heuristic algorithms are larger, in general, using the Tr-Greedy algorithm
(see Table 3).

For the problems included in Tables 10, 11, 12, 13, 14 and 15 the Qr-Greedy and
Tr-Greedy algorithms found near optimal solutions with a tolerable computational
effort. For k = 2, the worst case for the average difference is 1.52% for the p-M
problems. For k = 3, the worst case for the average is 5.15% for the SP problem with
a mesh topology.

For the problems included in Tables 10, 11, 12, 13, 14 and 15, the Sr-Qr algorithm
was used to solve 180 problems and found an optimal solution 179 times for k = 2
and 160 times for k = 3 with a time limit of 3600 s. In this case, the worst scenario
was for p-M problems with (m, p, γ, k) = (80, 5, 0.15, 3), the algorithm failed to
obtain an optimal solution for 5 problems.

Again, it is evident that as we can expect the computational effort increases, in
general, while the dimensions increase. Also, the use of the greedy approaches is
justified because we can find near optimal solutions with a tolerable computational
effort.

123

272 A. Crema

Table 2 (i) SP problems with mesh topology and parameters (r ,m, γ), (ii) p-M problems with parameters
(m, p, γ) and (iii) SP problems with euclidean topology and parameters (|V |, p). Q-greedy and T-greedy
algorithms for the MSR(k) problem where k ∈ {2, . . . , 6}. Reduction percentage for the regret values and
times (for k = 6). 10 problems in each set

(i) γ r m * red*2 red*3 red*4 red*5 red*6 avet*(k = 6)

0.35 20 25 Q 18.70 42.18 50.10 55.96 60.53 6.51

T 32.89 46.40 59.83 65.06 71.46 25.04

150 Q 11.32 19.39 26.05 30.00 34.49 17.82

T 20.60 30.08 35.09 39.36 41.92 82.56

75 Q 7.92 13.34 17.67 21.86 27.41 49.29

T 17.17 23.53 28.33 33.09 36.49 200.22

30 25 Q 25.28 36.48 43.33 49.91 55.38 10.34

T 29.11 40.14 44.50 52.18 61.80 41.67

50 Q 15.20 24.82 28.45 38.51 46.72 36.11

T 21.70 30.32 34.49 46.13 49.34 160.95

75 Q 6.69 12.26 17.36 19.89 22.53 103.79

T 13.53 21.61 26.02 28.83 32.92 467.07

(ii) γ m p

0.15 100 5 Q 7.02 18.14 20.66 25.22 27.57 99.75

T 16.05 24.13 28.01 31.32 33.67 309.91

10 Q 9.67 14.80 17.79 20.04 24.30 89.24

T 18.38 26.49 30.41 33.75 37.13 341.31

200 5 Q 6.21 10.57 13.52 16.56 17.94 795.21

T 7.30 12.18 15.59 17.37 20.84 3576.43

10 Q 11.06 13.57 15.45 16.92 18.02 1797.80

T 13.43 18.83 20.98 22.23 23.91 5396.09

0.35 100 5 Q 6.65 10.44 13.24 15.24 17.24 150.68

T 9.60 14.41 18.23 20.02 21.48 460.95

10 Q 6.85 10.10 13.03 14.80 16.28 338.50

T 12.98 17.06 19.22 21.23 22.58 1260.21

200 5 Q 2.86 4.18 6.10 7.25 7.75 1864.16

T 3.98 5.80 6.98 8.48 10.28 6517.00

(iii) p |V |
0.35 50 Q 0.69 1.88 3.52 4.74 7.66 2.70

T 1.17 2.45 4.17 5.68 7.92 12.56

100 Q 0.26 0.55 1.20 1.46 2.00 12.77

T 0.31 0.80 1.31 1.67 2.23 77.08

0.70 50 Q 2.85 5.97 10.48 12.64 14.88 6.45

T 3.45 7.68 10.68 12.11 14.06 21.55

100 Q 1.25 2.87 4.16 5.65 6.71 20.30

T 1.70 3.32 4.56 5.77 6.47 108.51

123

Min max min robust (relative) regret combinatorial… 273

Table 3 (i) SP problems with mesh topology and parameters (r ,m, γ), (ii) p-M problems with parameters
(m, p, γ) and (iii) SP problems with euclidean topology and parameters (|V |, p). Qr-greedy and Tr-greedy
algorithms for the MrelSR(k) problem where k ∈ {2, . . . , 6}. Reduction percentage for the regret values
and times (for k = 6). 10 problems in each set

(i) γ r m * red*2 red*3 red*4 red*5 red*6 avet*(k = 6)

0.35 20 25 Qr 29.19 37.50 53.02 67.14 72.68 11.46

Tr 30.72 41.64 57.54 69.51 74.74 39.03

50 Qr 25.14 31.92 38.17 43.38 51.89 36.41

Tr 32.29 40.07 45.90 50.77 56.75 144.91

75 Qr 6.23 12.75 16.07 19.15 21.34 101.20

Tr 15.28 23.89 27.93 31.67 33.90 462.34

30 25 Qr 44.32 61.58 69.17 81.01 85.51 27.31

Tr 53.45 70.05 77.40 81.47 85.71 80.48

50 Qr 14.77 29.81 35.64 38.14 43.41 112.74

Tr 23.87 36.48 43.73 49.39 54.21 395.65

75 Qr 10.96 23.24 28.40 33.89 37.02 178.91

Tr 25.16 32.42 40.02 44.56 46.54 908.42

(ii) γ m p

0.15 80 5 Qr 8.04 18.11 25.35 29.45 32.04 62.31

Tr 16.51 25.69 31.05 35.31 38.54 235.79

100 Qr 8.04 18.11 25.35 29.45 32.04 62.31

Tr 16.51 25.69 31.05 35.31 38.54 235.79

200 Qr 8.40 13.20 15.19 17.65 19.00 1439.50

Tr 11.03 15.86 18.51 20.36 21.71 6068.38

0.35 80 Qr 4.68 10.79 12.41 16.49 19.25 130.65

Tr 8.49 14.58 18.11 20.75 22.97 501.02

100 Qr 6.03 10.97 13.96 16.20 17.95 180.77

Tr 8.72 13.00 15.70 17.95 20.49 757.35

(iii) p |V |
0.35 50 Qr 1.53 4.62 8.02 9.79 11.93 6.02

Tr 2.16 5.06 8.36 10.06 11.73 23.58

100 Qr 0.30 1.30 1.62 2.23 2.83 14.95

Tr 0.51 1.46 1.85 2.46 3.21 117.23

0.70 50 Qr 7.69 11.10 17.16 19.94 21.80 10.32

Tr 9.66 13.65 16.70 19.23 20.69 40.56

100 Qr 1.82 3.88 6.82 9.14 10.97 28.44

Tr 2.72 4.63 6.58 8.74 9.90 203.28

123

274 A. Crema

7 Conclusions and further extensions

7.1 Conclusions

We studied the min max min robust (relative) regret problem. We presented the regret
and the relative regret of a set with k elements. Algorithms to find a set with the mini-
mum (relative) regret were developed. Also, greedy approaches to save computational
effort were designed.

S-Q and Sr-Qr algorithms defined to solve the MSR(k) and the MrelSR(k) prob-
lem respectively may be seen as a generalization of classical algorithms to obtain an
absolute and relative robust solution.

Our greedy approach includes two algorithms, the first one based on conditionated
absolute (relative) robust solutions (T-Greedy, Tr-Greedy) and the second one based
on a simple mutiparametric algorithm (Q-Greedy, Qr-Greedy).

We presented a computational experience for the p-M and SP problems. Based on
our computational experiments we can expect for small problems:

1. if k = 2 the S-Q and Sr-Qr algorithms may be used with tolerable execution times
and if k = 3 the same remark is also valid often,

2. if k ≤ 3 the Q-Greedy, T-Greedy, Qr-Greedy and Tr-Greedy algorithms obtain
optimal or near optimal solutions, and for k ≤ 6 the algorithms obtain a good set
of solutions with a tolerable computational effort,

3. for k ≤ 6 the Q-Greedy and Qr-Greedy algorithms may be used to obtain a good
set of solutions quickly.

In order to use the algorithms for medium to large problems it will be necessary
to improve its performance (in the extensions presented in this section two possible
improvements are mentioned).

Finally, the tradeoff between the computational effort and the quality of the solutions
generated with our algorithms must be considered by the decision maker.

7.2 Extensions

1. In robust programming a significant effort is directed towards the design of special
purpose algorithms in order to find robust solutions to problems with particular
structures. It is reasonable then to think that a next step should be the design of
specialized algorithms to solve the MSR(k) and MrelSR(k) problems.

2. The paper may be rewritten without any problem if P(c) is a 0-1-MILP problem
with the uncertainty relative to the cost of the 0-1-variables as follows:

(P(c)) min{ctx + dty : (x, y) ∈ X , x ∈ {0, 1}n, y ∈ R
m, y ≥ 0}

where c ∈ [L,U], d ∈ R
m and X ⊆ {0, 1}n × R

m .

123

Min max min robust (relative) regret combinatorial… 275

3. The algorithms may be improved with a better choice for the Big-M values. A
dynamic choice may be designed by using standard procedures (Crema 2014).

4. The algorithms could be improved if several constraints are added in order to break
the symmetries (note that the output of the algorithms is a set and then there are
several equivalent representations with our integer programming models).

5. We point out that our approach may be used in practice if the cost vectors become
known over the time. Considering again our example in the introduction, that
may be the case if the travel times and the demands of an emergency system are
monitored in real time. In that scenario, we can choose a new solution when the
system changes enough. Multiple changes in a short time, even by using a small
set of solutions, may be a problem for humans and that should be considered for
further works.

6. The approach used may be generalized easily (from the theoretically point of
view at least) in order to consider other uncertainty models (finite uncertainty and
bounded uncertainty).

7. The T-greedy (Tr-greedy) algorithm may be improved as follows: If k = 2 and
beginning with h(1) ∈ X use the T-greedy (Tr-greedy) algorithm to find H =
{h(1), h(2)}. Next, beginning with h(2) use the T-greedy (Tr-greedy) algorithm to
find H = {h(2), h(3)} and so on until convergence. If k = 3 similar approaches
may be defined.

Appendix A: Proof of Proposition 1

(i) Let c ∈ Ω and let h, x ∈ X .

– Let I1,0 = {i : hi = 1, xi = 0, 1 ≤ i ≤ n}
– Let I0,1 = {i : hi = 0, xi = 1, 1 ≤ i ≤ n}
then:

cth − ctx =
∑
i∈I1,0

ci −
∑
i∈I0,1

ci ≤
∑
i∈I1,0

Ui −
∑
i∈I0,1

Li = c+(x)th − c+(x)tx

(ii) Let x ∈ X and let c ∈ Ω . Let h be an optimal solution for P(c+(x)).

– Let I1,0 = {i : hi = 1, xi = 0, 1 ≤ i ≤ n}
– Let I0,1 = {i : hi = 0, xi = 1, 1 ≤ i ≤ n}
then:

0 < c+(x)tx − v(P(c+(x))) = c+(x)tx − c+(x)th

=
∑
i∈I0,1

Li −
∑
i∈I1,0

Ui ≤
∑
i∈I0,1

ci −
∑
i∈I1,0

ci = ctx − cth

therefore: v(P(c)) ≤ cth < ctx.

123

276 A. Crema

(iii) Let x ∈ X and let c ∈ Ω , then: c+(x)tx
(1)= Ltx

(2)≤ ctx where (1) From the
definition of c+(x) and (2) Since L ≤ c •.

Appendix B: Proof of Proposition 2

Let X ⊆ {0, 1}n . Let f : X �−→ R and g : X �−→ R with f (x) > 0 and g(x) > 0 for
all x ∈ X . Let P1 be a problem in (x) defined as:

(P1) : max
x∈X

f (x)
g(x)

Let μ ≥ 0 and let P2(μ) be a problem in (x) defined as;

(P2(μ)) : max
x∈X f (x) − μg(x)

then:
If v(P2(μ)) = 0 then f (x) − μg(x) ≤ 0 for all x ∈ X , therefore f (x)

g(x) ≤ μ for all

x ∈ X and we have v(P1) ≤ μ. If v(P2(μ)) = 0 and v(P1) < μ we have f (x)
g(x) < μ

for all x ∈ X and then f (x) − μg(x) < 0 for all x ∈ X and we have a contradiction.
If μ = v(P1) and v(P2(μ)) > 0 then we have f (x)

g(x) > μ = v(P1) for some
x ∈ X and we have a contradiction, therefore v(P2(μ)) ≤ 0. If x∗ is an optimal
solution for P1 then we have f (x∗)−μg(x∗) = 0 and then v(P2(μ)) ≥ 0 and finally
v(P2(μ)) = 0.

Hence we have:

(1) v(P2(μ)) = 0 if and only if μ = v(P1).
If v(P2(μ)) = 0 and x∗ is an optimal solution for P2(μ) we have v(P2(μ)) =
f (x∗) − μg(x∗) = f (x∗) − v(P1)g(x∗) = 0 and then v(P1) = f (x∗)

g(x∗) , therefore
x∗ is an optimal solution for P1. Hence we have:

(2) If v(P2(μ)) = 0 and x∗ is an optimal solution for P2(μ) then x∗ is an optimal
solution for P1.

Let X = {x(1), . . . , x(L)} then
v(P2(μ)) = max{ f (x(1)) − μg(x(1)), . . . , f (x(L)) − μg(x(L))}.
Since g(x) > 0 for all x ∈ X then we have:

(3) v(P2(μ)) is a piecewise linear and decreasing function in μ.

We have:

v(QXr (H)) = max
x∈X

min
h∈H c+(x)th − c+(x)tx

c+(x)tx
= v(RXr (H)) − 1

123

Min max min robust (relative) regret combinatorial… 277

Let f (x) = min
h∈H c+(x)th and let g(x) = c+(x)tx. We use (1),(2) and (3) to find:

(i) v(RXr (μ, H)) = 0 if and only if μ = v(QXr (H)) + 1.
(ii) If v(RXr (μ, H)) = 0 and x∗ is an optimal solution for RXr (μ, H) then x∗ is an

optimal solution for QXr (H).
(iii) v(RXr (μ, H)) is a piecewise linear and decreasing convex function in μ •

Appendix C: Proof of Proposition 3

Let X = {x(1), . . . , x(L)}, let φ j = min
h∈H c+(x(j))

t
h and let δ j = c+(x(j))

t
x(j) for

j = 1, . . . , L .
The algorithm may be rewritten as follows:
Let μ1 = 1.

Algorithm Find-μ∗

1. i = 1.
2. Solve Rr (μi , H). Let x(ji) be an optimal solution.
3. If v(Rr (μi , H)) = 0 let μ∗ = μi , let x∗ = x(ji) and stop.

4. Let μi+1 = φ ji
δ ji

, let i = i + 1 and return to Step 2.

If v(Rr (μ1, H)) > 0 then μ2 = φ j1
δ j1

and φ j1 − μ1δ j1 > 0. Hence μ2 > 1 = μ1.

If v(Rr (μ2, H)) > 0 then μ3 = φ j2
δ j2

and φ j2 − μ2δ j2 > 0. Hence μ3 > μ2.

In general we have thatμi < μi+1 for all i . Since X is a finite set then the sequence
μ1, . . . , μs, . . . generated by the algorithm must be finite and then v(Rr (μi , H)) = 0
for some i (otherwise the algorithm generates an infinite sequence of μ-values).

Appendix D

See Tables 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 and 15.

123

278 A. Crema

Table 4 SPproblemswithmesh topology.Q-greedy, T-greedy andS-Qalgorithms for theMSR(k) problem.
Times, failures and iterations. 10 problems in each set

γ r m k tQ itT tT f itS-Q tS-Q avetQ avetT avetS-Q

0.15 10 25 2 0.22 7 2.53 0 10 4.80 0.18 1.65 4.12

3 0.56 10 4.51 0 16 14.06 0.37 2.89 8.75

50 2 0.63 16 14.51 0 30 71.81 0.40 6.21 26.47

3 1.32 19 18.16 0 39 182.26 0.92 8.99 53.30

75 2 1.39 14 27.74 0 27 166.67 0.96 12.19 61.24

3 2.45 18 37.54 1 30 242.91 1.77 17.91 126.78

15 25 2 0.40 9 6.77 0 16 25.32 0.28 2.60 8.03

3 0.82 12 10.10 0 21 58.15 0.52 3.95 13.44

50 2 1.22 8 13.86 0 17 72.01 0.88 8.84 34.58

3 2.28 11 20.64 0 21 153.56 1.68 13.35 70.17

75 2 2.10 13 34.33 0 27 288.96 1.57 17.87 90.00

3 3.92 21 64.84 1 25 1081.79 3.25 29.42 310.82

0.35 10 25 2 0.60 9 3.97 0 17 15.70 0.25 2.37 7.68

3 0.61 15 7.99 0 29 69.83 0.43 4.19 22.38

50 2 1.01 26 30.66 0 55 3630.66 0.56 14.56 542.39

3 2.05 33 41.23 4 40 657.31 1.05 22.49 256.62

15 25 2 0.84 7 6.85 0 11 22.82 0.57 4.59 15.03

3 1.53 10 11.03 0 18 101.71 1.15 7.51 41.34

50 2 2.01 24 50.45 0 44 334.27 1.15 24.93 159.83

3 3.82 29 62.34 3 33 650.07 2.10 35.48 341.38

Table 5 SPproblemswithmesh topology.Q-greedy, T-greedy andS-Qalgorithms for theMSR(k) problem.
Reduction percentage for the regret values. 10 problems in each set

γ r m redQ2 redT2 redS-Q2 dif2 redQ3 redT3 redS-Q3 dif3

0.15 10 25 26.95 63.03 63.03 0.00 60.53 76.68 76.68 0.00

50 33.00 58.17 58.17 0.00 54.06 64.83 66.67 1.84

75 12.07 44.55 44.97 0.42 32.56 52.10 55.29 3.18

15 25 15.66 55.30 56.61 1.32 66.22 75.31 79.63 4.32

50 24.34 52.94 52.94 0.00 54.28 56.76 62.51 5.75

75 15.26 35.85 37.13 1.28 35.43 49.57 50.66 1.09

0.35 10 25 14.42 25.25 26.04 0.79 37.60 44.93 50.08 5.16

50 12.67 19.85 22.84 2.99 21.20 28.18 37.32 9.14

15 25 13.58 41.17 42.53 1.36 46.48 53.37 55.55 2.18

50 15.50 27.49 34.92 7.42 25.06 39.63 46.85 7.22

AVE 1.52 3.99

123

Min max min robust (relative) regret combinatorial… 279

Table 6 SP problems with euclidean topology. Q-greedy, T-greedy and S-Q algorithms for the MSR(k)
problem. Times and iterations. 10 problems in each set

p |V | k tQ itT tT f it-SQ tS-Q avetQ avetT avetS-Q

0.35 15 2 0.15 10 2.35 0 20 6.68 0.13 1.04 2.84

3 0.24 14 3.10 0 28 12.27 0.21 1.49 4.79

20 2 0.40 11 14.96 0 28 19.01 0.21 3.42 8.79

3 0.55 14 15.45 1 33 1352.98 0.34 4.16 162.40

25 2 0.53 13 6.76 0 26 27.17 0.29 2.61 9.07

3 0.72 16 9.96 0 36 602.60 0.42 3.65 219.22

30 2 0.57 14 5.64 0 32 30.76 0.39 3.57 15.90

3 0.84 19 11.40 3 32 3603.13 0.55 5.21 587.11

0.70 15 2 0.31 15 3.68 0 31 10.30 0.15 1.41 3.21

3 0.37 19 4.57 0 49 54.19 0.22 1.87 9.03

20 2 0.35 20 5.39 0 33 12.53 0.26 2.33 6.66

3 0.43 26 6.88 0 49 69.11 0.34 3.10 18.59

25 2 0.64 20 11.53 0 52 183.90 0.31 3.40 39.35

3 0.81 24 13.28 1 57 516.06 0.42 4.29 72.90

30 2 0.57 19 8.02 2 27 19.80 0.34 3.58 11.58

3 0.82 29 10.53 3 43 3603.65 0.48 4.94 698.33

Table 7 SP problems with euclidean topology. Q-greedy, T-greedy and S-Q algorithms for the MSR(k)
problem . Reduction percentage for the regret values. 10 problems in each set

p |V | redQ2 redT2 redS-Q2 dif2 redQ3 redT3 redS-Q3 dif3

0.35 15 17.20 17.76 18.18 0.42 22.50 24.16 26.68 2.52

20 2.38 3.90 5.43 1.53 10.16 11.37 14.04 2.67

25 3.42 4.40 5.42 1.02 8.90 10.20 10.47 0.27

30 2.47 2.79 3.65 0.86 6.51 6.51 11.01 4.50

0.70 15 23.49 32.83 35.29 2.45 34.21 41.35 44.53 3.18

20 17.33 24.20 26.23 2.03 26.61 33.02 35.65 2.63

25 15.20 17.69 19.25 1.56 22.86 25.19 26.53 1.35

30 11.42 12.62 13.83 1.21 19.47 19.14 22.53 3.39

AVE 1.39 2.56

123

280 A. Crema

Table 8 p-M problems.Q-greedy, T-greedy and S-Q algorithms for the MSR(k) problem. Times, failures
and iterations. 10 problems in each set

γ m p k tQ itT tT f itS-Q tSQ avetQ avetT avetS-Q

0.15 30 2 2 0.61 9 63.93 0 16 66.76 0.50 9.50 15.60

3 0.92 12 65.04 0 19 70.72 0.80 11.06 18.92

5 2 0.7 10 5.54 0 20 20.93 0.49 3.34 10.53

3 1.17 13 9.47 0 22 64.59 0.79 5.28 18.82

60 2 2 1.96 9 19.48 0 18 248.98 1.44 14.15 118.45

3 3.67 13 26.31 0 28 751.31 2.52 19.92 344.83

5 2 2.00 17 30.33 0 40 3630.33 1.24 23.22 563.49

3 3.68 20 37.67 3 45 3260.77 2.14 30.70 1280.83

80 2 2 2.26 9 31.12 0 18 246.37 1.93 21.86 173.92

3 4.61 13 51.19 3 25 1448.88 3.64 36.35 917.23

5 2 3.25 20 65.40 0 41 1439.35 2.54 41.11 430.85

3 5.77 24 84.88 5 35 2620.62 3.77 58.66 1573.66

0.35 30 2 2 0.62 7 4.82 0 15 19.54 0.47 3.15 11.82

3 0.97 10 7.63 0 18 48.93 0.85 4.96 25.74

5 2 0.64 16 13.42 0 30 48.33 0.53 6.15 25.42

3 1.18 21 19.37 1 45 762.46 0.86 8.72 124.84

60 2 2 2.19 10 24.30 0 19 197.65 1.41 16.71 108.08

3 3.42 14 35.90 2 28 1154.23 2.46 24.75 643.08

5 2 1.52 18 36.49 1 39 1891.05 1.17 24.50 546.48

3 3.16 26 61.84 10 26 – 2.40 38.05 –

80 2 2 2.66 10 41.96 0 20 297.20 2.27 29.83 201.44

3 4.28 14 63.50 6 23 2960.86 3.71 47.28 1869.17

Table 9 p-M problems. Q-greedy, T-greedy and S-Q algorithms for the MSR(k) problem. Reduction
percentage for the regret values. 10 problems in each set

γ m p redQ2 redT2 redS-Q2 dif2 redQ3 redT3 redS-Q3 dif3

0.15 30 2 24.25 27.32 27.37 0.05 33.03 38.28 45.83 7.56

5 18.93 33.45 37.30 3.85 40.02 46.91 51.35 4.44

60 2 7.63 10.63 13.12 2.49 17.37 17.35 24.54 7.20

5 12.92 24.16 26.24 2.08 23.76 30.10 37.28 7.18

80 2 8.80 9.22 9.67 0.45 16.71 18.27 21.31 3.04

5 15.89 21.81 22.93 1.11 22.43 26.27 33.52 7.25

0.35 30 2 7.93 9.69 9.78 0.09 21.79 24.38 26.81 2.44

5 9.92 22.00 22.83 0.83 20.91 29.81 37.36 7.55

60 2 6.71 7.96 8.33 0.37 10.67 12.73 13.48 0.75

5 12.49 19.29 20.03 0.74 19.42 23.29 32.71 9.43

80 2 3.33 4.75 5.27 0.52 7.70 8.85 18.05 9.20

AVE 1.14 6.00

123

Min max min robust (relative) regret combinatorial… 281

Table 10 SP problems with mesh topology. Qr-greedy, Tr-greedy and Sr-Qr algorithms for the MrelSR(k)
problem. Times, failures and iterations. 10 problems in each set

γ r m k tQr itTr tTr f itSr-Qr tSr-Qr avetQr avetTr avetSr-Qr

0.35 10 25 2 2.55 8 4.21 0 16 17.77 1.29 2.58 6.47

3 3.17 10 6.65 3 19 32.80 1.83 4.37 16.89

50 2 11.24 22 48.22 0 55 2607.07 7.33 19.56 411.9

3 12.21 26 59.27 3 28 178.08 8.78 29.76 126.20

15 25 2 6.90 8 12.10 0 21 82.83 4.39 7.45 26.24

3 10.06 12 22.72 0 37 796.68 5.72 13.02 119.1

50 2 26.06 18 51.81 0 47 1117.10 10.60 23.48 200.28

3 27.85 25 88.11 2 34 3332.92 12.63 42.58 824.52

Table 11 SP problems with mesh topology. Qr-greedy, Tr-greedy and Sr-Qr algorithms for the MrelSR(k)
problem . Reduction percentage for the regret values. 10 problems in each set

γ r m redQr2 redTr2 redSr-Qr2 difr2 redQr3 redTr3 redSr-Qr3 difr3

0.35 10 25 44.66 52.60 53.85 1.26 65.80 62.15 71.03 8.88

50 11.27 29.49 31.11 1.61 18.01 38.92 43.72 4.80

15 25 27.24 31.30 32.83 1.52 42.17 46.57 53.33 6.76

50 14.29 23.90 24.04 0.14 20.23 33.33 37.50 4.17

AVE 1.13 5.15

Table 12 SP problems with euclidean topology. Qr-greedy, Tr-greedy and Sr-Qr algorithms for the
MrelSR(k) problem. Times, failures and iterations. 10 problems in each set

p |V | k tQr itTr tTr f itSr-Qr tSr-Qr avetQr avetTr avetSr-Qr

0.35 15 2 1.17 8 2.48 0 15 7.80 0.90 1.68 4.54

3 1.33 12 3.79 0 24 12.17 1.08 2.64 6.80

20 2 1.60 8 2.72 0 21 14.55 1.02 1.91 6.52

3 2.03 12 4.99 0 28 25.25 1.29 3.38 15.34

25 2 2.57 12 7.11 0 27 28.37 1.67 3.18 10.66

3 2.85 16 9.69 0 37 1570.36 1.95 5.11 173.67

30 2 5.63 10 10.95 0 23 41.39 2.84 5.40 22.52

3 6.25 16 19.60 4 30 116.25 3.24 9.02 84.78

0.70 15 2 2.46 14 4.49 0 26 11.93 1.02 1.80 4.80

3 2.56 17 5.33 0 28 14.06 1.13 2.54 6.93

20 2 3.64 17 6.39 0 35 22.70 1.66 2.73 8.91

3 3.86 23 8.78 0 58 1501.12 1.83 3.96 167.78

25 2 5.14 17 8.78 1 35 32.00 2.00 3.76 13.36

3 5.50 23 11.81 1 52 670.81 2.24 5.84 94.17

30 2 6.04 19 7.32 0 34 27.46 3.12 4.41 14.79

3 6.28 23 9.53 2 45 1163.13 3.42 6.29 214.86

123

282 A. Crema

Table 13 SP problems with euclidean topology. Qr-greedy, Tr-greedy and Sr-Qr algorithms for the
MrelSR(k) problem. Reduction percentage for the regret values. 10 problems in each set

p |V | redQr2 redTr2 redSr-Qr2 difr2 redQr3 redTr3 redSr-Qr3 dif3

0.35 15 10.15 10.69 12.38 1.69 19.48 19.78 21.59 1.81

20 3.94 7.90 9.12 1.21 16.33 17.19 18.34 1.16

25 6.46 7.21 7.72 0.52 11.72 13.59 14.78 1.18

30 3.63 3.69 4.03 0.34 7.58 8.48 11.10 2.62

0.70 15 16.53 23.74 26.62 2.87 26.59 35.04 39.83 4.79

20 18.34 30.57 30.72 0.15 32.68 37.81 38.65 0.84

25 12.69 14.10 15.10 0.99 20.05 20.81 25.85 5.04

30 15.09 16.71 18.32 1.61 19.11 22.18 28.06 5.88

AVE 1.17 2.91

Table 14 p-M problems.Qr-greedy, Tr-greedy and Sr-Qr algorithms for the MrelSR(k) problem. Times,
failures and iterations. 10 problems in each set

γ m p k tQr itTr tTr f itSr-Qr tSr-Qr avetQr avetTr avetSr-Qr

0.15 30 2 2 3.34 7 5.16 0 10 8.86 2.52 3.76 7.79

3 3.90 9 7.81 0 16 28.11 3.20 6.69 14.67

5 2 3.75 10 8.70 0 16 25.02 2.55 6.00 13.17

3 4.31 12 12.10 0 23 50.51 3.33 9.36 22.30

60 2 2 14.64 9 30.30 0 18 145.30 11.99 22.06 81.95

3 16.91 11 40.11 0 21 371.19 14.33 34.53 185.96

5 2 30.60 13 47.90 0 31 351.97 19.17 32.41 148.64

3 33.17 16 64.28 0 36 3214.08 21.54 45.98 927.00

80 2 2 32.17 9 48.18 0 19 240.94 20.16 34.44 150.71

3 35.31 11 65.37 0 24 2502.77 23.65 53.08 612.01

5 2 74.31 19 163.79 0 40 1973.99 37.56 74.60 833.89

3 79.90 22 189.13 5 32 3690.50 40.85 106.01 1433.96

Table 15 p-M problems. Qr-greedy, Tr-greedy and Sr-Qr algorithms for the MrelSR(k) problem . Reduc-
tion percentage for the regret values. 10 problems in each set

γ m p redQr2 redTr2 redSr-Qr2 difr2 redQr3 redTr3 redSr-Qr3 difr3

0.15 30 2 26.84 30.30 31.62 1.32 49.34 50.37 51.71 1.34

5 15.38 32.51 33.34 0.83 44.74 53.22 54.48 1.26

60 2 16.67 18.71 18.71 0.00 27.23 27.61 30.49 2.88

5 13.64 21.68 23.48 1.81 21.93 30.30 34.66 4.36

80 2 13.79 14.65 16.81 2.16 23.19 24.01 27.20 3.20

5 7.82 15.33 18.33 3.00 13.48 22.90 31.48 8.58

AVE 1.52 3.60

123

Min max min robust (relative) regret combinatorial… 283

References

Aissi H, Bazgan C, Vanderpooten D (2009) Min–max and min–max regret versions of combinatorial
optimization problems: a survey. Eur J Oper Res 197(2):427–438

Averbakh I (2005) Computing andminimizing the relative regret in combinatorial optimizationwith interval
data. Discrete Optim 2:273–287

Boffey TB, Karkazis J (1984) p-Medians and multi-medians. J Oper Res Soc 35(1):57–64
Buchheim C, Kurtz J (2016) Min–max–min robustness: a new approach to combinatorial optimization

under uncertainty based on multiple solutions. Electron Not Discrete Math 52:45–52
Buchheim C, Kurtz J (2017) Min–max–min robust combinatorial optimization. Math Program 163(1–2):1–

23
Chassein A, Goerigk M, Kurtz J, Poss M (2019) Faster algorithms for min–max–min robustness for com-

binatorial problems with budgeted uncertainty. Eur J Oper Res 279(2):308–319
Candia-Véjar A, Alvarez-Miranda E, Maculan N (2011) Minmax regret combinatorial optimization prob-

lems: an alogorithmic perspective. RAIRO-Oper Res 45:101–129
CarlssonC, Fuller R (2012) Fuzzy reasoning in decisionmaking and optimization. Physica, vol 82. Springer,

Berlin
Chassein A, GoerigkM (2016) Performance analysis in robust optimization. In: DoumposM, Zopounidis C,

Grigoroudis E (eds) Robustness analysis in decision aiding, optimization, and analytics. International
series in operations research and management science, vol 241. Springer, Cham

Crema A (2000) An algorithm for the multiparametric 0–1-integer linear programming problem relative to
the objective function. Eur J Oper Res 125:18–24

Crema A (2014) Mathematical programming approach to tighten a Big-M formulation.
www.optimization-online.org. Accessed Aug 2014

Hanasusanto G, Kuhn D, Wiesemann W (2015) K-adaptability in two-stage robust binary programming.
Oper Res 63(4):877–891

Kasperski A, Zielinski P (2016) Robust discrete optimization under discrete and interval uncertainty: a
survey. In: Doumpos M, Zopounidis C, Grigoroudis E (eds) Robustness analysis in decision aid-
ing, optimization, and analytics. International series in operations research and management science.
Springer, Berlin

Kouvelis P, Yu G (2013) Robust discrete optimization and its applications, vol 14. Springer, Berlin
Li J, Liu Y (2016) Approximation algorithms for stochastic combinatorial optimization problems. J Oper

Res Soc China 4(1):1–47
MegiddoN (1979)Combinatorial optimizationwith fractional objective functions.MathOperRes 4(4):414–

424
Montemanni R, Gambardella LM (2005) The robust shortest path problem with interval data via Benders

decomposition. 4 OR 3:315–328
Oberdieck R, Diangelakis NA, Nascu I, Papathanasiou MM, Sun M, Avraamidou S, Pistikopoulos EN

(2016) On multi-parametric programming and its applications in process systems engineering. Chem
Eng Res Des 116:61–82

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

http://www.optimization-online.org

	Min max min robust (relative) regret combinatorial optimization
	Abstract
	1 Introduction
	2 An algorithm to solve the MSR(k) problem
	3 Greedy aproaches for the MSR(k) problem
	3.1 A greedy algorithm for the MSR(k) problem based on conditionated absolute robust solutions
	3.2 A greedy algorithm for the MSR(k) problem based on a simple multiparametric algorithm

	4 An algorithm to solve the MrelSR(k) problem
	5 Greedy approaches for the MrelSR(k) problem
	5.1 A greedy algorithm for the MrelSR(k) problem based on conditionated relative robust solutions
	5.2 A greedy algorithm for the MrelSR(k) problem based on a simple multiparametric algorithm

	6 Computational results
	6.1 Computer environment and the notation
	6.2 Data generation
	6.2.1 Data for the shortest path problem
	6.2.2 Data for the p-Medians problems

	6.3 Performance of the algorithms
	6.3.1 Absolute case (MSR(k))
	6.3.2 Relative case (MrelSR(k))

	7 Conclusions and further extensions
	7.1 Conclusions
	7.2 Extensions

	Appendix A: Proof of Proposition 1
	Appendix B: Proof of Proposition 2
	Appendix C: Proof of Proposition 3
	Appendix D
	References

