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Abstract
This note considers the model of “constrained multi-armed bandit” (CMAB) that
generalizes that of the classical stochastic MAB by adding a feasibility constraint for
each action. The feasibility is in fact another (conflicting) objective that should be
kept in order for a playing-strategy to achieve the optimality of the main objective.
While the stochastic MAB model is a special case of the Markov decision process
(MDP) model, the CMAB model is a special case of the constrained MDP model.
For the asymptotic optimality measured by the probability of choosing an optimal
feasible arm over infinite horizon, we show that the optimality is achievable by a
simple strategy extended from the εt -greedy strategy used for unconstrained MAB
problems. We provide a finite-time lower bound on the probability of correct selection
of an optimal near-feasible arm that holds for all time steps. Under some conditions,
the bound approaches one as time t goes to infinity. A particular example sequence of
{εt } having the asymptotic convergence rate in the order of (1 − 1

t )
4 that holds from

a sufficiently large t is also discussed.

Keywords Multi-armed bandit · Constrained stochastic optimization · Simulation
optimization · Constrained Markov decision process

1 Introduction

Many practical problems, e.g., in games (Browne et al. 2012), in prediction (Cesa-
Bianchi and Lugosi 2006), in networking (Mahajan and Teneketzis 2007), and
problems such as clinical trials, Ad placement in the Internet, etc. [see also, e.g.,
Tekin and Liu (2013), Santner and Tamhane (1984) and the references therein] have
been studiedwith amodel of stochasticmulti-armed bandit (MAB) [see the books, e.g.,
Berry and Fristedt (1985), Gittins et al. (2011) and Cesa-Bianchi and Lugosi (2006)
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for in depth cover of the topic and the related ones]. The usual setup of those problems
have only one main objective function to be optimized. We can add some complex-
ity to those problems by considering another objective function whose performance
metric conflicts that of the original objective function. For example, in (wireless) com-
munication networks, a trade-off exists between achieving a “small” delay (or “high”
throughput) and “low” power consumption. To minimize the power consumption, we
need to transmit with the lowest power level available. On the other hand, to maximize
the throughput (or to minimize the delay) we need to transmit with the highest avail-
able power level because it will increase the probability of successful transmission.
We can consider the problem of selecting an optimal feasible power level among all
available powers that keeps the delay cost below some given bound. In Ad placement,
we can consider choosing an optimal feasible Ad that maximizes some revenue that
keeps the marketing cost below some bound.

Formally, we consider a stochastic MAB problem where there is a finite set A of
arms and one arm in A needs to be sequentially played. Unlike the classical set up,
in our case, when a in A is played at discrete time t ≥ 1, the player not only obtains
a sample bounded reward Xa,t ∈ � drawn from an unknown reward-distribution
associated with a, whose unknown expectation and variance are μa and σ 2

R,a , respec-
tively, but also obtains a sample bounded cost Ya,t ∈ � drawn from an unknown
cost-distribution associated with a, whose unknown expectation and variance are
Ca and σ 2

C,a , respectively. Sample rewards and costs across arms are all indepen-
dent for all time steps. That is, Xa,t , Xb,s,Yp,t ′ , and Yq,s′ are independent for all
a, b, p, q ∈ A and all t, s, t ′, s′ ≥ 1. For any fixed a in A, Xa,t ’s and Ya,t ’s for t ≥ 1
are identically distributed, respectively.We define the feasible set A f of arms such that
A f := {a ∈ A|Ca ≤ C} for some real constant C (C is a problem parameter and we
assume that A f �= ∅). Unlike the classical problem, our goal is to find an optimal fea-
sible arm in argmaxa∈A f

μa . We call this model “constrained MAB” (CMAB). (Note
that for the sake of simplicity, we consider one constraint case. It is straightforward to
extend our results into multiple-constraints case.)

In fact, the model of CMAB is a special case of the constrained Markov decision
process (CMDP) model (Altman 1998; Denardo et al. 2013) (naming the model as
constrained MAB based on this) while the model of the stochastic MAB is a special
case of the unconstrained MDP model (see, e.g., Mahajan and Teneketzis 2007). It
is important to note that in our problem setup, we add the assumption that all of the
distributions of rewards and costs associated with all arms are unknown to the player.

When the CMAB problem parameters are all known in the model of CMDP,
linear programming can be used to obtain an optimal policy that achieves the reward-
optimality while keeping the constraint of the cost-feasibility (Altman 1998; Denardo
et al. 2013). On the other hand, due to the assumption that the distributions of rewards
and costs associated with all arms are unknown, we need to somehow blend a process
of estimating the feasibility of each arm into an exploration-exploitation process for
estimating the optimality of each arm. The methodology is a (simulation) process of
iteratively updating estimates of the unknown parameter values, e.g., expectations,
from samples of reward and cost and playing the bandit with an arm selected based on
those information and obtaining new samples for further estimation eventually finding
an optimal feasible arm.
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We define a strategy (or algorithm) π := {πt , t = 1, 2, . . .} as a sequence of
mappings such that πt maps from the set of past plays and rewards and costs and
m ≥ 0 random numbers, Ht−1 := (A×�×�×[0, 1]m)t−1 if t ≥ 2 and ∅ if t = 1, to
the set of all possible distributions over A. The tuple of m random numbers in [0, 1]m
represents some exogenous randomness that controls the selection process in strategy.
We denote the set of all possible strategies as �. We let a random variable Iπ

t denote
the arm selected by π at time t .

The notion of the asymptotic optimality of a strategy was introduced by Robbins
(1952) for the classical MAB problem, i.e., when A f = A. We re-define it for the
CMAB case: Let μ∗ = maxa∈A f μa and A∗

f := {a ∈ A f |μa = μ∗}. For a given
π ∈ �, π is an asymptotically optimal strategy if

∑
a∈A∗

f
Pr{Iπ

t = a} → 1 as

t → ∞. Robbins studied a two-arm problem with Bernoulli reward distributions and
Bather (1980) extended the problem into the general case where |A| ≥ 2 and provided
an asymptotically optimal “index-based” strategy. At each time each arm’s certain
performance index is obtained and an arm is selected based on the indices. The key
idea of Bather was to ensure that each arm is played infinitely often by introducing
some randomness into the index computation and to make the effect for an arm vanish
as the number of times the arm has been played increases. The εt -greedy strategy (Auer
et al. 2002) basically follows Bather’s idea for general MAB problems: Set {εt } such
that

∑∞
t=1 εt = ∞ and limt→∞ εt = 0. The sequence ensures that each arm is played

infinitely often and that the selection by the strategy becomes completely greedy in
the limit. In addition, the value of εt plays the role of switching probability between
greedy selection of the arm estimated as the current best and uniform selection over A.
As εt goes to zero, the effect from uniform selection vanishes and the strategy achieves
the asymptotic optimality. By analyzing its finite-time upper bound on the probability
of wrong selection, Auer et al. (2002, Theorem 3) showed the convergence rate to
zero is in the order of t−1. Arguably, the εt -greedy policy is regarded as de facto
standard algorithm of the stochastic MAB model in general when the distributions
of the rewards associated with all arms are unknown [see, e.g., Auer et al. (2002),
Kuleshov and Precup (2014) and Vermorel and Mohri (2005) that show the empirical
competitiveness of the ε-greedy policy]. This naturally motivates studying how the
ε-greedy strategy (adapted properly) works in the model of CMAB.

The goal of this brief note is to show in theory that under some conditions, a simple
extension of the εt -greedy strategy, called “constrained εt -greedy” strategy achieves
the asymptotic (near) optimality for CMAB problems. Our approach is to establish
a finite-time lower bound on the probability of selecting an optimal near-feasible
arm that holds for all time t , where the near-feasibility is measured by some deviation
parameter, and then to show that the lower bound approaches one as t increases for any
positive value of the deviation. In doing so, we observe that a lower-bound probability
on the probability of selecting an optimal near-feasible arm can be obtained by a
product of conditional probabilities. Conditioning is based on the event that each arm
is pulled (sampled) “sufficiently” often and under the sufficiency, the set of the arms
identified as feasible arms with the samples “approximates” the true set of feasible
arms by an error. With the error, getting away from the constraints, we can deal with
solving certain unconstrained MAB—obtaining a lower bound on each conditional
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probability term in the product can be viewed as a problem or a property studied in the
literature in the context of solving unconstrainedMAB. To prove ourmain result in this
note, we borrow (some parts of) the proof technique used in the literature that studied
those problems. That is, the proof of the convergence result build upon previously
existing ones and this must be obvious in some sense because the constrained εt -
greedy” strategy “subsumes” the εt -greedy strategy. However, note that it is not trivial
to combine all of the relevant results into one framework after proper adaptation for the
novel problem. Along with theoretical study on convergence, we provide a particular
example sequence of {εt } which makes the asymptotic convergence rate in the order
of (1 − 1

t )
4 from a sufficiently large t .

2 Related works

Relatedwith ourmodel, much attention has been paid to the so called “BudgetedMAB
(BMAB)” problem as a variant of the MAB problem that adds a certain constraint for
optimality (see, e.g., Ding et al. 2013; Watanabe et al. 2017; Zhou and Tomlin 2018).
In our terms, given a policy π , consider the sum of the random costs obtained by
following π (i.e., playing the MAB machine according to π ) T > 0 times, i.e.,∑T

t=1 YIπ
t ,t . [Zhou and Tomlin (2018) considered an extended model of Ding et al.

(2013) such that an arm can be played multiple times. Our argument applies similarly
to their case.] It is then a random variable that takes the value of the sum of the
random costs obtained over the sample path induced by following π . Let the stopping
time Qπ (B) = min

{
T | ∑T

t=1 YIπ
t ,t > B

}
where B > 0 is a problem parameter called

“budget”. The player stops playing theMABmachine at time Qπ (B) once it consumes
up all of the budget given by B. We now take the expected value of the sum of the
random rewards obtained by following π over the sample path of length Qπ (B) − 1
and want to maximize the expected value over all possible π . That is, the goal of the
BMAB problem is to obtain maxπ∈� E

[ ∑Qπ (B)−1
t=1 XIπ

t ,t
]
or a policy that achieves

it.
As we can see, the (budget) constraint on the played arm sequence in BMAB is

fundamentally different from the feasibility constraint on each arm in CMAB. Due
to this, the optimality is different in the two models. Note that some arms in CMAB
are infeasible but we do not know the infeasibility of the arms before we play the
bandit machine. We need to find out, as we play, which arms are infeasible. Moreover,
some arms in CMAB are non-optimal and we do not know the reward-optimality of
the feasible arms before we play CMAB. We need to find out an optimal feasible arm
as we play CMAB. That is, the feasibility (in terms of the cost-objective function)
needs to be considered as another objective like the reward-optimality (in terms of the
reward-objective function). At the same time, they are related such that the reward-
optimality is constrained by the feasibility. Unless an arm is feasible, it is not optimal
in our problem setting. Another important point is that the model of CMAB is a special
case of the CMDPmodel (Altman 1998; Denardo et al. 2013) as wementioned before.
It seems that BMAB is not directly related with CMDP.
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Our problem setting can be viewed as constrained (combinatorial) optimization
problemwhen the objective function and the constraint function value can be obtained
(but cannot be evaluated explicitly) by sequential sampling/simulation of a solu-
tion at a time. Note that we do not draw multiple samples of reward and cost at
a single time step. We do not impose any assumption on the reward and the cost
distributions (e.g., normality). Moreover, “(approximately) optimal sampling plan”
or “optimal simulation-budget allocation” is not computed in advance as these or
subset of these are common assumption and approaches in constrained simulation-
optimization literature under to the topic of constrained “ranking and selection” [see,
e.g., Pasupathy et al. (2014), Hunter and Pasupathy (2013), Park and Kim (2015) and
the references therein]. Consider an optimization problem� given in a general form of
maxi∈F (μi := Ew[r(i, w)]), subject to F = {i ∈ S|σi := Ew[c(i, w)] ≤ C}, where
S = {1, 2, . . . , n} is a finite set of solutions, F is a finite set of feasible solutions,
w is a random vector supported on a set � ⊂ R

d , r : A × � → R is an objective
function, and c : A×� → R is a constraint function. The expectations are taken with
respect to a fixed but unknown distribution P of w and all finite. Assume that samples
w j , j = 1, 2, 3, . . . , of independent realizations of w can be generated by sampling
from P and the values of r(i, w j ) and c(i, w j ) can be obtained for any i ∈ S and
w j ∈ �. The goal of � is to find an optimal feasible solution in argmaxi∈F μi . In
this view, our approach of the ε-greedy strategy in CMAB can be used as a “stochas-
tic search” (Spall 2003) for expected-value constrained combinatorial optimization
problems [see, e.g., Wang and Ahmed (2008) and Lan and Zhou (2016) for the related
works and the practical example problems].

The model considered in “profitable bandits” (Achab et al. 2018) also obtains a
random reward and a random cost for playing an arm. The goal is to find an optimal
policy maximizing the expected cumulative profit where the profit is the difference
between the values of the reward and the cost. In other words, the reward and the cost
are linearly related. There is no constraint on the feasibility of each arm.

The work by Locatelli et al. (2016) studies a “pure exploration” problem in the
stochastic MAB model where the goal is to find a set of arms whose cost means
are larger than a threshold, i.e., that are feasible in our terms. Therefore this model
considers only one “dimension” of our model. In our model, we not only consider
examining each arm for feasibility but also finding a best arm among such feasible
arms (solving a “contest” problem) at the same time.

Our focus is on studying the behavior of the ε-greedy strategy with respect to
the instantaneous regret over infinite horizon. This subject is also important in the
sense of solving the “best arm identification” problem as in Bubeck et al. (2011) and
Audibert et al. (2010). Our work can be viewed as a parallel work to those works in
the literature in the direction of “pure exploration” for the stochastic MAB model.
Even if other performance metric, called “the expected regret,” has been studied well
in the (recent) literature [see, e.g., Cesa-Bianchi and Lugosi (2006) and the references
therein] since Lai and Robbins (1985) work and in particular Auer et al. (2002) work,
the expected regret is defined in the expected sense for the average behaviour. On the
other hand, the instantaneous regret captures the “transient” convergence behaviour.
More precisely, the expected regret is re-interpreted as the expected loss relative to
the cumulative expected reward of taking an optimal feasible arm due to the fact that
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the algorithm does not always play an optimal feasible arm. In our terms, a possible
definition would be μ∗T − ∑

a∈A μa(
∑T

t=1 Pr{Iπ
t = a}) if T > 0 is the horizon

size. (In this case the loss is not always nonnegative because we consider the relative
performance that includes the performances of the infeasible arms.) The regret is thus
related with a finite-time behavior of the algorithm and in particular measures a degree
of effectiveness in its exploration and exploitation process. If a policy achieves O(1/t)
bound on the instantaneous regret, then the policy achieves a logarithmic bound on
the expected regret (simply from the definition). However, the other direction is not
necessarily true. A policy that achieves a logarithmic bound on the expected regret
does not necessarily achieve O(1/t) bound on the instantaneous regret. That is, the two
performancemeasures are not equivalent. In fact, when Auer et al. (2002) presented an
instantaneous regret bound of the ε-greedy strategy, they noted that the instantaneous
regret is a stronger notion than the expected regret. This must be obvious from the
definitions.

To the author’s best knowledge, there has been no known work that analyzes the
instantaneous behaviour of UCB or its variants. There has been also no known work
that analyzes the expected behaviour ofUCBor its variants, i.e.,

∑
a∈A Pr{IUCBt = a}

over finite time t . (Of course, the expected finite-time behaviour of UCB relative to the
best policy, i.e., the expected regret, has been extensively studied in the literature.) This
is most probably because UCB (and its variants) are deterministic (the decision to take
a particular arm at a specific time depends only on the known history up to the time and
the decision distribution is concentrated only on an arm). It appears to be non-trivial to
obtain a boundonPr{IUCBt = a}, a ∈ A,making difficult to compare the convergence
behaviors, e.g., the convergence rate, with respect to the instantaneous regret between
UCB (and its variants) and the ε-greedy strategy. Studying the advantage and the
disadvantage of the ε-greedy strategy over UCB (and its variants) including other
(heuristic) policies, is important. The emphasis here is on algorithmic development
and establishment of the asymptotic optimality of the algorithm.

3 Algorithm

Once Iπ
t in A is realized by the constrained εt -greedy strategy (referred to as π

in what follows) at time t , the bandit is played with the arm and a sample reward
of XIπ

t ,t and a sample cost of YIπ
t ,t are obtained independently. We let Ta(t) :=

∑t
n=1[Iπ

n = a] denote the number of times a has been selected by π during the first
t time steps, where [·] denotes the indicator function, i.e., [Iπ

t = a] = 1 if Iπ
t = a

and 0 otherwise. The sample average-reward X̄Ta(t) for a in A is then given such that
X̄Ta(t) = 1

Ta(t)

∑t
n=1 Xa,n[Iπ

n = a] if Ta(t) ≥ 1 and 0 otherwise, where Xa,n is the
sample reward observed at time n by playing a as mentioned before. Similarly, the
sample average-cost ȲTa(t) for a in A is given such that ȲTa(t) = 1

Ta(t)

∑t
n=1 Ya,n[Iπ

n =
a] if Ta(t) ≥ 1 and 0 otherwise, where Ya,n is the sample cost observed at time n by
playing a. Note that E[Xa,t ] = μa and E[Ya,t ] = Ca for all t .

We refer to the process of selecting an arbitrary arm a in A with the same prob-
abilities of 1/|A| for the arms in A as uniform selection U over A and the selected
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arm by the uniform selection over A is denoted as U (A). We formally describe the
constrained εt -greedy strategy, π , below.

The constrained εt -greedy strategy

1. Initialization: Select εt ∈ (0, 1] for t = 1, 2, . . . Set t = 1 and Ta(0) = 0 for all
a ∈ A and X̄0 = Ȳ0 = 0.

2. Loop:

2.1 Obtain At = {a ∈ A|Ta(t) �= 0 ∧ ȲTa(t) ≤ C}.
2.2 With probability 1 − εt ,

Greedy Selection: Iπ
t ∈ argmaxa∈At

X̄Ta(t) if At �= ∅ (ties broken arbitrar-
ily).

Otherwise, Iπ
t = U (A).

And with probability εt ,
Random Selection: Iπ

t = U (A).
2.3 Play the bandit with Iπ

t and obtain XIπ
t ,t and YIπ

t ,t independently.
2.4 TIπ

t
(t) ← TIπ

t
(t − 1) + 1 and t ← t + 1.

4 Convergence

To analyze the behavior of the constrained εt -greedy strategy, we define a set of
approximately feasible arms: For a given κ ∈ �, Aκ

f := {a ∈ A|Ca ≤ C + κ}. Given
δ ≥ 0, any set A±δ

f in P(A) is referred to as a δ-feasible set of arms if A−δ
f ⊆ A±δ

f ⊆
Aδ

f where P(A) is the power set of A. We say that an arm a in A is δ-feasible for a
given δ ≥ 0 if a δ-feasible set exists and a is in the set. In the sequel, we further assume
that the reward and the cost distributions all have the support in [0, 1] for simplicity.
That is, Xa,t and Ya,t are in [0, 1] for any a and t .

The following theorem provides a lower bound on the probability that the arm
selected by π at t is equal to a best arm in some δ-feasible set A±δ

f in terms of the
parameters, {εt }, |A|, δ, and ρ := mina,b∈A |μa − μb|.
Theorem 4.1 Assume that the reward and the cost distributions associated with all
arms in A have the support in [0, 1]. Let xt := 1

2|A|
∑t

n=1 εn for all t ≥ 1. Then for
all δ ≥ 0 and t ≥ 1, we have that

Pr

{

Iπ
t ∈ argmax

a∈A±δ
f

μa for some δ-feasible A±δ
f ∈ P(A)

}

≥
(

1 − εt

|A|
) (

1 − |A|e− xt
5

) (
1 − 2|A|e−2δ2xt

) (

1 − 2|A|e− ρ2

2 xt

)

.

In the proof below, some parts are based on the proof idea of the results in Auer et al.
(2002) and Wang and Ahmed (2008). Before the proof, note that for any t when for
all a ∈ A, Ta(t) ≥ xt , it is not possible that

∑
a∈A xt > t . This is because |A|xt ≤ t/2

from 0 < xt ≤ t
2|A| , where this comes from the condition that εt ∈ (0, 1] for all t ≥ 1.
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We can see from the lower bound that the conditions of
∑∞

t=1 εt = ∞ and εt → 0
as t → ∞ are necessary for the convergence to one as t → ∞ because this makes
xt → ∞. Furthermore, the lower bound shows that the convergence speed depends
on the values of δ and ρ. If ρ �= 0 but close to zero, the strategy will need a sufficiently
large number of samples (depending on the value of δ) to distinguish the arms with
the almost same (by ρ) values of the reward expectations. For the case where ρ = 0,
we discuss below.

Let η := mina∈A |Ca −C |. The value of η represents another degree of the problem
difficulty. Suppose that η �= 0. Then the convergence to selection of an optimal 0-
feasible arm at t → ∞ is guaranteed with any δ in (0, η) under some conditions (cf.,
Corollary 4.2). If δ is close to zero, because η is close to zero, xt needs to be sufficiently
large to compensate the small δ. Because Pr{∀a ∈ A, Ta(t) ≥ xt } approaches one as
xt increases (cf., the proof below), this means that a large number of samples for each
arm is necessary in order for π to figure out the feasibility with a high confidence. The
convergencewould be slow in general. At the extreme case, if η = 0 or if there exists an
arm that satisfies the constraint by equality, then δ should be zero for the convergence
because the 0-feasible set is uniquely equal to A f . In this case or the case where
ρ = 0, the lower bound in the theorem statement does not provide any useful result.
(We provide a related remark in the conclusion.) The asymptotic optimality needs to
be approximated by asymptotic near-optimality by fixing δ and/or ρ (arbitrarily) close
to zero.

Finally, if the value xt of the (normalized) cumulative sum of the switching proba-
bilities up to time t is small, e.g., if the strategy spends rather more on greedy selection
(exploitation) than random selection (exploration), the speed would be slow. That is,
the convergence speed depends on the degree of switching between exploration and
exploitation. We now provide the proof of Theorem 4.1.

Proof Wefirst observe that the probability that a δ-feasible current-best arm is selected
at time t by π from some δ-feasible set for a given δ ≥ 0 is lower bounded as follows:

Pr

{

Iπ
t ∈ argmax

a∈A±δ
f

μa for some δ-feasible set A±δ
f ∈ P(A)

}

≥
(

1 − εt

|A|
)

Pr{∀a ∈ A, Ta(t) ≥ xt } (1)

×Pr
{
A−δ

f ⊆ At ⊆ Aδ
f |∀a ∈ A, Ta(t) ≥ xt

}
(2)

×Pr
{
Iπ
t ∈ argmax

a∈At

μa |A−δ
f ⊆ At ⊆ Aδ

f ∧ ∀a ∈ A, Ta(t) ≥ xt
}

(3)

We now provide a lower bound for each probability term except (1 − εt/|A|) in the
product as given above.

Let T R
a (t) be a random variable whose value is the number of plays in which arm

a was chosen at random by uniform selection (denoted as UR) in Random Selection
of the step 2.2 up to time t . That is, T R

a (t) = ∑t
n=1[Iπ

n = UR(A)]. Then for the first
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Pr term in (1), we have that

Pr{∀a ∈ A, Ta(t) ≥ xt } ≥ Pr{∀a ∈ A, T R
a (t) ≥ xt }

= 1 − Pr{∃a ∈ AT R
a (t) < xt }

≥ 1 −
∑

a∈A

Pr{T R
a (t) ≤ xt }

by Boole’s inequality (Union bound)

We then apply Bernstein’s inequality (Uspensky 1937) (stated for the completeness):
Let X1, . . . , X j be randomvariableswith range [0, 1] and

∑ j
i=1 Var[Xi |Xi−1, . . . , X1]

= σ 2. Let S j = X1 + · · · + X j . Then for all h ≥ 0,

Pr{S j ≤ E[S j ] − h} ≤ e
− h2/2

σ2+h/2 .

Because E[T R
a (t)] = 1

|A|
∑t

n=1 εn = 2xt and Var[T R
a (t)] = ∑t

n=1
εn|A| (1 − εn|A| ) ≤

1
|A|

∑t
n=1 εn = 2xt by observing that T R

a (t) is the sum of t independent Bernoulli

random variables, we have that by substituting T R
a (t) into St ,

Pr{T R
a (t) ≤ 2xt − xt } ≤ e

− x2t /2

σ2+xt /2 ≤ e− x2t
2xt+xt /2 = e− xt

5 .

It follows that

Pr{∀a ∈ A, T R
a (t) ≥ xt } ≥ 1 −

∑

a∈A

e− xt
5 = 1 − |A|e− xt

5 .

For the second probability term in (2), letting the event {∀a ∈ A, Ta(t) ≥ xt } be E

Pr{A−δ
f ⊆ At ⊆ Aδ

f |∀a ∈ A, Ta(t) ≥ xt }
= 1 − Pr{∃a ∈ AȲTa(t) − Ca > δ|E} − Pr{∃a ∈ AȲTa(t) − Ca < −δ|E}
= 1 −

∑

a∈A

Pr{ȲTa(t) − Ca > δ|E} −
∑

a∈A

Pr{ȲTa(t) − Ca < −δ|E}

≥ 1 −
∑

a∈A

e−2δ2Ta(t) −
∑

a∈A

e−2δ2Ta(t)

≥ 1 − 2|A|e−2δ2xt ,

where the lower bound on the last equality is achieved by Hoeffding’s inequality
(Hoeffding 1963): For random variables X1, . . . , X j with range [0, 1] such that

E[Xi |X1, . . . , Xi−1] = γ for all i , Pr{X1 + · · · + X j } ≤ jγ − h} ≤ e−2h2/ j for
all h ≥ 0.

For the third probability term in (3), let i∗t denote any fixed arm in the set
argmaxa∈At

μa . Let a = μi∗t − μa for a ∈ At\{i∗t }. Then letting the event
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{A−δ
f ⊆ At ⊆ Aδ

f ∧ ∀a ∈ A, Ta(t) ≥ xt } be E ′

Pr{Iπ
t /∈ argmax

a∈At

μa |A−δ
f ⊆ At ⊆ Aδ

f ∧ ∀a ∈ A, Ta(t) ≥ xt }

≤
∑

a∈At\ argmaxb∈At μb

( ∏

c∈argmaxb∈At μb

Pr{X̄Ta(t) > X̄Tc(t)|E ′}
)

≤
∑

a∈At\{i∗t }
Pr{X̄Ta(t) > X̄Ti∗t (t)|E ′}

≤
∑

a∈At\{i∗t }
Pr

{

X̄Ta(t) > μa + a

2
|E ′

}

+ Pr

{

X̄Ti∗t (t) < μi∗t − a

2
|E ′

}

≤
∑

a∈At\{i∗t }

(

e
−2

(
a
2

)2
Ta(t) + e

−2
(

a
2

)2
Ti∗t (t)

)

by Hoeffding’s inequality

≤
∑

a∈At\{i∗t }
2e

−2
(

a
2

)2
xt ≤ 2|A|e−2

(mina,b∈A |μa−μb |
2

)2
xt

.

It follows that the third term is lower bounded by 1 − 2|A|e−2( ρ
2 )2xt .

Putting the lower bounds of the three probability terms in (1), (2), and (3) together,
we have the stated result that

Pr

{

Iπ
t ∈ argmax

a∈A±δ
f

μa for some δ-feasible A±δ
f ∈ P(A)

}

≥
(

1 − εt

|A|
)

(
1 − |A|e− xt

5
)(
1 − 2|A|e−2δ2xt

)(
1 − 2|A|e− ρ2

2 xt
)
.

��
The following corollary is immediate. It states that the asymptotic optimality is achiev-
able by π when η �= 0 and ρ �= 0 under the conditions on {εt }.
Corollary 4.1 Suppose that

∑∞
t=1 εt = ∞ and limt→∞ εt = 0 and that η �= 0 and

ρ �= 0. Then limt→∞ Pr{Iπ
t ∈ argmaxa∈A f

μa} = 1.

Proof From
∑∞

t=1 εt = ∞, xt → ∞ as t → ∞. And εt goes to zero and ρ �= 0.
Therefore fromTheorem4.1, limt→∞ Pr

{
Iπ
t ∈ argmaxa∈A±δ

f
μa for some δ-feasible

A±δ
f ∈ P(A)

} = 1 if δ is fixed in (0,∞). Because η �= 0, we observe

that A−δ
f = A f = Aδ

f for any δ ∈ (0, η) implying the event {Iπ
t ∈

argmaxa∈A±δ
f

μa for some δ-feasible A±δ
f ∈ P(A)} is equal to {Iπ

t ∈ argmaxa∈A f
μa}

for such δ. ��
We provide a particular example of the sequence {εt } such that the convergence

rate can be obtained.
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Corollary 4.2 Assume that for t ≥ 1, εt = min{1, k
t } where k > 1. Then for t ≥ k we

have that for any δ ≥ 0,

Pr

{

Iπ
t ∈ argmax

a∈A±δ
f

μa for some δ-feasible A±δ
f ∈ P(A)

}

≥
(

1 − k

|A|t
)(

1 − β(k, |A|, δ, ρ)

tα(k,|A|,δ,ρ)

)3

,

where α(k, |A|, δ, ρ) = min
{ k
10|A| ,

δ2k
|A| ,

kρ
4|A|

}
and β(k, |A|, δ, ρ) = max

{|A|k k
10|A| ,

2|A|k δ2k
|A| , 2|A|k kρ

4|A|
}
.

Proof From the assumption on {εt }, xt = 1
2|A|

∑k−1
n=1 εn + 1

2|A|
∑t

n=k εn = k−1
2|A| +

k
2|A|

∑t
n=k

1
n ≥ k−1

2|A| + k
2|A| ln(

t+1
k ) ≥ k

2|A| ln(
t
k ). Then by using xt ≥ k

2|A| ln(
t
k ) in

the lower bound given in Theorem 4.1, for t ≥ k and δ ≥ 0,

Pr

{

Iπ
t ∈ argmax

a∈A±δ
f

μa for some δ-feasible A±δ
f ∈ P(A)

}

≥
(

1 − k

|A|t
)(

1 − |A|k k
10|A|

t
k

10|A|

)(

1 − 2|A|k δ2k
|A|

t
δ2k
|A|

)(

1 − 2|A|k kρ
4|A|

t
kρ
4|A|

)

≥
(

1 − k

|A|t
)(

1 − β(k, |A|, δ, ρ)

tα(k,|A|,δ,ρ)

)3

.

��
For example that if α(k, |A|, δ, ρ) ≥ 1, i.e., k ≥ max{ 4|A|

ρ
,

|A|
δ2

, 10|A|}, Pr {Iπ
t ∈

argmaxa∈A±δ
f

μa for some δ-feasible A±δ
f

} = �((1 − 1/t)4), i.e., the probability is

in the order of (1 − 1/t)4 for t ≥ k. In general, if δ and/or ρ is small, in order to
make α(·) ≥ 1, k needs to be sufficiently large. The convergence rate is achieved
asymptotically.

5 Concluding remark

As we mentioned before, if there exists an arm that achieves the equality constraint or
if η = 0, then the finite-time bound in Theorem 4.1 does not provide any useful result
because δ needs to be set zero. When ρ = 0, we have the same issue. It seems that
describing a finite-time behavior of the strategy including both cases (e.g., by obtaining
a useful finite-time bound) is difficult. We leave this as a future study. However, we
remark that these cases do not break the convergence or the asymptotic optimality
of the constrained εt -greedy strategy. This is because as long as the condition that∑∞

t=1 εt = ∞ and εt → 0 holds, in fact, we still preserve the property that each
action in A is played infinitely often in the constrained εt -greedy strategy. This can
be seen by the fact that Ta(t) goes to infinity for each a ∈ A with probability one
as t → ∞. The sample average of ȲTa(t) and X̄Ta(t) will then eventually converge to
the true average of Ca and μa , respectively, in the limit (simply by the law of large
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numbers). The probability that the constraint εt -greedy strategy selects an optimal
feasible arm will approach one in the limit.

In the ε-greedy algorithm, the set of feasible arms is estimated such that it consists
of all arms whose empirical cost mean is at most C . We can add another degree of
toleration into the ε-greedy algorithm itself, e.g., in the step 2.1 when it estimates
the feasibility set. This will result in another degree of approximation in the result of
Theorem 3.1.

A possible future work is to incorporate the approach by Locatelli et al. (2016)
to develop a policy in CMAB. However, it seems to be non-trivial to analyze the
convergence behavior of the resulting policy. This would be because the algorithm of
Locatelli et al. (2016) is a deterministic index-based algorithm. Note that in our setting
when a policy selects an arm for estimating an optimal feasible arm, at the same time
the selection needs to be used for estimating the feasibility of each arm. Relating their
feasibility-estimation part into the optimal-arm estimation part to obtain a bound on
Pr{Iπ

t = a}, a ∈ A, seems difficult.
The necessary steps to perform the expected regret analysis in our setting would

need to first define “constrained” expected regret. A possible definition of the expected
regret of π ∈ � after the first T plays would be Tμ∗ − ∑

a∈V μa E[Ta(T )] =
Tμ∗ −∑

a∈V μa(
∑T

t=1 Pr{Iπ
t = a}), where if V = A, then the regret is the expected

loss that occurs by not always playing an optimal feasible arm. If V = A f instead, then
the regret is defined as the relative performance that includes the performances of only
the feasible arms. The loss in this case is always nonnegative. If a policy that achieves
a tight or even “reasonable” bound on this regret definition needs to be developed,
the policy would need to obviously consider interdependency between measuring or
estimating feasibility and ranking the arms. It would be the interdependency thatmakes
the actual analysis about bounding the expected regret challenging. For example, one
can consider extending UCB into a policy that selects the current best arm according to
the indexes based on the sample reward-average among the arms whose sample cost-
averages are below a given constraint value. But it seems that the technique used to
prove the upper bound on the usual expected regret with respect to UCB for Theorem
1 in Auer et al. (2002) cannot simply be extended to bound the expected regret given
as above because the events associated with not only ranking but also feasibility need
to be defined and somehow manipulated in a “combined” way.

This note focused on one particular objective function, the asymptotic optimality,
for CMAB problems. It is an important issue to consider another performance metric
like the expected regret, and analyze the performance of a policy. Studying about other
performance metrics is beyond of the scope of this note and is a good future work.
Finally, investigating the theoretical results of the ε-greedy strategy and showing the
advantage or the disadvantage over other policies, e.g., UCB (and its variants), by
some experimental studies is an important future work.
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