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Abstract
Weconsider discrete-time portfolio problems of an investorwhen taking the possibility
of market crashes into account. In the case of the logarithmic utility function, we
construct the worst-case optimal portfolio strategy by an indifference principle. Then,
we extend the setting to general utility functions and derive the worst-case optimal
portfolio processes via the characterization by a dynamic programming equation.
Furthermore, we numerically examine the convergence behavior of the discrete-time
worst-case optimal portfolio processes for the choice of popular utility functions when
the time between two possible price changes tends to zero.

Keywords Worst-case portfolio optimization · Market crash · Dynamic programming

1 Introduction

One of the classical problems in financial mathematics is the portfolio optimization
problem, that is, the choice of optimal investments for an investor with a given util-
ity function and a fixed initial endowment. Merton (1971) pioneered the modern
continuous-time approach to this problem. He applied classical stochastic control
methods to the optimal terminal wealth problem in the Black–Scholes market. Since
Merton’s pioneering work, complete theories and powerful approaches [see e.g. the
monographs by Korn (1997) and Karatzas et al. (1987)] have been developed to solve
the portfolio optimization problem in the continuous-time setting. In contrast, discrete-
time models have advantages with respect to the computational treatment when there
is no analytical solution in continuous time. The discrete-time portfolio optimization
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problem has also been deeply studied (see e.g. Samuelson 1969; Duffie 1988; Pliska
1997; Bäuerle and Rieder 2011).

One drawback of classical stock price models is that extreme stock price move-
ments cannot be fully explained. However, they are often observed at the markets and
can cause large financial losses for investors. To cope with this situation, a worst-
case portfolio approach in continuous time that includes crash possibilities has been
introduced by Korn and Wilmott (2002). By an indifference argument they showed
how to derive the worst-case optimal portfolio processes for logarithmic utility. Korn
and Menkens (2005) extended this approach to a more general market setting. Korn
and Steffensen (2007) showed that the value function can be found by solving an
HJB-system that contains variational inequalities. Further studies on the worst-case
portfolio problem in the continuous-time setting are e.g. Korn and Seifried (2009),
Menkens (2004), Seifried (2010), Desmettre et al. (2015a, b) and Belak et al. (2015).
We particularly want to emphasize that Seifried in Seifried (2010) has been able to
solve the continuous-time worst-case problem for the case of general i.i.d. log returns,
a framework that goes well beyond the standard geometric Brownian motion setting.

In contrast to continuous-time models of worst-case portfolio optimization prob-
lems, relatively little work has been done in the discrete-time setting. Nevertheless,
some interesting real-life problems are not tractable in the framework of the
continuous-time setting. In practice, trading even on fully electronic systems is only
possible at discrete points in time. This motivates us to consider the worst-case portfo-
lio optimization problem in a discrete-time framework. Furthermore, if the parameters
in the discrete-time financial markets are chosen appropriately, they can be regarded as
an approximation of continuous-time models. This observation serves as another rea-
son for the importance of considering the worst-case portfolio optimization problem
in a discrete-time setting.

The paper is organized as follows. We first introduce the basic setting of worst-case
portfolio optimization in discrete time in Sect. 2. In Sect. 3, we derive the worst-
case optimal portfolio processes for the logarithmic utility function by an indifference
argument. Here, we will in particular highlight the usefulness of the discrete-time
model via solving a simple portfolio problem with a jump process model for the stock
price. It can even be used to derive the ordinary differential equation characterizing
the continuous-time worst-case optimal portfolio process. After this, we turn to a
more general study of the worst-case portfolio optimization problem in discrete time.
Section 4 is devoted to derive a system of dynamic programming equations and to
verify the optimal strategies as a system of difference equations. These results will be
applied to the power utility, log utility and exponential utility functions. Further, we
explicitly show the convergence of the worst-case optimal discrete-time strategy to
the continuous-time one in the power utility case.

2 The discrete-time crashmodel

In this section, we specify the discrete-time worst-case market model and formulate
the worst-case optimization problem in discrete time. This model is an extension of the
discrete-time market model and allows for a crash in stock prices. As in the worst-case
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Worst-case portfolio optimization in discrete time 199

market model in continuous time introduced by Hua and Wilmott (1997) and taken
up by Korn and Wilmott (2002), we consider a market consisting of a risk-less bond
and one risky security with prices in normal times given by

{
Bt+1 = (1 + r)Bt , B0 = 1
St+1 = St Rt , S0 = s0

(2.1)

with constant market coefficient r , and independent and identically distributed random
variables Rt . We assume that the mean of the stock return E(Rt ) exceeds the risk-less
return factor of 1 + r , i.e.

Assumption M Mean stock return exceeds the risk-less return.

E(Rt ) > 1 + r > 0. (2.2)

At the crash time τ , the stock price can suddenly fall by a relative amount k ∈ [0, k∗],
where 0 < k∗ < 1 (the biggest possible crash height) is given. Then, in a crash
scenario (τ, k) we have

Sτ+1 = (1 − k)Sτ . (2.3)

Moreover we fix the terminal time T > 0. Let further Ft , t = 0, 1, . . . , T be the
filtration generated by the stock price. We then call a real-valued, Ft -adapted stochas-
tic process a portfolio process. As usual, this process describes the fraction of the
investor’s total wealth X(t) that is allocated to the stock at time t . The corresponding
position will then be hold until time t + 1 where a possible reallocation happens.
Obviously, 1 − πt equals the fraction of wealth invested in the risk-less asset.

We call a portfolio process πt self-financing if for a possible crash scenario (τ, k)
with t ≤ τ ≤ T the dynamics of the wealth process are given by

Xt+1 = Xt ((1 + r) + πt (Rt − 1 − r)) t ∈ [0, τ − 1] ∪ [τ + 1, T − 1] (2.4)

Xτ+1 = (1 + r − πτ (r + k))Xτ (2.5)

where x > 0 denotes the initial wealth. We will call a self-financing portfolio process
admissible if the corresponding wealth process X(t) stays non-negative. We denote
this by π ∈ A(x).

In the following sections, we first restrict ourselves to the case that at most one
crash can occur within the investment period [t, T ]. Details how to extend our results
to the general case of at most n crashes by an iterative procedure will be given later.

Let us point out that the optimal portfolio process after the crash has happened
coincides with the optimal one in the crash-free setting. Thus, we only have to consider
portfolio processes where the final wealth XT in the case of a crash of size k at time
τ ≤ T − 1 is given by

XT = x
τ−1∏
t=0

((1+r)+πt (Rt−1−r))∗(1+r−πτ (r+k))∗
T−1∏

t=τ+1

((1+r)+π̃∗
t (Rt−1−r))

(2.6)
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with π̃∗
t being the optimal strategy in the crash-free setting if such a strategy π̃t exists.

To relate the latter one to a corresponding optimization problem in discrete time, let
u(.) be a utility function (i.e. a strictly concave and increasing differentiable function)
and Xπ

t be the wealth process. Then, the portfolio problem in the crash-free setting is
given by its value function

V0(t, x) = sup
π∈A(x)

Et,x (u(Xπ (T )) (2.7)

where we simply assume that there is no crash possibility at all. For our considerations
in the following, we make the fundamental assumption from now on:

Assumption O Existence of an optimal admissible portfolio.

We assume that for each pair (t, x) ∈ [0, T ]×(0,∞) there exists an optimal admissible
deterministic portfolio process π̃∗ in the sense of

V0(t, x) = Et,x (u(X π̃ (T ))). (2.8)

This assumption is in particular satisfied for all the examples considered in this article.
Further, it is satisfied if the stock price can attain only a finite number of possible prices.
However, this is not the definite collection of all examples where this is the case.

To introduce the worst-case problem in the crash setting, the worst-case bound for
the expected utility from using π before the crash is defined as

W (t, x, π) = inf
t≤τ≤T ,0≤k≤K ∗ E

t,x (u(Xπ
T )) (2.9)

where we already assume that after the crash an optimal portfolio process in the crash-
free setting is followed. The worst-case portfolio problem in discrete time then is to
calculate

V1(t, x) = sup
π∈A(x)

W (t, x, π) (2.10)

and to find an admissible strategy π∗ such thatW (t, x, π∗) = V1(t, x). We denote by
V1(t, x) the value function of the worst-case portfolio optimization problem.

Asmotivated byKorn andWilmott (2002) in continuous time, there are two compet-
ing effects, a high crash loss if a high portfolio process is chosen and a bad performance
if a low one is preferred. To cope with this, they show how to derive the worst-case
optimal portfolio strategy by an indifference argument. In the next section, we look for
an optimal portfolio strategy by using a similar indifference principle in the worst-case
portfolio problem in discrete time in the case of log utility.

3 Indifference strategies in the logarithmic case

In this section, we consider the special case of the logarithmic utility function

u(x) = ln(x), x > 0, (3.1)
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Worst-case portfolio optimization in discrete time 201

of course, still under Assumptions (M) and (O). In this case, we have the following
representation of the value function in the discrete-time crash-free model

V0(t, x) = ln(x) + (T − t)Et,x (ln(1 + r + π̃∗(R − 1 − r))) (3.2)

with the corresponding optimal portfolio strategy

π̃∗ = arg sup
π∈A(x)

{Et,x (ln((1 + r) + π(R − 1 − r)))}. (3.3)

We make the assumption which is e.g. satisfied in the binomial model setting (see e.g.
Kröner 2014):

Assumption L Constant log-optimal portfolio.

The stock price model in the crash-free setting admits a unique positive optimal con-
stant portfolio process π̃∗ in Eq. (3.3).

Remark 3.1 As πt is independent of Rt and all the Rt are independent and identically
distributed, we can in the following often drop the index t in Rt when only expectations
are considered. Note that due to the independence of Rt of the past price history,
R = Rt is also independent of every choice of an admissible portfolio process πt . As
the expected value in Eq. (3.3) is independent of (t, x), Assumption (L) mainly can be
seen as a reformulation of Assumptions (O) and (M).

3.1 Optimality and indifference

We now look for a portfolio strategy that can balance between good performance of
the final wealth process when no crash happens and a corresponding loss when a crash
happens. Thus, we search for a portfolio strategy which makes the investor indifferent
between the two extreme cases:

– The crash of maximal size k∗ happens immediately.
– No crash happens at all.

This is exactly the indifference principle from Korn and Wilmott (2002).

Remark 3.2 We consider in this section only positive portfolio strategies 0 ≤ πt ≤ π̃∗.
The reason for this is that under Assumption (M) a strategy which attains negative
values would be dominated by its positive part in the worst-case sense. Further, if we
take any portfolio process satisfying π ≥ π̃∗ almost surely then the corresponding
worst-case bounds satisfy

W (t, x, π) ≤ W (t, x, π̃∗).

as the utility function u is strictly increasing. Thus, π̃∗ dominates any portfolio process
π > π̃∗ in the worst-case sense.

Relations (2.4) and (2.5) directly yield the solution of the single-period case given in
Proposition 1:
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Proposition 1 The optimal portfolio process π∗ for the single-period worst-case
portfolio optimization equals 0. Further, this strategy also satisfies the indifference
principle.

We now turn to the multi-period setting:

Proposition 2 Under Assumption (L), there exists a portfolio process π∗ which satis-
fies the indifference principle if there exists a solution to the equations

π∗
t+1 = 1 + r

r + k∗ −
(

1 + r

r + k∗ − π∗
t

)

∗ eE(ln(1+r+π̃∗(R−1−r)))−E(ln(1+r+π∗
t (R−1−r))), 0 < t < T − 1

π∗
T−1 = 0 (3.4)

with
0 ≤ π∗

t ≤ π̃∗, t ∈ {0, 1, . . . , T − 1} (3.5)

and π̃∗ being the optimal portfolio process in the crash-free model in discrete time.

Proof The expected utility of the portfolio process π∗ corresponding to the case that
a crash of maximal size k∗ happens immediately satisfies:

V0(t + 1, x(1 + r − π∗
t (r + k∗)))

= ln(x) + ln(1 + r − π∗
t (r + k∗)) + (T − t − 1)

E (t,x)(ln(1 + r + π̃∗(R − 1 − r))). (3.6)

The expected utility for the portfolio process π∗ that corresponds to the scenario that
no crash happens at all has the following form:

E (t,x)(ln(X̃π∗
T ))(x) = ln(x) +

T−1∑
s=t

E (t,x)(ln(1 + r + π∗
s (R − 1 − r))). (3.7)

Having these two equations, we now prove the claims of the proposition via backward
induction on the time t . For t = T − 1, the form of π∗

t follows from Proposition 1.
We thus consider the

Start of the induction with t = T − 2:

The equality of the expected utilities of Eqs. (3.6) and (3.7) is equivalent to

ln(1 + r − π∗
T−2(r + k∗)) + E (T−2,x)(ln(1 + r + π̃∗(R − 1 − r)))

= E (T−2,x)(ln(1 + r + π∗
T−2(R − 1 − r))) + ln(1 + r).

Collecting all expectations on the right side of the equation and then applying the
exponential function leads to
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1 + r − π∗
T−2(r + k∗) = (1 + r) exp

(
E (T−2,x)(ln(1 + r + π∗

T−2(R − 1 − r)))

− E (T−2,x)(ln(1 + r + π̃∗(R − 1 − r)))
)

.

Dividing both sides of the equation by r+k∗ followed by a division by the exponential
function term of the right-hand side and shifting all terms to the right side yields the
required form of Eq. (3.4). For this, also note that π∗

T−1 = 0 then appears implicitly
on the left side.

We can now continue with the

Induction step t + 1 �→ t :

The equality of the expected utilities of Eqs. (3.6) and (3.7) is equivalent to

ln(1 + r − π∗
t (r + k∗)) + (T − t − 1)E (t,x)(ln(1 + r + π̃∗(R − 1 − r)))

=
T−1∑
s=t

E (t,x)(ln(1 + r + π∗
s (R − 1 − r))).

By induction we now have

ln(1 + r − π∗
t (r + k∗)) + (T − t − 1)E (t,x)(ln(1 + r + π̃∗(R − 1 − r)))

= E (t,x)(ln(1 + r + π∗
t (R − 1 − r))) +

T−1∑
s=t+1

E (t,x)(ln(1 + r + π∗
s (R − 1 − r)))

= E (t,x)(ln(1 + r + π∗
t (R − 1 − r)))

+ E (t,x)(ln(1 + r − π∗
t+1(r + k∗))) + (T − t − 2)E (t,x)

× (ln(1 + r + π̃∗(R − 1 − r)))

which yields

ln(1 + r − π∗
t (r + k∗)) + E (t,x)(ln(1 + r + π̃∗(R − 1 − r)))

= E (t,x)(ln(1 + r + π∗
t (R − 1 − r)) + ln(1 + r − π∗

t+1(r + k∗)))

Collecting the ln-terms on one side, the expectation terms on the other side of the
equation, applying the exponential function, and then solving for π∗

t+1 yields the
desired recursive formula

π∗
t+1 = 1 + r

r + k∗ −
(

1 + r

r + k∗ − π∗
t

)
∗ eE(ln(1+r+π̃∗(R−1−r)))−E(ln(1+r+π∗

t (R−1−r))),

for all 0 < t < T − 1. If now there exists a solution π∗ to the recursive equations
above, the deterministic strategy π∗ satisfies the indifference principle by construction

123



204 L. Chen, R. Korn

E (t,x)(ln(X̃π∗
T )) = V0(t + 1, x(1 + r − π∗

t (r + k∗))). (3.8)


�
Remark 3.3 (a) Existence of an indifference strategy It remains to prove the existence
of a solution to the recursive equations

π∗
t+1 = 1 + r

r + k∗ −
(

1 + r

r + k∗ − π∗
t

)

∗ eE(ln(1+r+π̃∗(R−1−r)))−E(ln(1+r+π∗
t (R−1−r))), 0 < t < T − 1

π∗
T−1 = 0 (3.9)

with
0 ≤ π∗

t ≤ π̃∗. (3.10)

For this, note that for π∗
t = 0, the right hand side of Eq. (3.9) has the form

1 + r

r + k∗ −
(

1 + r

r + k∗

)
eE(ln(1+r+π̃∗(R−1−r)))−E(ln(1+r+π∗

t (R−1−r))) < 0 ≤ π∗
t+1

and for π∗
t = π̃∗, we obtain the right hand side of Eq. (3.9) as

1 + r

r + k∗ −
(

1 + r

r + k∗ − π̃∗
)

= π̃∗ ≥ π∗
t+1.

Moreover, the right hand side of Eq. (3.9) is increasing for π∗
t ∈ [0, π̃∗]. Therefore,

by continuity there exists a solution π∗
t of Eq. (3.9).

Evenmore, by the above considerations there exists a unique deterministic portfolio
process π∗

t solving Eq. (3.9). To see this, note that π∗
T−1 = 0 is obviously determin-

istic. As then by induction the left-hand side of Eq. (3.9) is always deterministic, we
get the existence of a constant (and thus deterministic) value π∗

t solving Eq. (3.9) by
using the argument given above to show the existence of a solution as it in particular
works for a constant.

(b) For the portfolio strategyπ∗ that satisfies the indifference principle, the representa-
tion of the worst-case bound if a crash happens at time τ immediately with t < τ < T
is given by:

Et,x (V0(τ + 1, X̃π∗
τ (1 + r − π∗

τ (r + k∗))))
= E (t,x)(ln(X̃π∗

τ )) + ln(1 + r − π∗
τ (r + k∗))

+ (T − τ − 1)E(ln(1 + r + π̃∗(R − 1 − r))).

As the indifference principle is satisfied for all t , we have
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Et,x (V0(τ + 1, X̃π∗
τ (1 + r − π∗

τ (r + k∗)))) = E (t,x)(ln(X̃π∗
τ ))

+
T−1∑
s=τ

E(ln(1 + r + π∗
s (R − 1 − r)))

= ln(x) +
τ−1∑
s=t

E (t,x)(ln(1 + r + π∗
s (R − 1 − r)))

+
T−1∑
s=τ

E (t,x)(ln(1 + r + π∗
s (R − 1 − r)))

= E (t,x)(ln(X̃π∗
T )) = V0(t + 1, x(1 + r − π∗

t (r + k∗))).

Therefore, we have exactly the same expected worst-case bound for all possible times
of the crash. By the indifference principle, the exact crash time is no longer important
for the investor.

As the next step, we prove that the deterministic strategyπ∗ uniquely determined by
the Eq. (3.4) indeed solves the worst-case portfolio optimization problem in discrete
time (2.10).

Theorem 1 (Worst-case optimal portfolio process for logarithmic utility in discrete
time) Under Assumption (L), in the log-utility case, the deterministic portfolio strategy
uniquely determined by the Eq. (3.4) is optimal for the worst-case portfolio optimiza-
tion problem in discrete time 2.10.

Proof Assume that there exists an admissible portfolio process π with a better worst-
case bound than the strategy π∗ which satisfies the recursive equations (3.4).

From the explicit formof V0(t+1, x(1+r−πt (r+k∗))) it must satisfy thatπt < π∗
t

almost surely to have a higher worst-case bound if a crash happens immediately.
Furthermore, the expected utility for the portfolio process π corresponding to the

scenario if no crash happens at all satisfies:

E (t,x)(ln(X̃π
T )) = ln(x) +

T−1∑
s=t

E(ln(1 + r + πs(R − 1 − r)))

< ln(x)+E(ln(1+r+π∗
t (R − 1 − r))) +

T−1∑
s=t+1

E(ln(1 + r + πs(R − 1 − r))).

The inequality is a consequence of the strictly increasing function E(ln(1 + r +
π(t)(R − 1− r))). If the portfolio strategy π leads to a higher worst-case bound than
π∗ in the no-crash scenario, then there exists a smallest deterministic time tm with
t + 1 ≤ tm ≤ T − 1 so that

E(ln(1 + r + πtm (R − 1 − r))) > E(ln(1 + r + π∗
tm (R − 1 − r))), (3.11)

because π∗ has the same worst-case bound in the no-crash scenario according to the
indifference property of π∗.
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We first want to show that E(ln(1+ r + πs(R − 1− r))) ≤ E(ln(1+ r + π∗
s (R −

1 − r))), when E(πs) ≤ E(π∗
s ) for t ≤ s ≤ T − 1.

If E(πs) ≤ E(π∗
s ), the concavity of the log utility function implies for any such

πs

ln(1 + r + πs(R − 1 − r)) − ln(1 + r + π∗
s (R − 1 − r))

≤ ln′(1 + r + π∗
s (R − 1 − r))(R − 1 − r)(πs − π∗

s ).

Taking the expectation on the both sides, noting that π∗
s is deterministic and that R is

independent of both π∗
s and πs , we have

E(ln(1 + r + πs(R − 1 − r))) − E(ln(1 + r + π∗
s (R − 1 − r)))

≤ E
(
ln′(1 + r + π∗

s (R − 1 − r))(R − 1 − r)
)
E(πs − π∗

s ).

Note that the validity of this relation is implied by the facts that π∗ is a deterministic
strategy and that π∗

s and πs are both independent of R.
Using the optimality of π̃∗ in the crash-free setting, π∗

s ≤ π̃∗ leads to

E(ln′(1 + r + π∗
s (R − 1 − r))(R − 1 − r)) ≥ 0.

Therefore, if E(πs) ≤ E(π∗
s ), we obtain

E(ln(1 + r + πs(R − 1 − r))) − E(ln(1 + r + π∗
s (R − 1 − r))) ≤ 0.

Hence, the inequality

E(ln(1 + r + πtm (R − 1 − r))) > E(ln(1 + r + π∗
tm (R − 1 − r))) (3.12)

implies E(πtm ) > E(π∗
tm ).

The worst-case bound at exactly this time tm if a crash happens at tm immediately
satisfies:

E (t,x)(V0(tm + 1, X̃π
tm (1 + r − πtm (r + k∗))))

= E (t,x)(ln(X̃π
tm )) + E(ln(1 + r − πtm (r + k∗)))

+ (T − tm − 1)E(ln(1 + r + π̃∗(R − 1 − r)))

≤ E (t,x)(ln(X̃π
tm )) + ln(1 + r − E(πtm )(r + k∗))

+ (T − tm − 1)E(ln(1 + r + π̃∗(R − 1 − r)))

< E (t,x)(ln(X̃π
tm )) + ln(1 + r − E(π∗

tm )(r + k∗))
+ (T − tm − 1)E(ln(1 + r + π̃∗(R − 1 − r))).

From the explicit form of the wealth process Xtm , we obtain:

E (t,x)(ln(X̃π
tm )) = ln(x) +

tm−1∑
s=t

E(ln(1 + r + πs(R − 1 − r))).
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Worst-case portfolio optimization in discrete time 207

By E(ln(1+ r +πs(R−1− r))) ≤ E(ln(1+ r +π∗
s (R−1− r))) for all t < s < tm ,

we get

E (t,x)(ln(X̃π
tm )) ≤ ln(x) +

tm−1∑
s=t

E(ln(1 + r + π∗
s (R − 1 − r))) = E (t,x)(ln(X̃π∗

tm )),

thus,

E (t,x)(V0(tm + 1, X̃π
tm (1 + r − πtm (r + k∗))))

< E (t,x)(ln(X̃π∗
tm ))

+ ln(1 + r − E(π∗
tm )(r + k∗)) + (T − tm − 1)E(ln(1 + r + π̃∗(R − 1 − r)))

= E (t,x)(V0(tm + 1, X̃π∗
tm (1 + r − π∗

tm (r + k∗)))).

As we have exactly the same expected worst-case bounds of the optimal strategy π∗
for all possible times of the crash, we get a contradiction to our assumption that the
admissible strategy π delivers a higher worst-case bound than π∗. 
�

Remark 3.4 The indifference relation (3.4) is less explicit than the corresponding ordi-
nary differential equation in continuous-timemodels. Further, it allows for dealingwith
discrete-time models without having a certain continuous-time limit in view. How-
ever, already for the problem in the crash-free setting there do in general not exist
explicit formulas for the optimal portfolio process. This of course carries over to the
worst-case problem. The reader can convince herself already by dealing with a simple
two-period trinomial model. However, the above result is as general as the results on
i.i.d. increments of the log returns given by Seifried (2010).

Example 1 (The binomial setting) To illustrate the performance of the worst-case opti-
mal strategy compared to the crash-free optimal strategy, we assume that the stock
price process follows the binomial model with parameters 0 < d < 1 + r < u (the
up- and down-multipliers of the stock price) and 0 < p < 1 (the probability of a
multiplication of the stock price by u at time t). Then, the optimal portfolio π̃∗ in the
discrete-time crash-free model is given by

π̃∗ = (1 + r)(p(u − d) + d − 1 − r)

(u − 1 − r)(1 + r − d)
.

The indifference equations (3.4) read as

π∗
t+1 = 1 + r

r + k∗ −
(

1 + r

r + k∗ − π∗
t

)
eE(ln(1+r+π̃∗(R−1−r)))−E(ln(1+r+π∗

t (R−1−r)))

= 1 + r

r + k∗ −
(

1 + r

r + k∗ − π∗
t

)
e
ln

(
1+r+π̃∗(u−1−r)
1+r+π∗

t (u−1−r)

)
∗p+ln

(
1+r+π̃∗(d−1−r)
1+r+π∗

t (d−1−r)

)
∗(1−p)
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Fig. 1 The optimal trading
strategies π∗

t with and without
crash possibility, log-utility
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r + k∗ −
(

1 + r

r + k∗ − π∗
t

)

× (1 + r + π̃∗(u − 1 − r))p(1 + r + π̃∗(d − 1 − r))1−p

(1 + r + π∗
t (u − 1 − r))p(1 + r + π∗

t (d − 1 − r))1−p
(3.13)

with
π∗
T−1 = 0.

Remark 3.3 implies the existence of a unique solution π∗
t of Eq. (3.13) which we

compute numerically. Figure 1 shows that π∗
t is decreasing with time for the choices

of r = 0.05, u = 1.4918, d = 0.67, p = 0.5375, k = 0.05 and T = 10. Hence,
in the multi-period case the investor always has a positive position in the stock, but
decreases it to protect against the crash when the time horizon gets close. Only in the
last single period, she invests everything in the bond. Further, π∗

0 is always smaller
than π̃∗

0 , but the difference is getting smaller as the investment horizon T becomes
bigger.

Example 2 (The binomial setting and a continuous-time jump model) To show that
our techniques can also help to deal with non-diffusion limits we look at a very simple
continuous-time jump model. We assume that the risk-free bond Bt and risky stock
process St have price dynamics modeled as

{
dBt = Btrdt,
dSt = StηdN (t).

with η > 0 and where N (t) is a standard Poisson process with parameter λ. Further,
we assume

λη > r . (3.14)

We in particular obtain the explicit form of the stock price as

St = S0(1 + η)N (t).
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Hence, the wealth process X(t) for a self-financing portfolio process π(t) satisfies the
stochastic differential equation

dXπ (t) = Xπ (t)(1 − π(t))rdt + Xπ (t)π(t)ηdN (t), Xπ (0) = x . (3.15)

Let T1, T2, . . . , TN (t) be the successive jump times until time t . The solution to
Eq. (3.15) equals

Xπ (t) = xe
∫ t
0 (1−π(s))rds

N (t)∏
i=1

(1 + π(Ti )η).

In the log-utility case, we further obtain

E(ln Xπ (T )) = ln x + E

(∫ T

0
[(1 − π(s))r + λ ln(1 + π(s)η)] ds

)
,

where we have used E(N (T )) = λT and the fact that the jump times are uniformly
distributed on [0, T ] conditional on N (T ). ω-wise optimization under the integral
yields the optimal portfolio process

π∗
pn(t) = λη − r

rη
,

for the portfolio problem max
π∈A(x)

E(ln Xπ (T )). Note that π∗
pn(t) is positive due to

Assumption (3.14).
Having obtained the optimal portfolio in the crash-free setting, we now turn to the

discrete-time approximation. For this note that for the special choice of the n-period
binomial model given by

u = 1 + η, d = 1

1 + r̃ = er
t
n , p = pn = λ

t

n
,

with n sufficiently large such that we have 0 < pn < 1, we obtain the convergence in
distribution of the binomial stock prices to the continuous-time jump stock price via
the law of small numbers.

As this is a special case of the binomial model of Example 1, one can easily see
that the limit of the optimal discrete-time portfolio in the crash-free setting given by
Eq. (3.13) (with p replaced by pn) yields the appropriate convergence behavior as
n → ∞:

lim
n→∞ π̃∗

n = λη − r

rη
.

For our special choice of parameters the indifference relation (3.13) has the form of

π∗
t+Δt = erΔt

erΔt − 1 + k∗ −
(

erΔt

erΔt − 1 + k∗ − π∗
t

)

× (erΔt + π̃∗(1 + η − erΔt ))λΔt (erΔt + π̃∗(1 − erΔt ))1−λΔt

(erΔt + π∗
t (1 + η − erΔt ))λΔt (erΔt + π∗

t (1 − erΔt ))1−λΔt
.
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Letting now Δt → 0 (i.e. n → ∞), we obtain the following limiting ordinary differ-
ential equation

(π∗
t )′ =

(
1 − π∗

t

k∗

) (
r(π∗

pn − π∗
t ) + λ log

1 + π∗
t η

1 + π∗
pnη

)
.

One can easily verify that this equation coincides with the differential equation for π∗
t

that is derived from the indifference requirement in the continuous-time jump model.

Remark 3.5 (Infinite horizon: maximizing growth rate) One can also think about a
version of the worst-case portfolio approach with an infinite time horizon. However,
the classical problem ofmaximizing the (asymptotic) growth rate (see e.g. the classical
reference of Kelly (1956) and the vast amount of literature following it) is not effected
by the worst-case approach. The reason for this is that the multiplicative effect of a
crash, i.e. the loss of a fraction of wealth at the crash time,

Xτ+1 = (1 + r − πτ (r + k))Xτ

has no effect on the asymptotic growth rate as it is a limiting criterion over all periods
defined by

lim
t→∞

1

t
ln (Xt ) .

Another infinite horizon problem is the maximization of expected (discounted) utility
of consumption. The corresponding worst-case continuous-time problem is already
dealt with in Desmettre et al. (2015a). The way this problem is solved there indicates
that our above approach has to be significantly enlarged to deal with the consumption
problem. This is an aspect of future research.

3.2 Generalizations: an arbitrary number of possible crashes

So far we limited the maximal number of the crashes only to one.We can extend this to
an arbitrary upper bound for the number of crashes by a backward induction principle.
In such a situation of at most n crashes of size k ∈ [0, k∗], we have the following
theorem:

Theorem 2 If we allow for at most n crashes of size k ∈ [0, k∗] in the discrete-time
market model with the logarithmic utility function, then under Assumption (L) the
deterministic worst-case optimal portfolio process π∗

n (t) if still at most n crashes can
appear is given by the following system of equations:

π∗
j (t + 1) = 1 + r

r + k∗ −
(

1 + r

r + k∗ − π∗
j (t)

)

∗ expE(ln(1+r+π∗
j−1(t+1)(R−1−r)))−E(ln(1+r+π∗

j (t)(R−1−r)))
, 0 < t < T − 1

π∗
j (T − 1) = 0 (3.16)
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with
0 ≤ π∗

j (t) ≤ π∗
j−1(t).

Here, π∗
j (t) denotes the worst-case optimal portfolio process if still at most j crashes

can occur. Note further that above we used the notation π∗
0 (t) = π̃∗.

Proof The proof is done via induction on n, the maximum number of crashes. For
n = 1, all assertions follow from Proposition 2. Let us therefore assume that the
above claims are satisfied for n − 1. Then, the expected utility of the portfolio pro-
cess corresponding to the case that a crash of maximal size k∗ happens immediately
satisfies:

Vn(t + 1, x(1 + r − π∗
n (t)(r + k∗))) = ln(x) + ln(1 + r − π∗

n (t)(r + k∗))

+
T−1∑
s=t+1

E (t,x)(ln(1 + r + π∗
n−1(s)(R − 1 − r))). (3.17)

Using this, we obtain the form of Eq. (3.16) similar to those in Proposition 2. The
reason for the constraints 0 ≤ π∗

j (t) ≤ π∗
j−1(t) follows from our general Assumption

(M) and the form of the proof of Theorem 1. The rest of the proofs for existence and
optimality is totally similar to the case of n = 1. 
�

4 Dynamic programming and general utility functions

In the previous section we showed how to derive the optimal portfolio strategy for
the discrete-time worst-case problem by an indifference approach in the case of the
logarithmic utility function. For general utility functions u(x), the above methods of
proof cannot be imitated directly as they very much benefited from the additive form
of both the value function in the crash-free setting and the expected utility of the
final wealth under the assumption of no crash. This, however, is only valid for the
logarithmic utility function. We thus present a different approach in this section.

Indeed, we focus on the worst-case portfolio problem in discrete time for general
utility functions by applying the dynamic programming approach. The main idea of
the dynamic programming approach in portfolio optimization in discrete time is to
break a multi-period decision problem up into a sequence of one-period problems. It
will help us to reduce the difficulty to verify the optimality.

We only give the basic case when at most one crash can occur within the investment
period [t, T ]. Extending our results to the general case of at most n crashes by an
iterative procedure is notationally cumbersome and will be omitted.

Still, the worst-case portfolio problem in discrete time under the threat of a crash
is defined by its value function:

V1(t, x) = sup
πt ,...,πT−1

inf
τ

Et,x (u(Xπ (T ))). (4.1)

To implement the procedure using the dynamic programming principle in the case of
our worst-case portfolio problem, we denote by Ut (x) the worst-case optimal value
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function at time t as well as by Ũt (x) as the crash-free optimal value function at time
t . The dynamic programming equation for the discrete-time crash-free model has the
form of

ŨT (x) = u(x)

Ũt (x) = sup
πt

{E(Ũt+1(x((1 + r) + πt (R − 1 − r))) | Ft )}. (4.2)

To motivate a dynamic programming equation for the worst-case problem in the crash
model, letUt (x) denote the value function when still one crash is possible. Noting that
the main principle of dynamic programming for the discrete-time optimization prob-
lem is that the optimal decision to make now should be consistent with the intention to
act optimally in all future periods, we transfer this to the crash setting. If we know the
optimalworst-case portfolio process starting at time t+1, then the determination of the
optimal worst-case portfolio process starting at time t can be reduced to a one-period
problem. In the one-period worst-case portfolio problem at time t there exist only two
possible crash scenarios. The first one is that the crash happens immediately at time t .
In this case, the value function U 1

t (x) satisfies the following dynamic programming
principle

U 1
t (x) = sup

πt

E(Ũt+1(x(1 + r − πt (r + k∗))) | Ft ). (4.3)

If no crash occurs in the next period the representation of the value function U 2
t (x) is

given as
U 2
t (x) = sup

πt

E(Ut+1(x(1 + r + πt (R − 1 − r))) | Ft ). (4.4)

By combining these two cases we can heuristically derive the worst-case optimal value
function Ut (x) based on the worst-case optimal value function Ut+1(x):

Ut (x) = sup
πt

min {E(Ut+1(x(1 + r + πt (R − 1 − r))) | Ft ),

E(Ũt+1(x(1 + r − πt (r + k∗))) | Ft )
}

. (4.5)

The value of Ut (x) at time t = T satisfies (see also Proposition 3)

UT (x) = u(x).

Therefore, the dynamic programming equation for the worst-case portfolio optimiza-
tion problem under the threat of a crash is given as

UT (x) = u(x)

Ut (x) = sup
πt

min{E(Ut+1(x(1 + r + πt (R − 1 − r))) | Ft ),

E(Ũt+1(x(1 + r − πt (r + k∗))) | Ft )}. (4.6)

Of course, by this heuristic derivation, we have not shown any kind of optimality.
This has to be proved separately. However, if this is shown then by using this dynamic
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programming equation (4.8), we can compute the optimalworst-case portfolio strategy
and the worst-case optimal value function Ut (x) in a recursive way.

To prove a suitable verification theorem that justifies our heuristic approach, we
first formulate an additional assumption:

Assumption D Concavity and monotonicity.

Let the value function Ut be concave, strictly increasing and continuously differen-
tiable in x , and let the function

f (π) := E (Ut+1(x(1 + r + π(R − 1 − r))|Ft ) , t = 0, 1, . . . , T − 1 (4.7)

be strictly increasing on [0, π̃∗
t ]with the maximum of f (π) attained in π̃∗

t , the optimal
deterministic portfolio process in the crash-free setting.

Theorem 3 (Verification theorem) Let u be a utility function. We further assume that
the Assumptions (D), (M), and (O) are satisfied.

Then there exist unique deterministic maximizers π∗
t of the value function which

can be computed recursively by the dynamic programming equation

UT (x) = u(x)

Ut (x) = sup
πt

min{E(Ut+1(x(1 + r + πt (R − 1 − r))) | Ft ),

E(Ũt+1(x(1 + r − πt (r + k∗))) | Ft )}, (4.8)

such that the portfolio strategy π∗ = (π∗
0 , . . . , π∗

T−1) is optimal for the worst-case
portfolio problem.

Remark 4.1 Assumption (D) is a strong requirement, but is satisfied in all examples
presented below.

4.1 The characterization and optimality of the indifference strategy

Before we give the proof of the verification theorem, wewill show how to construct the
candidates for the optimal strategies appearing in the verification theorem.Afterwards,
we show that these candidates are indeed the optimal solutions of the worst-case
portfolio problem in discrete time .

The optimal strategy π∗
T−1 for the single-period worst-case portfolio problem is

derived as in the log-utility case.

Proposition 3 The optimal portfolio process π∗
T−1 equals 0 for the single-period

worst-case portfolio optimization of the terminal time T .

Next we want to show that the candidate for the optimal strategy obtained as a
solution to the dynamic programming equation 4.8 exists.
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Lemma 1 Under the assumptions of Theorem 3, there exists a portfolio process π∗
t

which satisfies

E(Ut+1(x(1 + r + π∗
t (R − 1 − r))) | Ft )

= E(Ũt+1(x(1 + r − π∗
t (r + k∗))) | Ft )

for all x > 0 and all t ∈ {0, 1, . . . , T − 1}.
Proof Let us start in defining the functions

f (π) = E(Ut+1(x(1 + r + π(R − 1 − r))) | Ft ),

g(π) = E(Ũt+1(x(1 + r − π(r + k∗))) | Ft ) = Ũt+1(x(1 + r − π(r + k∗))).

As it can easily be shown (by induction using the dynamic programming equation)
that Ũt+1(x) is a strictly increasing function, we have that g(π) is a strictly decreasing
function.

By Assumption (D), the crash-free optimal portfolio strategy π̃∗
t yields the maxi-

mum of the function f (π). If now the investor chooses the pure bond strategy π = 0,
we have

f (0) = Ut+1(x(1 + r)), g(0) = Ũt+1(x(1 + r)).

If the optimal strategy π̃∗ in the crash-free model is not worst-case optimal, the value
function under the crash-freemodel is better than the value function of the crashmodel,
if not, the two value functions are at most equal. Therefore, we get

g(0) ≥ f (0). (4.9)

If the investor chooses the optimal deterministic strategy in the crash-free model π̃∗
t ,

we have

f (π̃∗
t ) = E((Ut+1(x(1 + r + π̃∗

t (R − 1 − r)))) | Ft ),

g(π̃∗
t ) = Ũt+1(x(1 + r − π̃∗

t (r + k∗))).

The worst-case scenario of this optimal strategy π̃∗
t at time t + 1 is given by a crash

of the maximum size k∗ which leads to the worst-case bound of

Ũt+1(x(1 + r − π̃∗
t (r + k∗))).

Thus, we obtain the following inequality:

E((Ut+1(x(1 + r + π̃∗
t (R − 1 − r)))) | Ft ) ≥ Ũt+1(x(1 + r − π̃∗

t (r + k∗))).

Hence, we arrive at
f (π̃∗

t ) ≥ g(π̃∗
t ). (4.10)
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The two Inequalities (4.9) and (4.10) imply the existence of a unique deterministic
portfolio process π∗

t ∈ [0, π̃∗
t ] for all t ∈ {0, 1, . . . , T − 2} with

E(Ut+1(x(1 + r + π∗
t (R − 1 − r))) | Ft ) = E(Ũt+1(x(1 + r − π∗

t (r + k∗))) | Ft )

which is what we wanted to show. 
�
Now let us get back to consider the right side of the value function

sup
πt

min{E(Ut+1(x(1+r+πt (R−1−r))) | Ft ), E(Ũt+1(x(1+r−πt (r+k∗))) | Ft )}.
(4.11)

Lemma 1 above yields that the supremum in (4.11) is attained for the smallest πt

which satisfies

E(Ut+1(x(1 + r + πt (R − 1 − r))) | Ft ) ≥ E(Ũt+1(x(1 + r − πt (r + k∗))) | Ft )

or the portfolio strategy πt with the biggest πt with

E(Ut+1(x(1 + r + πt (R − 1 − r))) | Ft ) ≤ E(Ũt+1(x(1 + r − πt (r + k∗))) | Ft ).

The value functions E(Ut+1(x(1+ r + πt (R − 1− r))) | Ft ) and E(Ũt+1(x(1+ r −
πt (r + k∗))) | Ft ) are both continuous, therefore we obtain the supremum when we
have the equality

E(Ut+1(x(1 + r + πt (R − 1 − r))) | Ft ) = E(Ũt+1(x(1 + r − πt (r + k∗))) | Ft ).

In Lemma 1, we already showed the existence of those portfolio strategies along
the dynamic programming equations and derived how to construct the candidates of
the optimal portfolio strategies. In the following we show that the derived candidates
are indeed the optimal solutions of the worst-case portfolio problem in discrete time.

Proof (Theorem 3) Assume that there exists an admissible portfolio process π =
(πt , . . . , πT−1) with a better worst-case bound than the portfolio process π∗ =
(π∗

t , . . . , π∗
T−1) obtained by the dynamic programming equation 4.8 as proved by

Lemma 1. We show the non-existence of such a portfolio process π via backward
induction in time.

t = T − 1 :

Here, we must have πT−1 = 0 = π∗
T−1 due to Proposition 3.

t = j ∈ {0, 1, . . . , T − 2} :

Nowwe assume that the portfolio process (π j , . . . , πT−1) leads to a better worst-case
bound than (π∗

j , . . . , π
∗
T−1), and (π j+1, . . . , πT−1) has the same worst-case bound as

(π∗
j+1, . . . , π

∗
T−1). Then, as we have
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E(Ũ j+1(x((1+r)−π∗
j (r+k∗))) | F j ) = E(Uj+1(x((1+r)+π∗

j (R−1−r))) | F j ),

we must have both strict inequalities

E(Ũ j+1(x((1 + r) − π j (r + k∗))) | F j )

> E(Ũ j+1(x((1 + r) − π∗
j (r + k∗))) | F j ), (4.12)

E(Uj+1(x((1 + r) + π j (R − 1 − r))) | F j )

> E(Uj+1(x((1 + r) + π∗
j (R − 1 − r))) | F j ). (4.13)

Due to the fact, that both π j and π∗
j are F-measurable, the first inequality leads to

Ũ j+1(x((1 + r) − π j (r + k∗))) > Ũ j+1(x((1 + r) − π∗
j (r + k∗)))

and thus to
π j < π∗

j (4.14)

almost surely (see also the argument for Ũt (x) being increasing in x at the beginning
of the proof of Lemma 1). As the function f (πt ) as defined in Lemma 1 is increasing,
we obtain

E(Uj+1(x((1 + r) + π j (R − 1 − r))) | F j )

≤ E(Uj+1(x((1 + r) + π∗
j (R − 1 − r))) | F j )

which is in contradiction to the strict inequality (4.13). Thus, the assumption of the
existence of an admissible portfolio strategy π yielding a bigger worst-case bound
than π∗ is proved to be wrong. 
�

4.2 Numerical examples

We present some examples of the solution of the worst-case portfolio problem via the
dynamic programming equation to illustrate our theory with the most popular utility
functions.

4.2.1 Power utility

Let us start to consider the case of power utility

u(x) = 1

γ
xγ , γ < 1, γ = 0.

To apply our just obtained results, we have to check if indeed all assumptions of
Theorem 3 are satisfied. For this, we first look at the crash-free setting. By using the
corresponding dynamic programming equations, one can directly show that we have

Ũt (x) = 1

γ
xγ h(t) (4.15)
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with
h(t) = (

E
(
(1 + r + π̃∗(R − r − 1)γ

))T−t (4.16)

where the constant portfolio process π̃∗ is determined as the solution of the maxi-
mization problem

E
(
(1 + r + π̃∗(R − r − 1)γ

) = sup
π∈(−∞,∞)

E
(
(1 + r + π̃(R − r − 1))γ

)
.

By the general Assumption (O) on themarket model, the supremum is indeed attained.
Due to themultiplicative formof thewealth process and the independence of the returns
Rt from the past price evolutions combined with the identical distributions of Rt ∼ R,
the optimal portfolio process has to be a constant one. Further, by Assumption (M),
we have

π̃∗ > 0.

We next consider the form of the value function of the worst-case problem and claim
that we have

Ut (x) = 1

γ
xγ H(t) (4.17)

for a suitable positive, deterministic and decreasing function H(t) with H(t) ≤ h(t).
Starting from UT (x) = xγ /γ and using π∗

T−1 = 0, we have

UT−1(x) = (1 + r)γ xγ /γ

which constitutes the start of the induction on T − t with t = 1. Let us assume that we
have proved the representation (4.17) for t − 1. We will now prove it for t . We then
have

UT−t (x) = sup
πT−t

min {E(UT−t+1(x(1 + r + πT−t (R − 1 − r))) | FT−t ),

E(ŨT−t+1(x(1 + r − πT−t (r + k∗))) | FT−t )
}

= xγ

γ
sup
πT−t

min
{
H(T − t + 1)E

(
(1 + r + πT−t (R − 1 − r))γ | FT−t

)
,

h(T − t + 1)(1 + r − πT−t (r + k∗))γ
} =: x

γ

γ
H(T − t).

Note that the supremum in the equation above is independent of x and is given by a
deterministic function of time as – again – the randomness in the optimization prob-
lem is only given by R which is independent of FT−t . Note that the maximum of
E ((1 + r + πT−t (R − 1 − r))γ | FT−t ) is attained for the crash-free optimal port-
folio process π̃∗ and the function increases in π on [0, π̃∗]. For the second term
h(T − t + 1)(1 + r − πT−t (r + k∗))γ the optimal portfolio value would be zero and
decreases in π . As, however, h(T − t + 1) ≥ H(T − t + 1), the optimal value π∗

T−t
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has to be in [0, π̃∗]. As the two functions containing πT−t are identical for all times
t < T − 1, but their multipliers H(T − t + 1), h(T − t + 1) are larger than their
counterparts at the next time step, we have also proved that the value of the supremum
is bigger at time T − t than at time T − t + 1. Thus, we have

0 < H(T − t) ≤ H(T − t + 1)

where the positivity is implied by the positivity of all ingredients of the optimization
problem and the fact that it has a positive lower bound which is attained for choosing
π(T − t) = 0.

Thus, Assumption (D) is satisfied. We can thus make full use of the claims of
Theorem 3.

Due to Theorem 3, we have

E(Ut+1(x(1+r +πt (R−1−r))) | FT−t ) = E(Ũt+1(x(1+r −πt (r +k∗))) | FT−t )

(4.18)
for the optimal portfolio process in the crash setting. Using the form of the value
function in the crash-free setting, we obtain

E(Ũt+1(x(1 + r − πt (r + k∗))) | FT−t )

= 1

γ
(x(1 + r − πt (r + k∗)))γ

T−1∏
s=t+1

E(1 + r + π∗
s (R − 1 − r))γ . (4.19)

Applying the dynamic programming equation in E(Ut+1(x(1+ r + πt (R − 1− r))))
we get

E(Ut+1(x(1 + r + πt (R − 1 − r))) | Ft )
= E( sup

πt+1

min{E(Ut+2(x(1 + r + πt (R − 1 − r))(1 + r + πt+1(R − 1 − r))) | Ft+1),

E(Ũt+2(x(1 + r + πt (R − 1 − r))(1 + r − πt+1(r + k∗))) | Ft+1)} | Ft )
= E(E(Ut+2(x(1 + r + πt (R − 1 − r))(1 + r + π∗

t+1(R − 1 − r))) | Ft+1) | Ft )
= E(E(Ũt+2(x(1 + r + πt (R − 1 − r))(1 + r − π∗

t+1(r + k∗))) | Ft+1) | Ft )
= E(Ũt+2(x(1 + r + πt (R − 1 − r))(1 + r − π∗

t+1(r + k∗))) | Ft )
= 1

γ
xγ E((1 + r + πt (R − 1 − r))γ (1 + r − π∗

t+1(r + k∗))γ | Ft )

∗
T−1∏
s=t+2

E(1 + r + π̃∗(R − 1 − r))γ . (4.20)

By comparing Eqs. 4.19 and 4.20, the optimal strategy π∗
t has to satisfy
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1

γ
xγ (1 + r − π∗

t (r + k∗))γ
T−1∏
s=t+1

E(1 + r + π̃∗(R − 1 − r))γ

= 1

γ
xγ E((1 + r + π∗

t (R − 1 − r))γ (1 + r − π∗
t+1(r + k∗))γ | Ft )

∗
T−1∏
s=t+2

E(1 + r + π̃∗(R − 1 − r))γ

which directly leads to

(1 + r − π∗
t (r + k∗))γ E(1 + r + π̃∗(R − 1 − r))γ

= E((1 + r + π∗
t (R − 1 − r))γ (1 + r − π∗

t+1(r + k∗))γ | Ft ).

As we have that E(1 + r + πt (R − 1 − r))γ > 0 in the interval [0, π̃∗], we can
transform this into the following recursive relation for the optimal strategy

π∗
t+1 = 1 + r

r + k∗ −
(

1 + r

r + k∗ − π∗
t

)(
E(1 + r + π̃∗(R − 1 − r))γ

E(1 + r + π∗
t (R − 1 − r))γ

) 1
γ

(4.21)

with
π∗
T−1 = 0

where the latter equation follows from Proposition 3.
To show the existence of a solution π∗

t ∈ [0, π̃∗] of Eq. 4.21, note first that right
hand side of Eq. 4.21 is increasing for π∗

t ∈ [0, π̃∗]. However, if we choose π∗
t = 0

on the right hand side, we obtain (by backward induction starting at time t = T − 2)

1 + r

r + k∗ −
(

1 + r

r + k∗

)
∗

(
E(1 + r + π̃∗](R − 1 − r))γ

(1 + r)γ

) 1
γ

< 0 ≤ π∗
t+1.

For the choice of π∗
t = π̃∗ on the right hand side of Eq. 4.21, we obtain

1 + r

r + k∗ −
(

1 + r

r + k∗ − π̃∗
)

= π̃∗ ≥ π∗
t+1.

Therefore, there indeed exists a unique solution π∗
t of Eq. 4.21.

To continue our example, we now have to choose a stock price model so that we
can explicitly check the remaining assumptions of Theorem 3. If we assume that the
price process of the stock follows the binomial model (as in the case of our log-utility
example), then the remaining assumptions of Theorem 3 follow immediately. Further,
by calculating the relevant expectation in Eq. 4.16, the crash-free optimal portfolio
strategy π̃∗ is of the form

π̃∗ = (1 + r)

(u − 1 − r)(1 + r − d)
∗ pκ(u − 1 − r)κ − (1 − p)κ(1 + r − d)κ

(pκ(u − 1 − r)κγ + (1 − p)κ(1 + r − d)κγ )
.

123



220 L. Chen, R. Korn

Fig. 2 The optimal trading
strategies π∗

t with and without
crash possibility, U (x) = 2 x0.5
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Thus, we obtain the recursive formula for the worst-case optimal strategy as follows

π∗
t+1 = 1 + r

r + k∗ −
(

1 + r

r + k∗ − π∗
t

)

∗
(

(1 + r + π̃∗(u − 1 − r))γ p + (1 + r + π̃∗(d − 1 − r))γ (1 − p)

(1 + r + π∗
t (u − 1 − r))γ p + (1 + r + π∗

t (d − 1 − r))γ (1 − p)

) 1
γ

which again has to be solved numerically.
Figure 2 compares the optimal trading strategies π∗

t with and without crash pos-
sibility for power utility for the choices of r = 0.05, γ = 0.5, u = 1.4918,
d = 0.67, p = 0.5375, k = 0.05 and T = 10. The worst-case optimal trading
strategies π∗

t is decreasing with time when we approach the time horizon. Only in
the last single period starting in T − 1, the fraction of risky investments is reduced to
zero.

Approximation of the Black–Scholes–Merton model Using the above results in the
binomial setting, we now introduce a general time step Δt with the intention to let it
tend to zero to approximate the geometric Brownian motion model of the stock price
in the Black–Scholes–Merton setting via a sequence of binomial models. For this, we
define the parameters of the binomial model by

u = eσ
√

Δt , d = e−σ
√

Δt

1 + r = er̃Δt , p = 1

2
+ 1

2

μ − 1
2σ

2

σ

√
Δt .

For notational simplicity, wewill in the following use the abbreviation r for the interest
rate again. With the above choice, it is well-known that this sequence of binomial
models convergesweakly to the geometricBrownianmotionwith parametersμ andσ 2.
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The recursive formula for the worst-case optimal portfolio process π∗
t+Δt now has

the form of

π∗
t+Δt = erΔt

erΔt − 1 + k∗ −
(

erΔt

erΔt − 1 + k∗ − π∗
t

) (
A

B

)

with

A =
(

(erΔt + π̃∗(eσ
√

Δt − erΔt ))γ

(
1

2
+ 1

2

μ − 1
2σ

2

σ

√
Δt

)

+ (erΔt + π̃∗(e−σ
√

Δt − erΔt ))γ

(
1

2
− 1

2

μ − 1
2σ

2

σ

√
Δt

)) 1
γ

,

B =
(

(erΔt + π∗
t (eσ

√
Δt − erΔt ))γ

(
1

2
+ 1

2

μ − 1
2σ

2

σ

√
Δt

)

+ (erΔt + π∗
t (e−σ

√
Δt − erΔt ))γ

(
1

2
− 1

2

μ − 1
2σ

2

σ

√
Δt

)) 1
γ

.

We expect the worst-case optimal discrete-time strategy computed by the dynamic
programming equations to be close to the expression in the continuous-time model, at
least for small values of Δt . To check this, we compute

lim
Δt→0

π∗
t+Δt − π∗

t

Δt
= lim

Δt→0

1

Δt

((
erΔt

erΔt − 1 + k∗ − π∗
t

)
−

(
erΔt

erΔt − 1 + k∗ − π∗
t

)
A

B

)

= lim
Δt→0

1

Δt

((
erΔt

erΔt − 1 + k∗ − π∗
t

)
B − A

B

)

= 1

k∗ (1 − k∗π∗
t ) lim

Δt→0

B − A

BΔt
.

To examine, the above limit, let A = (A1 + A2)
1
γ with

A1 = (erΔt + π̃∗(eσ
√

Δt − erΔt ))γ

(
1

2
+ 1

2

μ − 1
2σ

2

σ

√
Δt

)
,

A2 = (erΔt + π̃∗(e−σ
√

Δt − erΔt ))γ

(
1

2
− 1

2

μ − 1
2σ

2

σ

√
Δt

)
.

Using theTaylor expansion of first order for the exponential function and then binomial
series expansion, we have
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A1 = 1

2
+ 1

2

μ − 1
2σ

2

σ

√
Δt + 1

2
γ (rΔt + π̃∗(σ

√
Δt + σ 2

2
Δt − rΔt))

+ 1

2
γ π̃∗ μ − 1

2σ
2

σ
σΔt + γ (γ − 1)

4
(π̃∗)2σ 2Δt + O(Δt2)

and

A2 = 1

2
− 1

2

μ − 1
2σ

2

σ

√
Δt + 1

2
γ (rΔt + π̃∗(−σ

√
Δt + σ 2

2
Δt − rΔt))

+ 1

2
γ π̃∗ μ − 1

2σ
2

σ
σΔt + γ (γ − 1)

4
(π̃∗)2σ 2Δt + O(Δt2).

Using the binomial series expansion again, we obtain

A = (A1 + A2)
1
γ = 1 + rΔt + π̃∗(μ − r)Δt + (γ − 1)

2
(π̃∗)2σ 2Δt + O(Δt2),

B = (B1 + B2)
1
γ = 1 + rΔt + π∗

t (μ − r)Δt + (γ − 1)

2
(π∗

t )2σ 2Δt + O(Δt2).

Therefore, taking the limit of Δt → 0 leads to

lim
Δt→0

(B) = 1 = lim
Δt→0

(A)

and

lim
Δt→0

B − A

Δt
= lim

Δt→0

(π∗
t − π̃∗)(μ − r)Δt + (γ−1)

2 ((π∗
t )2 − (π̃∗)2)σ 2Δt + O(Δt2)

Δt

= (π∗
t − π̃∗)(μ − r) + (γ − 1)

2
((π∗

t )2 − (π̃∗)2)σ 2

= − (1 − γ )

2
σ 2(π∗

t − π̃∗)2.

This then leads to

lim
Δt→0

π∗
t+Δt − π∗

t

Δt
= − 1

k∗ (1 − k∗π∗
t )

(1 − γ )

2
σ 2(π∗

t − π̃∗)2.

In particular, the limit on the left hand side of this equation exists and equals dπ∗
t . Thus,

the optimal portfolio strategy computed by the dynamic programming equations 4.8
converges to the optimal control of the worst-case portfolio problem in continuous
time. Figure 3 illustrates this convergence of the worst-case optimal portfolio process
in discrete time to the worst-case optimal portfolio process in continuous time for
decreasing values of Δt .
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Fig. 3 Convergence of the
optimal trading strategies π∗

t
before the crash, different time
discretization, U (x) = 2 x0.5
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4.2.2 Log utility

In the log utility case,
u(x) = ln(x),

it can directly be verified that all assumptions of Theorem 3 are satisfied that do not
depend on the particular choice of the stock price model. The optimal strategy π∗

t
can then be obtained from the dynamic programming equations 4.8 by solving the
indifference requirement

E(ln(1 + r + π∗
t (R − 1 − r))) + E(ln(1 + r − π∗

t+1(r + k∗)) | Ft )

= ln(1 + r − π∗
t (r + k∗)) + E(ln(1 + r + π̃∗(R − 1 − r))).

Due to ln(x) being concave and increasing, Assumption (M) yields

E ln(1 + r + πt (R − 1 − r)) > 0

in the interval [0, π̃∗]. Then, the recursive formula for the optimal strategy is given
by

π∗
t+1 = 1 + r

r + k∗ −
(

1 + r

r + k∗ − π∗
t

)
∗ expE(ln(1+r+π̃∗(R−1−r)))−E(ln(1+r+π∗

t (R−1−r))),

π∗
T−1 = 0

which is consistentwith the result obtained by the indifference approach of the previous
section.

4.2.3 Exponential utility

The exponential utility function is given by
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u(x) = −e−θx

for some θ > 0.
Compared to the examples of log utility and power utility, the situation for the

exponential utility is totally different. First of all, the separation of the wealth x and
the portfolio π in the value function is not possible already in the crash-free setting.
Therefore, we no longer consider the portfolio process πt to describe the investor’s
strategy. Instead it will turn out that the amount of money invested in the risky stock at
time t given by πt Xt is the appropriate term. Further, the exponential utility has a finite
slope in x = 0. As a consequence, the optimal strategy does no longer automatically
ensure the positivity of the corresponding optimal final wealth. On the other hand,
this does not cause theoretical problems as the maximization problem of the expected
terminal wealth is also well-defined in that case, which is not allowed in the previous
cases of log utility and power utility.

So let us in the following slightly misuse the notation of πt (and the corresponding
optimal values π∗

t , π̃∗
t ) to now denote the amount of money invested in the risky

asset. Then, in the crash-free setting, it can be shown (via induction) that using the
corresponding dynamic programming equation, we obtain the value function as

Ũt (x) = −e−θx(1+r)T−t
T−1∏
s=t

E
(
e−θπ̃∗

s (R−r−1)(1+r)T−s−1
)
.

Here, the values π̃∗
s are determined as the solutions of

−E
(
e−θπ̃∗

s (R−r−1)(1+r)T−s−1
)

= sup
π∈(−∞,∞)

−E
(
e−θπ(R−r−1)(1+r)T−s−1

)
.

Note that due to the independence of Rt of Ft and the fact that there is no requirement
on the wealth process Xt in the exponential utility case, it is enough to consider the
optimization problem for constant values π . Further, due to Assumption (M), the
optimal amount of money invested in the stock will be positive at each time s. Even
more, in the case of r = 0, it is optimal for the crash-free setting to keep the amount
of money invested in the risky asset fixed. Gains and losses of stock investment will
then always be allocated to the position of the riskless investment.

In principle, the shift from the portfolio process to the process of money invested
in the risky asset does not allow a direct application of Theorem 3. However, it can be
shown that by dropping the requirement of a non-negative wealth process, one can imi-
tate all the steps leading to Theorem 3 [compare Korn (2005) for the continuous-time
case]. Thus, the corresponding dynamic programming equations yields the following
relation for the optimal amount of money invested in the stock:

E(Ut+1(x(1 + r) + π∗
t (R − 1 − r)) | Ft ) = E(Ũt+1(x(1 + r) − π∗

t (r + k∗)) | Ft )

with
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E(Ũt+1(x(1 + r) − π∗
t x(r + k∗)) | Ft )

= −e−θx(1+r)T−t
eθ(1+r)T−t−1π∗

t (r+k∗) ∗
T−1∏
s=t+1

Ee−θ(1+r)T−s−1π̃∗
s (R−1−r)

and

E(Ut+1(x(1 + r) + π∗
t (R − 1 − r)) | Ft )

= E(Ũt+2(x(1 + r + π∗
t (R − 1 − r))(1 + r − π∗

t+1(r + k∗))) | Ft )

= −e−θx(1+r)T−t
E(e−θ(1+r)T−t−1π∗

t (R−1−r)eθ(1+r)T−t−2π∗
t+1(r+k∗))

∗
T−1∏
s=t+2

Ee−θ(1+r)T−s−1π̃∗
s (R−1−r).

Therefore, we have

E(e−θ(1+r)T−t−1π∗
t (R−1−r)eθ(1+r)T−t−2π∗

t+1(r+k∗))

= eθ(1+r)T−t−1π∗
t (r+k∗)E(e−θ(1+r)T−t−2π̃∗

t+1(R−1−r))

which can be reordered as

eθ(1+r)T−t−2π∗
t+1(r+k∗)

eθ(1+r)T−t−1π∗
t (r+k∗) = E(e−θ(1+r)T−t−2π̃∗

t+1(R−1−r))

E(e−θ(1+r)T−t−1π∗
t (R−1−r))

.

This results in a recursive formula for the optimal amount of the money π∗
t :

π∗
t+1 = π∗

t (1 + r) + 1

θ(1 + r)T−t−2(r + k∗)
ln

(
E(e−θ(1+r)T−t−2π̃∗

t+1(R−1−r))

E(e−θ(1+r)T−t−1π∗
t (R−1−r))

)

with
π∗
T−1 = 0.

If we assume that the price process of the stock follows the binomial model, we obtain
the crash-free optimal trading strategy (the amount of money invested in the stock) as
follows

π̃∗
t = ln p(u−1−r)

(1−p)(1+r−d)

θ(1 + r)T−t−1(u − d)

Thus, the recursive equation for the optimal worst-case strategy is given by

π∗
t+1 = π∗

t (1 + r) + 1

θ(1 + r)T−t−2(r + k∗)

∗ ln

(
e−θ(1+r)T−t−2π̃∗

t+1(u−1−r) p + e−θ(1+r)T−t−2π̃∗
t+1(d−1−r)(1 − p)

e−θ(1+r)T−t−1π∗
t (u−1−r) p + e−θ(1+r)T−t−1π∗

t (d−1−r)(1 − p)

)
.
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Fig. 4 The optimal trading strategies π∗
t with and without crash possibility, U (x) = −e−0.01x

The form of the optimal trading strategies are illustrated in Fig. 4 for the choices
of θ = 0.01, u = 1.4918, d = 0.67, p = 0.5375, k = 0.05, T = 10, r = 0 and
r = 0.05. The curves for r = 0 look very similar to the optimal portfolio processes
in Fig. 2. However, note that, we plot here the amount of money invested in the stock.
If we plot the optimal portfolio processes, the curve will be irregular and inversely
proportional to the actual wealth processes. The curves for r = 0.05 look totally
different. The optimal trading strategy π∗

t in the crash setting is initially increasing
with time as the optimal trading strategy π̃∗

t in the crash-free setting is increasing with
time, too. It then decreases until maturity to π∗

T = 0.

5 Conclusion

In this paper, we have formulated a discrete-time counterpart to the continuous-time
worst-case portfolio problem introduced by Korn (1997) for dealing with the threat of
a crash. As our setting is very general, we have to restrict it bymaking suitable assump-
tions on the model parameters and on the form of the optimal portfolio processes in
the crash-free setting.

This, however, helps us to

• introduce the indifference concept between the worst-crash happening now or no
crash happening at all and derive the worst-case optimal portfolio process from it
in the case of the logarithmic utility function,

• come up with a variant of a discrete-time dynamic programming equation for the
worst-case crash setting in the general case,

• show existence and uniqueness of the worst-case optimal portfolio process in the
general market setting,

• apply our results explicitly in the case of log utility, power utility and exponential
utility,

• illustrate the behavior of the worst-case optimal portfolio processes in the binomial
model for log utility and power utility,
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• demonstrate the convergence of the worst-case optimal portfolio processes in a
series of binomial models towards the worst-case optimal portfolio process in the
continuous-time Black–Scholes–Merton setting in the power utility case.

There are many possible extensions and generalizations such as the consideration
of frictions like transaction costs or the relaxations of Assumptions (M), (O), or (D).
A further possible challenge is the extension to a multi-asset setting.
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