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Abstract
Sparse optimization problems have gained much attention since 2004. Many
approaches have been developed, where nonconvex relaxation methods have been
a hot topic in recent years. In this paper, we study a partially sparse optimization
problem, which finds a partially sparsest solution of a union of finite polytopes. We
discuss the relationship between its solution set and the solution set of its nonconvex
relaxation. In details, by using geometrical properties of polytopes and properties of
a family of well-defined nonconvex functions, we show that there exists a positive
constant p∗ ∈ (0, 1] such that for every p ∈ [0, p∗), all optimal solutions to the
nonconvex relaxation with the parameter p are also optimal solutions to the original
sparse optimization problem. This provides a theoretical basis for solving the under-
lying problem via its nonconvex relaxation. Moreover, we show that the problem we
concerned covers a wide range of problems so that several important sparse optimiza-
tion problems are its subclasses. Finally, by an example we illustrate our theoretical
findings.
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1 Introduction

Compressive Sensing (CS) has been popularized for the past more than 10years (see
Candés et al. 2006; Candés and Tao 2005; Foucart and Rauhut 2013); its target is
to reconstruct a sparse signal from a underdetermined system of linear equations.
Mathematically, CS is to find a sparsest solution to a system of linear equations,
which is NP-hard (see Natarajan 1995) because of the combinatorial feature of the
problem. Many approaches have been developed for solving this class of problems,
of which one of most popular methods is the relaxation method, i.e., find a solution to
the original problem via its relaxation problem.

So far, the convex relaxation method of CS has been developed well, in both the-
ory and algorithm. However, it has been found from both theoretical and numerical
aspects that it needs fewer measurements for exact recovery via the non-convex relax-
ation (such as �p-minimization) than the convex relaxation (such as �1-minimization)
(Chartrand 2007; Lyu et al. 2013; Zhang et al. 2013). Thus, nonconvex relaxation
methods, including �p-minimization, have become a hot spot in recent years (see, for
example, Chartrand 2007; Davies and Gribonval 2009; Foucart and Lai 2009; Gribon-
val and Nielson 2003; Lai and Wang 2011; Peng et al. 2015; Saab et al. 2008; Sun
2012; Wang et al. 2011; Xu et al. 2012; Zhang et al. 2013).

Recently, Fung and Mangasarian (2011) discussed the relationship between the �0
and �p minimal solutions to the system of linear equalities and inequalities with box
constraints; and they showed that there is a (problem dependent) constant smaller or
equal to one, denoted by p∗, such that any optimal solution of �p-minimization with
p ∈ [0, p∗) also solves the concerned �0-minimization. Such an important property
has also been investigated for the system of linear equations (Peng et al. 2015), the
linear complementarity problem (ChenandXiang2016) and thephaseless compressive
sensing problem (You et al. 2017).

Inspired by the studies mentioned above, we investigate the partially sparsest solu-
tion of the union of finite polytopes. This problem covers a wide range which contains
the problems discussed in Fung and Mangasarian (2011), Peng et al. (2015) and You
et al. (2017) as special cases. We consider this problem via its nonconvex relaxation
by using a class of nonconvex approximation functions which contains Schatten-p
quasi-norm as a special case. We show that there exists a constant p∗ ∈ (0, 1] such
that for any parameter p involving in the nonconvex approximation function satisfy-
ing p ∈ [0, p∗), every optimal solution of the relaxation problem is also an optimal
solution of the original problem, which is a generalization of those obtained in Fung
andMangasarian (2011), Peng et al. (2015) and You et al. (2017). We give an example
to illustrate our theoretical result.

The paper is organized as follows. In Sect. 2, we state the problem we concerned
and provide some basic concepts and results which are useful in later sections. In
Sect. 3, we reformulate equivalently the original sparse optimization problem and its
nonconvex relaxation problem into new forms bymeans of some results frompolytope,
then study the relationship between the solution sets of these two problems. In Sect. 4,
we show that several classes of sparse optimization problems are subclasses of the
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problem we concerned; and hence, the main result is valid for these problems. Some
conclusions and comments are given in Sect. 5.

The conventions of the notations in this paper. Uppercase (greek) letters denote
matrices, e.g., A,�; boldface lowercase letters denote column vectors, e.g., x,b;
‖x‖0 means the number of nonzero components of vector x; ‖x‖∞ is infinity norm

defined by maxi {|xi |}; ‖x‖p is Schatten-p quasi-norm of x defined by (
∑n

i=1 |xi |p)
1
p ,

called ‘�p-norm of x’, where 0 < p < 1; 1 is a vector with each component being 1;
0 is a zero-vector; |u| is a vector with the i-th component being |ui | for all i ; (x, y)
stands for the vector (x�, y�)�, which is a column vector; u � v signifies vector
inequality which satisfies ui � vi for all i ; A� represents the transpose of matrix A
andu� the transpose of vectoru; lowercase letters denote real scalars, e.g.,ui , a, b, . . .,
particularly, ui stands for the i-th component of u; [n] is the set {1, 2, . . . , n} with n
being a positive integer; R+ is the set of non-negative real numbers; Rn+ is the non-
negative orthant {(x1, . . . , xn)�|xi � 0, i ∈ [n]}; Rm×n is the set of all real matrices
with m rows and n columns; ε = (ε1, . . . , εm)� ∈ {−1, 1}m is an m-dimensional
vector with each εi being −1 or 1; u ◦ v is Hadamard product of vectors u and v;
sign(a) is sign function, e.g., if a > 0, then sign(a) = 1, else if a = 0, then
sign(a) = 0, else sign(a) = −1 if a < 0; sign(u) is a sign vector with the i-th
component being sign(ui ); I, Ic are two index sets contained in [n], with Ic = [n]\I;
#(I) is cardinality of index set I, i.e., the number of elements of I; �I denotes a sub-
matrix of � constructed from columns corresponding to indices of index set I, and xI
a sub-vector of x constructed from components corresponding to indices of index set
I; Conv(T) is convex hull of the set T. Diag(v) denotes a diagonal matrix generated
by vector v.

2 Preliminaries

In this paper, we study the following partially sparse optimization problem:

min
(x,y)

‖y‖0 s.t. (x, y) ∈
⋃

i∈I
Pi , l � x � u, 0 � y � 1, (1)

where x ∈ R
n1 , y ∈ R

n2 , (x, y) ∈ R
N with N = n1 + n2, each Pi is a polyhedron in

R
N , I is a finite index set, and l,u ∈ R

n1 are two known vectors satisfying l � u.
To make sense of problem (1), we assume that the feasible set of problem (1) is

nonempty throughout this paper.
We denote the feasible set of (1) by

T :=
⋃

i∈I
Ti ⊆ R

N (2)

where, for any i ∈ I,

Ti :=
{
(x, y) ∈ R

N
∣
∣
∣(x, y) ∈ Pi , l � x � u, 0 � y � 1

}
. (3)
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By the assumption that the feasible set of problem (1) is nonempty and the fact that a
set is a polytope if and only if it is a bounded polyhedral set (see Grünbaum 2003, p.
32), we have the following result.

Proposition 2.1 The set T defined by (2) is nonempty and it is a union of finitely many
polytopes in RN .

By Proposition 2.1, problem (1) is a sparse optimization problem over a union of
finitely many polytopes. It should be noticed that T is convex when #(I) = 1 and not
necessarily convex when #(I) > 1.

Remark 2.1 Consider the problem

min
(x,z)

‖z‖0 s.t. (x, z) ∈
⋃

i∈I
P̃i , l � x � u, 0 � z � v, (4)

where z ∈ R
n2 , v ∈ R

n2 with v > 0, and every P̃i is a polyhedron in R
N . Then, it is

easy to see that problem (4) can be reformulated as a problem in the form of problem
(1).

Problem (1) is a class of nonconvex optimization problems with wide range, which
contains many popular problems as special cases (see some discussions in Sect. 4). In
this paper, we investigate this class of problems via its nonconvex relaxation. For this
purpose, we define the following set:

F (t; p) := { f (t; p) | t ∈ [0,∞), f (t; p) satisfies properties (C1)–(C3)}, (5)

where properties (C1)–(C3) are as follows: for every given number p ∈ (0, 1],
(C1) f (t; p) is strictly (increasing) concave function in t ∈ [0,∞);
(C2) f (0; p) = 0 and 0 < f (t; p) � 1 whenever t ∈ (0, 1];
(C3) lim p↓0 f (t; p) = 1 as t > 0.

Several functions f (t; p) ∈ F (t; p) have been proposed in Gribonval and Nielsen
(2007), Bradley andMangasarian (1998) andHaddou andMigot (2015). For example,

(a) f1(t; p) = t

t + p
; (b) f2(t; p) = 1 − e− t

p ; (c) f3(t; p) = t p.

Remark 2.2 Let f (t; p) ∈ F (t; p). By properties (C2) and (C3), it is easy to see that
sign(t) = limp→0 f (t; p) for any real number t � 0.

For any function f (t; p) ∈ F (t; p), we will consider the following relaxation
problem of problem (1):

min
(x,y)

n2∑

i=1

f (yi ; p) s.t. (x, y) ∈
⋃

i∈I
Pi , l � x � u, 0 � y � 1, (6)

To further discuss the relationship between problems (1) and (6), we need the
following definitions concerning monotonically nondecreasing vector-valued and
monotonically nondecreasing real functions.
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Definition 2.1 (You et al. 2017, Definition 2.1) (i) Define a function f : Rn+ → R
n+

by

f(x) = ( f (x1), f (x2), . . . , f (xn))
�, (7)

where f : R+ → R+. The (vector-valued) function f is said to be monotonically
nondecreasing if for any two nonnegative vectors u and v, u � v implies f(u) � f(v).

(ii) Let F : Rn+ → R+. The function F is said to be monotonically nondecreasing
if for any two nonnegative vectors u and v, u � v implies F(u) � F(v).

Two monotonically nondecreasing functions are given in the following example,
which will be frequently used in our subsequent analysis.

Example 2.1 (i) Suppose that f : Rn+ → R
n+ is defined by (7) with f (xi ) = sign(xi )

for any i ∈ [n]. We denote this function by sign(·). It is easy to see that sign(·) is a
monotonically nondecreasing function.

(ii) Suppose that f : Rn+ → R
n+ is defined by (7) with strictly increasing concave

function f (xi ) = f (xi ; p) for any i ∈ [n] and p ∈ (0, 1], where f ∈ F (·; p) which
is defined in (5). It is easy to see that this function is monotonically nondecreasing.

For any given vectors u and v with 0 � u � v and a monotonically nondecreasing
function f , we have

1�f(u) =
n∑

i=1

f (ui ) �
n∑

i=1

f (vi ) = 1�f(v).

Therefore, 1�f is monotonically nondecreasing.

3 Relationship between optimal solutions of problem (1) and
problem (6)

In this section, we study the relationship between optimal solutions of problem (1)
and problem (6).

Applying the set T defined by (2), problem (1) can be simply rewritten as

min
(x,y)

‖y‖0 s.t. (x, y) ∈ T. (8)

As is known that the objective function of (8) is nonconvex and the feasible set is
usually nonconvex, problem (8) is NP-hard (Natarajan 1995). Similarly, problem (6)
is simply rewritten as

min
(x,y)

1�f(y; p) s.t. (x, y) ∈ T, (9)

where f(t; p) = ( f (t1; p), f (t2; p), . . . , f (tn2; p))� ∈ R
n2 is a vector-valued func-

tion with f (t; p) ∈ F (t; p).
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Denote the convex hull of the set T defined in (2) by

S := Conv(T) = Conv

(
⋃

i∈I
Ti

)

. (10)

Then, we have the following result.

Proposition 3.1 The set S defined by (10) is a nonempty polytope contained in the box∏n1
i=1[li , ui ] × [0, 1]n2 ⊂ R

N with N = n1 + n2.

Proof By Proposition 2.1, it follows that the set T is nonempty and it is the union of
finitely many polytopes in R

N . Thus, the set S is nonempty and is a convex hull of
finitely many polytopes. By the fact that the convex hull of finitely many polytopes is
a polytope (see Grünbaum 2003, p. 32), it follows that S is a polytope. Furthermore,
since T ⊂ ∏n1

i=1[li , ui ] × [0, 1]n2 with the latter set being a (convex) box and S is the
smallest convex set containing T, it is easy to see that S is a subset of this box. Thus,
the result of the proposition holds. �

For the setT defined in (2), we call x ∈ T a pseudo-extreme point ofT if it is a vertex
of some polytope Ti , which implies that there are no two distinct points y, z ∈ Ti and
a constant λ ∈ (0, 1) such that x = λy + (1 − λ)z. In addition, an extreme point of S
is called a vertex of S as usually defined. In the following, we use vert(S) to denote
the set of all vertices of S and pext(T) to denote the set of all pseudo-extreme points
of T.

Using the convex hull S, problem (9) is relaxed as

min
(x,y)

1�f(y; p) s.t. (x, y) ∈ S. (11)

In what follows, we discuss the relationship between problem (9) and problem (11).
We have the following result.

Theorem 3.1 Suppose that x∗ ∈ vert(S) is an optimal solution to problem (11), then
x∗ ∈ pext(T) and it is an optimal solution to problem (9).

Proof Notice that problem (11) and problem (9) are different mainly in their feasible
sets, that is, one is T and another is its convex hull S. By polytope geometry, it follows
that S = Conv(pext(T)) (see Ziegler 1995, Theorem 2.15(3)). Furthermore, by the
fact that if a polytope can be written as the convex hull of a finite point set, then the
set contains all the vertices of the polytope (see Ziegler 1995, Proposition 2.2), we
have that pext(T) ⊇ vert(S). Therefore, by You et al. (2017, Lemma 2.2), each vertex
solution to problem (11) is a pseudo-extreme point which is an optimal solution to
problem (9). �

In the following, if a pseudo-extremepoint ofT is an optimal solution to problem (9),
then we call it a pseudo-extreme-point optimal solution to problem (9). The following
addresses the existence of optimal solution to problem (9).

Theorem 3.2 For any given p ∈ (0, 1), there exists at least one pseudo-extreme-point
optimal solution to problem (9).
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Proof Denote f (x, y) := 1�f(y; p) = ∑n2
i=1 f (yi ; p) with p ∈ (0, 1), then − f is a

convex function on dom f = R
n1 × R

n2+ . By Proposition 3.1, it follows that the set S
is nonempty and S ⊆ ∏n1

i=1[li , ui ] × [0, 1]n2 ⊂ dom f . There are no half-lines and no
lines in S; and − f is bounded above on S. By Rockafellar (1970, Corollary 32.3.4),
there exists a vertex optimal solution to problem (11), which is also a pseudo-extreme-
point optimal solution to problem (9) by Theorem 3.1. In other words, for each real
number p ∈ (0, 1), there exists at least one pseudo-extreme-point optimal solution to
problem (9). �
Theorem 3.3 Suppose {pk} is an arbitrarily given sequence with 0 < pk+1 < pk < 1
for any k = 1, 2, . . . and limk→∞ pk = 0. Then,

(i) there is a subsequence {pik } ⊆ {pk} such that some fixed pseudo-extreme point
(x̂, ŷ) of T is an optimal solution to (9) with any pi j ∈ {pik }; and

(ii) (x̂, ŷ) is an optimal solution to (8).

Proof (i) For each pi ∈ {pk}with 0 < pk < 1 for any k = 1, 2, . . . and limk→∞ pk =
0, by Theorem 3.2 it follows that there exists a pseudo-extreme-point optimal solution
(x̂(pi ), ŷ(pi )) to problem (9) with p = pi .

Since the number of pseudo-extreme points of the set T is finite, it follows that
the number of pseudo-extreme-point optimal solutions is finite; while the set {pk} is
infinite, so we conclude that there exists an infinite sub-sequence {pik } ⊂ {pk} such
that for any pi j ∈ {pik }, problem (9) with p = pi j has the same pseudo-extreme-point
optimal solution (x̂, ŷ). The first part of the theorem is proved.

(ii) We show that (x̂, ŷ) is a partially sparsest solution of the original problem (1).
Noting that y ∈ R

n2 and 0 � y � 1, we have

(sign(y))i = sign(yi ) =
{
1, if yi > 0,
0, if yi = 0

and

‖y‖0 =
n2∑

i=1

sign(yi ). (12)

Since (x̂, ŷ) is an optimal solution to problem (9) with p = pi j for any pi j ∈ {pik },
we have (x̂, ŷ) ∈ T; and hence, 1 � ŷ � 0. Furthermore, ‖ŷ‖0 = ∑n2

i=1 sign(ŷi ) and

1�f(ŷ; pi j ) = min
(x,y)∈T 1

�f(y; pi j ). (13)

For simplicity, we use p j to replace pi j . Therefore,

‖ŷ‖0 =
n2∑

i=1

sign(ŷi )=
n2∑

i=1

lim
j→∞ f (ŷi ; p j ) = lim

j→∞

n2∑

i=1

f (ŷi ; p j ) = lim
j→∞ 1�f(ŷ; p j )

= lim
j→∞ min

(x,y)∈T 1
�f(y; p j ) = lim

j→∞ min
(x,y)∈T

n2∑

i=1

f (yi ; p j )
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� lim
j→∞

n2∑

i=1

f (yi ; p j ) for all (x, y) ∈ T

�
n2∑

i=1

sign(yi ) = ‖y‖0 for all (x, y) ∈ T (14)

where the first equality follows from (12), the fifth equality from (13), and the last
equality from (12).

From (14) and the arbitrariness of (x, y) ∈ T, we have

‖ŷ‖0 � min
(x,y)∈T ‖y‖0,

which implies that (x̂, ŷ) is an optimal solution to problem (8), i.e., (1). The second
part is proved. �
Theorem 3.4 There exists a constant p� ∈ (0, 1] such that for any fixed p ∈ (0, p�),
there exists a pseudo-extreme-point optimal solution to problem (9), which is also an
optimal solution to problem (8).

Proof Suppose the statement is not true. Then for any fixed p̃ ∈ (0, 1], there exists
a p̄ ∈ (0, p̃) such that none of all pseudo-extreme-point optimal solutions to (9)
with p = p̄ is the optimal solution to problem (8). In what follows, we will derive a
contradiction.

Define a sequence P := { p̃1, p̃2, . . .} with 1 � p̃i > p̃i+1, i = 1, 2, . . . and
limi→+∞ p̃i = 0. By the above statement, for any p̃i ∈ P, there exists a p̄i > 0 with
p̄i < p̃i such that none of all pseudo-extreme point optimal solutions to problem (9)
with p = p̄i is the optimal solution to problem (8). Let p̂i = min{ p̃i+1, p̄i }. Again
by the same statement, there exists a p̄i+1 > 0 with p̄i+1 < p̂i such that none of all
pseudo-extreme-point optimal solutions to problem (9) with p = p̄i+1 is the optimal
solution to problem (8).

Noticing that p̃i > p̄i � p̂i > p̄i+1 > 0 with i = 1, 2, . . ., we get a sequence
{ p̄i }, which satisfies that 0 < p̄i+1 < p̄i < 1 and limi→+∞ p̄i = 0, such that none
of all pseudo-extreme-point optimal solutions to problem (9) with any p ∈ { p̄i } is
the optimal solution to problem (8). This contradicts the results of Theorem 3.3. The
proof is complete. �

In the following, we will give two main results in this section.

Theorem 3.5 Suppose that p� � 1 is given by Theorem 3.4. Then there exists a
constant p∗ ∈ (0, p�] such that for any given real number p with 0 < p < p∗,
every pseudo-extreme-point optimal solution to problem (9) is an optimal solution to
problem (8).

Proof Assume that the statement is not true. Then for an arbitrary real number p̃ ∈
(0, p�] ⊆ (0, 1], there is a real number p̄ ∈ (0, p̃) such that there is a pseudo-extreme-
point optimal solution (x̄( p̄), ȳ( p̄)) to problem (9) with p = p̄, but it is not an optimal
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solution to problem (8); meanwhile, by Theorem 3.4, there is another pseudo-extreme-
point optimal solution (x̂( p̄), ŷ( p̄)) to problem (9) with p = p̄ that is also an optimal
solution to problem (8). In what follows, we will deduce a contradiction.

Define a sequence P := { p̃1, p̃2, . . .} ⊆ (0, p�] with 1 � p� � p̃i > p̃i+1 >

0, i = 1, 2, . . . and limi→+∞ p̃i = 0. By the statement above, for any p̃i ∈ P,
there exists p̄i > 0 with p̄i < p̃i such that there is a pseudo-extreme-point optimal
solution (x̄( p̄i ), ȳ( p̄i )) to problem (9) with p = p̄i , but it is not an optimal solution
to problem (8); meanwhile, by Theorem 3.4, there is another pseudo-extreme-point
optimal solution (x̂( p̄i ), ŷ( p̄i )) to problem (9) with p = p̄i that is also an optimal
solution to problem (8). Let p̂i = min{ p̃i+1, p̄i }. Again by the same statement, there
exists p̄i+1 > 0 with p̄i+1 < p̂i such that there is a pseudo-extreme-point optimal
solution (x̄( p̄i+1), ȳ( p̄i+1)) to problem (9) with p = p̄i+1, but it is not an optimal
solution to problem (8); meanwhile, by Theorem 3.4, there is another pseudo-extreme-
point optimal solution (x̂( p̄i+1), ŷ( p̄i+1)) to problem (9) with p = p̄i+1 that is also
an optimal solution to problem (8).

Noticing that p̃i > p̄i � p̂i > p̄i+1 > 0 with i = 1, 2, . . ., we get a sequence
{ p̄i }, which satisfies that 0 < p̄i+1 < p̄i � 1 and limi→+∞ p̄i = 0, such that
there is a pseudo-extreme-point optimal solution (x̄( p̄i ), ȳ( p̄i )) to problem (9) with
any p ∈ { p̄i }, but it is not an optimal solution to problem (8); meanwhile, there is
another pseudo-extreme-point optimal solution (x̂( p̄i ), ŷ( p̄i )) to problem (9) with any
p ∈ { p̄i } that is also an optimal solution to problem (8).

Since the number of pseudo-extreme points ofT is finite, it follows that the pseudo-
extreme-point optimal solution set

{(
x̄( p̄i ), ȳ( p̄i )), (x̂( p̄i ), ŷ( p̄i )

)}
is finite; while the

sequence { p̄i } is infinite, we conclude that there must be a sub-sequence { p̄ik } ⊆ { p̄i }
such that there is a fixed pseudo-extreme point (x̄, ȳ) that is an optimal solution to every
problem (9) with p = p̄ik , however, (x̄, ȳ) is not an optimal solution to problem (8);
meanwhile there is some fixed pseudo-extreme point (x̂, ŷ) being an optimal solution
to problem (9) with p = p̄ik that is also an optimal solution to problem (8). For
simplicity, we use p̄i instead of p̄ik . Then,

1�f(ȳ; p̄i ) = 1�f(ŷ; p̄i ) = min
(x,y)∈T 1

�f(y; p̄i ) with 0 < p̄i < p�.

Let ‖ŷ‖0 = s. From above we have

‖ȳ‖0 = lim
p̄i↓0

1�f(ȳ; p̄i ) = lim
p̄i↓0

1�f(ŷ; p̄i ) = ‖ŷ‖0 = s,

which shows that (x̄, ȳ) is also an optimal solution to problem (8). This contradicts
to the afore-mentioned statement that (x̄, ȳ) does not solve problem (8), which shows
the assumption given in the beginning of the proof is false. The proof is complete. �
Theorem 3.6 Consider sparse optimization problem (1) which is subject to the union
of finite polyhedrons within a box

∏n1
i=1[li , ui ] × ∏n2

j=1[0, 1]. There exists a constant
p∗ ∈ (0, 1] such that for any given real number p with 0 < p < p∗, every optimal
solution to nonconvex minimization problem (6) is an optimal solution to problem (1).
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Proof Notice that problem (1) and problem (8) is equivalent, and problem (6) and
problem (9) is equivalent. By virtue of Theorem 3.5, there exists a constant p∗ ∈ (0, 1]
such that for any given real number p with 0 < p < p∗, every pseudo-extreme-point
optimal solution to problem (6) is an optimal solution to problem (1).

To accomplish the proof, we divide the feasible setT [defined by (2)] of problem (6)
into some subsets. First, we observe that T is composed of the following two subsets,
one is concerned with all the (finite) pseudo-extreme points, the other is concerned
with all the (feasible) non-pseudo-extreme points; these two subsets are denoted by
Tpseudo and Tnon-pseudo, respectively. Then,

T = Tpseudo

⋃
Tnon-pseudo. (15)

Furthermore, we divide the two subsets in (15) into several smaller subsets, respec-
tively. As to Tpseudo, each pseudo-extreme point is either optimal solution to problem
(6) or non-optimal feasible point; we denote the corresponding subsets byTopt

pseudo and

T
non-opt
pseudo , respectively, that is,

T
opt
pseudo := {(x̂iopt , ŷiopt )}i∈I1 and T

non-opt
pseudo := {(x̂ j

non-opt , ŷ
j
non-opt )} j∈I2 , (16)

where I1 and I2 are two finite index sets. Hence,

Tpseudo = T
opt
pseudo

⋃
T
non-opt
pseudo . (17)

As toTnon-pseudo, composed of all the (feasible) non-pseudo-extremepoints,we divide
it specifically into three subsets:

Tnon-pseudo = T
opt
non-pseudo

⋃
T
non-opt
non-pseudo

⋃
T
else
non-pseudo, (18)

where Topt
non-pseudo stands for a feasible subset constructed from all the y-blocks of all

the pseudo-extreme point optimal solutions to problem (6):

T
opt
non-pseudo :=

⋃

i∈I1
{(x, ŷiopt ) : (x, ŷiopt ) ∈ T, x �= x̂iopt };

T
non-opt
non-pseudo stands for a feasible subset constructed from all the y-blocks of all the

non-optimal pseudo-extreme points of T:

T
non-opt
non-pseudo :=

⋃

j∈I2
{(x, ŷ j

non-opt ) : (x, ŷ j
non-opt ) ∈ T, x �= x̂ j

non-opt };

andTelse
non-pseudo stands for a feasible subset in which all the y-blocks of all of its points

are not from corresponding blocks of all the pseudo-extreme points of T, that is,

T
else
non-pseudo := {(x, y) : (x, y) ∈ T, y �= ŷiopt , y �= ŷ j

non-opt , i ∈ I1, j ∈ I2}.
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From (17) and (18), we observe that

T = T
opt
pseudo

⋃
T
non-opt
pseudo

⋃
T
opt
non-pseudo

⋃
T
non-opt
non-pseudo

⋃
T
else
non-pseudo. (19)

Notice that ifTopt
non-pseudo is nonempty, then all the points inTopt

non-pseudo are optimal
solutions to problem (6), and furthermore, they are also optimal solutions to problem
(1) since the optimal values of objective function of problem (6) is derived from all
the y-blocks of pseudo-extreme point optimal solutions. In addition, it is obvious that
all the points in Tnon-opt

pseudo and T
non-opt
non-pseudo are not optimal solutions to problem (6).

FromTheorem3.5, (19) and the discussions above,we observe that only the feasible
subsetTelse

non-pseudo remains to be discussed. Suppose (x̃, ỹ) is any given (feasible) point

in T
else
non-pseudo. Since ỹ �= ŷiopt , ỹ �= ŷ j

non-opt ,∀i ∈ I1,∀ j ∈ I2, it is not a pseudo-
extreme point. Therefore, (x̃, ỹ) can be represented as a convex combination of some
(at least two) pseudo-extreme points, with at least two distinct y-blocks. This can be
written as

(x̃, ỹ) =
∑

i∈ Ĩ1∪ Ĩ2

λi (x̂i , ŷi ) =
⎛

⎝
∑

i∈ Ĩ1∪ Ĩ2

λi x̂i ,
∑

i∈ Ĩ1∪ Ĩ2

λi ŷi

⎞

⎠ , (20)

where Ĩ1 ⊆ I1, Ĩ2 ⊆ I2; and we omit all the terms that have zero coefficients. Hence,
each λi > 0 and

∑
i∈ Ĩ1∪ Ĩ2

λi = 1. Let

1�f(ŷi0; p) = min
i∈ Ĩ1∪ Ĩ2

1�f(ŷi ; p). (21)

Notice that every (x̂i , ŷi ) is a pseudo-extreme point of T and that at least two pseudo-
extreme points have distinct y-blocks, we have

1�f(ỹ; p) = 1�f

⎛

⎝
∑

i∈ Ĩ1∪ Ĩ2

λi ŷi ; p
⎞

⎠ =
n2∑

j=1

f

⎛

⎝
∑

i∈ Ĩ1∪ Ĩ2

λi ŷ
i
j ; p

⎞

⎠

>

n2∑

j=1

∑

i∈ Ĩ1∪ Ĩ2

λi f (ŷ
i
j ; p) =

∑

i∈ Ĩ1∪ Ĩ2

λi

n2∑

j=1

f (ŷij ; p)

=
∑

i∈ Ĩ1∪ Ĩ2

λi1�f(ŷi ; p) �
∑

i∈ Ĩ1∪ Ĩ2

λi1�f(ŷi0; p)

= 1�f(ŷi0; p)
∑

i∈ Ĩ1∪ Ĩ2

λi = 1�f(ŷi0; p)

� min
(x,y)∈T 1

�f(y; p), (22)

where the first strict inequality follows from the strict concavity of f (·; p) on S; the
second inequality from (21); and the last inequality is obvious.
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From (22), we have 1�f(ỹ; p) > min(x,y)∈T 1�f(y; p), which implies that point
(x̃, ỹ) is not an optimal solution to problem (6). Since (x̃, ỹ) is arbitrary inTelse

non-pseudo,

we see that all the points in Telse
non-pseudo are not optimal solutions to problem (6).

By all the discussions above, we derive that each optimal solution to problem (6)
with 0 < p < p∗ must have a y-block being the corresponding block of some pseudo-
extreme point optimal solution to problem (6). This demonstrates that each optimal
solution to problem (6) with 0 < p < p∗ must be an optimal solution to problem
(1), since the optimal values of the objective functions of these both problems are all
determined by the y-block of each pseudo-extreme-point optimal solution of problem
(6).

The proof is complete. �

4 Several important subclasses of problem (1)

Problem (1) covers a wide range of problems. In this section, we give several important
special cases of it.

4.1 Partially sparse solutions of equalities and inequalities

Consider the following partially sparse optimization problem

min
(x,y)

‖y‖0 s.t. Ax + By = b,Cx + Dy � c, l � x � u, 0 � y � 1, (23)

where A ∈ R
m1×n1, B ∈ R

m1×n2 ,C ∈ R
m2×n1, D ∈ R

m2×n2 ,b ∈ R
m1 , c ∈ R

m2 ,
l,u ∈ R

n1 satisfying l � u, and x ∈ R
n1 , y ∈ R

n2 , (x, y) ∈ R
N with N = n1 + n2.

We have the following result.

Theorem 4.1 Suppose that f (t; p) ∈ F (t; p). We consider sparse optimization prob-
lem (23) and its nonconvex relaxation problem

min
(x,y)

n2∑

i=1

f (yi ; p) s.t. Ax + By = b,Cx+Dy � c, l � x � u, 0 � y � 1. (24)

It follows that there exists a constant p∗ ∈ (0, 1] such that for an arbitrarily given
real number p with 0 < p < p∗, every optimal solution to nonconvex minimization
problem (24) is an optimal solution to (23).

Proof Let P = {(x, y) ∈ R
N : Ax+ By = b,Cx+ Dy � c}. Then, problem (23) can

be written as

min
(x,y)

‖y‖0 s.t. (x, y) ∈ P, l � x � u, 0 � y � 1, (25)

It is obvious that P is a polyhedral in R
N . Thus, problem (25) is a special case of

problem (1). By Theorem 3.6, the theorem holds immediately. �
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In the following, we further consider two special cases of problem (23).

Problem 1 We consider the problem of Compressive Sensing (see, e.g., Candés et al.
2006; Candés and Tao 2005; Foucart and Rauhut 2013):

min
z

‖z‖0 s.t. �z = b, (26)

where � ∈ R
m×n with m � n is of full row rank, i.e., rank(�) = m, b ∈ R

m and
z ∈ R

n . By You et al. (2017, Theorem 3.1), there is a number r0 > 0 such that problem
(26) can be reformulated as

min
z

‖z‖0 s.t. �z = b, ‖z‖∞ � r0. (27)

Let x = 1
r0
z and A = r0�, then problem (27) can be equivalently transformed to

min
x

‖x‖0 s.t. Ax = b, ‖x‖∞ � 1. (28)

Furthermore, we introduce a variable y ∈ R
n such that |x| � y; and define two-block

matrices C := (−E , E)� and D := (−E,−E)� where E ∈ R
n×n is the n × n

identity matrix, then it is easy to verify that |x| � y if and only if Cx+ Dy � 0. Take
B = O, i.e., B denotes an m by n zero matrix. Then, by You et al. (2017, Corollary
2.1), problem (28) can be written as

min
(x,y)

‖y‖0 s.t. Ax + By = b,Cx + Dy � 0,−1 � x � 1, 0 � y � 1. (29)

It is easy to see that this problem is a special case of problem (23). To relax problem
(29), we assume f (t; p) ∈ F (t; p) and consider the following problem:

min
(x,y)

1�f(y; p) s.t. Ax + By = b,Cx+Dy � 0,−1 � x � 1, 0 � y � 1, (30)

where f(y; p) = ( f (y1; p), . . . , f (yn; p))�. Therefore, from Theorem 4.1 it follows
that there exists a constant p∗ ∈ (0, 1] such that for an arbitrarily given real number
p with 0 < p < p∗, every optimal solution to nonconvex minimization problem (30)
is an optimal solution to problem (29).

Noting that we have shown that problem (29) is equivalent to problem (26). By
using a similar way we can obtain that problem (30) is equivalent to

min
z

1�f
(
1

r0
|z|; p

)

s.t. �z = b, ‖z‖∞ � r0, (31)

where r0 is given by (27). Thus, we can further obtain the following result.

Theorem 4.2 There exist a positive number r0 and a constant p∗ ∈ (0, 1] such that
for an arbitrarily given real number p with 0 < p < p∗, every optimal solution to
nonconvex minimization problem (31) is an optimal solution to problem (26).
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In particular, if we take f (t; p) = t p ∈ F (t; p), we can further obtain that problem
(31) is equivalent to

min
z

‖z‖p
p s.t. �z = b. (32)

Thus, from Theorem 4.2 it follows that there exists a constant p∗ ∈ (0, 1] such that
for an arbitrarily given real number p with 0 < p < p∗, every optimal solution to
nonconvex minimization problem (32) is an optimal solution to problem (26). Such a
result has been obtained in Peng et al. (2015).

Problem 2 We consider sparsest solutions of linear equalities and inequalities (see
Fung and Mangasarian 2011):

min
x

‖x‖0 s.t. Ax = b, Fx � d, ‖x‖∞ � 1, (33)

where A ∈ R
m×n , b ∈ R

m , F ∈ R
k×n , d ∈ R

k , and x ∈ R
n . We introduce a variable

y ∈ R
n such that |x| � y and define c := (d�, 0�, 0�)�, C := (F�,−E , E)� and

D := (O�,−E,−E)�, where O is a k × n zero matrix and E ∈ R
n×n is the n × n

identity matrix, then it is easy to verify that both Fx � d and |x| � y hold if and only
if Cx + Dy � c. Let B = O, i.e., B denotes an m by n zero matrix. Then, by You et
al. (2017, Corollary 2.1), problem (33) can be written as

min
(x,y)

‖y‖0 s.t. Ax + By = b,Cx + Dy � c,−1 � x � 1, 0 � y � 1. (34)

It is easy to observe that this problem is a special case of problem (23).

To relax problem (34), we assume f (t; p) ∈ F (t; p) and consider the nonconvex
relaxation of problem (34) as follows

min
(x,y)

1�f(y; p) s.t. Ax + By = b,Cx + Dy � c,−1 � x � 1, 0 � y � 1, (35)

where f(y; p) = ( f (y1; p), . . . , f (yn; p))�. Therefore, from Theorem 3.6 it follows
that there exists a constant p∗ ∈ (0, 1] such that for an arbitrarily given real number
p with 0 < p < p∗, every optimal solution to nonconvex minimization problem (35)
is an optimal solution to problem (34).

By You et al. (2017, Corollary 2.1), we observe that problem (35) is equivalent to

min
x

1�f(|x|; p) s.t. Ax = b, Fx � d, ‖x‖∞ � 1, (36)

and notice that (34) is equivalent to (33). Therefore, we derive

Theorem 4.3 There exists a constant p∗ ∈ (0, 1] such that for an arbitrarily given real
number p with 0 < p < p∗, every optimal solution to nonconvex relaxation problem
(36) is an optimal solution to (33).

In particular, if we take f (t; p) = t p ∈ F (t; p), then the corresponding result was
obtained in Fung and Mangasarian (2011, Proposition 1).
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4.2 Partially sparsest solutions of absolute equalities and inequalities

Consider the following partially sparse optimization problem

min
(x,y)

‖y‖0 s.t. |Ax + By| = b,Cx + Dy � c, l � x � u, 0 � y � 1, (37)

where A ∈ R
m1×n1, B ∈ R

m1×n2 ,C ∈ R
m2×n1, D ∈ R

m2×n2 , 0 � b ∈ R
m1 , c ∈

R
m2 , l,u ∈ R

n1 satisfying l � u, and (x, y) ∈ R
N = R

n1 × R
n2 .

We have the following result.

Theorem 4.4 Assume f (t; p) ∈ F (t; p). We consider sparse optimization problem
(37) and its nonconvex relaxation problem

min
(x,y)

n2∑

i=1

f (yi ; p) s.t. |Ax + By| = b,Cx + Dy � c, l � x � u, 0 � y � 1.

(38)

It follows that there exists a constant p∗ ∈ (0, 1] such that for an arbitrarily given real
number p with 0 < p < p∗, every optimal solution to nonconvex relaxation problem
(38) is an optimal solution to (37).

Proof Let

T :=
⎛

⎝
⋃

ε∈{−1,1}m1

Pε

⎞

⎠
⋂

{(x, y) ∈ R
N : l � x � u, 0 � y � 1}, (39)

where each Pε := {(x, y) ∈ R
N : Ax + By = ε ◦ b,Cx + Dy � c} is obviously a

polyhedral in RN . Hence, (37) can be rewritten as

min
(x,y)

‖y‖0 s.t. (x, y) ∈
⋃

ε∈{−1,1}m1

Pε, l � x � u, 0 � y � 1. (40)

Thus, problem (37) is a special case of problem (1). By Theorem 3.6, the theorem
holds immediately. �

In the following, we further consider a special case of problem (37).

Problem 3 We consider the problem of Phaseless Compressive Sensing (see, e.g.,
Voroninski and Xu 2016):

min
z

‖z‖0 s.t. |�z| = b, (41)

where � ∈ R
m×n with m � n is of full row rank, i.e., rank(�) = m, b ∈ R

m and
z ∈ R

n . By You et al. (2017, Theorem 3.2), there is a number r0 > 0 such that problem
(41) can be reformulated as
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min
z

‖z‖0 s.t. |�z| = b, ‖z‖∞ � r0. (42)

Let x = 1
r0
z and A = r0�, then problem (42) can be equivalently transformed to

min
x

‖x‖0 s.t. |Ax| = b, ‖x‖∞ � 1. (43)

Furthermore, we introduce a variable y ∈ R
n such that |x| � y; and define two-block

matrices C := (−E , E)� and D := (−E,−E)� where E ∈ R
n×n is the n × n

identity matrix, then it is easy to verify that |x| � y if and only if Cx+ Dy � 0. Take
B = O, i.e., B denotes an m by n zero matrix. Then, by You et al. (2017, Corollary
2.1), problem (28) can be written as

min
(x,y)

‖y‖0 s.t. |Ax + By| = b,Cx + Dy � 0,−1 � x � 1, 0 � y � 1. (44)

It is easy to see that this problem is a special case of problem (37). To relax problem
(44), we assume f (t; p) ∈ F (t; p) and consider the following problem:

min
(x,y)

1�f(y; p) s.t. |Ax + By| = b,Cx + Dy � 0,−1 � x � 1, 0 � y � 1,(45)

where f(y; p) = ( f (y1; p), . . . , f (yn; p))�. Therefore, from Theorem 4.4 it follows
that there exists a constant p∗ ∈ (0, 1] such that for an arbitrarily given real number
p with 0 < p < p∗, every optimal solution to nonconvex minimization problem (45)
is an optimal solution to problem (44).

Noting that we have shown that problem (44) is equivalent to problem (41). By
using a similar way we can obtain that problem (45) is equivalent to

min
z

1�f
(
1

r0
|z|; p

)

s.t. |�z| = b, ‖z‖∞ � r0, (46)

where r0 is given by (42).
Thus, we can further obtain the following result.

Theorem 4.5 There exist a positive number r0 and a constant p∗ ∈ (0, 1] such that
for an arbitrarily given real number p with 0 < p < p∗, every optimal solution to
nonconvex minimization problem (46) is an optimal solution to problem (41).

In particular, if we take f (t; p) = t p ∈ F (t; p), we can further obtain that problem
(46) is equivalent to

min
z

‖z‖p
p s.t. |�z| = b. (47)

Thus, from Theorem 4.5 it follows that there exists a constant p∗ ∈ (0, 1] such that
for an arbitrarily given real number p with 0 < p < p∗, every optimal solution to
nonconvex minimization problem (47) is an optimal solution to problem (41). Such a
result has been obtained in You et al. (2017).
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4.3 Sparsest solutions of absolute equalities and inequalities

In this subsection, we consider a class of problems that find the sparsest solutions
defined as follows. Let � ∈ R

m×n,b ∈ R
m , d ∈ R

s , P ∈ R
s×n , l := (l1, . . . , ln)�

and u := (u1, . . . , un)�. We consider

min
x

‖x‖0 s.t. |�x| = b, Px � d, l � x � u. (48)

We do not care two cases: 0 < l < u or l < u < 0, since, if so, all the feasible points
are solutions with objective min ‖x‖0 = n. For convenience, we only consider the
above problem when l < u with any one of four special cases as follows: (i) l = 0 and
u > 0, (ii) l � 0 and u > 0 , (iii) l < 0 and u � 0 and (iv) l < 0 < u.

Proposition 4.1 For any given case defined above, problem (48) can be equivalently
transformed to a special case of problem (37).

Proof We divide the proof into four parts.

(i) l = 0 and u > 0. In this case, the problem (48) is

min
x

‖x‖0 s.t. |�x| = b, Px � d, 0 � x � u. (49)

Let � = Diag(u), y = �−1x, B = ��, D = P�. Then, (49) is written as

min
y

‖y‖0 s.t. |By| = b, Dy � d, 0 � y � 1,

which can be regarded as a special case of problem (37).
(ii) l � 0 and u > 0. Define an index set I := {i | li = 0, i ∈ [n]}. Then, we have

�x = �IxI + �IcxIc and Px = PIxI + PIcxIc , and hence, (48) can be rewritten
as

min
x

‖xI‖0
s.t. |�IxI + �IcxIc | = b, PIxI + PIcxIc � d, 0 � xI � uI, lIc � xIc � uIc ,

(50)

which is a special case of problem (4). By Remark 2.1, (50) can be equivalently
transformed to a special case of (1), more specifically, to (37).

(iii) l < 0 and u � 0. In this case, let x̄ = −x, �̄ = −�, P̄ = −P , l̄ = −u and
ū = −l, then l̄ � 0 and ū > 0, and hence, (48) can be rewritten as

min ‖x̄‖0 s.t. |�̄x̄| = b, P̄ x̄ � d, l̄ � x̄ � ū,

which is the case (ii).
(iv) l < 0 < u. In this case, we introduce a variable z ∈ R

n such that |x| � z. Let
v = max{−l,u}. Since that sign(z) is monotonically nondecreasing, noting that
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objective function ‖z‖0 = 1�sign(z), by You et al. (2017, Corollary 2.1), we
have the following equivalent form:

min
(x,z)

‖z‖0 s.t . |�x| = b, Px � d, |x| � z, l � x � u and 0 � z � v. (51)

Let � be a zero matrix, 	 = (−E, E, P�)�, 
 = (−E, E, O)� with E
being an n by n Identity matrix and O being an n by s zero matrix, and c =
(0�, 0�, d�)�. Then, problem (51) can be rewritten as

min
(x,z)

‖z‖0 s.t . |�x + �z| = b,	x + 
z � c, l � x � u, 0 � z � v, (52)

By Remark 2.1, (52) can be equivalently transformed to a special case of (1),
more specifically, to (37).

Combining parts (i)–(iv), we complete the proof. �
By Proposition 4.1, Theorem 4.4 and You et al. (2017, Corollary 2.1), with notation

replacements if necessary, we can obtain the following results.

Theorem 4.6 Consider problem (48) with bounds l < u satisfying one of four special
cases defined above. Let I := {i : li ui � 0, i ∈ [n]}, v := max{|lI|, |uI|} and
� := Diag(v). Then, for the following nonconvex minimization problem

min
x

1�f(�−1|xI|; p) s.t . |�x| = b, Px � d, l � x � u, (53)

where f(y; p) = ( f (yi ; p)i∈I)� with any given f (t; p) ∈ F (t; p), there exists a
constant p∗ ∈ (0, 1] such that for any given real number p with 0 < p < p∗, every
optimal solution to nonconvex minimization problem (53) is an optimal solution to
problem (48).

Next, we take an example to illustrate the validity of Theorem 4.6.

Example 4.1 We consider the 2-dimensional problem:

min
x∈R2

‖x‖0 s.t. |x1 − 2x2| = 1, 2x1 − x2 � −1, ‖x‖∞ � 1, (54)

where x = (x1, x2)�.

We apply two specific nonconvex functions and consider the corresponding non-
convex relaxation problems to confirm the result obtained in Theorem 4.6.

Case 1.We take f (t; p) = t p ∈ F (t; p), and consider nonconvex relaxation problem

min
x∈R2

‖x‖p
p s.t. |x1 − 2x2| = 1, 2x1 − x2 � −1, ‖x‖∞ � 1. (55)
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Fig. 1 All feasible points of problem (54): point (−1, −1)� and points on the bold line segment, with the
point (−1, 0)� being the (sparsest) optimal solution to the original problem (54)

The equality constraint implies x1 − 2x2 = −1 or x1 − 2x2 = 1. Accordingly, the
feasible set (see Fig. 1), denoted by D, can be written as D = D1

⋃
D2, where

D1 = {(x1, x2)� | x1 − 2x2 = −1, 2x1 − x2 � −1,−1 � xi � 1, i = 1, 2}

and

D2 = {(x1, x2)� | x1 − 2x2 = 1, 2x1 − x2 � −1,−1 � xi � 1, i = 1, 2}.

Note that the objective function ‖x‖p
p = |x1|p + |x2|p with 0 < p < 1. It follows that

problem (55) is equivalent to

min

{

min
x∈D1

|x1|p + |x2|p, min
x∈D2

|x1|p + |x2|p
}

. (56)

Simple computations implies that

D1 =
{

(2x2 − 1, x2)
� | 0 � x2 � 1

3

}

and D2 =
{
(−1,−1)�

}
.

Therefore, (56) can be rewritten as

min

{

min
0�x2� 1

3

|2x2 − 1|p + |x2|p, 2
}
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Fig. 2 Objective functions of (58), being all concave over closed interval [0, 1
3 ]; among three specific p

values, p∗ is the constant that is claimed in our main results in Sect. 3

= min

{

min
0�x2� 1

3

(1 − 2x2)
p + x p

2 , 2

}

. (57)

Consider the subproblem in (57):

min (1 − 2x2)
p + x p

2 s.t. 0 � x2 � 1

3
. (58)

When 0 < p < 1, problem (58) is a one-dimensional concave minimization problem
over a closed interval (see Fig. 2); the corresponding objective values at the endpoints
0 and 1

3 are 1 and 2
( 1
3

)p
, respectively. Hence, (57) is equivalent to

min

{

1, 2

(
1

3

)p

, 2

}

= min

{

1, 2

(
1

3

)p}

. (59)

Note that when x2 = 0, we have x1 = 2x2 − 1 = −1; and when x2 = 1
3 , we have

x1 = 2x2 − 1 = − 1
3 ; that is, the candidate optimal points are (−1, 0)� and ( 13 ,

1
3 )

�.
However, we desire the point (−1, 0)� as an optimal solution to (55), meanwhile, as
a (sparsest) optimal solution to the original problem (54). Hence we need the value of
objective function of problem (55) at (−1, 0)� is strictly smaller than that at ( 13 ,

1
3 )

�.
That is, we look forward to 1 < 2( 13 )

p; we derive 0 < p < ln 2
ln 3 . Then, we find

p∗ = ln 2
ln 3 .

In sum, there exists p∗ = ln 2
ln 3 such that for any p with 0 < p < p∗, an optimal

solution to nonconvex relaxation problem (55) is (−1, 0)T , which is also an optimal
solution to the original problem (54). This confirm our results obtained in Sect. 3.
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Fig. 3 Objective functions of (63), being all concave over closed interval [0, 1
3 ]; among three specific p

values, p∗ is the constant that is claimed in our main results in Sect. 3

Case 2. We take f (t; p) = t
t+p ∈ F (t; p), and consider nonconvex relaxation

problem

min
x∈R2

( |x1|
|x1| + p

+ |x2|
|x2| + p

)

s.t. |x1 − 2x2| = 1, 2x1 − x2 � −1, ‖x‖∞ � 1.

(60)

The feasible set is same as Case 1 (see Fig. 1). Hence, problem (60) is equivalent to

min

{

min
x∈D1

( |x1|
|x1| + p

+ |x2|
|x2| + p

)

, min
x∈D2

( |x1|
|x1| + p

+ |x2|
|x2| + p

)}

. (61)

Therefore, (61) can be rewritten as

min

{

min
0�x2� 1

3

|2x2 − 1|
|2x2 − 1| + p

+ |x2|
|x2| + p

,
2

1 + p

}

= min

{

min
0�x2� 1

3

1 − 2x2
1 − 2x2 + p

+ x2
x2 + p

,
2

1 + p

}

. (62)

Consider the subproblem in (62):

min f (x2) = 1 − 2x2
1 − 2x2 + p

+ x2
x2 + p

s.t. 0 � x2 � 1

3
. (63)

When 0 < p < 1, problem (63) is a one-dimensional concave minimization problem
over a closed interval (see Fig. 3); the corresponding objective values at the endpoints
0 and 1

3 are 1
1+p and 2

1+3p , respectively. Hence, (62) is equivalent to
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min
x2∈{0, 13 }

{

f (0) = 1

1 + p
, f

(
1

3

)

= 2

1 + 3p
,

2

1 + p

}

= min
x2∈{0, 13 }

{
1

1 + p
,

2

1 + 3p

}

.

(64)

Note that when x2 = 0, we have x1 = 2x2 − 1 = −1; and when x2 = 1
3 , we have

x1 = 2x2 − 1 = − 1
3 ; that is, the candidate optimal points are (−1, 0)� and ( 13 ,

1
3 )

�.
However, we desire the point (−1, 0)� as an optimal solution to (55), meanwhile, as
a (sparsest) optimal solution to the original problem (54). Hence we need the value of
objective function of problem (55) at (−1, 0)� is strictly smaller than that at ( 13 ,

1
3 )

�.
That is, we look forward to 1

1+p < 2
1+3p ; we derive 0 < p < 1. Then, we find p∗ = 1.

In sum, there exists p∗ = 1 such that for any p with 0 < p < p∗, an optimal
solution to nonconvex relaxation problem (60) is (−1, 0)T , which is also an optimal
solution to the original problem (54). This confirms our results obtained in Sect. 3.

Remark 4.1 From the two cases discussed above, we not only confirmed the validness
of one of our results, but also observed that for different types of nonconvex relaxation
approaches, we derived different values of constant p∗, which are not too small to
exceed the range of applications.

Additionally, if we solve the following �1-norm minimization problem

min
x∈R2

‖x‖1 s.t. |x1 − 2x2| = 1, 2x1 − x2 � −1, ‖x‖∞ � 1, (65)

then we obtain a unique solution (− 1
3 ,

1
3 )

T , which is not one solution of the original
problem (54). This implies that the solution of �0-norm minimization problem (54)
can not be obtained by solving the corresponding �1-minimization (65).

5 Conclusions

In this paper, we studied a partially sparsest optimization problem, whose feasible set
is a union of finite polytopes, via its nonconvex relaxation method in terms of a class
of concave functions with a parameter p. We discussed the relationship between its
optimal solution set and the optimal solution set of its nonconvex relaxation problem.
We showed that there is a positive constant parameter p∗ � 1 such that any optimal
solution to the nonconvex relaxation with any given parameter 0 < p < p∗ is also
an optimal solution of the original sparse optimization problem. It is possible that an
analytic expression of such a constant p∗ could be derived. In addition, it is important to
design an effective algorithm for solving the nonconvex relaxation.These are important
issues to be studied in the future.
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