
Mathematical Methods of Operations Research (2019) 89:1–42
https://doi.org/10.1007/s00186-018-0653-1

ORIG INAL ART ICLE

Computation of weighted sums of rewards for concurrent
MDPs

Peter Buchholz1 · Dimitri Scheftelowitsch1

Received: 21 August 2017 / Accepted: 17 October 2018 / Published online: 31 October 2018
© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Abstract
We consider sets of Markov decision processes (MDPs) with shared state and action
spaces and assume that the individual MDPs in such a set represent different scenarios
for a system’s operation. In this setting, we solve the problem of finding a single policy
that performs well under each of these scenarios by considering the weighted sum of
value vectors for each of the scenarios. Several solution approaches as well as the
general complexity of the problem are discussed and algorithms that are based on
these solution approaches are presented. Finally, we compare the derived algorithms
on a set of benchmark problems.

Keywords Markov decision processes · Optimization · Multi-objective
optimization · Non-linear programming

1 Introduction

Markov decision processes (MDPs) are commonly used in modeling probabilistic
state-based systems with non-deterministic controller actions where the goal is to find
a control policy that optimizes some time-based reward measure. Briefly, a Markov
decision process describes a Markov chain with inputs that are called actions and
rewards that make it possible for a controller to, first, control the evolution of the
Markov chain and, second, assess its performance. The controller can then define a
policy which selects the right action and, thus, defines a Markov chain with rewards.
The existing theory allows one to compute optimal policies for Markov decision pro-
cesses with respect to various reward measures, such as expected discounted reward,
expected average reward, or expected finite-horizon reward (Puterman 2005). Here,

B Peter Buchholz
peter.buchholz@tu-dortmund.de

Dimitri Scheftelowitsch
dimitri.scheftelowitsch@tu-dortmund.de

1 Informatik IV, TU Dortmund, Dortmund, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00186-018-0653-1&domain=pdf
http://orcid.org/0000-0002-9966-7686

2 P. Buchholz, D. Scheftelowitsch

the expected discounted reward measure is considered, that is, given a discount factor
γ ∈ [0, 1), we weight the reward from the i th step in the future with γ i , and compute
the expected sum of discounted rewards.

The general theory of MDPs is well established and applied in various branches of
operations research or artificial intelligence. Several textbooks (Feinberg and Schwartz
2002; Puterman 2005; Sigaud and Buffet 2010) and tutorial papers (White and White
1989) on the subject exist. The final goal is to find an optimal control strategy for
a system using the optimal policy resulting from the MDP. However, MDPs, like
many other models, are an abstract image of reality which is superposed by several
levels of uncertainty. This is reflected in a limited knowledge of the exact values of
transition probabilities or rewards. A wide variety of approaches exists to consider
uncertainty in MDPs (see the overview in Sect. 1.1). Often uncertainty is coded in
the model and then the modified model is analyzed with some assumptions in mind,
e.g., being pessimistic or optimistic with respect to the realization of uncertainty. The
resulting formalisms that capture additional uncertainty in MDPs share the general
property that the computational complexity of finding an optimal policy becomes
higher when compared to a “plain” MDP, as it is, for example, the case with stochastic
games (Björklund and Vorobyov 2007).

In this paper, we present a specific approach to introduce uncertainty in MDPs by
so-called scenarios. A scenario is one possible realization of uncertainty and may
result from possible realizations of a system or some observation of a system or from
a simulation model. Each scenario defines a new transition probability matrix for an
action in the MDP and the complete information specifies a multi-scenario MDP.
In this work, we shall concentrate on the weighted optimization problem for this
class of models. Formally, this means to compute, given a set of K Markov decision
processes with common state and action spaces (but different transition probabilities
and rewards) and K weight coefficients, a policy that optimizes the weighted sum of
expected discounted rewards assuming that the policy has to be selected before the
scenario which finally occurs is known.

This problem can be interpreted in a different way as follows: given a probability
distribution on Markov decision processes denoted as scenarios, compute a policy
that optimizes the expected discounted reward, without knowing the scenario which
is finally realized. This is often denoted as non-anticipative behavior in stochastic
optimization (Colvin and Maravelias 2010). We will later show that, on the one hand,
this problem is hard to solve but, on the other hand, simple heuristic optimization
approaches usually yield optimal or almost optimal results. Before we outline the rest
of the paper and introduce our approach, a short overview of related work is given.

1.1 Related work

As already mentioned, there is an enormous amount of work that has been published
to describe uncertainty in MDPs. Consequently, we can only give a short summary of
approaches that are related to our approach and we briefly outline the differences.

123

Computation of weighted sums of rewards. . . 3

Multi-scenario problems The use of scenarios is one possibility to describe uncer-
tainty. In this case, examples for the realization of uncertainty are given instead of
characterizing the whole uncertainty set. Scenarios are commonly used in two-stage
or multi-stage stochastic programming (Rockafellar and Wets 1991; Dupacová et al.
2000). In this setting it is usually assumed that information about the realization of
a specific scenario is gained over time. Thus, future decisions can take into account
additional information by, for example, reducing the set of possible scenarios. This
is different from our approach where we assume that a policy has been selected in
advance before any information about the concrete scenario becomes available.

Scenarios inMDPs arementioned in Nilim andGhaoui (2005, Sect. 7.1) as a simple
uncertainty model. In contrast to the scenarios defined here, it is assumed that the sce-
narios observe the (s, a)-rectangularity property, i.e., they are defined independently
for every state-action pair. Concrete application examples for the use of scenarios are
product line design problems (Bertsimas andMišić 2017) where finitely many models
for customer behavior are considered, healthcare decision making (Bertsimas et al.
2016), where different screening strategies to detect cancer are available, and project
scheduling (Mercier and Hentenryck 2008) where different projects are described by
Markov chains. The combination of scenarios and partially observable MDPs is con-
sidered in Walraven and Spaan (2015) in the context of planning problems. If one
cannot distinguish the current scenario during operation of the system or decisions
cannot anticipate the scenario, one has to find a policy that behaves well in all scenar-
ios. This is different from the computation of robust policies which behave good in
the worst case but may have a bad performance in the average case.

In our case, every scenario defines its own MDP but all MDPs are coupled by
a single policy. The same model has been concurrently developed by Steimle et al.
(2018) under the name multi-model MDP. However, Steimle et al. (2018) considers
optimal policies for finite horizons whereas we consider optimal stationary policies
for discounted infinite horizons. Both problems are shown to be NP-hard. The optimal
policy in the finite horizon case depends on the current time step and is shown to be
deterministic in Steimle et al. (2018), whereas the optimal stationary policy for the
infinite horizon case can be randomized and strictly better than any deterministic policy
as shown here. This is similar to partially observable MDPs where the optimal policy
can also be randomized (Singh et al. 1994). This interesting relation has also been
recognized in Steimle et al. (2018, Sect. 4). Another difference between (Steimle et al.
2018) and this paper are the heuristic algorithms proposed for approximate policies,
Steimle et al. (2018) uses an extension of value iteration based on the mean value
relaxation of the original problem whereas we propose an approach based on policy
iteration on the unrelaxed problem with a guaranteed local convergence.

Furthermore, a similar model has been considered in Raskin and Sankur (2014),
however, in a model-checking context of reachability, safety, and parity properties.
The results in Raskin and Sankur (2014) show that the qualitative model-checking
problems (such as limit-sure reachability) can be solved efficiently while the quan-
titative problems (such as quantitative reachability and safety) are NP-hard, which
corresponds to the hardness results in Steimle et al. (2018) and this paper.

Multi-scenario optimization problems can be interpreted as multi-objective opti-
mization which amounts to optimizing given functions f1(x), . . . , fK (x) subject to

123

4 P. Buchholz, D. Scheftelowitsch

x ∈ X simultaneously. As multi-dimensional spaces can only be partially ordered in
a “natural” way, there may exist multiple incomparable optimal solutions. Hence, for
multi-objective problems, several approaches are known including the computation
of the Pareto frontier, the generation of the convex hull of Pareto optimal solution, the
analysis whether a solution exceeds a lower bound and the computation of a weighted
sum of function values (Ehrgott 2005). Among these problems, the weighted opti-
mization problem is often the simplest one. Furthermore, the computation of optimal
policies for different weight vectors is the central step to characterize the convex hull
of Pareto optimal solutions (Roijers et al. 2014).

MDPswith uncertainties Scenarios are only oneway of expressing parameter uncer-
tainty. Parameter uncertainty inMDPs has been discussed in amore general context for
more than 40 years by various authors. Early references are Satia and Lave (1973) and
White and Eldeib (1994). Givan et al. (2000), Iyengar (2005), Klamroth et al. (2013),
Nilim and Ghaoui (2005) and Wiesemann et al. (2013) are more recent and impor-
tant publications. Different forms of representing uncertainty have been proposed.
Usually, so-called uncertainty sets of the transition probabilities for the underlying
Markov chain and sometimes also the set of rewards are defined. These sets then
characterize a usually infinite and not even countable set of MDPs. Very often the
optimization problem is then interpreted as a robust optimization problem. Mathemat-
ically, robust optimization means finding a policy that maximizes the rewards under
the worst possible realization of uncertainty; that is, we solve a problem of the type
maxx∈X miny∈Y f (x, y). It is intuitive that robust mathematical programs are much
harder than simple maximization problems. However, in some cases, like for Bounded
Parameter MDPs, it is still possible to find optimal policies efficiently (Givan et al.
2000). In contrast to our approach with a fixed number of scenarios, the uncertainty
sets define an infinite and usually not countable set of transition kernels. However, the
minimum operator usually maps this continuous set on a finite set of optimal transi-
tion kernels which then have to be considered in the maximum operation. From this
perspective, one can consider the robust problem as a two-stage optimization problem
where a scenario-based approach is applied after the inner optimization problem has
been solved or an approximate solution for this problem is known. Usually the robust
problem is solved for the discounted reward over an infinite horizon.

Concerning the theoretical assumptions behind most MDP problems with uncer-
tainties about the model parameters, we refer to the work of Iyengar (2005). There, the
(s, a)-rectangularity property is defined as a generally desirable property of uncer-
tainty sets for transition probabilitymatriceswhich, intuitively, amounts to separability
of the uncertainty set into a product of uncertainty sets of transition probability vectors
for each state and each action. Under this assumption, robust policies for MDPs are
studied and it is shown that robust policies are pure and can be computed with an
effort only modestly larger than the effort of computing optimal policies in MDPs
(for details see Iyengar 2005). It is important to note that this assumption holds for
the uncertainty models in Givan et al. (2000), Nilim and Ghaoui (2005), Satia and
Lave (1973) andWhite and Eldeib (1994). The most prominent uncertainty model are
intervals such that rows of the transition matrix are chosen from sets of probabilistic
vectors which are defined by lower and upper bounds for the elements (Givan et al.

123

Computation of weighted sums of rewards. . . 5

2000). Other uncertainty models are a Bayesian formulation (Satia and Lave 1973),
likelihood or entropy models (Nilim and Ghaoui 2005).

The (s, a)-rectangularity property has been extended in Wiesemann et al. (2013)
to an s-rectangularity property. This intuitively means that dependencies between
the uncertain parameters for different decisions in a single state are allowed. It can
be shown that for convex uncertainty sets observing the s-rectangularity property,
a stationary randomized policy can be found that minimizes the discounted reward.
Computation of the optimal policy is harder than for uncertainty sets having the (s, a)-
rectangularity property but the effort remains polynomial for convex uncertainty sets
and the robust results can be much better as the uncertainty is constrained. However,
in Wiesemann et al. (2013) it is also shown that without rectangularity, the problem
becomes hard to solve.

Concerning applications of robust MDP models, we refer to a discussion of robust
multi-armed bandit problems which have been transformed into MDPs with uncertain
parameters observing the rectangularity property (Caro and Das-Gupta 2015), and to
the work on product line design problems under model uncertainty (Bertsimas and
Mišić 2017).

Stochastic games The maxmin problems mentioned above can also be interpreted
as stochastic games with two players. MDPs with uncertainty can be interpreted in
this way by assuming that two players which decide in an alternating sequence and
one player is trying to minimize the goal function whereas the other one tries to
maximize it (Filar and Vrieze 1997). Therefore the approach becomes similar to the
robust optimization of MDPs with uncertainties.

Partially observable MDPs The scenario based perspective can also be interpreted
as a variant of partially observable MDPs (Kaelbling et al. 1998), where the controller
may have only indirect information about the exact state, such as that the state belongs
with some probability to a subset of states. Partially observable Markov decision
processes have more expressive power and thus high computational solution cost in
the general case (Papadimitriou and Tsitsiklis 1987). Here, on the other hand, we have
a very specific form of uncertainty since we know that the uncertainty set consists of
finitely many possible realizations only.

Coupled MDPs Different MDPs that are combined by coupling constraints are
considered for example in Singh and Cohn (1997) to analyze parallel tasks. These
models differ from scenario based models because the state and action space of the
coupled model consists of the cross product of the MDPs which is different from the
scenario based approach where a single state and action space are considered.

Optimization methods Since a major aspect of this paper is the finding of effi-
cient methods to compute or approximate the optimal policy and reward for combined
MDPs, we briefly review optimization methods which are relevant for our work. Stan-
dard methods for MDPs can be found in Puterman (2005). Convex problems have
been discussed in the book of Nesterov and Nemirovskii (1994), further methods of
interest are mixed-integer programming (Vielma 2015) and quadratically constrained

123

6 P. Buchholz, D. Scheftelowitsch

quadratic programming (Qualizza et al. 2012). Specifically for Markov decision prob-
lems, quadratic programming methods have been proposed in Amato et al. (2007).
The relationship between robustness and multi-objective problems has been explored
in the work of Klamroth et al. (2013).

1.2 Contribution of the paper

The class of concurrent MDPs is defined in this paper. It is based on a finite set of
different scenarios which define different transition kernels. The goal is to find a com-
mon policy that minimizes or maximizes the weighted sum of rewards if applied to
the concurrent MDPs. The approach assumes that the policy has to be found with-
out knowing the scenario. Weights may be interpreted as probabilities that scenarios
occur and the expected discounted reward is optimized. The resulting problem is dif-
ferent from two-stage or multi-stage problems, where information about the scenario
becomes available during optimization. Problems of the form considered in this paper
are important for situations where decisions have to be made beforehand and cannot
be modified later when the scenario is known or can be estimated. This is for example
the case for decisions made in the planning phase when the coming demands can only
be estimated or during the design of a vaccine with only statistical information about
future virus variants.

In contrast to Nilim and Ghaoui (2005), where scenarios observe the (s, a)-
rectangularity property, scenarios here are general. This allows us to capture also
those cases, where the parameters are defined for some model which is a high level
description of an MDP. In this case, a single parameter, like the service rate of a
queue, appears several times in the transition matrix and has to have the same value
for each appearance. This property cannot be described by uncertainty sets that observe
s-rectangularity or (s, a)-rectangularity.

The price for introducing this more general form of uncertainty is an increase in the
complexity of the resulting optimization problem which is shown to be NP-hard. We
will present five different algorithms to compute or approximate the optimal weighted
sum of rewards for the concurrent MDPs under a common policy. These algorithms
belong to three different classes, namely integer linear programming (ILP), non-linear
programming (NLP) and problem-specific local search heuristics. The algorithms are
compared empirically by means of several examples. The experiments show that non-
linear programming approaches, which might be the natural choice for problems like
the one we consider here, often show the worst performance and have convergence
issues whereas the problem-specific local search heuristics are guaranteed to find local
optima and are much more efficient than general non-linear programming algorithms.
A second finding is that, even if the problems are non-convex and pure policies are
not sufficient in general, the best pure policy is most times as good as the best general
policy computed by a non-linear programming algorithm or by a local search heuristic.
Furthermore, it is shown how the best pure policy can be computed from an integer
linear program.

123

Computation of weighted sums of rewards. . . 7

1.3 Structure of the work

The formal problem statement is given in Sect. 2, and its mathematical structure is
explained and discussed in Sect. 3. Before we dive into optimization approaches,
we briefly discuss complexity aspects in Sect. 3.1 (with a proof in “Appendix B”).
In Sect. 4, we propose several approaches to solving the optimization problem; the
practical evaluation of these algorithms is given in Sect. 5. Finally, Sect. 6 summarizes
the work done and gives ideas for future research.

1.4 Notation

Over the course of this work, we shall use a couple of custom notation conventions
for brevity and clarity purposes. In particular, multi-dimensional identifiers such as
vectors and matrices are written in bold script, such as v or M; furthermore, matrices
are capitalized. To access the individual rows of amatrixM , we use theM(i•) notation
to identify the i th row of M. Analogously, the j th column is identified by M(• j).

We also shall use some special identifiers for sets and constants.B is the set {0, 1}, 0
is, depending on the context, a matrix or a row vector of zeros (in case of ambiguity,
the exact meaning is given), and 1 is a column vector of ones; in some cases, we shall
write 1n to clarify that the vector has n dimensions. ei is the i th basis row vector. For
sets of multi-dimensional values over some set K we shall use Kn×m to designate the
set of matrices with n rows andm columns where each entry is inK. IN is the identity
matrix of dimension N .

At some points in this work, Kronecker matrix-analytic operators will be used. We
designate by ⊗ the Kronecker product.

2 Basic problem

We consider a set M of Markov decision processes (MDPs) with a joint finite state
space S and a joint finite action space A. Let K be the number of MDPs, N be the
number of states and M be the number of actions. We identify the sets by consecutive
integers, i.e., M = {1, . . . , K },S = {1, . . . , N } and A = {1, . . . , M}. Each MDP
k ∈ M is defined by

(S,α,
(
Pa
k

)
a∈A , rk

)

where α ∈ R
1×N
≥0 with α1 = 1 is the common initial distribution,

Pa
k =

⎛

⎜
⎝

Pa
k (1•)
...

Pa
k (N•)

⎞

⎟
⎠ where Pa

k (i•) ∈ R
1×N
≥0 , Pa

k (i•)1 = 1

123

8 P. Buchholz, D. Scheftelowitsch

is the stochastic transition matrix for action a ∈ A, and rk ∈ R
N×1
≥0 are the non-

negative reward vectors. Furthermore, we assume a given discount factor γ ∈ (0, 1).
Here, we consider rewards that are not action-dependent; this does not impose a

limitation with respect to modeling power but does simplify some of the mathematical
derivations. MDPs with action-dependent rewards can be transformed into equivalent
MDPs with rewards that depend only on the state by enlarging the state space. This is
formally shown in “Appendix A”.

We consider stationary policies which can be represented by N × M matrices

Π =
⎛

⎜
⎝

π1
...

πN

⎞

⎟
⎠ where π i = (π i (1), . . . ,π i (M)) ∈ R

1×M

and π i (a) is the probability of choosing a ∈ A in state i ∈ S. We have π i (a) ≥ 0
and

∑
a∈A π i (a) = 1. If for all i ∈ S it is π i (ai) = 1 for some ai ∈ A, the policy

is pure or deterministic otherwise it is randomized. We shall identify policies by the
corresponding N × M matrices. In theory, a pure policy could be represented by a
vector of length N which contains in position i the action chosen in state i ; however,
for the sake of uniformity in the mathematical formalism we will use a more general
notation. Let P be the set of stationary policies and Ppure the set of pure policies.
Policy Π defines for MDP k ∈ M a stochastic transition matrix

PΠ
k =

⎛

⎜
⎝

∑M
m=1 π1(m)Pm

k (1•)
...

∑M
m=1 πN (m)P j

k (N•)

⎞

⎟
⎠ .

Define CΠ
k = I − γ PΠ

k with discount factor γ ∈ (0, 1). CΠ
k is a non-singular M-

matrix. The inverse matrix C
Π

k = (
CΠ
k

)−1
exists and is non-negative (Berman and

Plemmons 1994). The discounted gain for policy Π and discount factor γ ∈ (0, 1) is
given by

gΠ
k = C

Π

k rk and GΠ
k = αgΠ

k . (1)

gΠ
k is the value function or value vector of the policy Π for scenario k and GΠ

k is
denoted as the (scalar) gain ofΠ for scenario k under initial distribution α. For further
details about MDPs we refer to Puterman (2005); the expected discounted reward
criterion is covered in Chapter 6 of the textbook.

A set of MDPs of the above form is denoted as a set of concurrent MDPs. We
consider the computation of the weighted discounted gain for some weight vector
w ∈ R

1×K
≥0 with wT1 = 1 which is given by

123

Computation of weighted sums of rewards. . . 9

G∗(w) = max
Π∈P

(
K∑

k=1

w(k)GΠ
k

)

and Π∗ = arg max
Π∈P

(
K∑

k=1

w(k)GΠ
k

)

(2)

which can be considered a stochastic programming problem (Ruszczyński and Shapiro
2009, Chapter 1) as shown in the following section.

If we consider a single MDP k ∈ M, then

G∗
k = max

Π∈P

(
GΠ

k

)
and Π∗

k = arg max
Π∈P

(
GΠ

k

)
. (3)

Π∗
k is not necessarily unique but it is known that a pure policy exists with gainG

∗
k (Put-

erman 2005).

3 Mathematical structure of the optimization problem

We begin with the computation of an optimal policy for a single MDP. The optimal
policy and value vectors can then be computed from a linear program (LP). Thus, the
optimal gain for (3) results from the LP (Puterman 2005, Section 6.9.)

min
gk∈RN×1

(
αgk

)
subject to

⎛

⎜
⎝

(
I − γ P1

k

)

...(
I − γ PM

k

)

⎞

⎟
⎠ gk ≥ 1M ⊗ rk . (4)

The LP has N variables and NM constraints. All variables are real-valued, which
makes usage of standard LP solving techniques possible. The resulting vector gk is the
value function of the optimal policy. It is important to note that none of the variables in
the linear program is a decision variable in the sense that it directly reflects a controller’s
action; the decisions are only indirectly visible. Concretely, in an optimal solution, the
constraint for state i and action a is tight, i.e., it is (ei − γ Pa

k (i•))gk(i) = rk(i) if
action a is selected in state i .1 The dual LP is given, following d’Epenoux (1963), by

max f k∈RMN×1 f Tk (1M ⊗ rk)

subject to
((

I − γ P1
k

)T · · · (I − γ PM
k

)T)
f k = αT and f k ≥ 0.

(5)

The optimal gain G∗
k and a corresponding optimal pure policy Π∗

k can be computed
from the LP or its dual. However, to compute the global optimumG∗(w), the LPs have
to be coupled, resulting in a non-linear program. To define the non-linear program we
first define for i ∈ S, k ∈ M the matrices

1 This corresponds also to the corresponding slack variable being zero.

123

10 P. Buchholz, D. Scheftelowitsch

Ai
k =

⎛

⎜
⎝

ei − γ P1
k(i•)

...

ei − γ PM
k (i•)

⎞

⎟
⎠ and vectors αk = w(k)α. (6)

Then every matrix CΠ
k can be represented as

CΠ
k =

⎛

⎜
⎝

π1A1
k

...

πN AN
k

⎞

⎟
⎠ .

We now derive a non-linear program for the global optimization problem. Equation (4)
can be equivalently formulated as

min
Π∈P

(
αgk

)
subject to π i Ai

k gk = CΠ
k (i•)gk ≥ rk(i) for all i ∈ S. (7)

To see this, let g∗
k be the minimal solution of (4). Then

a∗
i = argmin

a∈A
(
Ca
k (i•)g∗

k

)

exists for 1 ≤ i ≤ N , but must not be unique. By selecting π i (a∗
i) = 1, the vector g∗

k
becomes the solution of CΠ

k g∗
k = rk and g∗

k becomes a feasible solution of (7). This
solution is also optimal because every feasible solution gk has to observe

M∑

m=1

π i (m)Cm
k (i•)gk ≥ rk

for each i ∈ S which implies that the choice of the minimum among a ∈ A results in
the smallest vector gk . Observe that the vector gk depends onΠ due to the constraints.
We do not use Π as an additional index for gk to avoid an overloading of notation.

The reformulation of the LP into an NLP (due to the dependencies between gk and
Π) is of no use for single problems but allows one to describe the coupling of MDPs
via a common policy. The following formulation describes the weighted optimization
problem for concurrent MDPs.

maxΠ∈P
(
mingk∈RN×1

∑
k∈M αk gk

)

subject to ∀k ∈ M,∀i ∈ S,∀a ∈ A :
π i Ai

k gk = CΠ
k (i•)gk ≥ rk(i),

M∑

m=1
π i (m) = 1, π i (a) ≥ 0.

(8)

It follows from (7) that each feasible vector gk forMDP k has to observe the constraints.
Furthermore it has to be the minimal solution that observes the constraints. The outer
maximum operator assures that the maximum of the weighted sum is computed. Vec-

123

Computation of weighted sums of rewards. . . 11

tors αk encode, by their definition in (6), the weights w(k). The optimization problem
has a linear goal function but bilinear constraints which usually define a non-convex
feasible region.

The NLP for the dual program can be formulated as

maxΠ∈P
(
maxhk∈RN×1(hk)T rk

)

subject to ∀i ∈ S :
M∑

m=1

N∑

l=1
π i (m)Al

k(m, i)hk(l) = (CΠ
k (•i))T hk = α(i) and hk(i) ≥ 0.

(9)

To show the equivalence to (5) let f ∗
k = ((f 1k)T , . . . , (f Mk)T

)T
be an optimal solution

of the dual problem. Then define hk = ∑M
j=1 f j

k and π i (j) = f j
k (i)/hk(i). Then

hk ≥ 0 and

(
CΠ
k

)T
hk =

M∑

m=1

⎛

⎜
⎝

⎛

⎜
⎝

π1(m)

. . .

πN (m)

⎞

⎟
⎠
(
I − γ Pm

k

)
⎞

⎟
⎠

T

hk

=
M∑

m=1

(
I − γ Pm

k

)T

⎛

⎜
⎝

π1(m)

. . .

πN (m)

⎞

⎟
⎠ hk

=
M∑

m=1

(
I − γ Pm

k

)T f mk

= α

which shows that hk is a feasible solution for the NLP. To show that the solution is also
maximal, we assume that a solution ĥk and a policy Π̂ exist such that the constraints

of (9) are observed and (ĥk)T r π̂
k > (hk)T rk . Then define f̂

j
k (i) = π̂ i (j)ĥk(i), which

observes the constraints of (5) and is therefore a feasible solution for the dual LP. Then
∑M

j=1(f̂
j
k)

T rk = (ĥk)T rk ≤ ∑M
j=1(f

j
k)

T rk = (hk)T rk because f ∗
k is assumed to

be optimal which implies that ĥk cannot exist and hk is an optimal solution of (9).
The NLP for the combined MDPs becomes

maxΠ∈P
(
maxhk∈RN×1

K∑

k=1
(hk)T rk

)

subject to ∀k ∈ M,∀i ∈ S,∀a ∈ A :
M∑

m=1

N∑

l=1
π i (m)Al

k(m, i)hk(l) = (CΠ
k (•i))T hk = αk(i),

M∑

m=1
π i (m) = 1, π i (a) ≥ 0, hk(i) ≥ 0.

(10)

Observe that hk(i) reflects the mean discounted number of visits in state i of MDP k
if the process starts with initial probability α and MDP k is chosen with probability
w(k).

123

12 P. Buchholz, D. Scheftelowitsch

Both problems (8) and (10), belong to the class of non-convex quadratically con-
strained linear programs (QCLP) (Amato et al. 2007) which are a subset of the more
general class of quadratically constrained quadratic programs (QCQP) and have some
specific properties that can be exploited in optimization algorithms.

3.1 Computational complexity

We now briefly show that the general problem is NP-hard which means that it is
commonly agreed that no efficient algorithms exist for this kind of problems. First a
decision variant of the optimization problem for concurrent MDPs is defined and then
it is shown that this problem is NP-complete.

Definition 1 (Decision problem) Given a set of concurrent MDPsM and real (repre-
sented with O (NMK) bits) vectors and numbers w ∈ R

K , g ∈ R, decide if there is
a policy Π ∈ P such that

∑K
k=1 w(k)GΠ

k ≥ g.

The first part of our NP-completeness proof is to show that the given problem is,
in fact, in NP. One can see that the representation of a stationary policy is polynomial
as long as the representation of a real number is assumed to consumeO (NMK) bits.
Then one can define a non-deterministic algorithm that guesses a policy by guessing
O (NMK × NM) bits that represent NM real numbers which define a policy Π and
then verifies if Π fulfills the relation above.

Now we can prove the more interesting part of the completeness statement.

Theorem 1 The decision problem defined in Definition 1 is NP-complete.

Theproof canbe found in “AppendixB”. It is basedon the reductionof 3-SAT (Garey
and Johnson 1978) to the above decision problem with two concurrent MDPs.

4 Computation of optimal policies and rewards

Theorem 1 shows that algorithms to compute the optimal policy either require a
potentially very long time or stop prematurely with a non-optimal and thus approxi-
mate solution, if a feasible solution has been found at all. We introduce five different
approaches to approximate or compute the optimal policy and value vectors and ana-
lyze afterwards their performance.

4.1 A solution approach using amixed integer linear program

If we restrict the policies to Ppure, then the problem can be formulated as a Mixed
Integer Linear Program (MILP). In this caseΠ is a N×M matrix inBwith one element
equal to 1 in each row. The MILP solution uses the dual version of the problem given
in (5) and (10).

123

Computation of weighted sums of rewards. . . 13

We first define some vectors and matrices. Let

dT = (1T
M ⊗ (r1)T , . . . ,1T

M ⊗ (rK)T
) ∈ R

1×KMN ,

Bk =
((

I − γ P1
k

)T
, . . . ,

(
I − γ PM

k

)T) ∈ R
N×NM ,

B =
⎛

⎜
⎝

B1
. . .

BK

⎞

⎟
⎠ ∈ R

K N×KMN ,

b = (α1, . . . ,αK)T ∈ R
K N×1,

yT = ((y11)T , . . . , (yM1)T , (y12)
T , . . . , (yMK)T

) ∈ R
1×KMN where y jk ∈ R

N×1,

π = (π1, . . . ,πN) where πn ∈ B
1×M .

(11)

The variable ymk (n) describes the discounted number of decisionsm in state n of MDP
k and characterizes the product πn(m)hk(n). For the optimal policy Π∗ the corre-
sponding vectors are y∗

k . The introduction of additional variables for products is a
common approach for bilinear functions (Qualizza et al. 2012). The integer optimiza-
tion problem for the computation of the optimal policy is then defined by

max y∈RKMN×1 dT y
subject to ∀m ∈ {1, . . . , M},∀k ∈ {1, . . . , K },∀n ∈ {1, . . . , N } :
B y ≤ b,

M∑

m=1
πn(m) = N − 1, πn(m) ymk (n) = 0, y ≥ 0.

(12)

The program is not an ILP since it contains products of Boolean and real variables
πn(m) ymk (n) = 0. However, using a standard trick from ILP modeling (Vielma 2015)
each product of this form can be substituted by an additional constraint

ymk (n) + πn(m)U ≤ U (13)

where U is an upper bound for the value of ymk (n). The value of ymk (n) is the number
of times the system is in state n and action m is chosen multiplied with the weight
w(k). Thus, ymk (n) ≤ hk(n) has to hold. A simple upper bound for hk(n) is (1−γ)−1.
For our ILP solution U = (1 − γ)−1 is used; more sophisticated upper bounds will
be introduced below.

The resulting ILP contains KMN real variables,MN Boolean variables, N equality
constraints, KMN+K N inequality constraints and KMN non-negativity constraints.
Modern ILP solvers in principle allow one to compute a global maximum and a policy
reaching the maximum. However, for larger problem instances, the effort to close the
optimality gap between the best available solution and the computed upper bound
might take a long time.

4.2 Using algorithms for non-convex programs

QCQPs have attracted some attention in the literature and until very recently new
algorithms for local and global optimization have been published (Castillo et al. 2018;

123

14 P. Buchholz, D. Scheftelowitsch

Park and Boyd 2017; Qualizza et al. 2012). Algorithms for global optimization of
QCQPs are based on spatial decomposition of the domain of the variables and apply
mixed integer linear programs (MILPs) to compute bounds for the optimal solution
(Castillo et al. 2018). Unfortunately, spatial decomposition results in an enormous
number of new binary variables in the MILP such that the algorithms can only be
applied for small problem instances as already argued in Park and Boyd (2017) and
thus are not applicable in our context. However, below we adopt some of the ideas
applied in the optimization of general QCQPs for the specific problems resulting from
concurrent MDPs. Here we first consider the use of general optimization algorithms
for non-convex problems which are at most able to compute local optima.

A large number of optimization algorithms for non-convex optimization problems
exist. Usually these algorithms cannot exploit the very specific structure of our prob-
lem. We present here two generic formulations that can be used as input for different
solvers for constrained non-convex problems.

The general representation equals

maxz f (z) with gradient f ′(z)
and the constraints: g(z) = 0 and z ≥ 0.

(14)

f (·) is a scalar function, the other functions are vector-valued functions. The above
representation can be used as input for standard optimization algorithms like fmincon
from MATLAB or sqp from Octave.

Again we solve (10) and define

z =
(
hT1 , . . . , hTK ,π1, . . . ,πN

)T ∈ R
N (K+M)×1.

Then

f (z) =
K∑

k=1

hTk rk, f ′(z) =
(
rT1 , . . . , rTK , 0

)

g(z) =

⎛

⎜
⎜⎜⎜⎜⎜⎜
⎜⎜
⎝

π11 − 1
...

πN1 − 1
(
CΠ
1

)T
h1 − α1
...

(
CΠ

K

)T
hK − αK

⎞

⎟
⎟⎟⎟⎟⎟⎟
⎟⎟
⎠

and z ≥ 0.

The problem contains N (K + M) variables, N (K + 1) equality constraints, and
N (K + M) non-negativity constraints. This formulation of the problem results in
a non-convex QCLP. Our observation is that general optimization algorithms often
show a bad convergence behavior for this kind of problems. The main reason for the
convergence problems of the algorithms seems to be the strong coupling between the

123

Computation of weighted sums of rewards. . . 15

variables inΠ and hk with the equality constraints which often hinders the algorithms
to find a successful search direction for larger problems.

The above problem description contains redundant information because policy Π

completely determines hk . Thiswill nowbe exploited in a reformulation of the problem
with a more complex objective function and less constraints using a problem-specific
reformulation. As already mentioned, for each policy Π, matrix CΠ

k is a non-singular
M-matrix which implies that it has a non-negative inverse. Thus, the gain for policy
Π can be represented as a function f defined on the domain of policy matrices with

f (Π) =
K∑

k=1

αkC
Π

k rk . (15)

To compute the gradient,wehave to consider the change of one element inΠ . Formally,
Π can be interpreted as vector π of length MN . Changing πn(m) by λ means to add
λeTn An

k (m•) = λeTn (en − γ Pm
k (n•)) to CΠ

k . This is a rank-one update such that the
inverse matrix can be computed as in Hager (1989). If Π ′ results from Π by changing
πn(m) += λ (with λ ≤ πn(m)), then

f (Π ′) = f (Π) − λ

K∑

k=1

αkC
Π

k (•n)

(
An
k (m•)C

Π

k rk

1 + λAn
k (m•)C

Π

k (•n)

)

+ o(λ2) (16)

for λ small enough such that the inverse matrix exists. The derivative is computed, as
usual, with limλ→0

f (Π′)− f (Π)
λ

resulting in

∇ f (Π) = −
(

K∑

k=1
αkC

Π

k (•1)A1
k(1•)C

Π

k rk, . . . ,
K∑

k=1
αkC

Π

k (•N)AN
k (M•)C

Π

k rk

)

(17)

and g(Π) = Π1−1. The functions f (Π), f ′(Π) and g(Π) can be used as input for a
non-linear optimization algorithm, and the inequality constraints are no longer needed.
The resulting optimization problem has N simple linear constraints, but a complex
objective function. As it turns out, it usually shows a much better convergence than
the original QCLP, because we can start with a feasible solution, but again, there is
no guaranteed convergence of general optimization algorithms applied to the problem
formulation.

4.3 Step-wise computation of increasing lower bounds

The previous approaches are standard techniques to solve the resulting optimization
problem which reach their limits when problems become larger. The general problem
is non-convex and, therefore, hard to solve. However, we now present a step-wise
approachwhich computes increasing lower bounds resulting in a local optimum. Thus,
we provide problem-specific local optimization heuristics for the problem.

123

16 P. Buchholz, D. Scheftelowitsch

Wefirst introduce the theoretical base before the new algorithm is introduced. Based
on (15) we develop an iterative algorithm. The objective function is linear in hk and

is uniquely determined by the policy Π since hTk = αkC
Π

k . The set of policies P
is a convex set built by N distributions of order M . Let H be the set of all vectors

h = (h1, . . . , hK)T such that hTk = αkC
Π

k for some policy Π. Unfortunately, the set
H does not need to be convex for K > 1 because for two vectors h, h′ ∈ H and some
λ ∈ (0, 1) the convex combination λh+ (1−λ)h′ does not have to belong toH, even
if it can be assured that in each scenario k, the convex combination λhk + (1 − λ)h′

k
can be realized with some stationary policy. The reason is that matrix inversion that
translates between matrices Ck and Ck is non-linear in λ, hence, the required policies
in the scenarios usually differ.Wewill clarify this property bymeans of small examples
in Sect. 5.1. Thus, the best we can expect are local optima which will be computed
next.

We now consider local modifications of a policy Π. Let πn(m) > 0, p ∈
{1, . . . , M}\{m} and λ ∈ [0,πn(m)].Π ′ is the policy which results fromΠ by setting
πn(m) to 0 and adding πn(m) to πn(p). It is easy to show that Π ′ is a valid policy.
Let uk = γ (Pm

k (n•)− P p
k (n•)), then CΠ′

k = CΠ
k −πn(m)eTn uk results from a rank-1

update. For the value of the goal function the following relation holds based on the
modifications due to rank-1 updates in the inverse matrices (Hager 1989):

GΠ′,Π,λ(w) =
K∑

k=1
αkC

Π′,Π,λ

k rk

= GΠ(w) +
K∑

k=1
λ

αkC
Π

k (•n)ukC
Π

k rk

1 − λukC
Π

k (•n)
︸ ︷︷ ︸

gk (λ)

,
(18)

where the tripleΠ ′,Π, λ inGΠ′,Π,λ andC
Π′,Π,λ

k is a short notation forλΠ′+(1−λ)Π

(for 0 ≤ λ ≤ πn(m)). Now define

ζk = αkC
Π

k (•n)ukC
Π

k rk and ηk = ukC
Π

k (•n).

Both values can be negative and positive but ηk < 1/πn(m) holds because it is known
that the inverse matrix exists and CΠ′

k is an M-matrix. Therefore

gk(λ) = λζk

1 − ληk

describes the change of the value vector in the kth component if the policy changes
from Π to λΠ′ + (1−λ)Π. To optimize the gain, the following optimization problem
has to be solved.

max
λ∈[0,πn(m)]

(
K∑

k=1

gk(λ)

)

(19)

123

Computation of weighted sums of rewards. . . 17

The first two derivatives of the functions are given by

g′
k(λ) = ζk

(1 − ληk)2
and g′′

k (λ) = 2ζkηk
(1 − ληk)3

.

The first derivative shows that each function gk(λ) is absolutely monotonic (or con-
stant). The optimum of (19) is either in one of the endpoints, i.e. λ ∈ {0,πn(m)},
or

K∑

k=1

ζk

(1 − ληk)2
= 0 and

K∑

k=1

2ζkηk
(1 − ληk)3

< 0

has to hold. Since the first derivative is a polynomial of degree 2K − 2, the roots can
be computed and checked for optimality.

Let λ∗ be the maximum resulting from (19), then the new policy Π ′ results from
changing πn(m) to πn(m) − λ∗ and πn(p) to πm(p) + λ∗. The resulting value of the
objective function is given by (18).

For some policy Π ∈ P we define

N (Π) = {Π ′|Π′ ∈ P ∧ Π ′ results from Π by a rank-1 update
}

and
N1(Π) = {Π ′|Π′ = Π − λeTn (em − ep) for n ∈ S,m, p ∈ A, λ ∈ (0,πn(m)]} .

Obviously N1(Π) ⊆ N (Π). N1(Π) contains all policies that are considered in (18).
The setsN (Π) andN1(Π) can also be defined for policies from Ppure rather than P .

Theorem 2 If GΠ < GΠ′
for some Π ′ ∈ N (Π), then a policy Π ′′ ∈ N1(Π) exists

such that GΠ < GΠ′′
.

Proof Since Π ′ results from Π by a rank-one update and both matrices describe valid
policies (i.e., they have unit row sums), they can only differ in one row. Assume that
they differ in row n which implies that also CΠ

k and CΠ′
k differ also in row n. Let

c = Π(n•) − Π ′(n•), then it can be represented as c = ∑H
h=1 ch where ch1 = 0

and ch contains only two non-zero elements such that Π − eTn ch ∈ N1(Π). Define

uhk = CΠ
k − C

Π−eTn ch
k , then CΠ′

k = CΠ
k − eTn

∑H
h=1 u

h
k . Then

GΠ′
(w) = GΠ(w) +

K∑

k=1

αkC
Π
k (•n)

(∑H
h=1 u

h
k

)
C

Π
k rk

1−ukC
Π
k (•n)

= GΠ(w) +
H∑

h=1

K∑

k=1

αkC
Π
k (•n)uhkC

Π
k rk

1−ukC
Π
k (•n)

The denominator is always positive because every matrix for a valid policy is an M-
matrix with a non-negative inverse. Thus, it depends on the numerator whether the

123

18 P. Buchholz, D. Scheftelowitsch

new policy has a smaller or larger gain. Since GΠ′
(w) > GΠ(w), for at least one h

the numerator has to be positive which implies

GΠ+eTn ch (w) = GΠ(w) +
K∑

k=1

αkC
Π
k (•n)uhkC

Π
k rk

1−uhkC
Π
k (•n)

≥ GΠ(w)

The inequality holds because the denominator is again positive and the numerator is by
assumption positive. Since ch contains only twonon-zero elementsC−eTn ch ∈ N1(Π)

and GΠ+eTn ch (w) > GΠ(w) which completes the proof. �

Algorithm 1 Local optimization algorithm.

1: function Policy_Opt((αk , A1
k , . . . , A

N
k , rk)k=1,...,K , γ)

2: initialize Π and compute C
Π
k for k = 1, . . . , K ;

3: repeat
4: found = false;
5: for n = 1 : N do
6: for m with πn(m) > 0 do
7: for all p ∈ M\{m} do
8: solve (19) for λ∗;
9: if λ∗ > 0 then
10: πn(m) −= λ∗ and πn(p) += λ∗;
11: update C

Π
k for k = 1, . . . , K using (18);

12: found = true;
13: exit all for-loops;

14: until not found

The previous steps naturally define Algorithm 1, a local optimization algorithm
which can be alternatively formulated as a policy iteration algorithm for the concurrent
MDP. The algorithm computes general stationary policies. It will be shown by the
following examples that it is often sufficient to compute pure policies. Algorithm 2
is an alternative version of the algorithm which searches for a locally optimal pure
policy.

Theorem 3 Algorithm 1 converges towards a policy Π ∈ P which is locally optimal,
i.e., GΠ(w) ≥ GΠ′

(w) for all Π ′ ∈ N (Π).
Algorithm 2 converges towards a policy Π ∈ Ppure which is locally optimal, i.e.,

GΠ(w) ≥ GΠ′
(w) for all Π ′ ∈ N (Π) ∩ Ppure.

Proof We consider Algorithm 1, the proof for Algorithm 2 is similar. The algorithm
starts with a valid policy and transforms a valid policy into another valid policy (line
10) with a larger gain. In the nested for-loops (lines 7–9) all policies from the set
N1(Π) are analyzed, where Π is the current policy under investigation. If a policy
with a larger gain is found, then this policy is selected as current policy. The nested
for loops assure that all policies fromN1 are checked until the first one that improves
the gain is found and the algorithm stops if no policy inN1(Π)with larger gain exists.
By Theorem 2 this implies that no policy with a larger gain exists in N (Π) and Π

123

Computation of weighted sums of rewards. . . 19

Algorithm 2 Local optimization algorithm for pure policies.

1: function Pure_Policy_Opt((αk , A1
k , . . . , A

N
k , rk)k=1,...,K , γ)

2: initialize Π with a pure policy and compute C
Π
k for k = 1, . . . , K ;

3: repeat
4: found = false;
5: for n = 1 : N do
6: for m with πn(m) = 0 and all p ∈ M\{m} do
7: define Π′ by setting πn(m) = 0 and πn(p) = 1;
8: Evaluate (18) for λ = 1;
9: if GΠ′

(w) > GΠ (w) then
10: found = true;
11: exit all for-loops;

12: until not found

is locally optimal. Thus, the algorithm generates an increasing sequence of gains and
the corresponding policies and stops if a locally optimal policy is found. Since the
optimal gain is bounded, convergence to a local optimum is guaranteed. �

The worst case effort of a single policy improvement step in Algorithm 1 is in
O(K N 3M2). The nested for-loops can test up to NM2 candidates for a new policy
and each test has an effort in O(K N 2) to evaluated (18). An improvement step in
Algorithm 2 has a worst case effort of O(K N 3M) because the number of pure policies
in the neighborhood is restricted to N (M − 1) for pure policies. The required number
of improvements to reach a local optimum is in the worst case exponential in the
parameters N , M and K . However, experiments indicate that only a small number of
steps is required to reach a local optimum which is a similar behavior to that of the
simplex algorithm for the solution of LPs.

4.4 Computation of upper bounds

Apart from the MILP solver, all algorithms compute only local optima which are
lower bounds for the global optimum. If a MILP solver stops prematurely after find-
ing at least one feasible solution, then it provides a lower bound resulting from the
best feasible solution and an upper bound resulting from a relaxation of the prob-
lem. Now we present a similar approach by introducing the computation of upper
bounds. These bounds can be combinedwith the local optimization approaches to com-
pute lower bounds. The difference between both bounds is denoted as the optimality
gap.

Bounds are computed from a relaxation of the NLP (9). Let G∗(w) be the optimal
gain, Π∗ an optimal policy for this program and h∗ = (h∗

1, . . . , h
∗
K) the optimal

value vector. As usual we describe policy Π∗ by vectors π∗
i for i ∈ {1, . . . , N }.

Furthermore, we use the variables ymk (n) = πn(m)hk(n). yTk = ((y1k)
T , . . . , (yMk)T)

with ymk = (ymk (1), . . . , ymk (N))T which have already been defined before. For the
optimal policy, value vectors are denoted as y∗

k . The relaxed version of (9) becomes

123

20 P. Buchholz, D. Scheftelowitsch

max y1,... yK

(∑K
k=1(rk)

T
(∑M

m=1 ymk

))

s.t .

⎛

⎜
⎝

B1
. . .

BK

⎞

⎟
⎠

⎛

⎜
⎝

y1
...

yK

⎞

⎟
⎠ =

⎛

⎜
⎝

α1
...

αK

⎞

⎟
⎠ , yk ≥ 0 for 1 ≤ k ≤ K .

(20)

Matrices Bk are defined in (11). (20) defines an LP which is a relaxation of the
NLP because the relation between ymk (n), hk(n) and πn(m) is neglected. The optimal
solution of (20) corresponds to the optimal solutions for the MDPs 1, . . . , K . To
obtain stronger relations, additional constraints have to be added. Assume that bounds
h−
k (n) ≤ h∗

k(n) ≤ h+
k (n) are known. Then the following set of constraints can be

added for k ∈ {1, . . . , K }, n ∈ {1, . . . , N },m ∈ {1, . . . , M} (Qualizza et al. 2012):

h+
k (n)πn(m) − ymk (n) ≥ 0, (1 − πn(m))h+

k (n) −
M∑

r=1,r �=m

yrk(n) ≥ 0

h−
k (n)πn(m) − ymk (n) ≤ 0, (1 − πn(m))h−

k (n) −
M∑

r=1,r �=m

yrk(n) ≤ 0

M∑

m=1

πn(m) = 1, πn(m) ≥ 0 (21)

Experimental evaluations show that it is often sufficient to consider only the first
bound in each of the first two rows. The other two bounds have no or only a minor
effect.

Theorem 4 If h+
k (n) = h∗

k(n) for all k ∈ {1, . . . , K }, n ∈ {1, . . . , N },m ∈
{1, . . . , M}, then the solution of the LP defined by (20) with the additional con-
straints (21) equals G∗(w) and the vectors y∗

k define an optimal policy with π∗
n(m) =

ym∗
k (n)/

∑M
r=1 yr∗k (n).

Proof π∗ and ym∗
k = h∗

k(n)πn(m) fulfill the constraints and define a feasible solution
for the LP. Now assume that another feasible solution πn, hk and yk exists which
results in a larger gain. Then

K∑

k=1

N∑

n=1

rk(n)

M∑

m=1

ymk (n) >

K∑

k=1

N∑

n=1

rk(n)

M∑

m=1

ym∗
k (n)

which implies for some k,m

M∑

m=1

ymk (n) >

M∑

m=1

ym∗
k (n) = h∗

k .

123

Computation of weighted sums of rewards. . . 21

However, due to the additional constraints we have

M∑

m=1

h∗
k(n)πn(m) −

M∑

m=1

ymk (n) ≥ 0 ⇒
M∑

m=1

ym∗
k (n) ≥

M∑

m=1

ymk (n)

which implies that πn cannot exist. �
Theorem 5 If h+

k (n) ≥ h∗
k(n) for all k ∈ {1, . . . , K }, n ∈ {1, . . . , N },m ∈

{1, . . . , M}, then the solution of the LP defined by (20) with the additional constraints
(21) is an upper bound for G∗(w).

Proof Since π∗ and ym∗
k = h∗

k(n)πn(m) fulfill the constraints and define a feasible
solution for the LP, the optimal solution of the LP has to be at least as large as the gain
resulting from this feasible solution. �

Simple bounds for h∗
k(n) are h−

k (n) = 0 and h+
k (n) = (1 − γ)−1. To compute

tighter bounds, we first notice that hk(n) equals the discounted number of visits in
state n ofMDP k, if the process startswith distributionα. Bounds can then be computed
from the following LP problem.

h−
k (n) = w(k) min

y1k ,..., y
M
k

M∑

m=1
ymk (n) and h+

k (n) = w(k) max
y1k ,..., y

M
k

M∑

m=1
ymk (n)

s.t.
((

I − γ P1
k

)T · · · (I − γ PM
k

)T
)
⎛

⎜
⎝

y1k
...

yMk

⎞

⎟
⎠ ≥ αk

(22)

The bounds might be further improved if a solution from one of the local optimiza-
tion algorithms presented in the previous paragraphs is available. LetΠL be the policy
and hL

k the value vector. Then defineGL(w) =∑K
k=1(rk)

T hL
k . Since the upper bound

is at least as large as the best known solution, the following constraint can be added
to the LP problem (22).

(rk)T hk ≥ GL(w) −
K∑

l=1,l �=k

G∗
k(w) (23)

where G∗
k(w) = maxΠ∈P

(
GΠ

k (w)
)
.

For the computation of an upper bound starting from an available locally optimal
solution, first the bounds h±

k have to be computed. This requires the solution of 2K N+
1 LP problems with NM inequality constraints. Alternatively, the trivial bounds, 0 and
(1 − γ)−1, can be used. Finally, an LP with K NM + NM variables, K N + 4K NM
inequality and N equality constraints has to be solved. Since the problems have a very
regular structure, large instances can be solved with current LP solvers.

Let GU (w) be the solution of the LP problem (20) with the additional constraints
(21). The difference GU (w) − GL(w) defines the optimality gap between the best

123

22 P. Buchholz, D. Scheftelowitsch

known solution and the theoretical upper bound. To reduce the gap, additional cutting
planes have to be computedwhich can be done from appropriate LP problems.Observe
that the constraints in (20) and (21) are independent of the rewards and it is known
that for any subsets M̂ ⊆ M and Ŝk ⊆ S for k ∈ M̂ the following relation holds.

∑

k∈M̂

∑

i∈Ŝk

h+
k (i) ≥

∑

k∈M̂

∑

i∈Ŝk

∑

m∈A
y∗m
k (i) ≥

∑

k∈M̂

∑

i∈Ŝk

h−
k (i) (24)

We can define the following LP to obtain better bounds.

v−/v+ = min/max
∑

k∈M̂
∑

i∈Ŝk

∑
m∈A ymk (i)

s.t. the constraints defined in (20), (21) and
∑

k∈M
(rTk)T

∑

m∈A
ymk ≥ GL(w) (25)

If v− >
∑

k∈M̂
∑

i∈Ŝk
h−
k (i) or v+ <

∑
k∈M̂

∑
i∈Ŝk

h+
k (i), the constraints

v− ≤ ∑

k∈M̂

∑

i∈Ŝk

∑

m∈A
y∗m
k (i) v+ ≥ ∑

k∈M̂

∑

i∈Ŝk

∑

m∈A
y∗m
k (i)

can be added to the LP. If we choose in (24) a single MDP k and a single state i , then
the objective function of (25) becomes

v−/v+ = min/max
∑

m∈A
ymk (i). (26)

Then h+
k (i) = v+ and h−

k (i) = v− can be used as better bounds in the original LP.
This step does not increase the size of the LP because only the spread of the bounds
is reduced.

Algorithm 3 Iterative bound computation.

1: function Iterative_Opt((αk , A1
k , . . . , A

N
k , rk)k=1,...,K , γ)

2: compute ΠL and GL (w) using Algorithm 1;
3: repeat
4: compute yk , Π

U and GU (w) by solving LP (20), (21);

5: if GΠU
(w) > GL (w) then

6: GL (w) = GΠU
, ΠL = ΠU ;

7: if |GU (w) − GL (w)| > ε then
8: (k, i) = arg max

k∈M,i∈S h+
k (i) − ∑

m∈A
ymk for (k, i) where h+

k (i) has not been improved for

GU (w);
9: Solve the LP (25) with max-objective function (26) for h+

k (i);

10: (k, i) = arg max
k∈M,i∈S

∑

m∈A
ymk − h−

k (i) for (k, i) where h−
k (i) has not been improved for

GU (w);
11: Solve the LP (25) with min-objective function (26) for h−

k (i);

12: until iteration limit reached or |GU (w) − GL (w)| ≤ ε

123

Computation of weighted sums of rewards. . . 23

Algorithm 3 uses an iterative approach that tries to improve the bounds h+
k (i) or

h−
k (i) with the largest difference to hmk (n). It is not guaranteed that the gap between

upper and lower bound can be closed by reducing upper and increasing lower bounds
of single variables only. Therefore, the algorithm should be stopped if no progress is
made or if the number of iterations reaches a threshold. In this case more complex
cutting planes as defined in (25) have to be used. However, the number of potential
cuts grows then with NK ! and it is hard to decide in advance which of more complex
cuts results in a successful reduction of the optimality gap. Experience with a large
number of models shows that Algorithm 3 usually reduces the optimality gap, without
completely closing it.

5 Examples

We analyze the algorithms on different examples. All experiments were run on a PC
with an Intel 3.6GHzprocessor and 16GBmainmemory.Algorithms are implemented
inMATLAB where the solvers fmincon and intlinproc are used.2 We use the following
abbreviations for the algorithms.

– ILP for the mixed integer linear programming approach presented in Sect. 4.1.
– QCLP for the non-linear programming approach presented in Sect. 4.2 that solves
the quadratically constrained linear program.

– NLP for the non-linear programming approach presented in Sect. 4.2 solving the
non-linear program with the general objective function.

– IMGP for Algorithm 1.
– IMPP for Algorithm 2.
– Up-simple for the upper bound with the local bound (1 − γ)−1.
– Up-general for the upper bound with local bound computed from (22).

We first consider two small non-convex problem instances, then randomly gener-
ated problem instances are evaluated and afterwards a control problem for queues is
presented.

5.1 Small examples with an optimal random policies

Although the general problem is non-convex as shown, most instances of the problem
have a fairly regular surface such that local search algorithms converge to global
optimum and often the best pure policy is optimal or almost optimal. We show this
in the following paragraph where randomly generated models are analyzed. Here, we
present two small examples which have local optima.

2 Alternatively, an Octave implementation with solvers sqp and glpk is also available and shows a similar
performance.

123

24 P. Buchholz, D. Scheftelowitsch

Fig. 1 Gain GΠ for different probabilities p2 of choosing a in the second state

We begin with a set of deterministic MDPs with two states and two actions. The
following matrices and vectors define the MDPs.

Pa
1 =

(
0 1
1 0

)
, Pb

1 =
(
1 0
0 1

)
, r1 =

(
2/3
1/3

)

Pa
2 =

(
0 1
0 1

)
, Pb

2 =
(
0 1
1 0

)
, r2 =

(
4/5
1/5

)

Pa
3 =

(
0 1
0 1

)
, Pb

3 =
(
0 1
0 1

)
, r3 =

(
2/5
3/5

)

For p = (0.5, 0.5), the optimal pure policy equals

Πdet =
(
0 1
0 1

)

with gain GΠdet = 4.7 and the optimal randomized policy is

Πrand =
(

0 1
0.2261 0.7739

)

with gain GΠrand = 4.9611. Figure 1 shows the gain which is obtained if in state 1
action b is selected and in state 2 action a is selected with probability p2 ranging from
0 through 1. It can be seen that two local optima exist, namely, the global optimum at
p2 = 0.2261 and another local optimum for p2 = 1.

123

Computation of weighted sums of rewards. . . 25

As a second example we consider a model with 4 MDPs with 3 states and 2 actions
which is characterized by the following matrices and vectors.

Pa
1 =

⎛

⎝
0 1 0
0 0 1
0 0 1

⎞

⎠ , Pb
1 =

⎛

⎝
0 1 0
0 1 0
0 1 0

⎞

⎠ , r1 =
⎛

⎝
7/16
1/2
1/16

⎞

⎠

Pa
2 =

⎛

⎝
0 0 1
0 0 1
0 1 0

⎞

⎠ , Pb
2 =

⎛

⎝
1 0 0
0 1 0
0 0 1

⎞

⎠ , r2 =
⎛

⎝
1/4
1/4
1/2

⎞

⎠

Pa
3 =

⎛

⎝
0 0 1
0 0 1
1 0 0

⎞

⎠ , Pb
3 =

⎛

⎝
0 1 0
1 0 0
1 0 0

⎞

⎠ , r3 =
⎛

⎝
1/9
2/3
2/9

⎞

⎠

Pa
4 =

⎛

⎝
1 0 0
0 1 0
0 1 0

⎞

⎠ , Pb
4 =

⎛

⎝
0 0 1
0 0 1
0 0 1

⎞

⎠ , r4 =
⎛

⎝
3/8
3/8
1/4

⎞

⎠

The optimal deterministic policy equals for this example

Πdet =
⎛

⎝
0 1
0 1
0 1

⎞

⎠

with gain GΠdet = 3.5208 and the optimal randomized policy is

Πrand =
⎛

⎝
0.1778 0.8223
0.056 0.944
0 1

⎞

⎠

and gain GΠrand = 3.623. The surface of the gain function for different values p1
(probability of choosing a in state 1) and p2 (probability of choosing a in state 2),
and selecting b in state 3 is shown in Fig. 2. The surface has four local optima.
The deterministic policy with p1 = p2 = 1 with gain 3.227 is locally optimal, the
randomized policieswith p1 = 0.18, p2 = 1 and gain 3.4 andwith p1 = 1, p2 = 0.06
and gain 3.451 are also locally optimal. Finally, the global optimum at p1 = 0.1778
and p2 = 0.056 is, of course, also locally optimal.

5.2 Randommatrices

The five algorithms are compared on sets of randomly generated problems. After
fixing K , M, N and γ , stochastic matrices Pm

k are generated from uniformly [0, 1]
distributed random values, vectors w and α are also generated from [0, 1] uniformly
distributed numbers. To obtain distributions, the rows of Pm

k and the vectors w,α are
normalized. Vectors rk are generated from uniformly [0, 10] distributed numbers.

For the local optimization algorithms,we consider one initial policywithout restarts;
for IMPP the starting point is the policywhich deterministically chooses the first action

123

26 P. Buchholz, D. Scheftelowitsch

Fig. 2 Surface of the gain function depending on the probabilities p1 and p2 of choosing a in the states 1
and 2

in all states, and for IMGP we consider the optimal policy for the K th MDP as the
starting point.

The first set of experiments that is presented here is generated for γ = 0.9 and
varying values of K , M, N . Results are presented inTable 1. For each configuration the
five algorithms runon100 randomlygeneratedproblem instances. ti is the averageCPU
time per instance, and diff is the average deviation from the best value considering all
runs where the deviation is at least 0.1%. div contains the number of problem instances
where the algorithm was not able to find a feasible solution. This cannot happen in the
algorithms IMPP and IMGP where all solutions are feasible, the algorithms improve
policies step by step. In ILP it could happen that no feasible solution is found by the
ILP solver, if the algorithm does not find an integer solution. However, this did not
happen in our examples and it also did not happen forNLP, therefore div is only shown
for QCLP.

The algorithmsQCLP andNLPperformatmost 100,000 function evaluationswhich
is much more than the predefined value in MATLAB, other solver parameters are not
modified. There are three horizontal lines in the table. After the first line, the time for
the ILP solver is limited to 600 s CPU time to avoid very long solution runs. This also
implies that the solver stops prematurely with a non-optimal solution. However, the
results indicate that the difference to the optimal policies is small in theses cases. After
the second horizontal line we do not useQCLP any longer since it is too costly and not
able to compute feasible solutions for large problem instances. After the third line also
NLP was no longer used because it became too costly. For the largest configuration
only IMPP and IMGP can be used. In this case even ILP solvers failed because they
were not able to find an integer solution within the given time budget of 600 s, this
holds for the ILP solver in MATLAB as well as for CPLEX, which is one of the most

123

Computation of weighted sums of rewards. . . 27

efficient available ILP solvers. Analyzing the different runs we canmake the following
observations:

– Even if the problem is not convex and the optimum needs not to be a pure policy,
the optimal pure policy is usually very close to the computed optimum and in most
cases the computed pure policy is optimal.

– If the problem instances become larger, then, in all caseswe considered, the optimal
policy that was found is pure.

– The local optimization algorithms IMPP and IMGP are fairly robust and fast. ILP
is slightly less stable and requires much time for larger instances.

– Among the non-linear solversNLP is muchmore efficient and reliable thanQCLP.
However, for large problem instances also NLP fails.

In a second series of experiments we increase γ to 0.999. The corresponding results
are shown in Table 2. It can be seen that the results are very similar, the choice of γ

seems to have only a minor effect on the behavior of the solvers. The only exception
is the solver QCLP which almost completely fails because it was not able to compute
feasible solutions most of the times.

A third series of experiments concerned itself with deterministic concurrent MDP
models. The discount factor was set to γ = 0.9, and the instances that were gener-
ated had the property that the transition probabilities in the individual MDPs were
either one or zero. We observe that deterministic models are harder to optimize with
exact methods: the ILP solver exceeds the time budget on smaller models, QCLP
has much more difficulties to converge, and the NLP solver yields more often only
locally optimal policies. In contrast, performance of local optimization heuristics does
not suffer much in comparison to exact methods. We believe that this effect is due
to larger differences between deterministic models, that is, the difference between
transition probability vectors is not only large across different actions in a state but
also across the MDPs in the concurrent model. On larger instances where only local
heuristics can be executed efficiently, we observe another interesting effect: if IMPP
and IMGP both use the maximal time budget, the resulting policy of IMPP can be
slightly better. We conjecture that this can be attributed to, first, smaller steps by
IMGP in policy space, and second, larger structural differences between the MDPs in
the concurrent model which introduce more local optima to the optimization problem
(Table 3).

In another series of experiments we compare the upper bounds with the computed
results for IMPP and IMGP. Again randomly generated examples are used. Table 4
shows the maximal and the average relative difference between the upper bounds
and the policies found by the algorithms. For the iterative improvement, up to 100
iterations are allowed to improve lower and upper bounds for the values in vector
hk . It can be seen that the average differences are small but in a few cases a larger
gap occurs. However, these large gaps only occur for small problem instances and
the difference between lower bound computed with IMGP and the upper bound is at
most 3.1% in all cases and after iterative improvement, it is even smaller. For large
models, the maximal deviation from the upper bound is below 1% which is almost
negligible.

123

28 P. Buchholz, D. Scheftelowitsch

Ta
bl
e
1

Su
m
m
ar
y
of

re
su
lts

fo
r
ra
nd
om

ly
ge
ne
ra
te
d
in
st
an
ce
s
(γ

=
0.
9,

10
0
pr
ob

le
m

in
st
an
ce
s)

K
N

M
IL
P

IM
PP

IM
G
P

Q
C
L
P

N
L
P

T
i

N
op

t
D
if
f
(%

)
T
i

N
op

t
D
if
f
(%

)
T
i

N
op

t
D
if
f
(%

)
T
i

N
op

t
D
if
f
(%

)
D
iv

T
i

N
op

t
D
if
f
(%

)

2
2

2
0.
02
0

4
1.
4

0.
00

1
4

1.
4

0.
01

5
1

0.
2

0.
07

8
1

4.
3

0
0.
04

1
0

–

3
3

3
0.
02
9

7
0.
3

0.
00

1
7

0.
3

0.
02
6

2
0.
2

0.
11
7

2
0.
2

3
0.
05
4

7
0.
6

2
5

2
0.
02
3

1
0.
1

0.
00

2
1

0.
1

0.
00

2
0

–
0.
11

3
0

–
0

0.
05

4
0

–

10
5

2
0.
04

6
2

0.
2

0.
00

6
4

0.
3

0.
07

4
1

0.
2

0.
64

2
0

–
1

0.
10

4
0

–

2
10

3
0.
05

6
0

–
0.
00

6
0

–
0.
02

4
0

–
0.
39

4
0

–
5

0.
08

2
2

1.
1

2
10

10
3.
75

6
0

–
0.
01

3
1

0.
1

0.
09

7
1

0.
1

1.
89

5
1

0.
1

13
0.
69

7
2

0.
2

5
5

5
0.
11
9

2
0.
2

0.
00

9
5

0.
3

0.
05
3

5
0.
2

0.
47
7

3
0.
2

5
0.
08
9

5
0.
6

3
20

4
58

6.
4

0
–

0.
01

5
0

–
0.
06

8
0

–
4.
22

9
0

–
3

0.
28

3
0

–

3
50

3
59
7.
7

54
0.
3

0.
06

9
0

–
0.
13

1
0

–
36

.6
3

0
–

0
2.
83

1
0

–

5
50

5
60

7.
1

10
0

0.
6

0.
14

0
0

–
0.
48

2
0

–
15

7.
4

0
–

2
5.
86

4
0

–

3
10

0
4

60
5.
8

97
0.
5

0.
90

4
0

–
2.
40

8
0

–
40

4.
4

0
–

11
41

.4
6

1
0.
9

3
20

0
4

63
5.
3

10
0

0.
7

2.
41

0
–

6.
57

6
0

–
–

–
–

–
20

.7
5

0
–

3
30

0
4

71
6.
2

10
0

0.
9

5.
44

0
–

15
.5
4

0
–

–
–

–
–

78
0.
3

0
–

3
50

0
4

10
95

10
0

0.
7

19
.4

0
–

64
.0

0
–

–
–

–
–

29
14

0
–

3
70

0
4

–
–

–
66

.2
0

–
20

9.
3

0
–

–
–

–
–

–
–

–

5
80

0
5

–
–

–
20

6.
6

0
–

77
9.
1

0
–

–
–

–
–

–
–

–

3
10

00
4

–
–

–
21

3.
8

0
–

75
5.
9

0
–

–
–

–
–

–
–

–

123

Computation of weighted sums of rewards. . . 29

Ta
bl
e
2

Su
m
m
ar
y
of

re
su
lts

fo
r
ra
nd
om

ly
ge
ne
ra
te
d
in
st
an
ce
s
(γ

=
0.
99

9,
10

0
pr
ob

le
m

in
st
an
ce
s)

K
N

M
IL
P

IM
PP

IM
G
P

Q
C
L
P

N
L
P

T
i

N
op

t
D
if
f
(%

)
T
i

N
op

t
D
if
f
(%

)
T
i

N
op

t
D
if
f
(%

)
T
i

N
op

t
D
if
f
(%

)
D
iv

T
i

N
op

t
D
if
f
(%

)

2
2

2
0.
01
5

5
1.
8

0.
00

1
5

2.
9

0.
01

8
1

0.
2

0.
79

1
0

–
14

0.
03

4
0

–

3
3

3
0.
02
1

5
0.
3

0.
00

1
5

0.
3

0.
02

1
2

0.
7

2.
53

8
1

1.
5

45
0.
03

7
5

0.
5

2
5

2
0.
02
2

2
0.
1

0.
00

1
2

0.
1

0.
01

9
0

–
3.
10

4
0

–
52

0.
04

3
0

–

10
5

2
0.
04

1
3

0.
2

0.
06

5
0.
3

0.
08

2
1

0.
2

15
.4
7

1
0.
2

96
0.
09

7
3

0.
1

2
10

3
0.
06

2
0

–
0.
00

7
0

–
0.
02

5
0

–
10

.8
7

0
–

72
0.
07

7
7

0.
7

2
10

10
4.
90

3
0

–
0.
01

4
1

0.
2

0.
10

2
0

–
36

.3
9

0
–

10
0

0.
45

7
10

1.
3

5
5

5
0.
10
7

1
0.
3

0.
01

1
3

0.
5

0.
06

0
2

0.
3

10
.7
0

0
–

59
0.
09

7
0.
4

3
20

4
26

3.
0

0
–

0.
01

6
0

–
0.
06

5
0

–
53

.5
0

0
–

92
0.
18

7
2

0.
6

3
50

3
52
1.
5

75
0.
2

0.
05

7
0

–
0.
14

6
0

–
11

2.
6

0
–

82
1.
07

1
0

–

5
50

5
60

9.
1

10
0

0.
6

0.
16

6
0

–
0.
54

5
0

–
–

–
–

–
1.
97

2
0

–

3
10

0
4

49
8.
4

96
0.
5

0.
60

2
0

–
2.
01

5
0

–
–

–
–

–
8.
21

9
0

–

3
20

0
4

64
0.
9

99
1.
0

2.
39

4
0

–
7.
30

9
0

–
–

–
–

–
47

.5
3

0
–

3
30

0
4

72
3.
2

10
0

1.
0

5.
32

1
0

–
17

.8
7

0
–

–
–

–
–

14
2.
7

0
–

3
50

0
4

–
–

–
25

.0
4

0
–

87
.3
0

0
–

–
–

–
–

85
0.
5

3
0.
4

3
70

0
4

–
–

–
73

.0
1

0
–

27
4.
4

0
–

–
–

–
–

–
–

–

5
80

0
5

–
–

–
24

7.
7

0
–

92
4.
8

0
–

–
–

–
–

–
–

–

3
10

00
4

–
–

–
21

1.
1

0
–

71
4.
8

0
–

–
–

–
–

–
–

–

123

30 P. Buchholz, D. Scheftelowitsch

Ta
bl
e
3

Su
m
m
ar
y
of

re
su
lts

fo
r
ra
nd
om

ly
ge
ne
ra
te
d
de
te
rm

in
is
tic

M
D
Ps

(γ
=

0.
9,
10

0
pr
ob

le
m

in
st
an
ce
s)

K
N

M
IL
P

IM
PP

IM
G
P

Q
C
L
P

N
L
P

T
i

D
if
f
(%

)
T
i

D
if
f
(%

)
T
i

D
if
f
(%

)
T
i

D
if
f
(%

)
D
iv

T
i

D
if
f
(%

)

2
2

2
0.
01

7
3.
3

0.
00

1
3.
3

0.
01

2
0.
3

0.
05

3
9.
1

1
0.
03

1
9.
1

3
3

3
0.
08

0
3.
5

0.
00

2
3.
7

0.
01

8
0.
8

0.
16

6
5.
5

4
0.
04

8
1.
6

2
5

2
0.
06

9
1.
0

0.
00

2
2.
0

0.
01

2
1.
5

0.
15

1
1.
3

7
0.
05

8
3.
2

10
5

2
0.
17

3
1.
5

0.
00

4
2.
0

0.
08

9
1.
4

1.
60

8
1.
4

25
0.
09

7
0.
9

2
10

3
0.
16

4
0.
7

0.
00

4
2.
0

0.
02

3
1.
1

1.
14

1
2.
2

44
0.
10

4
1.
9

2
10

10
0.
47

8
0.
5

0.
01

2
1.
1

0.
10

6
0.
5

7.
27

0
0.
0

88
0.
82

2
1.
7

5
5

5
0.
26

8
1.
8

0.
00

7
3.
3

0.
15

5
0.
9

1.
03

0
1.
6

36
0.
10

5
2.
9

3
20

4
9.
68

1
0.
3

0.
03

6
1.
3

0.
25

1
0.
8

15
.5
4

0.
1

97
0.
60

2
2.
2

3
50

3
26

87
0.
2

0.
09

6
1.
5

0.
57

9
0.
6

45
.7
2

0.
3

96
3.
21

9
1.
2

5
50

5
36

93
0.
3

0.
18

1
2.
1

4.
25

9
0.
7

97
.6
8

1.
6

96
5.
06

0
1.
6

3
70

0
4

–
–

19
3.
5

0.
8

39
3.
1

0.
0

–
–

–
–

–

5
80

0
5

–
–

60
5.
6

1.
0

67
6.
0

0.
7

–
–

–
–

–

3
10

00
4

–
–

61
8.
2

0.
8

70
9.
4

0.
2

–
–

–
–

–

123

Computation of weighted sums of rewards. . . 31

Table 4 Difference between the bounds and the optimal policies for general MDPs found by IMPP and
IMGP (γ = 0.9, 100 problem instances)

K N M IMPP (%) IMGP (%)

(1 − γ)−1 Bound (22) (1 − γ)−1 Bound (22) Iterative

Avg Max Avg Max Avg Max Avg Max Avg Max

2 2 2 1.2 16.0 0.1 3.1 1.2 16.0 0.1 3.1 0.0 1.2

3 3 3 3.8 11.0 0.5 3.7 3.8 10.4 0.4 3.1 0.1 2.5

5 5 5 6.3 11.3 1.3 3.0 6.3 11.3 1.3 3.0 0.5 2.4

3 10 3 2.6 7.2 0.4 2.0 2.6 7.2 0.4 1.9 0.1 1.3

3 50 3 1.2 2.0 0.2 0.5 1.2 2.0 0.2 0.5 0.1 0.3

3 100 4 1.1 1.4 0.3 0.4 1.1 1.4 0.3 0.4 0.2 0.4

3 200 5 0.8 1.2 0.3 0.4 0.8 1.2 0.3 0.4 0.3 0.3

5.3 Amulti-server multi-queuemodel

To exemplify the differences between the individual scenarios, we provide a more
involved example.We consider a simple queue with a capacity ofm jobs and c servers.
Inter-arrival and service times are exponentially distributed with rate λ and μ, respec-
tively. Customers arriving at a system where the queue is full are lost. Each server
can be in one of three states on, starting, and off. A server in state on can be idle or
working, depending whether customers to serve are available or not. To reduce energy
consumption, servers can be switched off, which implies that a server changes its state
from on to off. To reduce the population in the system and the response time for cus-
tomers, servers in state off can be switched on, which means that a server changes its
state from off to starting. Afterwards it takes an exponentially distributed time with
rate ν until it changes the state to on and is ready to serve customers. Decisions to
switch servers on or off can be made upon the arrival or departure of jobs. Models
like this one may be used as abstract models for server farms (Gandhi et al. 2010).
The reward is defined by the sum of the population in the system and the required
energy. This measure, which is often used to combine performance and energy con-
sumption (Wierman et al. 2012), is minimized. We observe that the methods defined
above can be used for minimization of the objective function if the reward vectors are
negated and a constant is added to ensure non-negative rewards.

Usually, these models are analyzed under some heuristic control strategy by assum-
ing that all parameters are completely known.Here,we consider the situation that some
parameters are uncertain and we analyze an optimal strategy using MDPs. We assume
that the uncertain parameters keep their values for some time which is too short to
anticipate them in an adaptive control strategy.

The model can be naturally defined as anMDPwith (m+1)(c+2)(c+1)/2 states.
The number of decisions depends on the state. To restrict the number of decisions we
assume that in a state at most 2 servers can be switched on or off which implies that
up to 5 decisions are available in a state.

123

32 P. Buchholz, D. Scheftelowitsch

As an example we consider a system with μ = 1, ν = 0.1,m = 9, c = 4 and a
uniformly distributed initial vector. The energy consumption in the states off, starting
and on equals 0.1, 0.8 and 1.0, respectively. The resulting MDP has 150 states. γ

is set to 0.999. We assume that the system may be used in low load λlow = 0.05,
medium load λmed = 0.5 and high load λhigh = 0.95. The three rates define three
different scenarios. The model describes a continuous time MDP. However, by using
uniformization (Serfozo 1979) it can be transformed into an equivalent discrete time
MDP.

We compute optimal policies for the three scenarios. These policies can be com-
puted from a simple MDP and can be computed in less than a second. Furthermore,
policies Πweight are computed for different weight vectors. For Πweight IMPP takes
about 2 s, IMGP takes about 8 s. ILP requires the complete time budget of 600 s,
NLP takes 200 through 300 s, if it converges, and QCLP does most times not con-
verge. The policies for the single scenarios can be expressed by the weight vectors
(1, 0, 0), (0, 1, 0) and (0, 0, 1), respectively.

The different policies are then analyzed for the three scenarios and the accumulated
gains are computed. Results are summarized in Table 5. The first column contains the
weight vector for which the policy is computed and the following three columns
include the gain for the scenarios when the policy is applied. In the last column the
sums of gains over all scenarios are shown.

Results in Table 5 have been computed with algorithm IMGP. To speed up conver-
gence of the algorithm, policy computation for one weight vector is initialized with the
optimal policy for the previous weight vector, where policies are computed according
to the order in the table. Apart from the policies for the unit weight vectors most
policies are not pure. E.g., for w = (1/3, 1/3, 1/3) the best pure policy results in the
gains 2176, 6244, and 9507 for the three scenarios which sums up to 17,926. Thus,
according to the sum of gains, a general policy, with a gain of 17,749, improves the
result by 177 units or 1% compared to a pure policy. Yet the differences in the gains
for the different scenarios are significant. It can be seen that the weighted policies
are better if the scenario changes during policy execution and the policy is fixed. Of
course, the optimal policy depends on the probability of observing each scenario.With
equal probabilities, the weight vector (1/3, 1/3, 1/3) results in the best policy which
improves the gain between 7.4 and 17.8% compared to the policies that have been
computed for single scenarios.

6 Conclusions

In this paper, we discuss a stochastic multi-scenario optimization problem for MDPs,
which amounts to optimizing aweighted sumof expected discounted rewards in several
MDPs with shared action and state spaces under a common policy. It turns out that this
specific problem is computationally hard, which motivates the usage of general tools
from mathematical optimization and heuristics. A further property of our problem is
that the set of deterministic policies may not contain the optimal policy.

In this work, we have designed and compared several optimization approaches
to the aforementioned problem, namely, mixed-integer programming, general non-

123

Computation of weighted sums of rewards. . . 33

Table 5 Rewards for different weight vectors and general policies in the three scenarios

(wlow, wmed , whigh) Scenario λlow Scenario λmed Scenario λhigh Sum

(1.0, 0.0, 0.0) 1697 9172 10,042 20,911

(0.8, 0.2, 0.0) 1795 6706 9930 18,431

(0.8, 0.0, 0.2) 1745 7342 9508 18,594

(0.6, 0.4, 0.0) 1949 6097 9718 17,764

(0.6, 0.2, 0.2) 1899 6714 9310 17,923

(0.6, 0.0, 0.4) 1823 7180 9347 18,350

(0.4, 0.6, 0.0) 1995 6047 9711 17,753

(0.4, 0.4, 0.2) 2166 6146 9484 17,796

(0.4, 0.2, 0.4) 1989 6515 9289 17,793

(0.4, 0.0, 0.6) 2126 6002 9699 17,827

(1/3, 1/3, 1/3) 1978 6060 9711 17,749

(0.2, 0.8, 0.0) 2126 6002 9699 17,827

(0.2, 0.6, 0.2) 2278 6063 9607 17,948

(0.2, 0.4, 0.4) 2325 6194 9383 17,901

(0.2, 0.2, 0.6) 2121 6465 9273 17,859

(0.2, 0.0, 0.8) 1945 6756 9297 17,998

(0.0, 1.0, 0.0) 3410 5967 9694 19,070

(0.0, 0.8, 0.2) 3424 5979 9593 18,996

(0.0, 0.6, 0.4) 3437 6005 9425 18,867

(0.0, 0.4, 0.6) 3883 6175 9309 19,366

(0.0, 0.2, 0.8) 4245 6344 9247 19,836

(0.0, 0.0, 1.0) 4245 6344 9247 19,836

linear optimization, quadratically constrained linear programming, and local search
heuristics. It turns out that from the exact methods used, mixed-integer programming
and the NLP formulation yield good and often optimal results for small problem
instances. However, themethods are limited in their performance and take a significant
amount of time on instances with more than 300 states.

On the other hand, the local search heuristics that we have designed seem to perform
well not only with respect to time complexity but also with respect to the quality of
solutions. Specifically, the local search heuristics showed an acceptable performance
even on instances with 1000 states. The deviation from the optimal solutions also has
been small: the largest deviation was around 0.4%; for larger instances the difference
dropped to almost zero.

A further investigation direction was the difference between randomized and deter-
ministic policies. Here, a similar picture can be seen: the largest deviation occurred on
small instances andwas 3.7%, for larger instances we could observe smaller deviations
of at most 0.6%.

This allows us to conclude that, while the general problem is computationally hard,
heuristics seem to perform fairlywell. Furthermore, evenwith stochastic policies being

123

34 P. Buchholz, D. Scheftelowitsch

optimal in the general case, restricting oneself to deterministic policies does not seem
to impose great limitations with respect to the policy performance.

Future work We think of several possible extensions of this work. First, one may
extend the results from the expected discounted reward measure to the expected aver-
age reward measure. Furthermore, the model may be extended by replacing MDPs
with more general formalisms such as BMDPs (Givan et al. 2000), genericMDPs with
uncertainties (Satia and Lave 1973;White and Eldeib 1994), or stochastic games (Filar
and Vrieze 1997). More specifically, our results can be applied as a discretization
method for continuous uncertainty sets with a probability measure on them. Further-
more, it is possible to extend the methods to the finite horizon case and compare the
results with those derived in Steimle et al. (2018).

Another possibility lies in considering more general, not necessarily stationary
policies to reduce the uncertainty on the scenario. It might be possible to infer the
transition probabilities after a limited amount of time steps and use then a policy that
is better suited for the specific scenario.

Appendix A: Action dependent rewards

Assume that rewards of a concurrent MDP depend on actions and successor states.
Then Ra

k (s, s
′) is the reward that is obtained in state s of MDP k if action a is chosen

and s′ is the successor state. Let

(S,α,
(
Pa
k

)
a∈A ,

(
Ra
k

)
a∈A
)

(27)

be a concurrentMDPwith action-dependent rewards.We assume that thisMDP should
be analyzed for the discounted reward with discount factor γ ∈ (0, 1). The transfor-
mation into an MDP with rewards that do not depend on the action results in the
following MDP which depends on γ .

(
S̃, α̃,

(
P̃
a
k

)

a∈A , r̃
)

, where

S̃ = S ∪ {(s, a, s′)|s, s′ ∈ S, a ∈ A, Pa
k (s, a, s′) > 0

}

α̃ ∈ R
|S̃|×1
≥0 , α̃1 = 1 with α̃(σ) =

{
α(s) if σ = s,
0 otherwise,

P̃
a
k ∈ R

|S̃|×|S̃|
≥0 , P̃

a
k1 = 1 with P̃

a
k (σ , σ ′) =

⎧
⎨

⎩

Pa
k (s, s

′) if σ = s and σ ′ = (s, a, s′),
1.0 if σ = (s, a, s′) and σ ′ = s′,
0 otherwise,

r̃ ∈ R
1×|S̃| with r̃(σ) =

{
Ra
k (s,s

′)√
γ

if σ = (s, a, s′),
0 otherwise.

(28)

123

Computation of weighted sums of rewards. . . 35

Observe that the state space S̃ consists of states s ∈ S and states (s, a, s′). The
modified MDP alternates between states s ∈ S̃ ∩ S and states (s, a, s′) ∈ S̃\S.
Rewards are only gained in the latter states.

For some policy Π defined on S we define a policy Π̃ on S̃ as follows

π̃σ (a) =
⎧
⎨

⎩

π s(a) if σ = s ∈ S,

1 if σ = (s, a, s′),
0 otherwise.

Thus, a policy for the MDP with action-dependent rewards can be uniquely trans-
lated into a policy for theMDPwith action-independent rewards. Define the following
sequences of vectors

g0 = 0 ∈ R
|S|×1, gh(s) = ∑

s′∈S
∑

a∈A
π s(a)Pa

k (s, s
′)
(
Ra
k (s, s

′) + γ gh−1(s′)
)

g̃0 = 0 ∈ R
|S̃|×1, g̃h(σ) = ∑

σ ′∈S̃

∑

a∈A
π̃ s(a) P̃

a
k (σ , σ ′)

(
r̃(σ) + √

γ g̃h−1(σ ′)
)

The vectors gh and g̃h contain the expected discounted rewards over the course of
h transitions under the policy Π resp. Π̃. Now we show the main relation between gh

and g̃h .

Theorem 6 For all s ∈ S and all h ∈ N0 it is gh(s) = g̃2h(s) = g̃2h+1(s).

Proof We prove the correspondence of the values in the vectors for h and 2h by
induction. For h = 0 we have by definition of the vectors g0(s) = g̃0(s) = 0. Now
assume that the correspondence holds for h ≥ 0, then

g̃2h+2(s) = ∑

s′∈S
∑

a∈A
π̃ s(a) P̃

a
k (s, (s, a, s′))

(
r̃(s) + √

γ g̃2h+1(s, a, s′)
)

= ∑

s′∈S
∑

a∈A
π s(a)Pa

k (s, s
′)
(
∑

s′′∈S
∑

a′∈A
π̃ (s,a,s′)(a′) P̃a′

k ((s, a, s′), s′′)

×
(√

γ r̃(s, a, s′) + γ g̃2h(s′′)
))

= ∑

s′∈S
∑

a∈A
π s(a)Pa

k (s, s
′)
(√

γ r̃(s, a, s′) + γ g̃2h(s′)
)

= ∑

s′∈S
∑

a∈A
π s(a)Pa

k (s, s
′)
(√

γ
Ra
k (s,s

′)√
γ

+ γ gh(s′)
)

= gh+1(s)

which implies that it holds for h + 1. Now we consider g̃2h+1(s). For h = 0 we have

g̃1(s) = ∑

s′∈S
∑

a∈A
π s(a) P̃

a
k (s, (s, a, s′))

(
r̃(s) + √

γ g̃0(s, a, s′)
)

= 0

123

36 P. Buchholz, D. Scheftelowitsch

because r̃(s) = 0 and g̃0 = 0. Now assume that the result holds for 2h + 1, we show
that it holds for 2h + 3.

g̃2h+3(s) = ∑

s′∈S
∑

a∈A
π̃ s(a) P̃

a
k (s, (s, a, s′))

(
r̃(s) + √

γ g̃2h+2(s, a, s′)
)

= ∑

s′∈S
∑

a∈A
π s(a)Pa

k (s, s
′)
(
∑

s′′∈S
∑

a′∈A
π̃ (s,a,s′)(a′) P̃a′

k ((s, a, s′), s′′)

×
(√

γ r̃(s, a, s′) + γ g̃2h+1(s′′)
))

= ∑

s′∈S
∑

a∈A
π s(a)Pa

k (s, s
′)
(√

γ
Ra
k (s,s

′)√
γ

+ γ gh(s′)
)

= gh+1(s)

�
Let GΠ(γ) = α limh→∞ gh and G̃Π̃(

√
γ) = α̃ limh→∞ g̃h the discounted gains

for the two MDPs with discount factors γ ∈ (0, 1) and
√

γ , respectively.

Theorem 7 For any policy Π and any discount factor γ ∈ (0, 1) the relation

GΠ(γ) = G̃Π̃(
√

γ)

holds.

Proof First, we show the existence of GΠ(γ). Since Ra
k (s, s

′) is finite for all a ∈ A
and for all s, s′ ∈ S and can be bounded by a real value R ≥ ∣∣Ra

k (s, s
′)
∣∣, the sequence(

gh
)
h∈N0

adheres to

∣∣∣gh+i (s) − gi (s)
∣∣∣ =

∑

s′∈S

∑

a∈A
π s(a)Pa

k (s, s
′)
∣∣∣Ra

k (s, s
′) + γ gh+i−1(s′) − Ra

k (s, s
′)

−γ gi−1(s′)
∣∣∣

≤ γ max
s′∈S

∣∣∣gh+i−1(s′) − gi−1(s′)
∣∣∣ .

By induction, it follows that

∣∣
∣gh+i (s) − gi (s)

∣∣
∣ ≤ γ i max

s′∈S

∣∣
∣gh(s′)

∣∣
∣

≤ γ i R
h∑

j=0

γ j

= γ i R
1 − γ h

1 − γ

≤ γ i R

1 − γ

123

Computation of weighted sums of rewards. . . 37

for i ∈ N which implies the Cauchy convergence criterion. Then Theorem 6 implies
that g(s) = limh→∞ gh(s) = limh→∞ g̃2h(s) = limh→∞ g̃h(s) = g̃(s) for all s ∈ S
and we have

GΠ(γ) =
∑

s∈S
α(s)g(s)

=
∑

s∈S
α̃(s) g̃(s) since α̃(s) = α(s) for s ∈ S

=
∑

σ∈S̃
α̃(σ) g̃(σ) since α̃(σ) = 0 for σ /∈ S

= G̃Π(
√

γ).

�

Analogously the following result can be shown.

Theorem 8 For any policy Π̃ in the action-independent MDP
(
S̃, α̃,

(
P̃
a
k

)

a∈A , r̃
)
,

the policy Π in the action-dependent MDP derived by projection of Π̃ on S is subject
to

GΠ(γ) = G̃Π̃(
√

γ)

This implies that every policy (including the optimal policy) in theMDPwith action-
independent rewards yields the sameexpected discounted reward as its projection in the
MDP with action-dependent rewards. Together with Theorem 7 this means that there
exists a one-to-one correspondence between policies in both MDPs which yields the
same expected discounted reward, and optimal policies in one MDP are also optimal
in the other one. This completes the transformation from the action-dependent reward
model.

Appendix B: Proof of Theorem 1

Theorem 1 The decision problem defined in Definition 1 is NP-complete.

We perform a reduction from 3-SAT. Given a 3-SAT instance with n variables
x1, . . . , xn and m clauses C1, . . . ,Cm where each clause contains three literals, we
construct a concurrent MDP M = {1, 2} consisting of two MDPs, a vector w ∈ R

2

and a real number g ∈ R such that the instance will be satisfiable if and only if there
is a policy Π for the concurrent MDP that yields the value g.

The first part of our construction are the states. They are arranged in three groups.

– First, we create a specially designated sink state s0 which yields 0 reward in both
MDPs.

123

38 P. Buchholz, D. Scheftelowitsch

Fig. 3 The variable gadget

– Then, we transfer the variables of the Boolean satisfiability problem into states
of the MDPs: for each variable x we create two states sx , s′

x in both MDPs. The
reward is 0 in states of the form sx and 1 in states of the form s′

x .
– Last, we create states for clauses: for each clause C , a state sC is created. Again,
the reward in sC is zero for all clauses.

The second part of the construction are the actions. We create three actions A =
{1, 2, 3} with the following semantics.

– In sink state s0, it is Pa
k (s0, s0) = 1 for all a ∈ A and k ∈ M.

– In the variable states, we define P1
1(sx , s

′
x) = P2

1(sx , s0) = P3
1(sx , s0) = 1 and

P1
2(sx , s0) = P2

2(sx , s
′
x) = P3

2(sx , s
′
x) = 1, that is, we define actions in sx to lead

to different outcomes in theMDPs. The motivation is to force a mutually exclusive
choice of values for the Boolean variables in the concurrent MDP. In the auxiliary
variable states, it is Pa

k (s
′
x , sx) = 1 for all actions a ∈ A and MDPs k ∈ M; the

idea behind these states is to exploit non-linearity of the problem. The construction
is visualized in Fig. 3 where the upper part corresponds to the first MDP and the
lower part corresponds to the second MDP in M.

– In the clause states, we define actions as follows. In a clause C = L1 ∨ L2 ∨ L3,
the chosen action represents the literal that evaluates to true. Hence, we define
Pa
k (C, s) by setting Pa

k (C, s) = 1 in the cases

– La = x, k = 1, s = sx
– La = ¬x, k = 1, s = s0
– La = ¬x, k = 2, s = sx
– La = x, k = 2, s = s0

A graphical sketch of this setup can be seen in Fig. 4. Again, the upper part of the
drawing corresponds to the first MDP in M while the lower part corresponds to the
second MDP.

The idea behind this construction is to infer functions β : {1, . . . , n} → {0, 1}
that map variables to values and ν : {1, . . . ,m} → {1, 2, 3} that map the clauses to
the satisfying variables. This is done to create a mapping from policies to variable
assignments in the SAT problem. Furthermore, we define the initial distribution α with
α(sC) = 1/m for all clauses C for both MDPs and weights w = (1/2, 1/2). Concerning

123

Computation of weighted sums of rewards. . . 39

Fig. 4 The clause gadget

the value, we set an auxiliary constant q := 1
1−γ 2 and the required value g := γ 2q

2
where γ is a non-zero discount factor in the concurrent MDP.

We prove the validity of the reduction. First, we show that if there is an assignment
β : {1, . . . , n} → {0, 1} that satisfies the SAT instance, then there also exists a policy
π such that

∑K
k=1 w(k)GΠ

k ≥ g. We construct the policy in two steps. In the first
step, we set πsx (1) = 1 ⇔ β(x) = 1 for all variables x . In the second step, it follows
from the existence of a satisfying assignment that in each clause, a literal is satisfied,
defining a function ν : {1, . . . ,m} → {1, 2, 3} that defines the number of a satisfied
literal in every clause. Thus, we set πsC (a) = 1 ⇔ ν(C) = a.

We verify that the constructed policy yields the given value. As in each clause the
satisfying literal is chosen, the value of this state will be 0 in one MDP and γ 2q in the
other one.

Now we show that if there is no satisfying assignment, then the value of the con-
current MDP will be lower than g. Given any assignment β and any assignment ν,
the induced policy will lead from at least one clause state to the sink state s0 with
nonzero probability in both MDPs, yielding a lower value. However, we must take
care of stationary but not pure policies that still might induce the desired value. One
can observe that if the stationary policy is not pure in a state sx for a variable x , then
the cumulative discounted reward in this state is pγ

1−p2γ 2 for some real 0 < p < 1.
Deriving the value of a clause state from which one can arrive to this variable state,
we get, summing over both MDPs, a summand

1

2

(
pγ 2

1 − p2γ 2 + (1 − p)γ 2

1 − (1 − p)2γ 2

)

Let f (p) = p
1−p2γ 2 + 1−p

1−(1−p)2γ 2 . Computing the derivative, we obtain

f ′(p) = 2γ 2 p
(
1 − γ 2 p2

)2 − 2γ 2(1 − p)2
(
1 − γ 2(1 − p)2

)2 + 1

1 − γ 2 p2
− 1

1 − γ 2(1 − p)2

123

40 P. Buchholz, D. Scheftelowitsch

which has its roots at

1

2
,
1 ±

√
1 − 4γ −2 + 4γ −2

√
4 − γ 2

2
,
1 ± i

√
1 − 4γ −2 + 4γ −2

√
4 − γ 2

2
.

The only roots of interest are the real ones, and thus, we investigate the pair

1 ±
√
1 − 4γ −2 + 4γ −2

√
4 − γ 2

2
. (29)

It can be seen that for 0 < γ < 1, the value
√
4 − γ 2 is at least

√
3 > 1, and the root

term in (29) is thus greater than one. This means that the whole term (29) is either
greater than one or negative. Hence, the possible extreme points of f in [0, 1] may lie
at 0, 1, or 1/2. We can see that f (0) = f (1) = q while f (1/2) = 1

1−1/4γ 2 < q. Hence,
a non-pure policy in a variable state will have a lower cumulative discounted reward.
Concerning the clause states, we observe that a non-pure policy cannot yield higher
rewards than a pure one, as the expected discounted reward in a clause state is linear
in the expected discounted rewards in the following variable states; the clause states
are not visited again.

References

Amato C, Bernstein DS, Zilberstein S (2007) Solving POMDPs using quadratically constrained linear
programs. In: Proceedings of the 20th international joint conference on artificial intelligence, IJCAI
2007. Hyderabad, India, January 6–12, 2007, pp 2418–2424

Berman A, Plemmons RJ (1994) Nonnegative matrices in the mathematical sciences. Classics in applied
mathematics. SIAM, Philadelphia

Bertsimas D, Mišić VV (2017) Robust product line design. Oper Res 65(1):19–37
Bertsimas D, Silberholz J, Trikalinos T (2016) Optimal healthcare decision making under multiple mathe-

matical models: application in prostate cancer screening. Health Care Manag Sci 21:105–118
Björklund H, Vorobyov S (2007) A combinatorial strongly subexponential strategy improvement algorithm

for mean payoff games. Discrete Appl Math 155(2):210–229. https://doi.org/10.1016/j.dam.2006.04.
029

Caro F, Das-Gupta A (2015) Robust control of the multi-armed bandit problem. Ann Oper Res. https://doi.
org/10.1007/s10479-015-1965-7

Castillo AC, Castro PM, Mahalec V (2018) Global optimization of MIQCPs with dynamic piecewise
relaxations. J Glob Optim 71(4):691–716. https://doi.org/10.1007/s10898-018-0612-7

Colvin M, Maravelias CT (2010) Modeling methods and a branch and cut algorithm for pharmaceutical
clinical trial planning using stochastic programming. Eur J Oper Res 203(1):205–215

d’Epenoux F (1963) A probabilistic production and inventory problem. Manag Sci 10(1):98–108. https://
doi.org/10.1287/mnsc.10.1.98

Dupacová J, Consigli G, Wallace SW (2000) Scenarios for multistage stochastic programs. Ann Oper Res
100(1–4):25–53. https://doi.org/10.1023/A:1019206915174

Ehrgott M (2005) Multicriteria optimization, 2nd edn. Springer, Berlin. https://doi.org/10.1007/3-540-
27659-9

Feinberg EA, Schwartz A (eds) (2002) Handbook of Markov decision processes. Kluwer, Boston
Filar J, Vrieze K (1997) Competitive Markov decision processes. Springer, New York
Gandhi A, Gupta V, Harchol-Balter M, Kozuch MA (2010) Optimality analysis of energy-performance

trade-off for server farm management. Perform Eval 67(11):1155–1171

123

https://doi.org/10.1016/j.dam.2006.04.029
https://doi.org/10.1016/j.dam.2006.04.029
https://doi.org/10.1007/s10479-015-1965-7
https://doi.org/10.1007/s10479-015-1965-7
https://doi.org/10.1007/s10898-018-0612-7
https://doi.org/10.1287/mnsc.10.1.98
https://doi.org/10.1287/mnsc.10.1.98
https://doi.org/10.1023/A:1019206915174
https://doi.org/10.1007/3-540-27659-9
https://doi.org/10.1007/3-540-27659-9

Computation of weighted sums of rewards. . . 41

Garey MR, Johnson DS (1978) Computers and intractability: a guide to the theory of NP-completeness.
Freeman, San Francisco

Givan R, Leach SM, Dean TL (2000) Bounded-parameter Markov decision processes. Artif Intell 122(1–
2):71–109

Hager WW (1989) Updating the inverse of a matrix. SIAM Rev 31(2):221–239
Iyengar GN (2005) Robust dynamic programming. Math Oper Res 30(2):257–280
Kaelbling LP, Littman ML, Cassandra AR (1998) Planning and acting in partially observable stochastic

domains. Artif Intell 101(1–2):99–134
Klamroth K, Köbis E, Schöbel A, Tammer C (2013) A unified approach for different concepts of robustness

and stochastic programming via non-linear scalarizing functionals. Optimization 62(5):649–671
Mercier L, Hentenryck PV (2008) Amsaa: a multistep anticipatory algorithm for online stochastic combi-

natorial optimization. In: Perron L, Trick MA (eds) Integration of AI and OR techniques in constraint
programming for combinatorial optimization problems, 5th international conference, CPAIOR 2008,
Paris, France, May 20–23, 2008, Proceedings. Lecture Notes in Computer Science, vol 5015, pp
173–187. Springer

Nesterov Y, Nemirovskii A (1994) Interior-point polynomial algorithms in convex programming. Society
for Industrial and Applied Mathematics, Philadelphia

NilimA, Ghaoui LE (2005) Robust control ofMarkov decision processes with uncertain transitionmatrices.
Oper Res 53(5):780–798

Papadimitriou CH, Tsitsiklis JN (1987) The complexity of Markov decision processes. Math Oper Res
12(3):441–450

Park J, Boyd S (2017) Heuristics for nonconvex quadratically constrained quadratic programming. CoRR
arXiv:1703.07870v2

Puterman ML (2005) Markov decision processes. Wiley, London
Qualizza A, Belotti P, Margot F (2012) Linear programming relaxations of quadratically constrained

quadratic programs. In: Lee J, Leyffer S (eds)Mixed integer nonlinear programming, vol 154. Springer,
New York

Raskin J, Sankur O (2014) Multiple-environment Markov decision processes. CoRR arXiv:1405.4733
Rockafellar RT, Wets RJ (1991) Scenarios and policy aggregation in optimization under uncertainty. Math

Oper Res 16(1):119–147
Roijers DM, Scharpff J, Spaan MTJ, Oliehoek FA, de Weerdt M, Whiteson S (2014) Bounded approxima-

tions for linear multi-objective planning under uncertainty. In: Chien SA, Do MB, Fern A, Ruml W
(eds) Proceedings of the twenty-fourth international conference on automated planning and schedul-
ing, ICAPS 2014, Portsmouth, New Hampshire, USA, June 21–26, 2014. http://www.aaai.org/ocs/
index.php/ICAPS/ICAPS14/paper/view/7929

Ruszczyński A, Shapiro A (2009) Lectures on stochastic programming. SIAM, Philadelphia. https://doi.
org/10.1137/1.9780898718751

Satia JK, Lave RE (1973) Markovian decision processes with uncertain transition probabilities. Oper Res
21(3):728–740

Serfozo RF (1979) An equivalence between continuous and discrete time Markov decision processes. Oper
Res 27(3):616–620

Sigaud O, Buffet O (eds) (2010) Markov decision processes in artificial intelligence. Wiley-ISTE, London
Singh SP, Cohn D (1997) How to dynamically merge Markov decision processes. In: Jordan MI, Kearns

MJ, Solla SA(eds) Advances in neural information processing systems 10, [NIPS Conference, Denver,
Colorado, USA, 1997]. The MIT Press, pp 1057–1063

Singh SP, Jaakkola TS, Jordan MI (1994) Learning without state-estimation in partially observable Marko-
vian decision processes. In: Cohen WW, Hirsh H (eds) Machine learning, proceedings of the eleventh
international conference,RutgersUniversity,NewBrunswick,NJ,USA, July 10–13, 1994, pp 284–292

Steimle LN, Kaufman DL, Denton BT (2018) Multi-model Markov decision processes. Technical report,
Optimization-online

Vielma JP (2015) Mixed integer linear programming formulation techniques. SIAM Rev 57(1):3–57
Walraven E, Spaan MTJ (2015) Planning under uncertainty with weighted state scenarios. In: Meila M,

Heskes T (eds) Proceedings of the thirty-first conference on uncertainty in artificial intelligence, UAI
2015, July 12–16, 2015, Amsterdam, The Netherlands, pp 912–921. AUAI Press

White CC, Eldeib HK (1994) Markov decision processes with imprecise transition probabilities. Oper Res
42(4):739–749

White CC, White DJ (1989) Markov decision processes. Eur J Oper Res 39(6):1–16

123

http://arxiv.org/abs/1703.07870v2
http://arxiv.org/abs/1405.4733
http://www.aaai.org/ocs/index.php/ICAPS/ICAPS14/paper/view/7929
http://www.aaai.org/ocs/index.php/ICAPS/ICAPS14/paper/view/7929
https://doi.org/10.1137/1.9780898718751
https://doi.org/10.1137/1.9780898718751

42 P. Buchholz, D. Scheftelowitsch

WiermanA,AndrewLL, TangA (2012) Power-aware speed scaling in processor sharing systems: optimality
and robustness. Perform Eval 69(12):601–622

Wiesemann W, Kuhn D, Rustem B (2013) Robust Markov decision processes. Math Oper Res 38(1):153–
183

123

	Computation of weighted sums of rewards for concurrent MDPs
	Abstract
	1 Introduction
	1.1 Related work
	1.2 Contribution of the paper
	1.3 Structure of the work
	1.4 Notation

	2 Basic problem
	3 Mathematical structure of the optimization problem
	3.1 Computational complexity

	4 Computation of optimal policies and rewards
	4.1 A solution approach using a mixed integer linear program
	4.2 Using algorithms for non-convex programs
	4.3 Step-wise computation of increasing lower bounds
	4.4 Computation of upper bounds

	5 Examples
	5.1 Small examples with an optimal random policies
	5.2 Random matrices
	5.3 A multi-server multi-queue model

	6 Conclusions
	Appendix A: Action dependent rewards
	Appendix B: Proof of Theorem 1
	References

