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Abstract We consider risk measurement in controlled partially observable Markov
processes in discrete time. We introduce a new concept of conditional stochastic time
consistency and we derive the structure of risk measures enjoying this property. We
prove that they can be represented by a collection of static law invariant risk mea-
sures on the space of function of the observable part of the state. We also derive the
corresponding dynamic programming equations. Finally we illustrate the results on a
machine deterioration problem.

Keywords Partially observable Markov processes · Dynamic risk measures ·
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1 Introduction

The main objective of this paper is to provide theoretical foundations of the theory
of dynamic risk evaluation for Markov processes with only partial observation of the
state and to derive the corresponding dynamic programming equations.

The theory of dynamic riskmeasures in discrete time has been intensively developed
in the last 10 years (see Scandolo 2003; Riedel 2004; Roorda et al. 2005; Föllmer and
Penner 2006; Cheridito et al. 2006; Ruszczyński and Shapiro 2006b; Artzner et al.
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rusz@rutgers.edu

Jingnan Fan
jf546@rutgers.edu

1 RUTCOR, Rutgers University, Piscataway, NJ 08854, USA

2 Department of Management Science and Information Systems, Rutgers University, Piscataway,
NJ 08854, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00186-018-0633-5&domain=pdf
http://orcid.org/0000-0002-4571-1469


162 J. Fan, A. Ruszczyński

2007; Pflug and Römisch 2007; Klöppel and Schweizer 2007; Jobert and Rogers
2008; Cheridito and Kupper 2011 and the references therein). The basic setting is the
following: we have a probability space (Ω,F , P), a filtration {Ft }t=1,...,T with a
trivialF1, and we define appropriate spaces Zt ofFt -measurable random variables,
t = 1, . . . , T . For each t = 1, . . . , T , a mapping ρt,T : ZT → Zt is called a
conditional risk measure. The central role in the theory is played by the concept of time
consistency, which regulates relations between themappingsρt,T andρs,T for different
s and t . One definition employed in the literature (Cheridito et al. 2006; Ruszczyński
2010) is the following: for all Z , W ∈ ZT , if ρt,T (Z) ≤ ρt,T (W ) then ρs,T (Z) ≤
ρs,T (W ) for all s < t . This can be used to derive recursive relations ρt,T (Z) =
ρt
(
ρt+1,T (Z)

)
, with simpler one-step conditional risk mappings ρt : Zt+1 → Zt ,

t = 1, . . . , T − 1.
When applied to processes described by controlled kernels, like controlled Markov

processes, the theory of dynamic measures of risk encounters difficulties. The domain
and range spaces of the one-step mappings ρt change, when t increases. With Zt

containing allFt -measurable random variables, arbitrary dependence of ρt on the past
is allowed. These difficulties are compounded by the fact that a control policy changes
the probability measure on the space of paths of the process. Risk measurement of the
entire family of processes defined by control policies is needed.

In the extant literature, three basic approaches to introduce risk aversion in Markov
decision processes have been employed: utility functions (see, e.g., Jaquette 1973;
Denardo and Rothblum 1979; Bäuerle and Rieder 2013; Jaśkiewicz et al. 2013), mean-
variance models (see, e.g., White 1988; Filar et al. 1989; Mannor and Tsitsiklis 2013;
Arlotto et al. 2014), and entropic (exponential) models (see, e.g., Howard and Math-
eson 1971/72; Marcus et al. 1997; Coraluppi and Marcus 1999; Di Masi and Stettner
1999; Levitt and Ben-Israel 2001). Our approach complements the utility and expo-
nential models; the mean-variance models do not satisfy, in general, the monotonicity
and time consistency conditions, except the version of Chen et al. (2014).

In Ruszczyński (2010), we introduced Markov risk measures, in which the one-step
conditional riskmappingsρt have a special form,which allowed for the development of
dynamic programming equations and corresponding solution methods. This is related
to the expectedutilitymodelswith an aggregator, considered in Jaśkiewicz et al. (2013),
but considersmodels which are nonlinear in probability (do not have an expected value
representation). The aggegator is replaced by a more general transition risk mapping.
Our ideas were successfully extended to transient models in Çavus and Ruszczyński
(2014a, b) and Lin and Marcus (2013) and to problems with unbounded costs in Chu
and Zhang (2014) and Shen et al. (2013). These works were further generalized in
Fan and Ruszczyński (2016), where we introduced so-called process-based measures
and described them by a sequence of transition risk mappings: static law invariant
risk measures on a space V of measurable functions on the state space X . In the
special case of controlled Markov processes, we derived the structure postulated in
Ruszczyński (2010).

In this paper, we develop risk theory for partially observable controlled Markov
processes. In the expected-value case, this classical topic is covered in many mono-
graphs (see, e.g., Hinderer 1970; Bertsekas and Shreve 1978; Bäuerle and Rieder 2011
and the references therein). The standard approach is to consider the belief state: the
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conditional probability distribution of the unobserved part of the state. The recent
article (Feinberg et al. 2016) provides the state-of-the-art setting. The risk-averse case
has been dealt, so far, with the use of the entropic risk measure (James et al. 1994;
Fernández-Gaucherand andMarcus 1997). Amore general partially-observable utility
model was recently analyzed in Bäuerle and Rieder (2017).

Our main result is that in partially observable systems the dynamic risk measures
can be equivalently modeled by special forms of transition risk mappings: static risk
measures on the space of functions defined on the observable part of the state only.
We also derive dynamic programming equations for risk-averse partially observable
Markov models. In these equations, the state space comprises belief states and observ-
able states, as in the expected value model, but the conditional expectation is replaced
by a transition risk mapping.

The paper is organized as follows. In Sect. 2, we briefly describe the partially
observable Markov process and introduce relevant notation. In Sect. 3, we recall the
concept of a dynamic risk measure and review its properties. We introduce the key
property of stochastic dynamic time consistency and use it to derive a special structure
of risk measures. In Sect. 4 we specialize these results to Markov systems with costs
dependent on both components of the current state: observable and unobservable. In
Sect. 5, we prove dynamic programming equations for risk-averse partially observable
models. Finally, in Sect. 6, we illustrate our approach on a machine replacement
problem.

2 Partially observable Markov decision processes

We consider a partially observable Markov process {Xt , Yt }t=1,...,T , in which {Xt } is
observable and {Yt } is not. We use the term “partially observable Markov decision
process” (POMDP) in a more general way than the extant literature, because we
consider dynamic risk measures of the cost sequence, rather than just the expected
value.

In order to develop our subsequent theory, it is essential to define the model in
a clear and rigorous way (cf. Bäuerle and Rieder 2011, Ch. 5). The state space of
the model is defined as X × Y where (X ,B(X )) and (Y ,B(Y )) are two Borel
spaces (Borel subsets of Polish spaces). From the modeling perspective, x ∈ X is the
part of the state that we can observe at each step, while y ∈ Y is unobservable. The
measurable space that we will work with is then given by Ω = (X ×Y )T endowed
with the canonical product σ -field F , and we use xt and yt to denote the canonical
projections at time t .

Let {F X,Y
t }t=1,...,T denote the natural filtration generated by the process (X, Y )

and {F X
t }t=1,...,T be the filtration generated by the process X .

The control space is given by a Borel spaceU , and since onlyX is observable, the
set of admissible controls at step t is given by a measurable multifunctionUt : X ⇒
U with nonempty values. The transition kernel at time t is Kt : X × Y × U →
P(X × Y ), where P(X × Y ) is the space of probability measures on X × Y .
In other words, if the state at time t is (x, y) and we apply control u, the distribution
of the next state is Kt (x, y, u).
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At time t , the history of observed states is ht = (x1, x2, . . . , xt ), while all the
information available for making a decision is gt = (x1, u1, x2, u2, . . . , xt ). We use
Ht = X t = X × · · · × X︸ ︷︷ ︸

t times

to denote the spaces of possible histories ht . We make

distinction of gt and ht because we should make decision of ut based on gt as the past
controlsu1, . . . , ut−1 are also taken into considerationwhen estimating the conditional
distribution of Yt (see Sect. 4). We write Ht for (X1, . . . , Xt ).

For this controlled process, a (deterministic) history-dependent admissible policy
π = (π1, . . . , πT ) is a sequence of measurable functions πt (gt ) such that πt (gt ) ∈
Ut (xt ) for all possible gt [such a policy exists, due to the measurable selector theorem
of Kuratowski and Ryll-Nardzewski (1965)]. We can easily prove by induction on
t that for such an admissible policy π , each πt reduces to a measurable function of
ht = (x1, x2, . . . , xt ), as us = πs(x1, . . . , xs) for all s = 1, . . . , t − 1. We are still
usingπs to denote the decision rule; it will not lead to anymisunderstanding. Therefore
the set of admissible policies is

Π = {
π = (π1, . . . , πT ) | πt (x1, . . . , xt ) ∈ Ut (xt ), t = 1, . . . , T

}
.

For a random Y1, any policy π ∈ Π defines a process {Xt , Yt , Ut }t=1,...,T on the
probability space (Ω,F , Pπ ), with Ut = πt (X1, . . . , Xt ).

We assume that the cost process Zπ
t , t = 1, . . . , T, is bounded and adapted to

{F X
t }, i.e., Zπ

t ∈ Zt for all π and t , where

Zt =
{

Z : Ω → R
∣∣ Z is F X

t -measurable and bounded
}

, t = 1, . . . , T .

Weallow the cost process to dependon the policyπ in order to cover the case of control-
dependent costs, such as Zπ

t = ct (Xt , πt (Xt )), or more general cases discussed in
section. For any Z ∈ Zt , a measurable and bounded functional Z : X t → R exists
such that Z = Z(X1, . . . , Xt ). With an abuse of notation, we still use Z to denote this
function.

3 Risk measures for partially observable systems

3.1 Dynamic risk measures

For any policy π ∈ Π , our objective is to evaluate at each time t the sequence of
costs Zπ

t , . . . , Zπ
T in such a way that the evaluation is F X

t -measurable. We denote
Zt,T = Zt × · · · × ZT , t = 1, . . . , T .

In what follows, all equality and inequality relations between random variables are
understood in the “everywhere” sense.

Definition 1 A mapping ρt,T : Zt,T → Zt , where 1 ≤ t ≤ T , is called a condi-
tional risk measure, if it satisfies the monotonicity property: for all (Zt , . . . , ZT ) and
(Wt , . . . , WT ) in Zt,T , if Zs ≤ Ws for all s = t, . . . , T , then ρt,T (Zt , . . . , ZT ) ≤
ρt,T (Wt , . . . , WT ).
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Definition 2 A conditional risk measure ρt,T : Zt,T → Zt

(i) is normalized if ρt,T (0, . . . , 0) = 0;
(ii) is translation invariant if ∀(Zt , . . . , ZT ) ∈ Zt,T ,

ρt,T (Zt , . . . , ZT ) = Zt + ρt,T (0, Zt+1, . . . , ZT );
(iii) has the local property if for any event A ∈ F X

t and all (Zt , . . . , ZT ) ∈ Zt,T we
have 1Aρt,T (Zt , . . . , ZT ) = ρt,T (1A Zt , . . . ,1A ZT ).

From now on, we assume all conditional risk measures to be at least normalized.

Definition 3 A dynamic risk measure
{
ρt,T

}
t=1,...,T is a sequence of conditional risk

measures ρt,T : Zt,T → Zt . We say that it is normalized, translation-invariant,
decomposable, or has the local property, if all ρt,T , t = 1, . . . , T , satisfy the respective
conditions of Definition 2.

3.2 Stochastic conditional time consistency

For a partially observable controlled process defined in Sect. 2, we have to use a family
of risk measures

{
ρπ

t,T

}π∈Π

t=1,...,T , because the policy affects the probability measure on
the space Ω . When two policies π and π ′ are compared, even if the resulting costs
were pointwise equal, ρπ

t,T (Zt , . . . , ZT ) and ρπ ′
t,T (Zt , . . . , ZT )may differ, because the

probability measures Pπ and Pπ ′
could differ. The concept of stochastic conditional

time consistency allows us to relate the whole family of risk measures.

Definition 4 A family of dynamic risk measures
{
ρπ

t,T

}π∈Π

t=1,...,T is stochastically con-

ditionally time consistent if for any π, π ′ ∈ Π , for any 1 ≤ t < T , for all ht ∈ X t ,
all (Zt+1, . . . , ZT ) ∈ Zt+1,T and all (Wt+1, . . . , WT ) ∈ Zt+1,T , the condition

(
ρπ

t+1,T (Zt+1, . . . , ZT ) | Hπ
t = ht

) �st
(
ρπ ′

t+1,T (Wt+1, . . . , WT ) | Hπ ′
t = ht

)
,

implies

ρπ
t,T (0, Zt+1, . . . , ZT )(ht ) ≤ ρπ ′

t,T (0, Wt+1, . . . , WT )(ht ).

Remark 1 The conditional stochastic order “�st” means that for all η ∈ R we have

Pπ
[
ρπ

t+1,T (Zt+1, . . . , ZT )(Ht+1) ≤ η
∣∣Ht = ht

]

≤ Pπ ′[
ρπ ′

t+1,T (Wt+1, . . . , WT )(Ht+1) ≤ η
∣∣Ht = ht

]
.

Proposition 1 If a family of dynamic risk measures
{
ρπ

t,T

}π∈Π

t=1,...,T is normalized, has
the translation property, and is stochastically conditionally time consistent, then it has
the local property.

Proof We use induction on t from T down to 1. At the final time, for all A ∈ FT and
all ZT ∈ ZT we have ρπ

T,T (1A ZT ) = 1A ZT = 1Aρπ
T,T (ZT ).
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Suppose ρπ
t+1,T has the local property. Then for all A ∈ Ft , by translation,

ρπ
t,T (1A Zt , . . . ,1A ZT ) = 1A Zt + ρπ

t,T (0,1A Zt+1, . . . ,1A ZT )

and

1Aρπ
t,T (Zt , . . . , ZT ) = 1A Zt + 1Aρπ

t,T (0, Zt+1, . . . , ZT ).

To verify the local property of ρπ
t,T we need to show that both right hand sides are

equal. For any ht ∈ X t we have

[(1Aρπ
t,T (0, Zt+1, . . . , ZT ))](ht ) = 1A(ht )ρ

π
t,T (0, Zt+1, . . . , ZT ))(ht ).

The local property of ρπ
t+1,T yields

ρπ
t+1,T (1A Zt+1,1A Zt+2, . . . ,1A ZT )(ht , ·) = 1A(ht )ρ

π
t+1,T (Zt+1, . . . , ZT )(ht , ·),

so by stochastic conditional time consistency,

ρπ
t,T (0,1A Zt+1, . . . ,1A ZT )(ht ) =

{
0 if 1A(ht ) = 0,

ρπ
t,T (0, Zt+1, . . . , ZT )(ht ) if 1A(ht ) = 1.

Thus,

ρπ
t,T (0,1A Zt+1, . . . ,1A ZT )(ht ) = 1Aρπ

t,T (0, Zt+1, . . . , ZT )(ht ), ∀ht ∈ X t ,

which proves the local property of ρπ
t,T . �	

The following theorem shows that the stochastic conditional time consistency
implies that one-step risk mappings can be represented by static law-invariant risk
measures on V , the set of all bounded measurable functions onX . We first recall the
definition of a risk measure and slightly refine the standard concept of law invariance.

Definition 5 A measurable functional r : V → R is called a risk measure.

(i) It is monotonic, if V ≤ W implies r(V ) ≤ r(W );
(ii) It is normalized if r(0) = 0;
(iii) It is translation invariant if for all V ∈ V and all a ∈ R, r(a + V ) = a + r(V );
(iv) It is law invariant with respect to the probability measure q on (X ,B(X )), if

V
q∼ W ⇒ r(V ) = r(W ), where V

q∼ W means that q{V ≤ η} = q{W ≤ η}
for all η ∈ R.

The conditional distribution of ρπ
t+1,T (Zt+1, . . . , ZT )(Ht+1) given Ht = ht

under Pπ plays an important role in the stochastic conditional time consistency,
so does the conditional distribution of Xt+1, given ht . We denote the latter by
Qπ

t (ht ) ∈ P(X ):

Qπ
t (ht )(C) = Pπ [Xt+1 ∈ C | Ht = ht ], ∀C ∈ B(X ). (1)
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Later in Sect. 4 we show that Qπ
t can be computed in a recursive way with the help

of belief states and Bayes operators. We can now state the main result of this section.

Theorem 1 A family of dynamic risk measures
{
ρπ

t,T

}π∈Π

t=1,...,T is normalized, transla-
tion invariant, and stochastically conditionally time consistent if and only if transition
risk mappings

σt :
{ ⋃

π∈Π

graph(Qπ
t )

}
× V → R, t = 1 . . . T − 1,

exist, such that

(i) For all t = 1 . . . T − 1 and all ht ∈ X t , σt (ht , ·, ·) is normalized and has the
following property of strong monotonicity with respect to stochastic dominance:

∀q1, q2 ∈ { Qπ
t (ht ) : π ∈ Π

}
, ∀ V 1, V 2 ∈ V ,

(V 1; q1) �st (V 2; q2) �⇒ σt (ht , q1, V 1) ≤ σt (ht , q2, V 2),

where (V ; q) = q ◦ V −1 means “the distribution of V under q;”
(ii) For all π ∈ Π , for all t = 1 . . . T − 1, for all (Zt , . . . , ZT ) ∈ Zt,T , and for all

ht ∈ X t ,

ρπ
t,T (Zt , Zt+1, . . . , ZT )(ht ) = Zt+σt (ht , Qπ

t (ht ), ρ
π
t+1,T (Zt+1, . . . , ZT )(ht , ·)).

(2)

Moreover, for all t = 1 . . . T − 1, σt is uniquely determined by {ρπ
t,T }π∈Π as follows:

for every ht ∈ X t , for every q ∈ { Qπ
t (ht ) : π ∈ Π

}
, and for every V ∈ V ,

σt (ht , q, V ) = ρπ
t,T (0, v, 0, . . . , 0)(ht ),

where π is any admissible policy such that q = Qπ
t (ht ), and v ∈ St+1 satisfies the

equation v(ht , ·) = V (·), and can be arbitrary elsewhere.

Proof Assume
{
ρπ

t,T

}π∈Π

t=1,...,T is translation invariant and stochastically condition-
ally time consistent. For any V ∈ V and any ht ∈ X t we define v(ht , ·) =
V (·). The function v is an element of St+1. Then the formula σπ

t (ht , q, V ) =
ρπ

t,T (0, v, 0, . . . , 0)(ht ), defines for each π a normalized and monotonic risk mea-
sure on the space V . For any (Zt , . . . , ZT ) ∈ Zt,T , setting

W (x) = ρπ
t+1,T (Zt+1, . . . , ZT )(ht , x), ∀ x ∈ X ,

w(ht+1) =
{

W (x), if ht+1 = (ht , x),

0, otherwise,

we obtain, by translation invariance and normalization,

ρπ
t+1,T (w, 0, . . . , 0)(ht , ·) = w(ht , ·) = ρπ

t+1,T (Zt+1, . . . , ZT )(ht , ·).
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Thus, by translation invariance and stochastic conditional time consistency,

ρπ
t,T (Zt , . . . , ZT )(ht ) = Zt (ht ) + ρπ

t,T (0, Zt+1, . . . , ZT )(ht )

= Zt (ht ) + ρπ
t,T (0, w, 0, . . . , 0)(ht ) = Zt (ht ) + σπ

t (ht , q, W ). (3)

This chain of relations proves also the uniqueness of σπ
t for each π .

We can now verify the strong monotonicity of σπ
t (ht , ·, ·)with respect to stochastic

dominance. Suppose
(V 1; Qπ1

t (ht )) �st (V 2; Qπ2
t (ht )), (4)

where V 1, V 2 ∈ V and ht ∈ X t . Define v1(ht , ·) = V 1(·) and v2(ht , ·) = V 2(·).
Then Definition 4 implies that ρ

π1
t,T (0, v1, 0, . . . , 0)(ht ) ≤ ρ

π2
t,T (0, v2, 0, . . . , 0)(ht ).

This combined with (3) yields

σ
π1
t (ht , Qπ1

t (ht ), V 1) ≤ σ
π2
t (ht , Qπ2

t (ht ), V 2). (5)

Suppose Qπ1
t (ht ) = Qπ2

t (ht ) and V 1 = V 2. Then both �st and �st are true in (4) and
thus (5) becomes an equality. This proves that in fact σπ

t does not depend on π , and
all dependence on π is carried by the controlled kernel Qπ

t . Moreover, the function
σt (ht , ·, ·) is indeed strongly monotonic with respect to stochastic dominance.

On the other hand, if such transition risk mappings σt exist, then
{
ρt,T

}π∈Π

t=1,...,T is
stochastically conditionally time consistent by the monotonicity and law invariance
of σt (ht , ·, ·). We can now use (2) to obtain for any t = 1, . . . , T − 1, and for all
ht ∈ X t the translation invariance of ρπ

t,T . �	
The following transition risk mappings satisfy the condition of Theorem 1 and

correspond to stochastically conditionally time consistent risk measures.

Example 1 The entropic transition risk mapping,

σt (ht , q, v) = 1

γ
ln
(
Eq [eγ v]) = 1

γ
ln

(∫

X
eγ v(x) q(dx)

)
, γ > 0.

We could make γ dependent on the time t , the current state xt , or the entire history
ht , and still obtain a stochastically conditionally time consistent risk measure (with
q = Qt (ht )).

Example 2 The mean-semideviation transition risk mapping:

σt (ht , q, v) =
∫

X
v(s) q(ds) + 	t (ht )

(∫

X

[(
v(s) −

∫

X
v(s′) q(ds′)

)

+

]p
q(ds)

)1/p

,

where 	t : X t → [0, 1] is a measurable function, and p ∈ [1,+∞). It is an analogue
of the static mean-semideviation measure of risk, whose consistency with stochas-
tic dominance is well-known (Ogryczak and Ruszczyński 1999, 2001). In the risk
measure, we use q = Qt (ht ).

In fact, all coherent or convex law invariant risk measures may be used to construct
σt ; just the dependence on the probability measure q must be explicit.
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4 Markov models

4.1 Bayes operator

At each time t , the conditional distribution of the next observable state Qπ
t (ht ) defined

in (1) can be easily computed if we know the conditional distribution of the current
unobservable state, called the belief state:

Ξπ
t (ht ) ∈ P(Y ) : Ξπ

t (ht )(D) = Pπ [Yt ∈ D | Ht = ht ], ∀D ∈ B(Y ), (6)

as we have

Qπ
t (ht ) =

∫

Y
K X

t (xt , y, πt (ht )) Ξπ
t (ht )(dy), (7)

where K X
t (xt , y, πt (ht )) is the marginal distribution of Kt (xt , y, πt (ht )) onX .

In a POMDP, the Bayes operator provides a way to update from prior belief to
posterior belief. Suppose the current state observation is x , the action is u, and the
conditional distribution of the unobservable state, given the history of the process, is ξ .
After a new observation x ′ of the observable part of the state, we can find a formula
to determine the posterior distribution of the unobservable state.

Let us start with a fairly general construction of the Bayes operator. Assuming the
above setup, for given (x, ξ, u) ∈ X ×P(Y )×U , define a newmeasuremt (x, ξ, u)

onX × Y , initially on all measurable rectangles A × B, as

mt (x, ξ, u)(A × B) =
∫

Y
Kt (A × B | x, y, u) ξ(dy).

We verify readily that this uniquely defines a probability measure on X × Y . If the
measurable space (Y ,B(Y )) is standard Borel, i.e., isomorphic to a Borel subspace
of R, we can disintegrate mt (x, ξ, u) into its marginal λt (x, ξ, u)(dx ′) on X and a
transition kernel Γt (x, ξ, u)(x ′, dy′) fromX to Y :

mt (x, ξ, u)(dx ′, dy′) = λt (x, ξ, u)(dx ′) Γt (x, ξ, u)(x ′, dy′).

For all C ∈ B(Y ), we define the Bayes operator of the POMDP as follows:

Φt (x, ξ, u, x ′)(C) = Γt (x, ξ, u)(x ′, C).

The above argument shows that the Bayes operator exists and is unique as long as the
spaceY is standard Borel, which is almost always the case in applications of POMDP.
In the following, we always assume the existence of the Bayes operator.

Example 3 Assume that each transition kernel Kt (x, y, u) has a density qt (·, · |
x, y, u) with respect to a finite product measure μX ⊗ μY on X × Y . Then the
Bayes operator has the form

[
Φt (x, ξ, u, x ′)

]
(A) =

∫
A

∫
Y qt (x ′, y′ | x, y, u) ξ(dy) μY (dy′)

∫
Y

∫
Y qt (x ′, y′ | x, y, u) ξ(dy) μY (dy′)

, ∀ A ∈ B(Y ).
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If the formula above has a zero denominator for some (x, ξ, u, x ′), we can formally
define Φt (x, ξ, u, x ′) to be an arbitrarily selected distribution on Y .

Thus, we can calculate Qt and Ξt (defined in (1) and (6)) recursively with the help
of Bayes operators:

– The initial belief Ξ1(x1) is the conditional distribution of Y1 given X1 = x1;
– The Bayes operator provides us the following formula to update the belief states:

Ξπ
t+1(ht+1) = Φt

(
xt , Ξ

π
t (ht ), πt (ht ), xt+1

)
,

and, by induction on t , Ξπ
t (ht ) = Ξt

(
x1, π1(x1), . . . , xt−1, πt−1(ht−1), xt

)
;

– The conditional distribution of Xt+1 can be calculated by (7), and

Qπ
t (ht ) = Qt

(
x1, π1(x1), . . . , xt , πt (ht )

)
.

4.2 Markov risk measures

We make the following additional assumptions:

Assumption 1 The costs Z1, . . . , ZT are only dependent on the current observable
state, the current belief state, and the current control, that is,

Zπ
t (ht ) = rt (xt , Ξ

π
t (ht ), πt (ht )), t = 1, . . . , T . (8)

For example, in expected value models, we have rt (x, ξ, u) = ∫
Y ct (x, y, u) ξ(dy),

where ct : X ×Y ×U → R is the running cost function, butmore general functionals
can be used here instead of the expectation with respect to the belief state.

Definition 6 In POMDP, a policy π ∈ Π is Markov if πt (ht ) = πt (h′
t ) for all t =

1, . . . , T and all ht , h′
t ∈ X t such that xt = x ′

t and Ξπ
t (ht ) = Ξπ

t (h′
t ).

For a fixedMarkov policy π , the future evolution of the process {(Xτ , Ξ
π
τ )}τ=t,...,T

is solely dependent on the current (xt , Ξ
π
t (ht )), and so is the distribution of the future

risk functions rτ (Xτ , Ξ
π
τ , πτ (Xτ , Ξ

π
τ )), τ = t, . . . , T . Therefore, we can define the

Markov property of risk measures for POMDP. To alleviate notation, for all π ∈ Π

and for a measurable and bounded r = (r1, . . . , rT ), we write

vπ
t (ht ) := ρπ

t,T

(
rt (Xt , Ξ

π
t , πt (Ht )), . . . , rT (XT , Ξπ

T , πT (HT ))
)
(ht ). (9)

Definition 7 A family of dynamic risk measures
{
ρπ

t,T

}π∈Π

t=1,...,T for a POMDP is
Markov if for allMarkovpoliciesπ ∈ Π , for all boundedmeasurable r = (r1, . . . , rT ),
and for all ht = (x1, . . . , xt ) and h′

t = (x ′
1, . . . , x ′

t ) in X t such that xt = x ′
t and

Ξπ
t (ht ) = Ξπ

t (h′
t ), we have

vπ
t (ht ) = vπ

t (h′
t ).
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Proposition 2 A normalized, translation invariant, and stochastically conditionally
time consistent family of risk measures

{
ρπ

t,T

}π∈Π

t=1,...,T is Markov if and only if the
dependence of σt on ht is carried by (xt , Ξ

π
t (ht )) only, for all t = 1, . . . , T − 1.

Proof Fix t = 1, . . . , T − 1 and W ∈ V . Let π ∈ Π be an arbitrary policy. Consider
ht , h′

t ∈ X t such that xt = x ′
t , Ξ

π
t (ht ) = Ξπ

t (h′
t ) = ξt , and Qπ

t (ht ) = Qπ
t (h′

t ). We
construct a Markov policy λ ∈ Π , such that πt (ht ) = λt (xt , ξt ) for this particular t
and ht . By construction, Qπ

t (ht ) = Qλ
t (xt , ξt ). We also construct a sequence of costs

r = (0, . . . , 0, rt+1, 0, . . . , 0) with rt+1(x ′, ξ ′, u′) ≡ W (x ′). We obtain the following
chain of equations, in which we use the construction of λ, the construction of r , the
Markov property of Definition 7, and the assumed equality of Qπ

t (ht ) and Qπ
t (h′

t ):

σt (ht , Qπ
t (ht ), W ) = σt (ht , Qλ

t (xt , ξt ), W ) = vλ
t (ht ) = vλ

t (h′
t )

= σt (h
′
t , Qλ

t (xt , ξt ), W ) = σt (h
′
t , Qπ

t (ht ), W )

= σt (h
′
t , Qπ

t (h′
t ), W ).

Therefore, σt is its direct dependence on ht is carried by (xt , ξt ) only.
If σt , t = 1, . . . , T −1, are all memoryless, we can prove by induction backward in

time that for all t = T, . . . , 1, vπ
t (ht ) = vπ

t (h′
t ) for all Markov π and all ht , h′

t ∈ X t

such that xt = x ′
t and ξt = ξ ′

t . �	
The following theorem summarizes our observations.

Theorem 2 A family of dynamic risk measures
{
ρπ

t,T

}π∈Π

t=1,...,T for a POMDP is normal-
ized, translation-invariant, stochastically conditionally time consistent, and Markov
if and only if transition risk mappings

σt : {(xt , Ξ
π
t (ht ), Qπ

t (ht )
) : π ∈ Π, ht ∈ X t}× V → R, t = 1 . . . T − 1,

exist, such that

(i) for all t = 1, . . . , T − 1 and all (x, ξ) ∈ {(
xt , Ξ

π
t (ht )

) : π ∈ Π, ht ∈ X t
}
,

σt (x, ξ, ·, ·) is normalized and strongly monotonic with respect to stochastic dom-
inance on

{
Qπ

t (ht ) : π ∈ Π, ht ∈ X t such that xt = x, Ξπ
t (ht ) = ξ

}
;

(ii) for all π ∈ Π , for all measurable bounded r, for all t = 1, . . . , T − 1, and for all
ht ∈ X t ,

vπ
t (ht ) = rt (xt , Ξ

π
t (ht ), πt (ht )) + σt

(
xt , Ξ

π
t (ht ), Qπ

t (ht ), v
π
t+1(ht , ·)

)
. (10)

This allows us to evaluate risk of Markov policies in a recursive way.

Corollary 1 Under the conditions of Theorem 2, for any Markov policy π , the function
(9) depends on r, πt ,…,πT , and (xt , ξt ) only, and the following relation is true:

v
πt ,...,πT
t (xt , ξt ) = rt (xt , ξt , πt (xt , ξt ))

+σt
(
xt , ξt ,

∫

Y
K X

t (xt , y, πt (xt , ξt )) ξt (dy), x ′

�→ v
πt+1,...,πT
t+1 (x ′, Φt (xt , ξt , πt (xt , ξt ), x ′))

)
. (11)
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Proof We use induction backward in time. For t = T we have vπ
T (hT ) =

rT (xT , ξT , πT (xT , ξT )) and our assertion is true. If it is true for t + 1, formula (10)
reads

vπ
t (ht ) = rt (xt , ξt , πt (xt , ξt ))

+σt
(
xt , ξt , Qt (xt , ξt , πt (xt , ξt )),

x ′ �→ v
πt+1,...,πT
t+1 (x ′, Φt (xt , ξt , πt (xt , ξt ), x ′))

)
.

Substitution of (7) proves our assertion. �	

5 Dynamic programming

We consider a family of dynamic risk measures
{
ρπ

t,T

}π∈Π

t=1,...,T which is normalized,
translation-invariant, stochastically conditionally time consistent, and Markov. Our
objective is to analyze the risk minimization problem:

min
π∈Π

vπ
1 (x1, Ξ1(x1)), x1 ∈ X .

For this purpose, we introduce the family of value functions:

v∗
t (ht ) = inf

π∈Πt,T
vπ

t (ht ), t = 1, . . . , T, ht ∈ X t , (12)

where Πt,T is the set of feasible deterministic policies π = {πt , . . . , πT }. By Theo-
rem 2, transition risk mappings

{
σt
}

t=1,...,T −1 exist, such that Eq. (10) hold.
We assume that the spaces P(X ) and P(Y ) are equipped with the topology

of weak convergence, and the space V is equipped with the topology of pointwise
convergence. All continuity statements are made with respect to the said topologies.

We also assume that the kernels Kt (x, y, u) have densities qt (·, · | x, y, u) with
respect to a finite product measureμX ⊗μY onX ×Y , as in Example 3. In this case,

[ ∫

Y
K X

t (x, y, u) ξ(dy)

]
(dx ′) =

[ ∫

Y

∫

Y
qt (x ′, y′ | x, y, u) ξ(dy) μY (dy′)

]
μX (dx ′).

(13)
Our main result is that the value functions (12) are memoryless, that is, they depend

on (xt , ξt ) only, and that they satisfy a generalized form of a dynamic programming
equation. The equation also allows us to identify the optimal policy.

Theorem 3 We assume the following conditions:

(i) The functions (x, u) �→ qt (x ′, y′|x, y, u) are continuous at all (x ′, y′, x, y, u),
uniformly over (x ′, y′, y);

(ii) The transition risk mappings σt (·, ·, ·, ·), t = 1, . . . , T , are lower semi-
continuous;

(iii) The functions rt (·, ·, ·), t = 1, . . . , T , are lower semicontinuous;
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(iv) The multifunctions Ut (·), t = 1, . . . , T , are compact-valued and upper-
semicontinuous.

Then the functions v∗
t , t = 1, . . . , T are memoryless, lower semicontinuous, and

satisfy the following dynamic programming equations:

v∗
T (x, ξ) = min

u∈UT (x)
rT (x, ξ, u), x ∈ X , ξ ∈ P(X ),

v∗
t (x, ξ) = min

u∈Ut (x)

{
rt (x, ξ, u)

+ σt

(
x, ξ,

∫

Y
K X

t (x, y, u) ξ(dy), x ′ �→ v∗
t+1

(
x ′, Φt (x, ξ, u, x ′)

))}
,

x ∈ X , ξ ∈ P(Y ), t = T − 1, . . . , 1.

Moreover, an optimal Markov policy π̂ exists and satisfies the equations:

π̂T (x, ξ) ∈ argmin
u∈UT (x)

rT (x, ξ, u), x ∈ X , ξ ∈ P(Y ),

π̂t (x, ξ) ∈ argmin
u∈Ut (x)

{
rt (x, ξ, u)

+ σt

(
x, ξ,

∫

Y
K X

t (x, y, u) ξ(dy), x ′ �→ v∗
t+1

(
x ′, Φt (x, ξ, u, x ′)

))
}
,

x ∈ X , ξ ∈ P(Y ), t = T − 1, . . . , 1.

Proof For all hT ∈ X T we have

v∗
T (hT ) = inf

πT
rT (xT , ξT , πT (hT )) = inf

u∈UT (xT )
rT (xT , ξT , u). (14)

By assumptions (iii) and (iv), owing to the Berge theorem [see (Aubin and Frankowska
2009, Theorem 1.4.16)], the infimum in (14) is attained and is a lower semicontinuous
function of (xT , ξT ). Hence, v∗

T is memoryless. Moreover, the optimal solution map-
ping ΨT (x, ξ) = {

u ∈ UT (x) : rT (x, ξ, u) = v∗
T (x, ξ)

}
has nonempty and closed

values and is measurable. Therefore, a measurable selector π̂T of ΨT exists (see,
Kuratowski and Ryll-Nardzewski 1965; Aubin and Frankowska 2009, Thm. 8.1.3),
and

v∗
T (hT ) = v∗

T (xT , ξT ) = v
π̂T
T (xT , ξT ).

We prove the theorem by induction backward in time. Suppose v∗
t+1(·) is memoryless,

lower semicontinuous, and Markov decision rules {π̂t+1, . . . , π̂T } exist such that

v∗
t+1(ht+1) = v∗

t+1(xt+1, ξt+1) = v
{π̂t+1,...,π̂T }
t+1 (xt+1, ξt+1), ∀ht+1 ∈ X t+1.
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Then for any ht ∈ X t formula (10), after substituting (7), yields

v∗
t (ht ) = inf

π∈Πt,T
vπ

t (ht )

= inf
π∈Πt,T

{rt (xt , ξt , πt (ht ))

+ σt

(
xt , ξt ,

∫

Y
K X

t (xt , y, πt (ht )) ξt (dy), vπ
t+1(ht , ·)

)}
.

Since vπ
t+1(ht , x ′) ≥ v∗

t+1

(
x ′, Φt

(
xt , ξt , πt (ht ), x ′)) for all x ′ ∈ X , and σt is non-

decreasing with respect to the last argument, we obtain

v∗
t (ht ) ≥ inf

π∈Πt,T

{
rt (xt , ξt , πt (ht ))

+ σt

(
xt , ξt ,

∫

Y
K X

t (xt , y, πt (ht )) ξt (dy), x ′ �→ v∗
t+1(x ′, Φt (xt , ξt , πt (ht ), x ′))

)}

= inf
u∈U t (xt )

{
rt (xt , ξt , u)

+ σt

(
xt , ξt ,

∫

Y
K X

t (xt , y, u) ξt (dy), x ′ �→ v∗
t+1(x ′, Φt (xt , ξt , u, x ′))

)}
. (15)

In order to complete the induction step, we need to establish lower semicontinuity of
the mapping

(x, ξ, u) �→ σt

(
x, ξ,

∫

Y
K X

t (x, y, u) ξ(dy), x ′ �→ v∗
t+1

(
x ′, Φt (x, ξ, u, x ′)

))
. (16)

To this end, suppose x (k) → x , ξ (k) → ξ (weakly), u(k) → u, as k → ∞.
First, we verify that the mapping (x, ξ, u) �→ ∫

Y K X
t (x, y, u) ξ(dy) appearing

in the third argument of σt is weakly continuous. By formula (13), for any bounded
continuous function f : X → R we have

∫

X
f (x ′)

[ ∫

Y
K X

t (x (k), y, u(k)) ξ (k)(dy)

]
(dx ′)

=
∫

X
f (x ′)

[ ∫

Y

∫

Y
qt (x ′, y′ | x (k), y, u(k)) ξ (k)(dy) μY (dy′)

]
μX (dx ′)

(17)

By assumption (i),

lim
k→∞

∫

Y

[
qt (x ′, y′ | x (k), y, u(k)) − qt (x ′, y′ | x, y, u)

]
ξ (k)(dy) = 0, (18)

uniformly over x ′, y′. Moreover, by Lebesgue theorem, the function

y �→
∫

X
f (x ′)

∫

Y
qt (x ′, y′ | x, y, u) μY (dy′) μX (dx ′) (19)
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is continuous. Therefore, combining (17) and (18), we obtain the chain of equations:

lim
k→∞

∫

X
f (x ′)

[ ∫

Y
K X

t (x (k), y, u(k)) ξ (k)(dy)

]
(dx ′)

= lim
k→∞

∫

X
f (x ′)

[ ∫

Y

∫

Y
qt (x ′, y′ | x, y, u) ξ (k)(dy) μY (dy′)

]
μX (dx ′)

= lim
k→∞

∫

Y

[ ∫

X
f (x ′)

∫

Y
qt (x ′, y′ | x, y, u) μY (dy′) μX (dx ′)

]
ξ (k)(dy)

=
∫

Y

[ ∫

X
f (x ′)

∫

Y
qt (x ′, y′ | x, y, u) μY (dy′) μX (dx ′)

]
ξ(dy)

=
∫

X
f (x ′)

[ ∫

Y
K X

t (x, y, u) ξ(dy)

]
(dx ′).

The last by one equation follows from the weak convergence of ξ (k) to ξ and from the
continuity of the function (19). Thus, the third argument of σt in (16) is continuous
with respect to (x, ξ, u).

Let us examine the last argument of σt in (16). By (18), for every continuous
bounded function f (·) on Y , and for each fixed x ′ ∈ X ,

lim
k→∞

∫

Y
f (y′) Φt (x (k), ξ (k), u(k), x ′)(dy′)

= lim
k→∞

∫
Y f (y′)

∫
Y qt (x ′, y′ | x (k), y, u(k)) ξ (k)(dy) μY (dy′)

∫
Y

∫
Y qt (x ′, y′ | x (k), y, u(k)) ξ (k)(dy) μY (dy′)

=
∫
Y f (y′)

∫
Y qt (x ′, y′ | x, y, u) ξ(dy) μY (dy′)

∫
Y

∫
Y qt (x ′, y′ | x, y, u) ξ(dy) μY (dy′)

,

provided that (x, ξ, u, x ′) is such that
∫

Y

∫

Y
qt (x ′, y′ | x, y, u) ξ(dy) μY (dy′) > 0. (20)

Therefore, the operator Φt (·, ·, ·, x ′) is weakly continuous at these points. Let x, ξ, u
be fixed. Consider the sequence of functions V (k) : X → R, k = 1, 2, . . ., and the
function V : X → R, defined as follows:

V (k)(x ′) = v∗
t+1

(
x ′, Φt (x (k), ξ (k), u(k), x ′)

)
,

V (x ′) = v∗
t+1

(
x ′, Φt (x, ξ, u, x ′)

)
.

Since v∗
t+1(·, ·) is lower-semicontinuous and Φt (·, ·, ·, x ′) is continuous, whenever

condition (20) is satisfied, we infer that V (x ′) ≤ lim infk→∞ V (k)(x ′), at all x ′ ∈ X
at which (20) holds. As v∗

t+1 and Φt are measurable, both V and lim infk→∞ V (k) are
measurable as well.
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By Theorem 2, the mapping σt is preserving the stochastic order �st of the last
argument with respect to the measure

∫
Y K X

t (x, y, u) ξ(dy). Since

(∫

Y
K X

t (x, y, u) ξ(dy)

){
x ′ ∈ X :

∫

Y

∫

Y
qt (x ′, y′ | x, y, u) ξ(dy) μY (dy′) = 0

}
= 0,

the value of lim infk→∞ V (k)(x ′) at the set of x ′ at which (20) is violated, is irrelevant.
Consequently, by assumption (ii), with the view at the already established continuity
of the third argument, we obtain the following chain of relations:

σt

(
x, ξ,

∫

Y
K X

t (x, y, u) ξ(dy), V
)

≤ σt

(
x, ξ,

∫

Y
K X

t (x, y, u) ξ(dy), lim inf
k→∞ V (k)

)

= σt

(
x, ξ, lim

k→∞

∫

Y
K X

t (x (k), y, u(k)) ξ (k)(dy), lim inf
k→∞ V (k)

)

≤ lim inf
k→∞ σt

(
x (k), ξ (k),

∫

Y
K X

t (x (k), y, u(k)) ξ (k)(dy), V (k)
)
.

Consequently, the mapping (16) is lower semicontinuous.
Using assumptions (ii) and (iv) and invoking the Berge theorem again (see, e.g.,

Aubin and Frankowska 2009, Theorem 1.4.16), we deduce that the infimum in (15)
is attained and is a lower semicontinuous function of (xt , ξt ). Moreover, the optimal
solutionmapping, that is, the set of u ∈ UT (x) at which the infimum in (15) is attained,
is nonempty, closed-valued, and measurable. Therefore, a minimizer π̂t in (15) exists
and is a measurable function of (xt , ξt ) (see, e.g., Kuratowski and Ryll-Nardzewski
1965; Aubin and Frankowska 2009, Thm. 8.1.3). Substituting this minimizer into (15),
we obtain

v∗
t (ht ) ≥ rt

(
xt , ξt , π̂t (xt , ξt )

)

+ σt

(
xt , ξt ,

∫

Y
K X

t

(
xt , y, π̂t (xt , ξt )

)
ξt (dy),

x ′ �→ v∗
t+1

(
x ′, Φt (x, ξ, π̂t (xt , ξt ), x ′)

))

= v
{π̂t ,...,π̂T }
t (xt , ξt ).

In the last equation, we used Corollary 1. On the other hand, we have

v∗
t (ht ) = inf

π∈Πt,T
vπ

t (ht ) ≤ v
{π̂t ,...,π̂T }
t (xt , ξt ).

Therefore v∗
t (ht ) = v

{π̂t ,...,π̂T }
t (xt , ξt ) is memoryless, lower semicontinuous, and

v∗
t (xt , ξt ) = min

u∈Ut (xt )

{
rt (xt , ξt , u)

+ σt

(
xt , ξt ,

∫

Y
K X

t (xt , y, u) ξt (dy), x ′ �→ v∗
t+1

(
x ′, Φt (xt , ξt , u, x ′)

))}
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= rt
(
xt , ξt , π̂t (xt , ξt )

)

+ σt

(
xt , ξt ,

∫

Y
K X

t

(
xt , y, π̂t (xt , ξt )

)
ξt (dy),

x ′ �→ v∗
t+1

(
x ′, Φt (xt , ξt , π̂t (xt , ξt ), x ′)

))
.

This completes the induction step. �	

The most essential assumption of Theorem 3 is assumption (ii) of the lower semi-
continuity of the transition risk mappings σt (·, ·, ·, ·). If these mappings are derived
from convex or coherent risk measures, as illustrated in Fan and Ruszczyński (2016),
their lower semicontinuity with respect to the last argument follows from the corre-
sponding property of the risk measure. In particular, (Ruszczyński and Shapiro 2006a,
Cor. 3.1) derives continuity frommonotonicity on Banach lattices. The semicontinuity
with respect to the third argument, the probability measure, is a more complex issue.
The reference Fan andRuszczyński (2016), Lemmas 4.7 and 4.8, verifies this condition
for two popular risk measures: the Average Value at Risk and the mean-semideviation
measure. Similar remarks apply to the assumption (iii) about the state-control risk
functions. The assumptions (i) and (iv) are the same as in the utility models of Bäuerle
and Rieder (2017).

We could have made the sets Ut depend on ξt , but this is hard to justify.

6 Illustration: machine deterioration

6.1 Description of the process

Consider the problem of minimizing costs of using a machine in T periods. The
condition of the machine can deteriorate over time, but is not known with certainty.
The only information available is the operating cost. The control in any period is to
continue using the machine, or to replace it.

At the beginning of period t = 1, . . . , T , the condition of the machine is denoted
by Yt ∈ {1, 2}, with 1 denoting the “good” and 2 the “bad” state. The controls are
denoted by ut ∈ {0, 1}, with 0 meaning “continue”, and 1 meaning “replace”.

The dynamics isMarkovian, with the following transitionmatrices K [u], u ∈ {0, 1}:

K [0] =
(
1 − p p
0 1

)
, K [1] =

(
1 − p p
1 − p p

)
. (21)

We can observe the cost incurred during period t , denoted by Xt+1. The increment
of the time index is due to the fact that the cost becomes known at the end of the
period, and provides information for the decision in the next period. The conditional
distribution of Xt+1, given yt and ut , is described by two density functions f1 and f2:
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P
[
Xt+1 ≤ C

∣∣ yt = i, ut = 0
] =

∫ C

−∞
fi (x) dx, i = 1, 2,

P
[
Xt+1 ≤ C

∣∣ yt = i, ut = 1
] =

∫ C

−∞
f1(x) dx, i = 1, 2.

(22)

Assumption 2 The functions f1 and f2 are uniformly bounded and the conditional
distribution of Xt+1 given that the machine is in “good” condition is stochastically
smaller than the conditional distribution of xt+1 given that the machine is in “bad”
condition, i.e.,

∫ C

−∞
f1(x) dx ≥

∫ C

−∞
f2(x) dx, ∀ C ∈ R;

with a slight abuse of notation, we write it f1 �st f2.

Thus the relations (21) and (22) define
{

Xt , Yt
}

t=1,...,T +1 as a partially observable

Markov process controlled by
{
ut
}

t=1,...,T . Based on observations (x1, . . . , xt ), the
belief state ξt ∈ [0, 1] denotes the conditional probability that Yt = 1. We can update
the posterior belief state as follows:

ξt+1 =
{

Φ(ξt , xt+1), if ut = 0;
1 − p, if ut = 1,

where Φ is the Bayes operator,

Φ(ξ, x ′) = (1 − p)ξ f1(x ′)
ξ f1(x ′) + (1 − ξ) f2(x ′)

. (23)

We assume that the initial probability ξ0 ∈ [0, 1] is known; then ξ1(x1) = Φ(ξ0, x1).
From (23) we see thatΦ(0, · ) = 0,Φ(1, · ) = 1− p, andΦ( · , x ′) is non-decreasing.

6.2 Risk modeling

At the beginning of period t , if we replace the machine (ut = 1), there is an additional
fixed replacement cost R. Then the costs incurred are

{
rt (xt , ut ) = R · ut + xt , t = 1, . . . , T ;
rT +1(xT +1) = xT +1.

(24)

We denote the history of observations by ht = (x1, . . . , xt ) and the set of all history-
dependent policies by Π := {

π = (π1, . . . , πT ) | ∀t, πt (x1, . . . , xt ) ∈ {0, 1} }. We
want to evaluate the risk of costs (24) for any π ∈ Π , and find an optimal policy.

As shown in Theorem 2, construction of Markovian risk measures is equivalent
to specifying transition risk mappings σt : R × P(R) × P(R) × V → R, where
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V is the space of all bounded and measurable functions fromR toR. For simplicity,
we assume that σt (·, ·, ·, ·) is the same for all t and does not depend on the current
state (xt , ξt ), that is, σt (x, ξ, q, v) = σ(q, v).

Remark 2 For a probability measure q ∈ P(R) that has f as the density function,
with slight abuse of notation, we also write σ( f, ·) instead of σ(q, ·).

6.3 Value and policy monotonicity

We assume that the transition risk mapping σ : P(R) × V → R satisfy all assump-
tions of Theorem 3. Then the optimal value functions v∗

t , t = 1, . . . , T + 1 are
memoryless and satisfy the following dynamic programming equations:

v∗
t (x, ξ) = x + min

(
R + σ

(
f1, x ′ �→ v∗

t+1(x ′, 1 − p)
);

σ
(
ξ f1 + (1 − ξ) f2, x ′ �→ v∗

t+1(x ′, Φ(ξ, x ′))
))

,

x ∈ R, ξ ∈ [0, 1], t = 1, . . . , T, (25)

with the final stage value v∗
T +1(x, ξ) = x . Moreover, an optimalMarkov policy exists,

which is defined by the minimizers in the above dynamic programming equations.
Directly from (25) we see that v∗

t (x, ξ) = x + w∗
t (ξ), t = 1, . . . , T + 1. The

dynamic programming Eq. (25) simplify as follows:

w∗
t (ξ) = min

{
R + σ

(
f1, x ′ �→ x ′ + w∗

t+1(1 − p)
);

σ
(
ξ f1 + (1 − ξ) f2, x ′ �→ x ′ + w∗

t+1(Φ(ξ, x ′))
)}

, (26)

with the final stage value w∗
T +1( · ) = 0. We can establish monotonicity of w∗(·).

Theorem 4 If f1
f2

is non-increasing, then the functions w∗
t : [0, 1] → R, t =

1, . . . , T + 1 are non-increasing.

Proof Clearly, w∗
T +1 is non-increasing. Assume by induction that w∗

t+1 is non-
increasing. For any ξ1 ≤ ξ2 we have:

1. ξ1 f1 + (1 − ξ1) f2 �st ξ2 f1 + (1 − ξ2) f2, because f1 �st f2.
2. For all x ′, we have x ′ + w∗

t+1(Φ(ξ1, x ′)) ≥ x ′ + w∗
t+1(Φ(ξ2, x ′)), as w∗

t+1 is
non-increasing and Φ(·, x ′) is non-decreasing.

3. the mapping x ′ �→ x ′ + w∗
t+1(Φ(ξ, x ′)) is non-decreasing for all ξ . To show that,

it is sufficient to establish that x ′ �→ Φ(ξ, x ′) is non-increasing, and this can be
seen from the formula (for 0 ≤ p < 1):

1

Φ(ξ, x ′)
= 1

1 − p

(
1 + f2(x ′)

f1(x ′)

(
1

ξ
− 1

))
.
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Thus

σ
(
ξ1 f1 + (1 − ξ1) f2, x ′ �→ x ′ + w∗

t+1(Φ(ξ1, x ′))
)

≥ σ
(
ξ1 f1 + (1 − ξ1) f2, x ′ �→ x ′ + w∗

t+1(Φ(ξ2, x ′))
)

(because of 2.)

≥ σ
(
ξ2 f1 + (1 − ξ2) f2, x ′ �→ x ′ + w∗

t+1(Φ(ξ2, x ′))
)

(because of 1. and 3.)

which completes the induction step. �	
The monotonicity assumption on f1

f2
is in fact a sufficient condition for f1 �st f2.

From Theorem 4 we obtain the following threshold property of the policy.

Theorem 5 Under the assumptions of Theorem 4, there exist thresholds ξ∗
t ∈

[0, 1], t = 1, . . . , T such that the policy

u∗
t =

{
0 if ξt > ξ∗

t ,

1 if ξt ≤ ξ∗
t ,

is optimal.

Proof Suppose ξ is such that replacement at time t is optimal:

R + σ
(

f1, x ′ �→ x ′ + w∗
t+1(1 − p)

) ≤ σ
(
ξ f1 + (1 − ξ) f2, x ′ �→ x ′ + w∗

t+1(Φ(ξ, x ′))
)
.

Then for any ζ ≤ ξ , we have ξ f1 + (1 − ξ) f2 �st ζ f1 + (1 − ζ ) f2 and Φ(ξ, x ′) ≥
Φ(ζ, x ′). Consequently,

R + σ
(

f1, x ′ �→ x ′ + w∗
t+1(1 − p)

)

≤ σ
(
ξ f1 + (1 − ξ) f2, x ′ �→ x ′ + w∗

t+1(Φ(ξ, x ′))
)

≤ σ
(
ζ f1 + (1 − ζ ) f2, x ′ �→ x ′ + w∗

t+1(Φ(ξ, x ′))
)

≤ σ
(
ζ f1 + (1 − ζ ) f2, x ′ �→ x ′ + w∗

t+1(Φ(ζ, x ′))
)
,

and replacement is optimal for ζ as well. �	

6.4 Numerical illustration

In this section, we solve the problem in the special case where f1 and f2 are density
functions U(m1, M1) and U(m2, M2) with m1 ≤ m2 ≤ M1 ≤ M2. Then the Bayes
operator is piece-wise constant with respect to x ′:

Φ(ξ, x ′) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 − p, if m1 ≤ x ′ ≤ m2;
(1 − p)ξ(M2 − m2)

ξ(M2 − m2) + (1 − ξ)(M1 − m1)
:= φ̂(ξ), if m2 ≤ x ′ ≤ M1;

0, if M1 ≤ x ′ ≤ M2.

123



Risk measurement and risk-averse control of partially… 181

The conditional distribution of x ′ given ξ is described by the density function ξ f1 +
(1− ξ) f2, which is also constant in each of the three intervals [m1, m2), [m2, M1] and
(M1, M2], with the following probabilities amassed in each of the three intervals:

q1(ξ) = ξ(m2 − m1)

M1 − m1
,

q2(ξ) = (M1 − m2)

(
ξ

M1 − m1
+ 1 − ξ

M2 − m2

)
,

q3(ξ) = (1 − ξ)(M2 − M1)

M2 − m2
.

We use the mean-semideviation transition risk mapping of Example 2, with p = 1
and constant 	. It is strongly monotonic with respect to stochastic order and lower
semi-continuous with respect to (q, v). Then the dynamic programming Eq. (26) for
t = 1, . . . , T become:

w∗
t (ξ) = min

{
R + E∗

t (1) + E f1

(
x ′ �→ x ′ + w∗

t+1(1 − p) − E∗
t (1)

)
+;

E∗
t (ξ) + Eξ f1+(1−ξ) f2

(
x ′ �→ x ′ + w∗

t+1(Φ(ξ, x ′)) − E∗
t (ξ)

)
+
}
, (27)

where

E∗
t (ξ) : = Eξ f1+(1−ξ) f2

(
x ′ �→ x ′ + w∗

t+1(Φ(ξ, x ′))
)

= q1(ξ)

(
m1 + m2

2
+ w∗

t+1(1 − p)

)

+ q2(ξ)

(
m2 + M1

2
+ w∗

t+1(φ̂(ξ))

)

+ q3(ξ)

(
M1 + M2

2
+ w∗

t+1(0)

)
. (28)

As x ′ �→ x ′ + w∗
t+1(Φ(ξ, x ′)) − E∗

t (ξ) is linear in each of the intervals [m1, m2],
[m2, M1] and [M1, M2], we have

Eξ f1+(1−ξ) f2

(
x ′ �→ x ′ + w∗

t+1(Φ(ξ, x ′)) − E∗
t (ξ)

)
+

= q1(ξ) θ
(
m1, m2, E∗

t (ξ) − w∗
t+1(1 − p)

)

+ q2(ξ) θ
(
m2, M1, E∗

t (ξ) − w∗
t+1(φ̂(ξ))

)

+ q3(ξ) θ
(
M1, M2, E∗

t (ξ) − w∗
t+1(0)

)
,

(29)

where, for a1 ≤ a2,

θ(a1, a2, a3) :=
∫ a2

a1
( · − a3)+
a2 − a1

=

⎧
⎪⎪⎨

⎪⎪⎩

1
2 (a1 + a2), if a3 ≤ a1;
1
2 (a3 + a2)

a2−a3
a2−a1

, if a1 < a3 < a2;
0, if a3 ≥ a2.
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Fig. 1 Empirical distribution of the total cost for the risk-neutral model (blue) and the risk-averse model
(orange)

For any t and any ξ , if we know w∗
t+1(1 − p), w∗

t+1(φ̂(ξ)) and w∗
t+1(0), then the

computation of w∗
t (ξ) can be accomplished in three steps:

1. Compute E∗
t (1) and E∗

t (ξ) by (28).
2. Compute E f1

(
x ′ �→ x ′ + w∗

t+1(1 − p) − E∗
t (1)

)
+ and Eξ f1+(1−ξ) f2

(
x ′ �→ x ′ +

w∗
t+1(Φ(ξ, x ′)) − E∗

t (ξ)
)
+ by (29).

3. Compute w∗
t (ξ) using the dynamic programming Eq. (27).

Since w∗
T +1 = 0, all w∗

t (ξ) can be calculated by recursion backward in time.
In Fig. 1, we display the distribution of the total cost obtained by simulating 100,000

runs of the system with two policies: risk-neutral and risk-averse for an example with
m1 = 0, m2 = 80, M1 = 100, M2 = 500, p = 0.2, T = 6, R = 50, and 	 = 0.9.

The application of the risk-averse model increases the threshold values ξ∗
t of the

optimal policies and results in a significantly less dispersed distribution of the total
cost. For additional details, see Fan (2017).
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Jaśkiewicz A,Matkowski J, Nowak AS (2013) Persistently optimal policies in stochastic dynamic program-

ming with generalized discounting. Math Oper Res 38(1):108–121
Jobert A, Rogers LCG (2008) Valuations and dynamic convex risk measures. Math Finance 18(1):1–22
Klöppel S, Schweizer M (2007) Dynamic indifference valuation via convex risk measures. Math Finance

17(4):599–627
Kuratowski K, Ryll-Nardzewski C (1965) A general theorem on selectors. Bull Acad Polon Sci Ser Sci

Math Astron Phys 13(1):397–403
Levitt S, Ben-Israel A (2001) On modeling risk in Markov decision processes. In: Rubinov A, Glover B

(eds) Optimization and related topics . Applied Optimization, vol 47. Springer, Boston,MA, pp 27–40
Lin K, Marcus SI (2013) Dynamic programming with non-convex risk-sensitive measures. In: American

control conference (ACC), 2013, IEEE, pp 6778–6783
Mannor S, Tsitsiklis JN (2013) Algorithmic aspects of mean-variance optimization in Markov decision

processes. Eur J Oper Res 231(3):645–653

123

http://arxiv.org/abs/1411.2675


184 J. Fan, A. Ruszczyński
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Ogryczak W, Ruszczyński A (1999) From stochastic dominance to mean-risk models: semideviations as
risk measures. Eur J Oper Res 116(1):33–50
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Ruszczyński A, Shapiro A (2006a) Optimization of convex risk functions. Math Oper Res 31:433–542
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