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Abstract An ordered median function is used in location theory to generalize a class
of problems, including median and center problems. In this paper we consider the
complexity of inverse ordered 1-median problems on the plane and on trees, where
the multipliers are sorted nondecreasingly. Based on the convexity of the objective
function, we prove that the problems with variable weights or variable coordinates on
the line are NP-hard. Then we can directly get the NP-hardness result for the corre-
sponding problem on the plane. We finally develop a cubic time algorithm that solves
the inverse convex ordered 1-median problem on trees with relaxation on modification
bounds.

Keywords Ordered median · Inverse location · Complexity · Convex · Tree

1 Introduction

Inverse optimization problems are playing an important role in operations research
with promising applications. In the inverse optimization setting we change parameters

This research is funded by Vietnam National Foundation for Science and Technology Development
(NAFOSTED) under Grant Number 101.01-2016.08.

B Kien Trung Nguyen
trungkien@ctu.edu.vn

Huong Nguyen-Thu
nthuong@ctu.edu.vn

Nguyen Thanh Hung
nthung@ctu.edu.vn

1 Mathematics Department, Teacher College, Can Tho University, Can Tho, Vietnam

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00186-018-0632-6&domain=pdf
http://orcid.org/0000-0002-7522-4557


148 K. T. Nguyen et al.

in a minimumway of cost so that a prespecified solution becomes optimal with respect
to newparameters. For a surveyon inverse optimizationproblem,we refer toHeuberger
(2004). Partially, the inverse version of location problems is to modify the parameters
of a network or of facilities in the plane to make prespecified facilities optimal in the
perturbed problem. In what follows we review the papers concerning inverse location
problems.

Let M be the input size of the problem. For the inverse location problem on
networks, Burkard et al. (2004) solved the inverse 1-median problem on trees in
O(M logM) time. Then Galavii (2010) improved the complexity of the problem to
linear time. Nguyen (2016) considered the inverse 1-median problem on a general-
ization of tree graphs, the so-called block graphs, and used the convexity of the cost
function to develop an algorithm that solves the problem in O(M logM) time. Also,
Burkard et al. (2008) solved the inverse 1-median problem on a cycle in quadratic time
based on the concavity of the corresponding linear constraints. Bonab et al. (2011)
further considered the inverse p-median problem on networks. They proved that the
general problem is NP-hard. However, the inverse 2-median problem on a tree can
be solved in polynomial time. Additionally, if the underlying tree is a star, the cor-
responding problem is solvable in linear time. Then Alizadeh and Bakhteh (2017)
applied the firefly algorithm with modification to solve the general inverse p-median
problem on the plane. Concerning the inverse center problem, Cai et al. (1999) were
the first who showed that although the 1-center problem on networks can be solved in
strongly polynomial time, the inverse 1-center problem isNP-hard. ThenAlizadeh and
Burkard (2011a, b) and Alizadeh et al. (2009) considered the inverse 1-center problem
on trees. They developed efficient combinatorial algorithms to solve the problems.
Nguyen and Chassein (2015a) also proved that the inverse 1-center problem on cac-
tus graphs, a generalization of trees, is NP-hard. Nguyen and Anh (2015) solved the
inverse 1-center problem on trees with variable vertex weights in quadratic time. Fur-
thermore, Nguyen and Sepasian (2016) developed quadratic algorithms to solve the
inverse 1-center problem on trees under Chebyshev norm and bottleneck Hamming
distance. For the inverse 1-center problem on cycles, Nguyen (2017) proposed an
O(n2 log n) algorithm to solve the problem based on a parameterization approach.
Recently, Alizadeh and Etemad (2018) solved some variants of the inverse obnoxious
vertex 1-center location problem in strongly polynomial time.

Inverse location problem on the plane is an interesting topic with intensive inves-
tigations. The inverse Fermat-Weber problem is solvable in O(M logM) time by
applying a greedy-like method. Moreover, Bonab et al. (2010) investigated the inverse
1-median problem onRd with variable coordinates. They developed an algorithm that
solves the corresponding problem with squared Euclidean norm in O(Md) time. In
addition, they proved that the problems with rectilinear norm and Chebyshev norm are
NP-hard. Hatzl (2012) established an optimality criterion for a point to be a 1-median
on R

d endowed with Chebyshev norm and he reduced the inverse 1-median problem
on this space to a 2-balanced flow problem.

As the decision maker may change the objective function regarding to her/his point
of view, a unified approach for location problems is advisable to be studied; one can
refer to the book of Nickel and Puerto (2005) for reference. According to the best of
our knowledge, Gassner (2012) was the first who studied the inverse ordered 1-median
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problem. She proved that both the inverse k-centrum problem on weighted trees and
the inverse convex ordered 1-median problem on unweighted trees areNP-hard.More-
over, she solved the inverse k-centrum problem on unweighted trees in polynomial
time by a dynamic program. Nguyen and Anh (2015) further showed that a generaliza-
tion of the inverse 1-median and 1-center problems, the so-called inverse k-centrum
problem, with variable vertex weights on trees is NP-hard. Also, Nguyen and Chas-
sein (2015b) investigated the inverse convex ordered 1-median problem on trees under
Chebyshev norm and Hamming distance. They applied the convexity of the ordered
1-median function on trees and a special property of cost functions to derive poly-
nomial time algorithms that efficiently solve the problems. Although inverse ordered
median problems on networks were widely investigated, this problem on the plane has
not been studied so far.

This paper addresses the inverse convex ordered 1-median problem on the plane
and on tree networks and is organized as follows. Section2 recalls the preliminary
definition and the formal definition of the inverse ordered 1-median problem. We then
prove theNP-hardness of some inverse convex ordered 1-median problems on the line
and derive the results for the problem on the plane.We investigate in Sect. 3 the inverse
convex ordered 1-median problem on trees and develop a cubic time algorithm for the
problem with relaxation on the bounds of variables.

2 Inverse convex ordered 1-median problem on the plane

2.1 Problem statement

Let M existing facilities Pi = (xi , yi ) on the plane be given where each facility Pi
is associated with a nonnegative weight wi , for i = 1, . . . , M . If all the weights
are equal, say 1, we get a set of uniform weighted facilities. Suppose that the plane
is endowed with a norm ‖.‖, usually involved are the l1-, l2-, or l∞-norm. Then
the distance between two points P and Q is denoted by d(P, Q) := ‖P − Q‖. Let
λ := (λ1, λ2, . . . , λM ) ∈ R

M+ be a vector ofmultipliers, the ordered 1-median problem
on the plane is to find a new facility, say P , so as to minimize the ordered 1-median
function Fλ(P) := ∑M

i=1 λiw(i)d(P, P(i)), where (.) is a feasible permutation, i.e.,

w(1)d(P, P(1)) ≤ w(2)d(P, P(2)) ≤ · · · ≤ w(M)d(P, P(M)).

A point P0 which minimizes Fλ(.) is called an ordered 1-median. Furthermore, if we
restrict the vector of multipliers λ to the condition

λ1 ≤ λ2 ≤ · · · ≤ λM , (1)

the objective function Fλ(.) is convex; see Nickel and Puerto (2005). Especially, if the
vector ofmultipliers isλ := (0, . . . , 0, 1, . . . , 1)with k 1’s, the corresponding problem
is called the k-centrum problem. One can observe that the 1-median problem and the
1-center problem are the two special cases of the k-centrum problem, where k := M
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or k := 1. From now on, we always consider the vector of multipliers satisfying (1)
or the convex case.

Let M existing points P1, . . . , PM on the plane and a prespecified point P0 be
given. Each point Pi (xi , yi ) is modified to the new coordinate Pi (x̃i , ỹi ), where x̃i :=
xi + pi1 − qi1 and ỹi := yi + pi2 − qi2 for i = 1, . . . , M . The ordered 1-median
function at a point P with respect to the modified facilities is denoted by F̃λ(.). The
inverse convex ordered 1-median problem on the plane with variable coordinates is
stated as below.

1. The point P0 becomes optimal with respect to the new coordinates, i.e., F̃λ(P0) ≤
F̃λ(P) for all P ∈ R

2.
2. The cost function

∑M
i=1

∑2
j=1

(
pi j + qi j

)
is minimized.

3. The variables obey given bounds, i.e., 0 ≤ pi j ≤ p̄i j and 0 ≤ qi j ≤ q̄i j for
i = 1, . . . , M and j = 1, 2.

The inverse convex ordered 1-median problem on the plane with variable weights
can be stated similarly. In other words, the weight of each point Pi is modified to
w̃i := wi + pi − qi , for i = 1, . . . , M such that the prespecified point P0 becomes
an ordered 1-median with respect to the new facility weights and the modifying cost
is minimized. Here, the variations are feasible, i.e., 0 ≤ pi ≤ p̄i and 0 ≤ qi ≤ q̄i for
i = 1, . . . , M .

2.2 Complexity results

We first address the 1-dimensional case, i.e., all the points are located on a line. As a
result, the second coordinates of existing facilities can be set to 0 and they are fixed.
We denote by L and R the set of points, not coinciding with P0, on the left and the right
hand side of P0, respectively. Furthermore, let us remind that the vector of multipliers
satisfies (1). We recall the following result by Kalcsics et al. (2002).

Lemma 1 (Optimality criterion in 1-dimensional case) Given the existing facilities
P1, P2, . . . , PM and a prespecified point P0 on the line. Then P0 is an ordered 1-
median if and only if there exist feasible permutations σL and σR such that

∑

PσL (i)∈L
λiwσL (i) ≤ 1

2

M∑

i=1

λiwσL (i) and
∑

PσR (i)∈R

λiwσR(i) ≤ 1

2

M∑

i=1

λiwσR(i).

In R
1 the distance between two arbitrary points with respect to the norms, l1-, l2-,

l∞-norm, are equal. Thus, we consider only the l2-norm for simplicity. Based on
Lemma 1, let us derive the NP-hardness result.

Proposition 1 The inverse k-centrum problem on the line with variable coordinates
on R1 is NP-hard.

Proof Consider an instance (I≤) of the k≤-partition problem. Given a set S :=
{a1, a2, . . . , an} ⊂ N and

∑n
i=1 ai = 2B. Does there exist S′ ⊂ S with |S′| ≤ k
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and
∑

ai∈S′ ai = B? The k≤-partition problem is NP-hard. Otherwise, we can give an
answer to the partition problem in polynomial time by solving at most linearly many
k≤-partition problems. It contradicts to the NP-hardness of the partition problem; see
Garey and Johnson (1979).

We can state the decision version of the inverse k′-centrum problem on the line with
variable coordinates (I nvLC) as: Given an instance of (I nvLC), does there exist a
feasible solution such that the cost is at most C?

For an instance (I≤), we construct an instance (I nvLC) in polynomial time as
follows.

– Choose P0 := 0 and a point X := −U , where U is a sufficiently large number.

Moreover, let Pi := 4B2−a2i
ai

for i = 1, . . . , n. Finally, choose V1 = V2 = · · · =
Vk := 8kB2.

– Additionally, the corresponding weights are wX := B, wP0 := 0, wPi := ai for
all i = 1, . . . , n and wVj := 1

2k for all j = 1, . . . , k.
– Only the coordinate of Pi can be increased by pi ∈ [0, ai ] for i = 1, . . . , n.
Coordinates of other points are fixed.

– Choose k′ := k + 1 and C := B.

Observe that,wP̃i
d(P̃i , P0) ≤ wVj d(Vj , P0) for all i = 1, . . . , n and j = 1, . . . , k.

Here, P̃i is the corresponding modified point of Pi for i = 1, . . . , n. The equality
holds if P̃i := Pi + ai . In the current state, the ordered weighted sum of the left side
L (containing a point X ) is B and the ordered weighted sum of the right side R is 1

2 .
Therefore, P0 is not the optimal point of the problem. In what follows, we prove that
the answer to (I≤) is ’yes’ if and only if the answer to (I nvLC) is ’yes’.

Assume that the answer to (I≤) is ’yes’, i.e., there exists a subset S′ ⊂ S such that∑
ai∈S′ ai = B and |S′| ≤ k. We set P̃i := Pi + ai for ai ∈ S′, then wP̃i

d(P̃i , P0) =
wVj d(Vj , P0) if ai ∈ S′. If each wP̃i

d(P0, P̃i ) for ai ∈ S is chosen as one of the k′

largestweighted distances to P0, the orderedweighted sumof R is
∑

ai∈S′ ai+ k−|S′|
2k ≥

B. On the other hand, if eachwVj d(P0, Vj ) for j = 1, . . . , k is chosen as one of the k′

largest weighted distances to P0, the the ordered weighted sum of R satisfies 1
2 ≤ B.

Hence, there is a feasible solution to (I nvLC) such that the objective value is at most
B.

Conversely, if there exists a feasible solution to (I nvLC) and the objective value
is at most B, we prove that the answer to (I≤) is ’yes’. Indeed, assume that the
specified solution is (p∗

i )i=1,...,n and there exists i0 such that 0 < p∗
i0

< ai ,

then wPi0
d(P̃i0 , P0) < wVj d(Vj , P0) for j = 1, . . . , k. We have to pay an addi-

tional cost but the weighted distance from Pi0 to P0 is not one of the k′ largest
ones. Hence, we can assume that p∗

i = 0 or p∗
i = ai . Denote by I := {i ∈

{1, . . . , n}|wP̃i
d(P̃i , P0) is chosen as one of the k′ largest weighted distances}. Then

we have
∑

i∈I ai + k−|I |
2k ≥ B due to the optimality criterion. As ai , B ∈ N and

k−|I |
2k ∈ (0, 1), we get

∑
i∈I ai ≥ B. Furthermore, as the cost satisfies

∑
i∈I ai ≤ B,

we conclude that
∑

i∈I ai = B. The result follows. 
�
We next consider the case of uniform weighted facilities and get a similar result.
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Proposition 2 The inverse convex ordered 1-median problem with variable coordi-
nates on R

1 is NP-hard even for uniform weights of the existing facilities.

Proof Consider an instance (I ) of the partition problem. Given a set S :=
{a1, a2, . . . , an} ⊂ N with 1 ≤ a1 ≤ a2 ≤ · · · ≤ an and

∑n
i=1 ai = 2B. Does

there exist S′ ⊂ S such that
∑

ai∈S′ ai = B? Moreover, the decision version of the
inverse convex ordered 1-median problem on the line (I nvLU ) is stated as: Given an
instance of (I nvLU ), does there exist a feasible solution such that the objective value
is at most C?

Given an instance (I ), we construct an instance (I nvLU ) in polynomial time as
follows.

– Choose P0 := 0 , P1 := 1 , V1 := −(a1 +1), Pi := −Vi−1 +1 , Vi := −(Pi +ai )
for i = 2, . . . , n.

– In addition, the corresponding weights are uniform, i.e., wP0 = wPi = wVi = 1
for all i = 1, . . . , n.

– Only the coordinates of Pi can be increased by pi ∈ [0, ai ] for i = 1, . . . , n. The
other coordinates are fixed.

– The vector of multipliers is λ = (m1,m1 + a1,m2,m2 + a2, . . . ,mn,mn + an),
where m1 > 0 and mi+1 > mi + ai for i = 1, . . . , n − 1.

– Choose C := B.

One can observes that d(P0, P̃i ) ≤ d(P0, Vi ) < d(P0, P̃i+1) ≤ d(P0, Vi+1) for
i = 1, . . . , n − 1. Here, P̃i is the modified coordinate of Pi for i = 1, . . . , n. Note
that d(P0, P̃i ) = d(P0, Vi ) if we set P̃i := Pi + ai .

In the current state of the problem, we get d(P0, Pi ) < d(P0, Vi ) < d(P0, Pi+1) <

d(P0, Vi+1), for i = 1, . . . , n−1. Then the weighted sum of L is
∑n

i=1 ai +
∑n

i=1 mi

and the weighted sum of R is
∑n

i=1 mi . Therefore, we aim to increase the coordinates
of Pi for i = 1, . . . , n such that P0 becomes an ordered 1-median. In what follows we
prove that the answer to (I ) is ’yes’ if and only if the answer to (I nvLU ) is ’yes’.

If the answer to (I ) is ’yes’, then there exists S′ ⊂ S such that
∑

ai∈S′ ai = B.

We set P̃i := Pi + ai for ai ∈ S′. Then d(P0, P̃i ) = d(P0, Vi ) for ai ∈ S′. The
objective value is

∑
ai∈S′ ai = B. Moreover, we consider the sorting of distances as

d(P0, P̃i ) < d(P0, Vi ) for ai /∈ S′ and d(P0, Vi ) ≤ d(P0, P̃i ) for ai ∈ S′. Then the
ordered weighted sum of the right part R is

∑
ai∈S′ ai + ∑n

i=1 mi = B + ∑n
i=1 mi ,

and it is equal to the ordered weighted sum of the left part L . Therefore, P0 becomes
an ordered 1-median and the cost is B.

Conversely, assume that there exists a feasible solution such that the objective
value is at most B. Assume that (p∗

i )i=1,...,n is the specified feasible solution. By the
similar argument as in Proposition 1, we can assume that p∗

i = 0 or p∗
i = ai for all

i = 1, . . . , n. Denote by I := {i ∈ {1, . . . , n}|p∗
i = ai }. The cost is ∑

i∈I ai ≤ B.
Because of the optimality criterion, the maximum ordered weighted sum of R satisfies∑

i∈I ai +
∑n

i=1 mi ≥ ∑
i /∈I ai +

∑n
i=1 mi or

∑
i∈I ai ≥ B. Thus, we have

∑
i∈I ai =

B. The answer to (I ) is ’yes’. 
�
For another version of the inverse location problem concerning the variation of

facility weights, we also get the complexity result as follows.
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Proposition 3 The inverse k-centrum problem with variable weights on R
1 is NP-

hard.

Proof The decision version of the inverse k′-centrum problem with variable weights
(I nvLW ) is: Given an instance of (I nvLW ), does there exist a feasible solution such
that the objective value is at most C? Given an instance (I≤) of k≤-partition problem
(as introduced in Proposition 1), we construct the instance (I nvLW ) in polynomial
time as follows.

– Let P0 := 0, X := −B, Pi := B
2kai

for i = 1, . . . , n and Vj := B for j =
1, . . . , k.

– The corresponding weights are wPi := 0 for i = 0, 1, . . . , n, wX := B and
wVj := 1

2k for j = 1, . . . , k.
– The weights of Pi for i = 1, . . . , n can be increased by pi ∈ [0, ai ]. The weights
of other points are fixed.

– Choose k′ := k + 1 and C := B.

Similar to the technique in Propositions 1 and 2, we can prove that the answer to (I≤)

is ’yes’ if and only if the answer to (I nvLW ) is ’yes’. Then the lemma follows. 
�
From the complexity result of the inverse ordered 1-median problem on the line,

we can directly derive the complexity result for this problem on the plane.

Theorem 1 The inverse convex ordered 1-median problem on the plane with variable
coordinates or variable point weights is NP-hard.

3 Inverse convex ordered 1-median problem on trees

3.1 Problem statement

Let us revisit the ordered 1-median problem on trees. Let a connected graph G =
(V, E) with vertex set V := {v1, v2, . . . , vM } be given where each vertex vi ∈ V is
associatedwith a nonnegative weightwi and each edge e ∈ E has a nonnegative length
�e. If all vertex weights in G are equal, say 1, we obtain an unweighted network. By
definition, a point in G is either a vertex or lies on an edge of the network. The set of
all points in G is denoted by A(G). The distance d(a, b) between two points a and b
is the length of the shortest path connecting them. Given a vector of multipliers λ :=
(λ1, λ2, . . . , λM ), the ordered 1-median function at ρ ∈ A(G) is defined as Fλ(ρ) :=∑M

i=1 λiw(i)d(ρ, v(i)). Here, the operator (.) is a permutation of {1, 2, . . . , M} so that
the weighted distances to the point ρ are sorted nondecreasingly, i.e.,

w(1)d(ρ, v(1)) ≤ w(2)d(ρ, v(2)) ≤ · · · ≤ w(M)d(ρ, v(M)).

The permutation (.) is called a feasible permutation. We further denote the set of all
feasible permutations by �. Additionally, a point ρ∗ is, by definition, an ordered 1-
median of G if Fλ(ρ

∗) ≤ Fλ(ρ) for all ρ in A(G). If the underlying graph is a tree
and the multipliers satisfies (1), then the ordered 1-median function is convex along
each simple path of the tree; see Nickel and Puerto (2005).
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For a tree network T = (V, E) and a prespecified vertex v∗, let T (v∗) be the set
of all subtrees induced by deleting v∗ and its incident edges. We recall the optimality
criterion for a vertex to be a 1-median on the tree T as follows.

Theorem 2 (Optimality criterion; see Gassner (2012) and Kalcsics et al. (2002))
Given a tree T = (V, E) and a vector of multipliers λ ∈ R

M+ with λ1 ≤ λ2 ≤
· · · ≤ λM. Then the prespecified vertex v∗ is an ordered 1-median of T if and only if
for each subtree T sub ∈ T (v∗) there exists a feasible permutation σ sub such that

∑

v
σ sub(i)∈T sub

λiwσ sub(i) ≤
∑

v
σ sub(i) /∈T sub

λiwσ sub(i).

Given a tree T = (V, E), a prespecified vertex v∗, and a vector of multipliers
λ ∈ R

n+. The length of each edge e can be increased or reduced by pe or qe. This means
the modified length of an edge e is �̃e := �e + pe − qe (assumed to be nonnegative,
hence one can suppose qe ≤ �e). The cost to increase or decrease one unit length of
e is c+

e or c−
e , respectively. The inverse ordered 1-median problem on T is formally

stated as the following.

1. The cost function
∑

e∈E (c+
e pe + c−

e qe) is minimized.
2. The prespecified vertex v∗ becomes an ordered 1-median of the perturbed tree.
3. The modifications are in certain bounds, i.e., 0 ≤ pe ≤ p̄e and 0 ≤ qe ≤ q̄e.

If c+
e = c−

e = 1 for all e ∈ E , the corresponding problem is the uniform-cost one.

3.2 Uniform-cost convex problem with relaxation

From here on, we always assume that λ1 ≤ λ2 ≤ · · · ≤ λM , i.e., the ordered 1-median
problem is convex. The inverse convex ordered 1-median problem on trees was first
investigated by Gassner (2012). She proved that the inverse convex ordered 1-median
problem on uniform weighted trees is NP-hard. In this section we further investigate
the uniform-cost inverse convex ordered 1-median problem on an unweighted tree
T = (V, E) with relaxation of certain bounds (InvT). It means we relax Condition 3.
in the formulation of the problem stated previously.

For each T sub ∈ T (v∗) we denote by �T sub := minσ∈�

∑
vσ(i)∈T sub λi and

�′
T sub := ∑n

i=1 λi−�T sub .Note that one can rewrite�′
T sub := maxσ∈�

∑
vσ(i) /∈T sub λi .

To find �T sub , we apply the priority in the sorting of distances, i.e., if two vertices
v ∈ T sub and v′ ∈ T \T sub have the same distance to v∗, then v gets a smaller index
as v′ in the ordering. For this priority, we get a feasible permutation σ sub such that
�T sub := ∑

v
σ sub(i)∈T sub λi . By Theorem 2, we directly derive the following simplifi-

cation.

Corollary 1 (Ordered 1-median criterion) The vertex v∗ is an ordered 1-median of
T if and only if �T sub ≤ �′

T sub for all T
sub ∈ T (v∗),

Assume that v∗ is not an ordered 1-median of T , then there exists exactly one
subtree T ′ ∈ T (v∗) such that �T ′ > �′

T ′ . Denote by G := �T ′ − �′
T ′ the positive
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the gap. Let T ′∗ be the subtree induced by T ′ ∪ {v∗}, we have an obvious, but useful,
property as follows.

Proposition 4 In the optimal solution of (InvT), it is sufficient to decrease the length
of edges in T ′∗ and increase the length of edges in T \T ′∗.

By Proposition 4, we can simplify the cost function as
∑

e∈T ′∗ qe + ∑
e∈T \T ′∗ pe.

We further show that there exists an optimal solution where we only reduce the edge
lengths.

Observe that the gap G can be reduced if the orders of vertices in T ′ and T \T ′
changes. It means that, there exist v′ ∈ T ′ and v′′ ∈ T \T ′ satisfying d(v∗, v′) >

d(v∗, v′′), but d̃(v∗, v′) = d̃(v∗, v′′) after the modification. Here, the distances d̃
corresponds to the new edge lengths �̃. Moreover, if an edge (v∗, v) for v ∈ T ′ is
modified to 0, the vertex v coincides with v∗. We say that a topology change occurs
as the set T (v∗) changes; see Alizadeh and Burkard (2011b). In other words, some
vertices in T ′ are removed from this subtree. The gap G has to be further reevaluated
with respect to the new structure of T (v∗). We denote the difference of distances from
v′ ∈ T ′ and v ∈ T \T ′ to v∗ by r(v′, v) := d(v∗, v′) − d(v∗, v) and set

R := {(v′, v) : v′ ∈ T ′, v ∈ T \T ′ and r(v′, v) > 0}.

Then the orders of vertices in T ′ and T \T ′ change if there exists (v′, v) ∈ R such that
r̃(v′, v) := d̃(v∗, v′) − d̃(v∗, v) = 0 with respect to the new edge lengths �̃.

For a sufficiently small value x , a modification of edge lengths is called the most
benefit if the number of pairs (v′, v) ∈ R, such that r(v′, v) is reduced, is maximum
among all modifications with the cost x . In the following we investigate which is the
most benifit modification for a sufficiently small cost x .

Proposition 5 For a sufficiently small cost x, we get the most benifit modification by
reducing the length of (v∗, v0), where v0 ∈ T ′ is an adjacent vertex of v∗.

Proof We denote the subtrees in T (v∗) different from T ′ by T ′
1, T

′
2, . . . , T

′
n . As an

arbitrary modification can be switched to the edges near the root node v∗ first, we
concentrate on the augmentation of (v∗, vi ), where vi ∈ Ti is an adjacent vertex of v∗
for i = 1, . . . , n, or the reduction of (v∗, v0). Assume that we increase the length of
(v∗, vi ) for i ∈ {1, . . . , n} by x . Then the relation of a pair (v′, v) ∈ R is

r1(v′, v) :=
{
d(v∗, v′) − d(v∗, v) − x, if v ∈ T ′

i

d(v∗, v′) − d(v∗, v), otherwise.

On the other hand, if we decrease the length of (v∗, v0) by an amount x , the relations
of a pair (v′, v) ∈ R is updated as r2(v′, v) := d(v∗, v′) − d(v∗, v) − x . For a pair
(v′, v) ∈ R with v′ ∈ T ′ and v ∈ T \T ′, we get r2(v′, v) ≤ r1(v′, v). Thus, we get
the most benefit modification if the edge (v∗, v0) is reduced by x . 
�

By Proposition 5, we can assign pe := 0 for e /∈ T ′∗ and simplify the cost function
as

∑
e∈T ′∗ qe.
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Let us consider the case that the gap remains positive until the topology change
occurs. We first reduce the length of edge (v∗, v0) to 0, where v0 ∈ T ′ is an adjacent
vertex of v∗. Then some vertices in T ′ move to the complementary part T \T ′. The set
T (v∗) is also updated, i.e., it is the set of all subtrees induced by deleting v∗ and v0
and their incident edges. Let T ′(v∗) be the set of subtrees in T (v∗) which are also the
subtrees of T ′ . We first identify the subtree T ′

max such that�T ′
max

:= max{�T ′′ : T ′′ ∈
T ′(v∗)}. If �T ′

max
≤ �′

T ′
max

, we observe that v∗ becomes an ordered 1-median of T .

Otherwise, we continue the reduction of edge length (v∗, v(1)) for a vertex v(1) ∈ T ′
max

adjacent to v∗ and represent the gap as G := �T ′
max

− �′
T ′
max

.
Based on the property of the problem, we now develop an algorithm to solve this

problem; see Algorithm 1. The main idea of the algorithm is first to find the subtree T ′
in T (v∗) that violates the optimality criterion, otherwise the problem is trivial. Then
we reduce the incident edge (in T ′) of v∗ to improve the gap. We stop at the time the
gap becomes nonpositive.

Algorithm 1 Solves the inverse convex ordered 1-median on trees with relaxation on
certain bounds
1: Input: An instance of (InvT).
2: Identify the subtree T ′ that violates the optimality criterion and compute the gap G := �T ′ − �′

T ′ .
3: Set Val := 0.
4: while G > 0 do
5: Find the minimum modification x s.t. G is possibly reduced or a topology change occurs.
6: Set Val := Val + x .
7: if a topology change occurs then
8: Find T ′

max, assign T ′ := T ′
max and reevaluate G := �T ′ − �′

T ′ .
9: end if
10: end while
11: Output: Return the optimal cost Val and the corresponding modified tree.

In Line 5 of Algorithm 1, we can find the amount x by the following procedure.
We first sort the vertices with priority to T ′. For the vertex v in T ′ with greatest
ordering comparing to other vertices in T ′, we consider a vertex v′ in T \T ′ with
maximum ordering that is smaller than the ordering of v. Then we find xv such that
d(v∗, v)−xv = d(v∗, v′) or xv := d(v∗, v)−d(v∗, v′). In the next step we start with a
vertex v′′ in T ′ with maximum ordering that is smaller than the ordering of v′ and stop
the loop until the vertex with minimum ordering in T ′ is considered. The minimum
among the identified amounts xv and �(v∗,v0) is x , where (v∗, v0) is the reducing edge.
This procedure is indeed completed in linear time.

We now analyze the complexity of Algorithm 1. We can check the optimality
criterion and find T ′ in O(M logM) time. In each iteration theminimummodification,
for which the gap G can be reduced or a topology change occurs, can be found in linear
time. We can update G in O(M) time based on the latest vertex orders. As there are
at most O(M2) changes of vertex orders, the algorithm runs in O(M3) time. Hence,
we finally get the main theorem of this section.
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Theorem 3 Theuniform-cost inverse convexordered1-medianproblemonunweighted
trees with relaxation on certain bounds can be solved in O(M3) time, where M is the
number of vertices of trees.

We illustrate Algorithm 1 by the following example.

Example 1 Given an instance of a tree T = (V, E) with a prespecified vertex v1
as depicted in Fig. 1. The vector of multipliers is λ = (0, 0, 1, 2, 3, 5). Applying
the priority in the sorting of distances, we get a feasible permutation σ with priority
to T ′ induced by {v3, v4, v5, v6} as σ(1) = 1, σ(2) = 3, σ(3) = 2, σ(4) = 5,
σ(5) = 4, σ(6) = 6. The subtree T ′ therefore violates the optimality criterion as
G := �T ′ − �′

T ′ = 9 > 0. Thus, we apply Algorithm 1 to solve the problem in the
following iterations.

Iter. 1. We reduce (v1, v3) by 1 and obtain a topology change (v3 ≡ v1). The
subtree T ′

max := {v5, v6} ∈ T (v1) violates the optimality criterion asG := �T ′
max

−
�′

T ′
max

= 1 > 0.
Iter. 2. We reduce the length of (v1, v5) by 1 such that the orders of v4 and v6
change. The gap is updated to G := −3. Hence, the optimal cost is 2 and the
corresponding modified tree is depicted as in Fig. 2.

Fig. 1 An instance of the
problem v1

v2

v3

v4

v5

v6

e =2

1

4

2

3

Fig. 2 The final perturbed tree v1 ≡ v3

v2v4

v5

v6

e = 2
4

1

3
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4 Conclusions

We addressed the complexity of inverse convex ordered 1-median problems on the
plane and on networks. It is shown in one hand that the inverse convex ordered 1-
median problem on the plane with variable coordinates or weights is NP-hard. On
the other hand, the problem on unweighted trees can be solved in cubic time if we
relax the bounds on variables. For future research, we suggest to investigate heuristic
approaches or approximation schemes of the NP-hard inverse ordered 1-median on
the plane or on networks.
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