Math Meth Oper Res (2018) 88:1-35 @ CrossMark
https://doi.org/10.1007/s00186-017-0626-9

ORIGINAL ARTICLE

Inventory control and pricing for perishable products
under age and price dependent stochastic demand

Onur Kayal® - Sajjad Rahimi Ghahroodi?

Received: 26 January 2017 / Published online: 3 January 2018
© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Abstract Perishable products have a short lifetime and cause a high amount of
wastage when managed ineffectively, due to their deterioration over time. We consider
coordinated inventory and pricing decisions for perishable products in a periodically-
reviewed inventory system with an age and price dependent random demand. We
consider the products with a fixed shelf lifetime and use dynamic programming to
model this system. We prove certain structural characteristics of the optimal solution
and also analyze the effect of different parameters on the optimal solution through
numerical experiments. In addition, we analyze simple-to-implement inventory control
policies, namely quantity-based and age-based policies, and investigate their effective-
ness.

Keywords Perishable inventory - Pricing - Dynamic programming - Periodic review -
Age-dependent demand

1 Introduction

Global grocery and supermarket sales are among the largest markets in the world
and perishable products such as fresh produce, dairy and meat constitute the biggest
section of these markets. Due to their deterioration over time, the demand for these
products depends highly on their freshness. They become totally obsolete after a certain
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amount of time causing a high amount of wastage and decreases in grocery profits.
In addition, customers are asking for higher product variety in perishable product
categories, leading to less predictable demand per product and higher losses. Effective
management of these perishable products is an important issue since it is observed
that billions of dollars’ worth of food is expired and wasted every month (Minner and
Transchel 2010). Donselaar and Broekmeulen (2012) state that the average annual
food losses in supermarkets were 11.4% for fresh fruit, 9.7% for fresh vegetables and
4.5% for fresh meat, poultry and seafood in 2005 and 2006, according to the United
States Department of Agriculture (USDA). Different from non-perishable products,
the freshness or age of these products is also a major concern for the managers in
addition to the amount of these products on hand. The demand rate for these products
will decrease as the products on hand start to age, and the managers need to decide
when to order a new batch and what price to charge for the products on hand in order
to control the demand and increase the profits. As a result, the time dependency of
demand and the perishability of these products make the management of inventory
and pricing much harder.

Fresh foods, groceries, pharmaceuticals, composite materials, packaged chemical
products, blood and its derivatives are a few examples of perishable goods found in a
wide variety of industries. Due to their common occurrence and importance, a broad
literature has developed over the years on management of perishable inventories. We
analyze the coordinated inventory control and dynamic pricing decisions for perishable
products with a fixed lifetime, such as dairy products. These products generally have
a short shelf-life and have a certain expiration date. The managers need to decide
when to get rid of the old products and order a new batch in order to increase the
demand and improve the revenues. If they order the new batch too soon, then there
will be a big loss due to the wastage of the current products that could be sold.
Alternatively, if the managers wait too long to order the new batch, then the demand
will decrease too much and the company loses sales during that period leading to
decreased profits. Thus, it is important to determine the optimal time to order the new
batch for perishable products in order to maximize the profits. We consider a time and
price dependent random demand function in a periodically-reviewed inventory system
and use dynamic programming in order to determine the best times for replenishment,
optimal replenishment quantities and the optimal prices to charge depending on the
state of the system. We also develop easy-to-use heuristics for these decisions and
analyze the effectiveness of these heuristics under different conditions.

There is a stream of research that considers the pricing and inventory control deci-
sions under deterministic demand. Benkherouf (1995) and Mishra and Singh (2010)
analyze the inventory control decisions for perishable products with time-dependent
demand but they do not consider pricing. Transchel and Minner (2009) consider coor-
dinated pricing and inventory control for non-perishable products under a deterministic
demand. Rajan and Steinberg (1992), Abad (1996, 1997, 2001, 2003), Burwell et al.
(1991), Wee (1999), Mukhopadhyay et al. (2004), Sana (2010), You (2005), Avinadav
etal. (2013) and Kaya and Polat (2017) are the studies that consider coordinated pric-
ing and inventory control for perishable products but they all assume a deterministic
demand function.
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Inventory and pricing decisions for perishable products under stochastic demand
are generally studied separately in the literature. Most of the inventory models assume
that inventories can be held in stock indefinitely to satisfy future demands and the
demand is independent of the age of the products on hand. Nahmias (1975), Fries
(1975) and Weiss (1980) consider the age information in inventory control. Haijema
et al. (2007) take the age information into account by differentiating the products into
two categories: young and old items, and they develop two different replenishment
strategies. Broekmeulen and van Donselaar (2009) also focus on a perishable product
system considering the age of products and they propose a heuristic policy for the
replenishment of perishable inventories without the consideration of pricing. They
use simulation to compare their heuristic results with the optimal policy that does
not take into account the age of inventories. Minner and Transchel (2010) consider
the ordering policies for perishable products in the food retail industry under service-
level constraints and present a method to determine the order quantities. However,
none of the studies above consider pricing. Nahmias (1982) reviews related literature
about determining the ordering policies for perishable inventory systems for products
having exponential decay over time as well as the products with fixed lifetime. Rafaat
(1991), Goyal and Giri (2001) and Bakker et al. (2012) also present surveys about the
inventory management of deteriorating items.

In the dynamic pricing literature, there are many models for which a fixed amount of
inventory needs to be sold until a certain time, without any replenishment opportunities,
as in the airline or hotel management industries. Gallego and van Ryzin (1994), Zhao
and Zheng (2000), Monahan et al. (2004), Gayon et al. (2009) are a few examples of
these studies. Bitran and Caldentey (2003) present an extensive review of dynamic
pricing policies in the literature. However, in most of these models, the demand is
assumed to be independent of time and there is no inventory replenishment decisions.

There are also several studies considering the inventory and pricing problems for
perishable products with time dependent demand. Chen et al. (2014) focus on the joint
pricing and inventory control problem for perishable inventory systems with stochastic
demand and lead times and focus on the structural properties of the optimal solution.
Chen and Sapra (2013) consider the joint inventory and pricing decisions for perishable
products in a periodic review model with a fixed lifetime of two periods. Chew Peng
et al. (2009) develop a discrete time dynamic programming model to determine the
optimal inventory allocations and the optimal prices for a perishable product with a
two-period lifetime and they obtain several optimality properties. They also propose
three heuristics to obtain the inventory allocations and the prices when the lifetime of
the product is longer than two periods, since the optimality properties for two period
lifetime in their model do not hold for longer lifetimes.

We consider the coordinated inventory control and pricing decisions for perishable
products with fixed shelf lifetimes under an age and price dependent random demand
function. We consider a periodically-reviewed inventory system with fixed ordering
costs and use dynamic programming in order to determine the optimal times to order
a new batch, optimal quantity to order and the optimal prices to set depending on the
state of the inventory at hand. Most of the studies in the literature regarding inventory
control for perishable products assume a First-In-First-Out (FIFO) policy and either
consider simple replenishment policies or assume that the perishable products have a
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two-period lifetime in order to obtain a tractable model. In this study, we don’t restrict
ourselves for products with only two-period lifetimes and propose a new model as
explained in the following section. Development of this model for the coordination of
inventory control with pricing and the analysis of the optimal solution of this model
bring significant novelties to the literature. We prove certain structural results about
the optimal policy in our model and develop easy-to-use heuristics for the managers
of perishable products. We also analyze the effects of the system parameters on the
optimal solution and investigate the effectiveness of the heuristics under different
conditions. We also present managerial insights about the management of perishable
products. These insights will improve the sustainability of this system as well as
increase the system wide profits.

2 Model

We consider a perishable product with a fixed shelf lifetime of m periods in a
periodically-reviewed inventory system. At the beginning of every period we need
to decide whether to order a new batch of products or to continue one more period
with the current products. In our model, ¢ denotes the number of units of product on
hand, ¢ denotes the remaining shelf lifetime of these products and at every period the
remaining shelf lifetime of the unsold products decreases by 1. However, if we decide
to order a new batch at state (g, t), we assume that there is no replenishment lead time
and Q(g, t) units of new products with a shelf lifetime of m periods will arrive in the
same period, which is a common assumption used in the inventory control literature.
Whenever a new batch is ordered, there is a fixed cost of ordering, denoted as K, and
we let ¢ denote the unit cost of products.

When the same type of products with different ages co-exist on the shelves and
sold at the same price, we assume that the customers prefer fresher ones and thus a
Last-In-First-Out policy is used in the sale of inventories. This policy will lead to the
older products to be remained as unsold items on the shelves unless all the fresher
ones are sold out. As an approximation to this system, we assume that when a new
batch is ordered, the older products are sold in a secondary market with ample demand
or salvaged. It is also possible to sell the older products at a cheaper price than the
fresh ones leading to a customer segmentation. Since they target different customer
segments, we assume that the demand for these products are independent from each
other and the sale of older products do not affect the demand for the fresh ones. Thus,
we consider the new batch of products independently from the older ones. We let s
denote the salvage value of the unsold products from the previous batch. Even though
this assumption might seem restrictive at first, we believe that it is consistent with
many practices in reality. For example, Intermarch, a French supermarket chain, takes
the older fruits and vegetables from the shelves when fresh products arrive and they
make soup and juices from these spoiled-looking products and sell them at a certain
price in their market. In real life, customers generally prefer fresher products and when
they go to the store, if there are two types of the same product, only differing in their
freshness, they will prefer the fresh ones, leading the older ones to be unsold. The older
products can only be sold during a small time interval in which the fresh products are
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depleted and the new batch has not arrived yet. However, it rarely happens that the
new products are sold out, the older ones have still some remaining shelf lifetime and
there is a demand for them in that period. Even if this happens the demand for them
will be generally low and a new batch will be ordered in the next period. For example,
if we consider a product with a 7-day shelf life and after 4 days let us assume that we
decide to order a new batch. If the older products are not salvaged, then they need to
wait until the new batch is sold out which might take more than 3 days and the older
products will already be expired. However, if they are sold out in 2 days, then at that
day, some of the older products with a remaining shelf life of 1 day can be sold but
the demand for those products will be very low and a new batch will be ordered in the
next day. Thus, we assume that the sales of the older products will not be significant
for our model and salvaging the older products at a certain price when a new batch is
ordered seems logical and consistent with real life practices. In Sect. 4, we analyze this
assumption and compare the systems, for products with 2 and 3 period lifetimes, when
older products are salvaged and when they are kept in store after a new replenishment
is made. We show the validity of this assumption with our numerical experiments in
Sect. 7.2 using different parameter settings.

The assumption stated above is analytically critical for us in order to develop a
tractable dynamic programming model and leads to a different model than the ones
in the literature. We note that, one needs to keep track of the quantities at all possible
ages of the product and because of this reason it is widely assumed that the perishable
products have a two-period lifetime in the inventory control literature [e.g. Chen and
Sapra (2013), Chew Peng et al. (2009), etc.]. For example, if a product has an m-
period lifetime, then we need an m-dimensional state space, each dimension showing
the amount of products at that age. Using a dynamic programming formulation with
an m-dimensional state space becomes very difficult to solve as m gets larger than 2.
However, we do not restrict ourselves to two-period lifetimes and instead we assume
that the older products are salvaged when a new batch arrives. With this assumption,
all the products on hand will have the same age and at any time, the system can be
modeled using two state variables, the number of products on hand, and their remaining
lifetime.

In addition to the inventory ordering decisions, at the beginning of every period, we
also decide on the price in that period, denoted as p(q, t), depending on the state of the
system at that period, (g, t). The demand at every period, denoted as D(p(q, ), t), is
then a random function of the price and the remaining shelf lifetime of the products.
Below, we present the notations used throughout the paper. We start our analysis by
considering the static pricing model in the next section, such that the price is fixed
for all (g, t). In the next section, we assume that p(q,t) = p for all (g, t). Then,
we analyse the dynamic pricing model, such that different prices can be charged at
different states, in Sect. 6.

Parameters

m Maximum shelf lifetime
¢ Cost per product
K Fixed ordering cost
s Salvage value of older products when a new batch is ordered
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System states

q Inventory amount at hand
t Remaining shelf lifetime of the products in inventory

Decisions variables

0(q,t) Order size at state (q,t)
p(q,t) Price at state (q,t)

System disturbance

D(p,t) Random demand that depends on price and remaining shelf lifetime of the
products in inventory

3 Coordinated inventory control and static pricing

We aim to maximize the average system profit per unit time by deciding on when to
order a new batch and how much to order depending on the system state, (g, t), in
addition to the optimal static price p, to set. In this section, we assume that a single
price p is used at all possible states (g, t). We consider an infinite planning horizon and
use an average cost dynamic programming (DP) formulation [see Bertsekas (2005) for
detailed information on average cost DP formulations]. For a given p, the Bellman’s
equation for our model is as follows:

I+ h(q. 1) = max { fu(q.1). folg. )}
flg.0)=p E[min {g. D(p, t)}] n E[h([q — D]t - 1)]

folg 1) = max | = K = c0(q.0) + g + f:(0(q. 1), m)| (3.0
Q(g.1)

with the boundary conditions IT* 4 h(g, 0) = maxg(g, 0){—K — cQ(g,0) +sq +
fe(Q(g,0), m)}.

In order to obtain the optimal static price p, we also need to solve the following
problem, where IT* is the optimal average profit value in the solution of the above
problem. We do a one-dimensional search over p and solve the above problem and
determine the value of p that provides the maximum IT* value.

max [ T* }
P

In the above formulation 3.1, IT* denotes the optimal average profit value per unit
time, h(q, t) denotes the relative (differential) profit values, f.(g, t) denotes the profit
value if we decide to continue with the current products on hand and f,(q, t) denotes
the profit value if we decide to order a new batch at state (g, ). Note that if we decide
to continue, then the profit function includes an immediate expected profit from selling
the products in this period, denoted as p E[min{g, D(p, t)}] and a future expected
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profit of the system, denoted as E[h([g — D(p, t)]T,t — 1)]. In this case, the next
state will be ([g — D(p, t)]",t — 1), in which the products have one less remaining
shelf lifetime. If we decide to have a new order, we need to choose the best Q(q, t) to
maximize the expected profit. In this case, first we have an ordering cost, K, and the
cost of the purchased products cQ(q, t). Then, we have salvage revenue sq and we
come to the state (Q(q, t), m) with the new batch whose profit value will be equal to
fe(Q(g. 1), m).

Since we aim to focus on the perishability of the products and time-dependency of
demand, we do not include any inventory holding cost explicitly in our model. The
perishability of the products and the time dependency of demand have a similar effectin
our decisions as the inventory holding costs. The expiration risk of the products and the
decrease of demand rate by time prevents us from ordering too much as the inventory
holding cost does in the classical inventory control literature. Thus, inventory holding
costs are implicitly embedded in the expiration process of the perishable products. In
addition, since we consider short time periods, the inventory holding costs per period
will be very small compared to the revenues and the costs per period. Thus, we choose
not to include the inventory holding cost explicitly in our formulation for the sake of
simplicity.

3.1 Structural results

In this section, we focus on the problem 3.1 to analyze the optimal inventory control
policy for fixed p. We prove some structural properties about the optimal policy by
analyzing the DP formulation 3.1.

Proposition 1 Optimal order size, Q* is independent of g and t.

Due to Proposition 1, for the sake of simplicity, from this point onwards, we use Q
instead of Q(q, t) in our formulations. In that case, we can rewrite our DP formulation
as below

[ 4+ h(g.1) = max | £eq. ). £o(@))

felq. vy = p E[ min{q, D(p. D} | + E[h([q —D(p. 0] 1 - 1)]
fol@) = max(—K —cQ +5q + f(Q,m) (3.2)

with the boundary conditions IT* + i (g, 0) = maxg{—K — cQ + sq + f.(Q,m)}.
However, we observe in our numerical studies that the optimal average profit value is
not a concave function of Q. Thus, in order to determine the value of Q* we need to do
aline search between the lower bound L and the upper bound U stated in Proposition 2
in which F;,, denotes the cumulative distribution function of total demand for m periods
and F7 denotes the cumulative distribution function of the demand in the first period.
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Not Ordering

Inventory size

Ordering

Remaining Shelf lifetime

Fig. 1 Optimal ordering decision policy—typical monotone structure

Proposition 2 For a given p, the optimal order size Q* is between the lower bound
L and the upper bound U, where L and U are denoted as below

v =min{0IF,"(©0) = 2=}

p—Ss
L=min{QIF'(Q) = "=}

In order to define the structure for the optimal ordering states, we present the
following lemmas and propositions.

Lemma 1 h(q, t) is non-decreasing in q for any given t. In addition, h(q + 1,t) —
h(g,t) > s for any given t.

Lemma 2 h(q, t) is non-decreasing in t for any given q.

Using Lemmas 1 and 2, we now prove the structure about the optimal ordering
policy in Propositions 3 and 4.

Proposition 3 There is a critical value q(t) for any t such that a new batch should be
ordered if ¢ < q(t) and we should continue with the current products if ¢ > q(t). In
addition, q(t) is non-increasing in t.

Proposition 4 There is a critical value t(q) for any g such that a new batch should
be ordered if t < t(q) and we should continue with the current products if t > t(q).
In addition, t(q) is non-increasing in q.

We essentially show with Propositions 3 and 4 that there is a monotonic structure
in the optimal ordering decision policy. In Fig. 1 is a typical structure of the optimal
ordering policy with respect to inventory size and remaining shelf lifetime. As seen in
Fig. 1, there is a monotone curve that separates the ordering and non-ordering states.
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We present numerical experiments and the solutions for the optimal static pricing
and inventory decisions in the numerical results section.

4 A comparison of the models with and without the salvaging
assumption for perishable products with two and three period lifetimes

Recall that in our model, it is assumed that when a new batch is ordered the older
products are salvaged or sold in a secondary market. Hence, products with different
ages do not co-exist. This assumption enables us to have a state definition with two
states; on-hand inventory and remaining shelf life. However, if products with different
ages are allowed to co-exist, i.e. if the older products are kept in store instead of being
salvaged when a new batch is ordered, it might be possible to obtain higher profits
in the system. However, in order to model such a system, we need to keep track of
the amount of products at each age, and thus the state space of the system grows
exponentially. The state space of such a model can be denoted as (g1, g2, ..., gm—1)
where ¢g; denotes the products with age i. The solution of such a model in a reason-
able time limit becomes impossible, especially when the maximum lifetime of the
product, m, gets larger, mainly due to the size of the state space. In addition, when
products with different ages co-exist in the system, there is a need for a proper alloca-
tion of demand among these products. Consumer choice models or demand spillovers
need to be incorporated into the model, which makes the solution even more diffi-
cult.

Besides the difficulties explained above, for m = 2 and m = 3, we model the
system without the assumption that the older products are salvaged when a new batch
is ordered. We compare the results of our proposed model in Sect. 2 with the results
of the model without this assumption. We present these models for m = 2 and m = 3
in the following sections.

4.1 Coordinated pricing and inventory control for products with two-period
lifetimes

In this section, we consider a product with two-period lifetime, m = 2, and allow
products with different ages co-exist. We let ¢ denote the number of products that
are left over from the previous period and Q denote the number of products that are
ordered at the beginning of that period. If we do not salvage the older products when
this new batch is ordered, both Q new products and ¢ old products will be available on
the shelf. In this model, consistent with our initial model, we assume that the customers
prefer fresher products if both products are sold at the same price, and thus the products
are sold on a Last-In-First-Out (LIFO) basis. An arriving customer is assumed to buy
the new product, if available. However, if all the new products are depleted, then the
later arriving customers might also buy the old product. Similar to our initial model,
for products with different ages, we use an age and price dependent random demand
function D(p, t) where p denotes the price of the product and ¢ denotes the age of
the product. We let D(p) = D(p, m) denote the demand for the most fresh products
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(i.e. new batch) with m periods of lifetime remaining at the price p. However, if the
demand is more than Q, then the new batch will be depleted and the later arriving
customers need to decide whether to buy the old product or not. Consistent with the
age-dependency of demand, we assume that an « portion of these customers will
buy the old products. Thus the sales amount from the new and old products will
be min(Q, D(p)) and min(q, |a[D(p) — Q1" ), respectively. Note that, we take
the floor of the value a[D(p) — Q]T, since this value needs to be an integer value
denoting the demand. Also note that when o = 1, the demand will be independent of
age and the customers will be indifferent between old and new products. Observe that,
since the maximum lifetime of the product is 2, the unsold portion of the old g products
will not be carried over to the next period and will be salvaged at the price s. Since
Q is a variable that will be decided at the beginning of each period based on the state
of the system, we only need to keep track of the number of products that are leftover
from the previous period. Thus, ¢ denotes the state variable in our model. Then, we
can write the infinite-horizon average cost dynamic programming formulation for this
model as below.

T* + h(g) = mélx { —Klg=o—cQ+ pE[min {0.D(p)}
+ min|q, [oID(p) — 017 }]

+5E[q — [a(D(p) - OF | T" + E[h([Q - D(p)F)“ @.1)

In the above formulation, IT* denotes the optimal average profit value per unit time
and & (g) denotes the relative (differential) profit value when ¢ units are left over from
the previous period. In order to accommodate the fixed order cost in our model, we
use the function 1¢ - o, which takes the value 1 if a batch with Q > 0 is ordered in
that period and takes the value O if a batch order is not made in that period. Observe
that the unsold portion of the new batch of Q units are carried over to the next period
and the unsold portion of the old ¢ products are salvaged. Thus the state variable for
the next state is written as E[2([Q — D(p)])].

In order for them to be comparable with each other, below we also present the
dynamic programming formulation for the original model given in Sect. 3 for m = 2
with the assumption that the older products are salvaged when a new batch is ordered.
Since m = 2, the products at hand can only have 1 period lifetime remaining and thus
the time index ¢ in our original model can only take the value 1. Because of this reason,
we can drop the index ¢ from the state space representation of the original model and
write the model as below. Consistent with the above model, we use a demand function
D(p,1) = o™ " D(p) where m = 2, and ¢ = 1 for the old products and ¢ = 2 for the
new batch. Observe that if a new batch is ordered, the demand for that batch will be
D(p) and if a new batch is not ordered, the demand will be |« D(p)] since « portion
of these customers will buy the old products at the price p. The unsold portion of these
products will be salvaged and the next state will be O if a batch is not ordered in this
period. However, when a batch of Q units are ordered, all the old products of ¢ units
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are salvaged at that time and only the new batch is sold at the price p with demand
equal to D(p).

" + h(g) = max {PE[min {9. laD(p)] }] +5E[qg — laD(p)]]*
+h(0),m§x{ —K—-cQ+sq

+pE[min {0, D(p)}] + E[h([Q — D(p)]+>j| }} 42)

We compare the results of these two models in order to analyze the effect of our
assumption that the older products are salvaged when a new batch is ordered. In the
numerical results section, we analyze the results with and without this assumption by
comparing the results of the above models under different parameter settings.

4.2 Coordinated pricing and inventory control for products with three-period
lifetimes

In this section, we consider a product with three-period lifetime, m = 3, and allow
products with different ages co-exist. Similar to the previous section, we present the
infinite-horizon average cost dynamic programming formulation for this model as
below.

0" + h(q1, q2) = max { —Klgoo—cQ+ pE[min{Q, D(p)} + min {ql, la[D(p) — Q" |

+ min [g2, [alelD(p) — 01 — 11" ] }1]

+5E[q2 — |[elalD(p) — OT" — 11717 ]*

+ E[h([Q ~ D" (@1~ |«lD(p) - QJ*J)*)]} (4.3)

In the above model, we denote the state space as (g1, g2) denoting the number of
products at age 1 and 2, respectively. The products are again assumed to be sold on a
LIFO basis and « portion of the leftover demand from the fresher products is attributed
to the older products. Any unsold portion of ¢> units will be salvaged and the next
state will be ([Q — D(p)I*, (q1 — |«[D(p) — Q1T )*).

Then, we consider our original model given in Sect. 3 for m = 3, which can be
written as below, where (g, t) denotes the state space with g units of product with
t € {1, 2} time periods remaining lifetime. We use the demand function D(p,t) =
I_am_’D(p)J, where m = 3 and ¢t = 3 for the new batch and ¢ = 2 or 1 for the older
products.
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IT* + h(g,t) = max {pE[min {q, D(p, t)}] + E|:h([q — D(p, t)]+, t — 1>j|
man{ —K—cQ+sqg+ pE[min {o. D(p)}]

+ E[h([Q - D(p.3)]", 2)} ” (4.4)

We again compare the results of these two models in our numerical results section
and analyze the effect of the assumption that the older products are salvaged when a
new batch is ordered.

Observe that as m gets larger, the state space of our original model is not affected
much. However, the state space of the model without the critical assumption, increases
exponentially and the model easily becomes unsolvable in a reasonable time limit, as
m gets larger. Even for m = 3, in our numerical experiments, it took over half an hour
to solve some of the instances of the above model without the critical assumption,
while it took only a few minutes at most, to solve the same instance with our original
model.

We also note that, in our models we assume that a single price is used for all products
even if products with different ages co-exist in the system. This is a general practice in
many retail stores. We can observe that even though the products on the shelves have
different ages, they are generally sold at the same price in real life. It is clear that higher
profits can be obtained if products with different ages have different prices, however,
modeling such a system needs a very different approach. A consumer choice model
might be needed in that system since the customers need to choose between the fresh
but more expensive products and the old but cheaper products. LIFO assumption on the
order of sales can not be applied anymore in that situation. Because of the complexity
and the differences in the allocation of demand among products with different ages,
it will not be fair to compare the results of our initial model with a model that allows
different prices for products with different ages at the same time. Thus, the analysis
of such a system is out of the scope of this paper and is thought to be a future area of
study.

5 Heuristics for inventory control under static pricing

In Sect. 3, through DP for a given p, we prove that there exists a critical value of
q(t) that determines the ordering time decision. Even though the optimal decision
depends both on the age of products and the amount at hand, following this strategy
can be difficult to implement and use for the managers. In reality, similar to the
inventory control of durable products, it is observed that a policy that only considers
the amount of products on hand and does not take the age of products into account is
commonly employed. Alternatively, a policy that only considers the age of products
and ignores the amount at hand is also seen to be implemented. In this section, we
model these two heuristics in order to compare their performances with the optimal
solution.
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5.1 Single quantity threshold (r) heuristic

In this heuristic, we consider a single threshold level r for the amount at hand, instead
of different ¢ (¢) values for different ¢ as stated in the previous section. This heuristic
is like a modified (s, S) policy in the classical inventory literature such that if the
inventory at hand at the beginning of any period is less than r, we order a new batch
of Q units and since we discard the old ones, our inventory level goes up to Q. If
the inventory never goes below r in m periods, then we order a new batch after m
periods since all the products on hand will be expired at that time. This heuristic can
be considered as a quantity-based replenishment policy. Also note that the demand is
age dependent and we also need to decide on the optimal price, p, to set in this system.

In this heuristic, since it is a simplified version of the model in the previous section,
we use the same equations as above but use the single unknown r, and the optimal
value of it will be determined through a one-dimensional line search using the equations
below:

It g > r O + hig.) = fu(q.1) = pE[min{q,D(p,t)}]

+ E[h([q - D(p. 0] 1 - 1)
Ifg <r:TI* +hig,t) = folqg) =maxp{—K — cQ +sq + fc(Q, m)}

We determine the optimal p, Q and r values that maximize IT* value in the above
equations. We present and compare the results of this heuristic with the optimal DP
solution in the Table 2 in the numerical results section.

5.2 Single lifetime threshold (/) heuristic

In this heuristic, similar to the previous one, we again consider a single threshold level
but this threshold level is based on the remaining shelf lifetime of the products, instead
of the remaining quantity of the products. As stated in Proposition 4, the optimal policy
requires us to find the critical time threshold levels, denoted as #(g) for all possible
q. However, in this heuristic, we consider a single time threshold level / such that
we give a new order when the remaining lifetime of the products becomes less than
[, independent of the quantity at hand. We also note that if all the products are sold
before [ periods, we also give a new order at that time even though [ periods have not
passed yet. This heuristic can be considered as a time-based replenishment policy.

Since this heuristic is also a simplified version of the model in the previous sections,
we use similar equations as stated below and in order to determine the optimal value
of [, we employ a one-dimensional line search.

It + > L 0% + hig.1) = filg,1) = pE[min{q,D(p,t)}]

+ E[h([q —p(p.n]t - 1)]
Ifr <I:TI* + h(g, 1) = fo(q) = maxp{—K —cQ +5q + fc(Q,m)}
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We determine the optimal p, Q and [ values that maximize IT* value in the above
equations. We present and compare the results of this heuristic with the optimal DP
solution in Table 2 in the numerical results section.

6 Coordinated inventory control and dynamic pricing model

In this section, we consider dynamic pricing such that instead of using a single price
value p for all states (g, t), we allow different prices, p(g, t), to be used at different
states (g, t). In this case, the DP equation to be solved will be as follows:

I+ g, 1) = max{ fu(q.0). folg. D)}

felq.1) = max {p(q,r) E[ min{q. D(p(g. 1).1)}]
plg.t)

+ E[h<[q ~D(p(g.0.0] 1~ 1>]}

folg, 1) = g(l;vti){—K —cQ(g,1) +sq + fe(Qg, 1), m)} (6.1)

with the boundary conditions IT* + h(g,0) = maxg,0{—K —cQ(q,0) + sq +
£:(0(q.0), m)).

In this formulation, different from the static pricing model, for all states (g, 7), we
also need to pick the best p(g, t) to maximize the expected profit. We note that all the
propositions stated for the static pricing model related to the inventory policy are also
valid under the dynamic pricing strategy as stated below.

Proposition 5 Under the dynamic pricing model, optimal order size, Q* is indepen-
dent of q and t.

Due to Proposition 5, from this point onwards, we again use Q instead of Q(q, t)
in our formulations and the function f,(q, t) can bedenoted as f,(¢g) since it no longer
depends on 7. We also note that the optimal order size Q* is searched between the lower
and upper bounds obtained in a similar manner as explained in Proposition 6. In the
dynamic pricing case, since the price, p, is not fixed, we can not directly use the lower
and upper bounds as given in Proposition 2. Instead, we use p;,in and pyqyx, Which
denote the minimum and maximum possible prices that can be set for p(q, 1), i.e.
P(q.1) € {Pmin» Pmax}- In addition, we let Fy, ,,... denote the cumulative distribution
function of total demand for m periods under fixed price p,i, and Fi ,,. denote
the cumulative distribution function of the demand in the first period when the price
iS pmax- Then, the lower and upper bounds under the dynamic pricing model can be
stated as below.
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Proposition 6 Under the dynamic pricing model, the optimal order size Q* is between
the lower bound L and the upper bound U, where L and U are denoted as below

in —C

v =min{0IF,), (0 = 2=~
Pmin — S
—C

L =min]QIF})  (0) = 22}
’ Pmax — S

In order to define the structure for the optimal ordering states under the dynamic
pricing model, we present the following lemmas and propositions that are similar to
the ones stated for the static pricing model.

Lemma 3 Under the dynamic pricing model, h(q, t) is non-decreasing in q for any
given t. In addition, h(q + 1,t) — h(q, t) > s for any given t.

Lemma 4 Under the dynamic pricing model, h(q, t) is non-decreasing in t for any
given q.

Proposition 7 Under the dynamic pricing model, there is a critical value q (t) for any
t such that a new batch should be ordered if q < q(t) and we should continue with
the current products if ¢ > q(t). In addition, q(t) is non-increasing in t.

Proposition 8 Under the dynamic pricing model, there is a critical value t (q) for any
q such that a new batch should be ordered if t < t(q) and we should continue with
the current products if t > t(q). In addition, t(q) is non-increasing in q.

For the sake of space, we don’t repeat the proofs for Propositions 5 and 6 since
they are almost the same as the proofs given for the static pricing model. However,
we present outlines for the proofs of Lemmas 3 and 4, and Propositions 7 and 8 in the
“Appendix”.

When we look at the optimal pricing decisions, first we can say that if the optimal
policy is to order a new batch at any two states (g1, #1) and (g2, t2), then the optimal
prices for these states are the same, i.e. p(q1,t1) = p(q2, t2). For the non-ordering
states, we observe numerically that these prices are non-decreasing in the remaining
shelf lifetime, meaning that higher prices should be charged for fresher products.
However, when we look at the relationship between the prices and the inventory size,
we observe that they do not have such a monotonic structure in the inventory size as
seen in the numerical results section. We present detailed numerical experiments and
analyze the optimal pricing decisions in the numerical results section.

7 Numerical results

In this section, we present our numerical results for both static and dynamic pricing
models. We analyze the effects of different parameters on the system and investigate
the benefit of dynamic pricing. We also analyze the effect of the assumption that the
older products are salvaged when a new batch is ordered by comparing the results of
our proposed model with the model without that assumption. The efficiencies of the
heuristics presented above are also presented.
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Fig. 2 Optimal ordering size and optimal price behaviour with respect to each other

7.1 Numerical results for inventory control under static pricing

First, we analyze the static pricing model. In our experiments, similar to the demand
functions used in Banerjee and Agrawal (2017) and Avinadav et al. (2013, 2014),
we assume a demand function that has a Poisson distribution with rate A(p,t) =
a(%)”eﬁ (1=8) where 1 is the remaining lifetime of the product, % is the profit margin
(p is the price and c is the unit cost of the product), a is the demand coefficient
constant, 8 denotes the price sensitivity of demand and n represents the time sensitivity
of demand. As a base case for our numerical experiments, we use the parameters
¢ = 1000, K = 20000, a = 60, m = 7, s = 400, 8 = 2 and n = 1. For these
parameters, using the DP equation 3.2, we find out that the optimal static price is 1497
and the optimal order quantity is 78. We note that the couple (Q, p)=(78, 1497) is
the optimal value that maximizes the profit in our system, however, in some cases,
one of these decisions might be fixed and the optimal value of the other variable can
be searched. Figure 2 shows the optimal values of these variables as the other one is
fixed, presenting the effect of price on optimal order quantity and the effect of order
quantity on optimal price value. In this chart we see a monotone structure in these
relations, and the optimal couple (Q,p) is the intersection point of these two lines in
Fig. 2.

In Fig. 3, we illustrate the structure of the function h(q, t), that is also stated
in Propositions 1 and 2. You can see in part (a) of Fig. 3 that for any remaining
shelf lifetime value, relative profit function /(q, ) is increasing in inventory size.
Similarly, in part (b) of Fig. 3, for any inventory size value, h(q, ) in non-decreasing
in remaining shelf lifetime. In Fig. 4, we present the optimal inventory replenishment
strategy denoting at which states, we should order a new batch and at which states we
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Fig. 4 Optimal decision policy structure for any inventory size and remaining shelf lifetime

should continue with the current inventory at hand. Observe that Fig. 4 is consistent
with the structure stated in Propositions 3 and 4.

In the following charts we consider the effect of different parameters on optimal
average profit, optimal price and optimal order size. Part (a) of Fig. 5 shows that as the
shelf lifetime of the product increases, the optimal order size also increases. It means
that when products have more time before expiration, we can order more. But we also
observe that this increase is in a concave manner and after a while, even though the
product’s shelf lifetime increases, the order quantity stays constant. A similar structure
is also seen in part (b) of Fig. 5 in which we present the average profit value as opposed
to the shelf lifetime of the products denoting that products with a short lifetime are
more riskier and bring less profit. In part (c) of Fig. 5 we see how optimal price value
changes with respect to the shelf lifetime of the products. We observe that the optimal
price value has a non-monotonic structure with respect to the shelf lifetime of the
product, especially when the shelf lifetime is small. The reason for this is that when
the shelf lifetime increases, the order size also increases and increased shelf lifetime
and increased order size work in opposite directions for the price. For example, in part
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Fig. 5 The effect of the product’s shelf lifetime on a optimal ordering size, b optimal average profit, ¢
optimal price

(c) of Fig. 5, when the shelf lifetime increases from 5 to 6, the order size also increases
and the optimal price decreases because of the higher order size overcoming the effect
of longer shelf lifetime. However, as the shelf lifetime is above a certain value, the
optimal price seems to increase monotonically with the shelf lifetime. For example,
when the shelf lifetime goes from 15 to 16, the increase in order size is smaller and
the effect of longer lifetime overcomes the effect of higher order size and the optimal
price increases. When we fix the value of the order size Q and analyze the optimal
price under fixed Q, we observe that the optimal price is monotonically increasing
with the shelf lifetime. When Q is fixed, if a product has a longer shelf lifetime, it has
higher demand at the same price p, and there is a longer time to sell these products.
As a result higher prices are set as the shelf lifetime increases. Figure 6 shows the
effect of the fixed ordering cost and we observe that the order size increases with the
fixed cost in order to decrease the order frequencies to avoid high fixed costs. But,
the order size converges concavely to a certain value as the fixed cost goes beyond
a certain level because ordering more than a certain amount will not be profitable
since they can not be sold before their expiration dates and even though the fixed
cost is too high, the order size will never be more than a certain amount. We note
that the value that the order size eventually converges to is equal to the upper bound
that we introduced in Proposition 2. When we consider the average profit value, we
observe that it decreases as the fixed cost increases, as expected, and the optimal price
again does not have a monotonic structure with respect to the fixed ordering cost.
Figure 7 shows the effect of the salvage value on the system. When we can salvage the
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Fig. 6 The effect of the fixed order cost on a optimal ordering size, b optimal average profit, ¢ optimal
price

products with higher prices, there is less risk to order more. So, it is reasonable that
by increasing the salvage value, the optimal ordering size increases. Furthermore, we
can simply conclude that, if salvage value gets close enough to the unit cost value, the
optimal ordering size goes to infinity, since there is no risk in ordering more when we
can salvage the product with same value that we paid for them. This behavior is also
true for the optimal average profit. When salvage value increases and the difference
between product cost and salvage value decreases, it is obvious that we can make
more profit in the system. We observe that the optimal price again does not have a
monotonic structure with respect to the salvage value. Figure 8 shows the effect of
the price sensitivity of demand, §, on the order size, the average profit values and
the optimal price. Note that for a given price, when f increases, demand decreases.
Thus, when S increases, having less demand for products, it is reasonable to order
less number of products and it obviously decreases the optimal average profit in the
system. In part (c) of Fig. 8, we observe that the optimal price monotonically decreases
as B increases. When the demand becomes more sensitive to price, we should charge
lower prices in order not to lose the demand.

We assume that the salvage value of the products are not affected by their remain-
ing shelf lifetimes when they are salvaged. However, here we also analyze the system
behavior numerically when the salvage value depends on the freshness of the product.
In the example below, we observe that when the salvage value is different for prod-
ucts with different ages, the system shows a different behavior regarding the optimal
ordering decision policy and the monotonic structure no longer holds. In this example,
we assume that the salvage value increases linearly with the remaining shelf lifetime
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Fig.9 Optimal ordering decision Policy for an example with salvage value linearly increasing in remaining
shelf lifetime

instead of being a constant value, such that s = %. In Fig. 9, you can see that

the optimal ordering decision policy has a different structure than the figure given in
Fig. 4 and the structural results given in Propositions 3 and 4 do not hold under this
condition. The main reason for this structure is that when the inventory size is high
considering the remaining shelf time, such that most of them are less likely to be sold
during the remaining shelf lifetime, it is better to salvage all of them at the current
value instead of keeping them. Since the salvage value decreases over time, the value
obtained through salvaging these products become higher than the value obtained by
selling some of them and salvaging the rest later at the decreased value.

7.2 Numerical results for the comparison of the proposed model with the
optimal solution for products with m=2 and m=3

In this section, in order to analyze the effect of the assumption that the older products
are salvaged when a new batch is ordered, we compare the results of the models with
and without this assumption for products with two and three period lifetimes. In this
section, we use a random demand function of the form D(p, t) = Loe”’*’ D( p)J where
D(p) is Poisson distributed with rate § — yp. We use different parameter values as
stated in Table 1 and present a comparison of the profits and the static prices set in
each case.

We observe that both models provide very similar results and our assumption,
that the unsold products are salvaged when a new replenishment is made, does not
significantly change the results compared to the optimal solutions. The percentage
difference between the profits of the models with and without the assumption is about
0.5% on average and 2.492% in the worst case based on the results in Table 1. We
can state that our model with this assumption can be used as a close approximation
to the optimal solution without the assumption. Our model provides especially better
approximations as K, s, o or y gets larger or ¢ or § gets smaller. We observe that as
the shelf life of the product, m, gets larger, the percentage differences between the
profits slightly increase. When shelf life is significantly larger than 3, the differences
might increase even further and the performance of the approximation might decrease.
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Table 2 Solutions obtained with the heuristics and the DP model

Parameters DP solution H1 solution H2 solution Heuristics and DP gap %
s K m a B hp TR Ty IF Def.yy Def.pya
0 20000 7 60 2 76 76 2 76 0 0.00001 1.38208
400 20000 7 60 2 78 78 3 78 1 0.06107 1.61263
800 20000 7 60 2 82 80 6 81 2 1.04099 2.37149
600 10000 7 50 2 59 58 5 61 2 0.22202 3.00364
600 20000 7 50 2 68 68 2 68 1 0.10828 1.26883
600 30000 7 50 2 73 73 0 730 0.00044  0.00044
600 15000 4 60 275 54 54 0 54 0 0.00309 0.00309
600 15000 7 60 275 78 78 3 79 1 0.07871 1.57605
600 15000 10 60 2.75 101 100 4 102 2 0.12636  2.24477
500 15000 6 70 2 76 75 5 74 2 0.21745 3.48010
500 15000 6 100 2 99 99 9 107 2 0.00907 3.21636
500 15000 6 150 2 140 140 16 138 3 0.00012  0.90563
500 20000 6 80 0.5 61 61 16 60 4 0.00079 0.39590
500 20000 6 80 1 80 80 11 77 3 0.07354 2.05374
500 20000 6 80 2 91 91 5 92 1 0.08948 2.14183
Average values 0.13543 1.71044
Maximum values 1.04099 3.48010

However, note that the approximation provides the optimal result when m = 1 and the
differences between profits for m = 2 and m = 3 are 0.397 and 0.557% on average,
and 1.994 and 2.492% in the worst cases, respectively. The value of m affects the
performance of the approximation the most between m = 1 and m = 2. It has a
smaller effect between m = 2 and m = 3, and it is expected to have decreasing effects
between m and m + 1 for larger m. The differences between profits are expected to
increase in a concave manner, with even further decreasing rates as m gets significantly
larger. Thus, even though the performance of the approximation worsens for larger m,
we expect that it will still provide close enough results to the optimal solution, even
when shelf lifetimes are significantly longer. The analysis about the performance of
this approximation for larger m values can be analyzed in more detail in future studies.
In addition, more research might need to be done in the future when multiple aged
products with long shelf lives co-exist in the system.

7.3 Analysis of heuristics for inventory control under static pricing

In this section, we compare the solutions obtained by the heuristics described above
with the optimal DP model solutions through numerical examples. In Table 2, we
present the optimal order size (Q*) for the DP model and the heuristics, for different
sets of parameters as given in the table. In addition, in the last columns of Table 2, we
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also present the percentage differences of the average profit values (% * 100)
obtained by the DP model and the heuristics.

We observe that the Single Quantity Threshold heuristic gives us better solutions
than Single Lifetime Threshold heuristic in these experiments and they both seem to
be efficient and easy to use in real life. The performances of both heuristics increase
as s, m or B decrease; or K or a increase.

7.4 Numerical results for the coordinated inventory control and dynamic
pricing

In this section, we present the numerical results for the same parameters that we use in
static pricing section but now we use dynamic pricing and the price is not fixed for all
states. For any inventory size and remaining shelf lifetime, the optimal price is chosen
to maximize the system profit.

We observe in Fig. 10 that the relative value function 4 (q, t) is non-decreasing in
inventory size and in remaining shelf lifetime, as expected.

In Fig. 11, we present the optimal solution of the dynamic pricing DP model and
how the optimal price value changes with respect to inventory size and remaining
shelf lifetime. The yellow region denotes the states at which a replenishment is made
and when a replenishment is made, the optimal price to use is found to be 1504. We
note that the optimal static pricing for this example is 1497, which is close to the price
at the replenishment time. However, as time passes, depending on the demand, very
different prices between 900 and 2500 are seen to be charged at different states of the
system. For the sake of illustration, in Fig. 11, different colours are used for different
ranges of prices and a monotone behavior of optimal price values in inventory size
and remaining shelf lifetime is observed. However, when we look at the behaviour
of the optimal price with respect to inventory size and remaining shelf lifetime, we
observe in Fig. 12 that even though the optimal price value increases in remaining
shelf lifetime, it does not have a monotonic structure with respect to the inventory
size. In general, we observe that the price decreases when there are more inventory in
the system, however at certain states this structure does not hold and the reason for this
might be the fact that at those states when the inventory decreases, the system might
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Fig. 10 The behaviour of the relative value function £ (g, t) versus a inventory size for different remaining
shelf lifetimes, b remaining shelf lifetime for different inventory sizes
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Fig.12 Optimal Price value versus a remaining shelf lifetime for different inventory size values, b inventory
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choose to decrease the price, too, in order to make more sales and quickly reach to a
state at which a replenishment is made instead of waiting for one more period in order
to make more profit. So, at those critical states, a non-monotonic structure happens.

7.5 Comparison of static pricing and dynamic pricing

In this section we analyze the effect of the dynamic pricing policy and compare the
results of the static pricing model with the dynamic pricing model. Using the parame-
ters stated above, part (a) of Fig. 13 shows the states at which a replenishment is made
for both the static pricing and dynamic pricing models. We also consider another exam-
ple in which all the parameters are the same as above except that the fixed order cost
K = 0 now and part (b) of Fig. 13 shows the optimal solutions for the replenishment
decisions for the static and dynamic pricing models. We observe in both examples that
higher quantities are ordered under dynamic pricing, i.e. Qp > Qg, and considering
only the states with quantities less than O, we observe that the set of ordering states
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Fig. 13 Optimal replenishment decisions at different states when a K=20,000, b K=0

under the dynamic pricing model is a subset of the set of ordering states under the
static pricing model. This means that if a replenishment is made at a state, with quan-
tity less than Qg, under the dynamic pricing model, a replenishment is also made at
that state under the static pricing model. But there also exists some states at which a
replenishment is made under the static pricing model but not under the dynamic pric-
ing case. In such states, the old products are salvaged under the static pricing model
since the demand becomes too low at those states with the static price, but we continue
to try to sell the older products under the dynamic pricing model by decreasing the
price and increasing the demand since we have that option under dynamic pricing.
Thus, dynamic pricing allows the managers to salvage less products by changing the
price and the demand structure. As a result, we can say that less products are wasted
with dynamic pricing. However, since higher quantities are ordered under the dynamic
pricing model, we also note that there also exists some ordering states of the dynamic
pricing model with quantities more than Qg but less than Q p, that are not included
in the set of ordering states of the static pricing model.

In Table 3, we compare the optimal order sizes under the static and dynamic pricing
models, Qg and Q p respectively, and the improvement in average profit values with
dynamic pricing as opposed to static pricing. We observe that significant improve-
ments can be made via dynamic pricing compared to static pricing but the amount
of improvement depends highly on the system parameters. Dynamic pricing seems
especially beneficial when fixed order cost is high (since orders need to be made less
frequently and more price changes need to be done in a cycle), market size is small
(since a small change in price makes a big effect on revenue percentages), or price
sensitivity of demand is high (since price changes have more significant effects on
demand). In addition, we note that higher quantities are ordered in most of the exam-
ples under dynamic pricing. The reason for this is that by changing the price through
the period, we are able to control the demand better and manage to have higher sales
amount.

8 Conclusion

We model a coordinated inventory control and pricing problem for perishable products
with fixed shelf lifetime by considering a general stochastic demand function that is
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Table 3 Comparison of static and dynamic pricing models

Parameters Order sizes Percentage difference
S K m a Beta ok Op % %100
0 20000 7 60 2 78 80 4.99194
200 20000 7 60 2 78 80 4.58880
400 20000 7 60 2 78 80 4.05538
600 20000 7 60 2 80 81 3.10729
400 8000 7 60 2 63 64 1.55697
400 10000 7 60 2 68 69 1.76978
400 15000 7 60 2 74 75 2.34323
400 30000 7 60 2 84 86 13.36260
400 20000 5 60 2 62 64 9.78698
400 20000 6 60 2 71 72 5.90199
400 20000 8 60 2 86 87 6.11258
400 20000 9 60 2 93 94 8.50546
400 20000 7 50 2 68 69 7.03310
400 20000 7 100 2 119 120 6.47541
400 20000 7 150 2 169 171 11.11966
400 20000 7 200 2 189 191 13.84298
400 20000 7 60 0.5 59 59 0.92186
400 20000 7 60 0.75 63 62 0.97751
400 20000 7 60 1 68 69 1.26341
400 20000 7 60 1.5 75 75 2.03405
400 20000 7 60 2.5 81 83 8.01164

dependent on both price and remaining shelf lifetime of the products. We design
a dynamic programming model for this system that gives us the optimal ordering
decision policy, optimal quantity to order and price that should be charged to the
products. Under the given assumptions, we prove that the optimal ordering decision
scenario has a monotone structure in both static and dynamic pricing models. In the
dynamic pricing model, we observe that the optimal price value decreases as time
passes in a period. However, the optimal price changes in a non-monotonic structure
with respect to inventory size. The proven properties of monotone structure of optimal
ordering decision policy and ordering quantity and also the behavior of the optimal
dynamic price versus inventory size and remaining shelf lifetime facilitate the use of
the model outputs in perishable inventory systems and gives valuable insights to the
managers of these systems. We perform numerical experiments for static and dynamic
pricing cases and analyze the effects of the parameters on the results. We also analyze
two heuristics that give us near optimal solutions with considerably less computational
effort and easier-to-use for the managers. We check their performances for different
sets of parameters to see which one is more reliable and efficient to use in each case,
and compare their results with the optimal solution.
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As possible future studies for this research, we may generalize some of the assump-
tions that we use in our model. Firstly, explicit inventory holding costs and lead times
can be incorporated into the model, which will make the model a little bit more com-
plicated. In addition, we assume that all the older products are salvaged when a new
batch is ordered, however, as an extension, one may assume that the older products
are kept at store and sold at a different price than the fresh products. This new assump-
tion can be applicable for systems in which there is discount for old products as an
attraction for different demand market sections. For this new model, we will also need
to decide for how many periods we should keep old products in the inventory to sell.
We also note that in this study a periodically-reviewed inventory system is analyzed
and in the future we plan to analyze the pricing and replenishment decisions for a
continuously-reviewed inventory system for perishable products.

Acknowledgements This work is supported by Turkish National Scientific Association (TUBITAK)
research projects Grant #111M533.

9 Appendix
9.1 Proof of Proposition 1

In any state (g, t), we should choose an ordering size, Q(q, t), that maximizes —K —
cQ(q,t) +sq + f.(Q(q,t), m) and the maximizer value will be independent of ¢
and ¢. So, we can simply say that the optimal order size is same for all ¢ and ¢ values.

9.2 Proof of Proposition 2

Note that the maximum time before ordering a new batch is m periods since it is the
maximum life of the product. In our model, we may not wait until the end of m periods
and we can make a replenishment before that time. If we neglect the replenishment
opportunities before m periods and assume that we make replenishments in every m
periods, then the problem turns into a newsvendor problem in which the demand is the
total demand of m periods. Hence, it is obvious that the optimal ordering size for our
model is always less than the optimal ordering quantity of this newsvendor problem.
If we assume that we have a standard newsvendor problem where the demand is equal
to the total demand of m periods in our model, we know that the optimal ordering
quantity for the newsvendor problem is equal to

min{ QIF, (@ =z T — |

Thus, the optimal ordering size of the newsvendor problem stated above is an upper-
bound for Q* in our problem.

Similarly, if we assume that we have another newsvendor problem in which the
demand is equal to the demand of the first period in our model (where the remaining
shelf lifetime is equal to m), the optimal ordering size for this newsvendor problem
stated as below, will be a lower bound for Q* in our problem.
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min{QIF (@) = T |

9.3 Proof of Lemma 1

We can write the Bellman’s equation in 3.1 as & = T (h) where T is an appropriate
transformation function for the vector 4. We prove that h(qg + 1,¢) > h(q,t) by
showing that the transformation function used in the DP equation 3.1 preserves the
monotonicity of the function 4 as stated in the equation below.

I +h(g,t) = max{mgx{ - K —cQ—i—sq—}—fc(Q,m)},pED

[min {4, D(p, ;)}] + Ep [h([q ~D(p,n] "1 - 1)]}

< max { mélX{—K —cQ+s(g+ 1+ fc(O,m)},
pED[min lg+1, D(p,t)}]

+ED[h<[q +1-D(p, 0]t - 1)]} =" +hg+1,1)

.1

In the above inequality, it can be easily seen that the second line is greater than the first
line due to the assumption that 2(g + 1, f) > h(q, t). As a result, we can say that the
transformation function 7' given in the DP equation 3.1 preserves the monotonicity
assumptionthath(g+1, t) > h(q, t) and thusitis proved that i (g, t) is non-decreasing
in g for any given ¢.

For the second part of the Lemma, observe that each product at hand will either be
sold at price p > s or salvaged at price s at the end of the period, if not sold until that
time. Thus, the value of having 1 more product on hand now is at least s and at most
p-

s<h(g+1,1)—h(g, 1) =p 9.2)

9.4 Proof of Lemma 2

We need to show that i(g,t + 1) > h(q,t) for any g and ¢. First, note that IT* 4
h(g,t) = max {fc(q, 1), f(,(q)} and f,(q) is independent of ¢. Thus it is enough

just to show that f.(g,t + 1) > f.(q,t). To prove this statement, we use a sample
path argument. Using the sample path argument, we assume that we have two sets of
products:

Set 1: g products in inventory with ¢ 4 1 remaining shelf lifetime
Set 2: g products in inventory with ¢ remaining shelf lifetime
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Now, consider the case when the same customer arrives to these two sets and decides
to buy or not a product. Three cases can happen in this system:

Case I: Customer decides not to buy from both sets
Case II: Customer decides to buy in both sets
Case III: Customer decides to buy from set 1 and not to buy from set 2

Note that, it is not possible for the customer to buy from set 2 but not from set 1
because we assume that the customers always prefer fresher products and set 1 has
fresher products than set 2 and they both have the same price. So, at a certain day after
all customers visit the market, three cases can happen:

Case 1: All products in both sets are sold out (the number of customers that decide to
buy are more than g for both sets)

Case 2: k number of products are sold in both conditions (k < g)

Case 3: k number of products are sold from set 1 and m number of products are sold
fromset2, (m <k <gq)

Now, using induction we will show that in all these three cases h(q, t+1) > h(q, t)
for any ¢ and ¢ values.
First for the boundary condition, for # = 0,

ha. 1) =max { fe(g. D, fol@) | - T
h(g,0) = fo(q) — IT*
So, it is obvious that h(g, 1) > h(q, 0) (in all cases)
For t > 1, using the induction assumption that h(q, t) > h(g,t — 1)
Case 1:

fe(g.t +1) = pg + h(0, t) where h(0,t) = f,(0) — IT*
felg,t) = pg +h(0,t — 1) where h(0,t — 1) = £,(0) — IT*
So, h(g,t+1) > h(g, 1)

Case 2:
fe(q.t +1) = pk+h(g —k,1)
fe(g, 1) = pk+h(g —k,t =1)
Due to the induction assumption that (g — k, t) > h(q — k,t — 1), we can state that
fe(g, t +1) > fo(g,t) for any ¢ and .
Case 3:
fe(q.t +1) = pk+h(g —k,1)
fe(q.t) = pm+h(g —m,t —1)
felg, t+1) = fe(q,t) = plk—m)+h(qg—k, 1) —h(g—m,t—1) = p(k—m)+h(g—
k,t)—h(g —m, t) due to the induction assumption that (g —m, t) > h(g —m, t —1).
Now, we note the following inequality, since each product at hand will be sold or

salvaged until the end of the period and thus the value of having & more products on
hand now is at least sk and at most pk.

sk < h(g +k.1) —h(g, 1) < pk 9.3)
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Then, due to the above inequality, we have s(k —m) < h(q —m,t) —h(g — k,t) <
p(k —m). Thus, p(k —m) + h(qg — k,t) — h(qg —m,t) > 0 and we have f.(q,t +
1) = fe(q, 1) = 0.

As a result, we can say that in all three cases h(q, t + 1) > h(q, t) for any g and ¢
and we can conclude that (g, t) is non-decreasing in ¢ for any ¢ value.

9.5 Proof of Proposition 3

If we decide to order, the profit will be f,(g) that is an increasing function of ¢ with
the slope of s. On the other hand, if we decide to continue, the profit will be f.(q, t)
that is again an increasing function of ¢. Since, a product in inventory will be sold or
salvaged at the end, each product will have either a value of p or s for the system.
So, it means that s < f.(q + 1,¢) — fc(q,t) < p. Hence, f.(q,t) is increasing with
respect to g with a slope higher than s for all g and ¢. Since, f.(0,¢) < f,(0) and
fe(q, t) is increasing with a faster rate than f,(g) for all ¢ and ¢, f.(g, t) and f,(q)
will intersect at a single point g for any ¢ and we label it as ¢ (7).

fo(q) function is independent of 7 and f..(q, t) is non-decreasing in remaining shelf
lifetime value, t. So, by increasing ¢, the intersection point will happen at a lower ¢
value meaning that ¢ (¢) is non-increasing in 7.

9.6 Proof of Proposition 4

We know that f,(¢q) is independent of ¢ and f.(q, t) is non-decreasing in ¢ due to
Lemma 2. So for a given g value, f, and f.(¢) will have exactly one intersection
point, denoted as t(q). Hence, #(q) is the critical value for any g such that we should
give an order if r < #(g) and do not order if t > #(g).

It is obvious that g(¢) and 7(q) show the same curve for ordering states. In other
words 7 (g (t)) =t.

We proved in Proposition 3 that ¢(¢) is non-increasing in ¢. So, for any #; > 17,
q(t1) < q(tr). Let g1 = q(t1) and g2 = q(2). Then, since t; = t(q(t1)) and 1, =
t(q(t2)), we can equivalently write that #{ = #(gq1) and ©» = t(g2). Since t; > f2,
t(q1) > t(q2) for g1 < g2, which means that 7 (g) is non-increasing in q.

9.7 Proof of Lemma 3

Let’s assume that a given price p is applied at state (g, t) and define f.(q,t, p) =
pE[min {q. D(p, t)}] + E[h([q —D(p, t)]Jr, r— 1)} Also, let T*+h(q, 1, p) =

max {fc(q, t, p), fo(q)}. Then, observe that f.(g,t) = max,{f.(q,t, p)} and

h(qa 1) = maxp{h(qv , P)}

Let p; denote the optimal price at state (¢, ¢) and p, denote the optimal price at
state (g +1, 1), suchthat (g, t) = h(q, t, py) and h(g+1,t) = h(g+1,t, p2). Now,
assume that, the same price p; is applied at both states (g, 7) and (g +1, t), even though
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it is not the optimal price for state (q+1,t). Note that (g + 1, ¢, p2) > h(qg + 1, ¢, p1)
since py is the optimal price at state (¢ + 1, #). Observe that, under the same price pq,
dueto Lemma 1, h(qg + 1,¢, p1) > h(q,t, p1). Thenh(qg+ 1,t) = h(g+ 1,¢, p2) >
h(g+1,t, p1) > h(g,t, pl) = h(q,t). Asaresult, h(q, t) is non-decreasing in g for
any given ¢, even though the prices are different at different states.

9.8 Proof of Lemma 4

Similar to the previous case, let p denote the optimal price at state (g, ) and p, denote
the optimal price at state (¢, ¢ + 1), such that (g, t) = h(q, t, p1) and h(g,t + 1) =
h(g,t + 1, p2). Now, assume that, the same price p; is applied at both states (g, t)
and (g, t + 1), even though it is not the optimal price for state (q,t+1). Note that
h(g,t + 1, p2) > h(g,t + 1, p1) since p; is the optimal price at state (g, ¢ + 1).
Observe that, under the same price pi, due to Lemma 2, h(q, t + 1, p1) > h(q, t, p1).
Then h(g,t + 1) = h(g,t + 1, p2) > h(q,t + 1, p1) > h(q,t, pl) = h(g,t). As
a result, h(q, t) is non-decreasing in ¢ for any given ¢, even though the prices are
different at different states.

9.9 Proof of Proposition 7

If we decide to order, the profit will be f,(g) that is an increasing function of ¢
with the slope of s. On the other hand, if we decide to continue, even though the
prices at different states are different, the minimum price still needs to be more than
the salvage value s. Since Lemma 1 also applies under dynamic pricing, the profit
fe(g, t) is again an increasing function of ¢ with a slope that is at least equal to s,
ie.s < fo(g+1,t) — fo(q,t). Hence, f.(q,t) is increasing with respect to ¢ with a
slope higher than s for all ¢ and ¢. Since, f.(0,¢) < f,(0) and f.(q, t) is increasing
with a faster rate than f,(q) for all ¢ and ¢, f.(q,t) and f,(g) will again intersect at
a single point ¢ for any ¢ and we label it as g ().

Again, observe that the function f,(g) is independent of ¢ and f.(g, t) is non-
decreasing in remaining shelf lifetime value, ¢ due to Lemma 2. So, by increasing ¢,
the intersection point will happen at alower g value meaning that g (¢) is non-increasing
int.

9.10 Proof of Proposition 8

We know that f,,(¢q) is independent of ¢t and f.(q, t) is non-decreasing in ¢ due to
Lemma 2, even though different prices are applied at different states. So for a given ¢
value, f, and f.(¢) will have exactly one intersection point, denoted as 7(g). Hence,
t(q) is the critical value for any g such that we should give an order if ¢ < #(g) and
do not order if t > #(q).

It is obvious that ¢(¢) and #(g) show the same curve for ordering states. In other
words: t(q(t)) =t.
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We proved in Proposition 7 that ¢(¢) is non-increasing in ¢. So, for any #; > 17,
q(t1) < q(tr). Let g1 = q(t1) and g2 = q(t2). Then, since t; = t(q(t1)) and 1, =
t(q(n)), we can equivalently write that #{ = #(q;) and t, = t(g2). Since t| > 1o,
t(q1) > t(q2) for g1 < g2, which means that 7 (g) is non-increasing in q.
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