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Abstract In this paper, we investigate a variant of the reverse obnoxious center loca-
tion problem on a tree graph T = (V, E) in which a selective subset of the vertex set V
is considered as locations of the existing customers. The aim is to augment or reduce
the edge lengths within a given budget with respect to modification bounds until a
predetermined undesirable facility location becomes as far as possible from the cus-
tomer points under the new edge lengths. An O(|E |2) time combinatorial algorithm
is developed for the problem with arbitrary modification costs. For the uniform-cost
case, one obtains the improved O(|E |) time complexity. Moreover, optimal solution
algorithms with O(|E |2) and O(|E |) time complexities are proposed for the integer
version of the problem with arbitrary and uniform cost coefficients, respectively.

Keywords Obnoxious center location · Combinatorial optimization · Reverse
optimization · Time complexity

Mathematics Subject Classification 90B80 · 90B85 · 90C27 · 90C35

1 Introduction

Location problems have always attracted considerable attention in operations research
due to their wide range of applications in the real world. In a location problem, one
is interested in locating one or more facilities on a system (graph or d-dimensional
real space) in order to serve a given set of customers in an optimal way. For a detailed
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survey on classical location problems, the interested reader is referred to Mirchandani
and Francis (1990), Zanjirani and Hekmatfar (2009), Cappanera et al. (2003), and
Eiselt (2011). Two well-known models in location theory are the center problem and
the obnoxious center problem. Whereas the goal of the center problem is to determine
the best locations for facilities to minimize the maximum distance from the customers
to the nearest facility, the obnoxious center problem asks to obtain the best locations
of some (undesirable) facilities such that the minimum distance between customers
and the closest facility is maximized. Center location problems arise in locating the
desirable facilities such as fire stations, hospitals, police offices and etc. However,
examples of obnoxious center problems include locatingmilitary installations, garbage
dump sites, mega-airports, oil plants and chemical plants.

In contrast to the classical location problems, there may exist some situations in
practice such that the facilities have already been established and cannot serve the
existing customers in the best way at the present. Furthermore, the replacement of
them is not possible for the sake of some limitations. In this case, the decision maker
may wish to formulate and to solve one of the following improvement problems:

(a) Inverse location problem Modify some certain input parameters of the underly-
ing system in the cheapest possible way until the prespecified facility locations
become optimal.

(b) Reverse location problemModify some specific input parameters of the underly-
ing system within a given modification budget so that the predetermined facility
locations are improved as much as possible.

In the literature, several published papers on the issue of the reverse center location
models can be found. In Berman et al. (1994) presented a NP-hardness proof for
the reverse 1-center location problem on unweighted graphs. Hence, polynomial time
exact approaches have been developed only for solvable special cases, e.g. Zhang
et al. (2000) considered the reverse 1-center problem with edge length reductions on
an unweighted tree network and proposed a combinatorial algorithm with running
timeO(|V |2 log |V |). In Nguyen (2015) considered the uniform-cost reverse 1-center
problemwith edge length variations on weighted trees and developed anO(|V |2) time
method. In the context of the inverse center location problems, we refer the interested
reader to the papers (Alizadeh and Burkard 2011a, b; Alizadeh et al. 2009; Cai et al.
1999; Nguyen and Sepasian 2016; Yang and Zhang 2008).

To the best of our knowledge, there have been appeared only two papers on the
subject of inverse/reverse ‘obnoxious’ center problems up to now. In 2012, the inverse
obnoxious center location problem with edge length modifications on general graphs
was treated by Alizadeh and Burkard (2012) and a linear time combinatorial algorithm
was developed for it. Recently, Alizadeh and Etemad (2016) investigated the reverse
obnoxious center problem on general networks under different norms in which all of
the vertices on the underlying network are considered as existing customer points.
They proposed a linear time approach for determining an optimal solution of the
problem.

While all the previous works in the context of inverse and reverse location problems
consider the vertex set of the underlying graph as locations of the existing customers,
this paper is concerned with a general variant of the reverse obnoxious center location
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model in which a “selective” subset of the vertex set of a given graph is considered as
existing customer points.We develop novel combinatorial algorithmswith polynomial
running times for solving the problem on trees with continuous and integer decision
variables.

The paper is organized as follows: In the next section, we formally state the reverse
selective obnoxious center location problem on trees and give some basic properties.
Exact combinatorial algorithms are proposed for the problem with continuous vari-
ables in Sect. 3. Section 4 is dedicated to combinatorial solutionmethods for the integer
version of the problem. Finally, some concluding remarks are presented in Sect. 5.

2 Problem statement and preliminaries

Let an undirected tree graph (tree network) T = (V, E) with vertex set V and edge
set E be given so that |V | = |E | + 1. Every edge e ∈ E has a positive length �e.
Let Sc ⊆ V be the set of existing customer points and S f ⊆ T stand for the set
of candidate facility locations. The task of the classical selective obnoxious center
location problem on T is to find a point x ∈ S f which maximizes

min
v∈Sc

d�(x, v),

where d�(x, v) denotes the length of the unique path between x and v on the tree T
with respect to the edge lengths � = (�e)e∈E .

Now, let us state the reverse selective obnoxious center location problem (RSOCP
for short) as follows: Let the underlying tree T with associated edge lengths � and
customer sites Sc ⊆ V be given. Furthermore, let s ∈ S f be a predetermined vertex
of T which denotes the location of an established facility. We assume without loss
of generality that s does not coincide with any customer point because otherwise, the
problem is trivial. We want to modify the edge lengths of T within a given budget B
such that the minimum of the distances between s and the customer locations v ∈ Sc
becomes maximum under the new edge lengths. According to the specific structure
of the RSOCP model, we can immediately observe that any reduction of the edge
lengths imposes us an additional cost. Therefore, in order to solve the RSOCP model
on the given tree T , it suffices to augment the edge lengths � in the cheapest possible
way. The edge lengths �e, e ∈ E , are not allowed to be modified arbitrarily. Then, let
pe denote the bound for augmenting �e. Moreover, let ce be the corresponding cost
for augmenting each length �e by one unit. Using the notations introduced above, the
RSOCP model on the underlying tree T can formally be stated as follows:

Augment the original edge lengths �e, e ∈ E , by the continous (or integer) amounts
pe ∈ R (or pe ∈ Z) to the new lengths �̃e = �e + pe such that the following three
statements hold:

(i) The objective value

min
{
d
�̃
(s, v) : v ∈ Sc

}

becomes maximum.
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(ii) The budget constraint ∑

e∈E
ce pe � B (1)

is satisfied.
(iii) The modifications pe fulfill the bound

0 � pe � pe, ∀e ∈ E .

A special case of the RSOCP model is the case in which all vertices of the network
are considered as existing customer locations, namely Sc = V . This special problem
has already been studied in Alizadeh and Etemad (2016).

Assume that L(T ) = {z1, . . . , zn} indicates the set of leaves of the tree T rooted
at s. The unique path between s and any leaf zi , i = 1, . . . , n, is denoted by P(s, zi ).
Suppose that vci is the closest customer to s on the path P(s, zi ). If there does not exist
any customer on P(s, zi ), then set vci = s. Now, let us define the “critical subtree”
Tcri ⊆ T by

Tcri =
n⋃

i=1

P(s, vci ).

We need the following standard terminology:

Definition 1 Let T be a tree with associated edge lengths �which is rooted at a vertex
s. The critical distance of T is defined as

ρ(T, �) = min {d�(s, z) : z ∈ L(T )} . (2)

We can obviously conclude the following essential lemma.

Lemma 1 In order to solve the RSOCP model on a tree T , it is sufficient to augment
the lengths � of the subtree Tcri into �̃ subject to the budget and bound constraints until
ρ(Tcri, �̃) becomes maximum.

The specific structure of the continuous (and integer) RSOCP models on the given
tree T supports us to derive purely combinatorial solution algorithms with polynomial
running times in the following.

3 Optimal algorithms for the continuous RSOCP models

In this section, we first develop a combinatorial solution algorithm for the continuous
RSOCP model with arbitrary cost coefficients on the given tree T . Then, we show
that the problem can be solved in linear time by applying a novel different solution
approach, if the cost coefficients are assumed to be uniform.
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3.1 The arbitrary cost model

Our proposed solution method for the continuous RSOCP model with arbitrary cost
coefficients relies on a finite sequence of min-cuts in an auxiliary network N (Tcri) =
(V̂ , Ê) corresponding to the critical subtree Tcri. A survey on the Zhang’s approach
(Zhang et al. 2000), supported us to derive this key idea. The network N (Tcri) is
constructed in the following way. Given the tree T rooted at the predetermined facility
location s, we add an additional vertex t to the corresponding critical subtree Tcri and
set

V̂ = Vcri ∪ {t} and Ê = Ecri ∪ {(z, t) : z ∈ L(Tcri)} .

Let hgt denote the height of the tree Tcri which is defined by

hgt = max
{
d�(s, z) : z ∈ L(Tcri)

}
. (3)

We define the edge length vector �̂ = (�̂e)e∈Ê , upper bound vector p̂ = ( p̂e)e∈Ê and
cost vector ĉ = (̂ce)e∈Ê for the network N (Tcri) by

�̂e =
{

�e if e ∈ Ecri,

hgt − d�(s, z) if e = (z, t), z ∈ L(Tcri),
(4)

p̂e =
{
pe if e ∈ Ecri,

d�(s, z) − ρ(Tcri, �) if e = (z, t), z ∈ L(Tcri),
(5)

ĉe =

⎧
⎪⎨

⎪⎩

ce if e ∈ Ecri, p̂e > 0,

0 if e = (z, t), z ∈ L(Tcri), p̂e > 0,

M else,

(6)

where M is a very big value. We assume that all edges of the network N (Tcri) are
directed from s to t . Observe that for any leaf z ∈ L(Tcri), there exists a path Pz =
P(s, z)∪ {(z, t)} from s to t on the auxiliary network N (Tcri). Moreover, all the paths
Pz , z ∈ L(Tcri), have equal lengths hgt. From the specific structure of the auxiliary
network N (Tcri),we conclude that there exists a one to one correspondence between the
problem of augmenting the critical distance ρ(Tcri, �) and the problem of augmenting
the lengths of all paths Pz , z ∈ L(Tcri).

On the other hand, note that we have to satisfy the budget constraint. Hence, the
critical distance ρ(Tcri, �) can be augmented as much as possible, if we take the edges
with smallest corresponding cost coefficients on each path Pz , z ∈ L(Tcri), for our
modifications. Observe that by augmenting the lengths of the edges contained in a
minimum s − t cut in the network N (Tcri) with capacities ĉ, one can augment the
lengths of all paths Pz , z ∈ L(Tcri), at the minimum total cost. Let K be a minimum
s − t cut in N (Tcri) and E (K) be the set of the edges contained in the cut K. The
capacity of K is given by
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C(K) =
∑

e∈E(K)

ĉe. (7)

It is easy to see that if C(K) � M , then there exists at least one path Pz , z ∈ L(Tcri),
with d�(s, z) = ρ(Tcri, �) that cannot be augmented anymore. Consequently, the crit-
ical distance ρ(Tcri, �) cannot be augmented anymore and its current value is optimal
in this case. For the case C(K) < M , one can simultaneously augment the lengths of
all s − t paths on N (Tcri) at the minimum total cost by augmenting the lengths of all
edges in E(K). Observe that

γ (K) = min
{
min { p̂e : e ∈ E (K)} , ξ(K)

}
(8)

where

ξ(K) = B
C(K)

is the maximum amount by which the lengths of all edges in E(K) can be augmented
with respect to the budget and bound constraints. Then, in order to solve the problem
under investigation, we first determine a minimum s− t cutK in N (Tcri) and augment
the edge lengths of K by γ (K), namely we set

�̂e =
{

�̂e + γ (K) if e ∈ E (K) ,

�̂e else.
(9)

This implies that the critical distance of Tcri is augmented by γ (K) incurring the cost
C(K)γ (K). If the budget and bound constraints permit further improvement, we repeat
the above procedure on the network N (Tcri) with the updated costs ĉ and bounds p̂ as

ĉe =
{
M if e ∈ E (K) , p̂e = γ (K),

ĉe else,
(10)

p̂e =
{
p̂e − γ (K) if e ∈ E (K) ,

p̂e else
(11)

under the remaining budget

B := B − C(K)γ (K). (12)

When this process is iterated, it leads to a finite sequence of minimum s − t cuts Ki ,
i = 1, . . . , q, that augment successively the critical distance of Tcri by the amounts
γ (Ki ), i = 1, . . . , q, respectively. Finally, the optimal objective value

ρ(Tcri, �
∗) = ρ(Tcri, �) +

q∑

i=1

γ (K)

is given, where �∗ denotes the optimal edge length vector. Algorithm 1 states the
preceding considerations in more details.
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Algorithm 1 (solves the continuous RSOCP model on a tree T )

Step 1 Specify the critical subtree Tcri.
Step 2 Construct the auxiliary network N (Tcri) = (V̂ , Ê) of Tcri.
Step 3 Find a minimum s − t cut K in N (Tcri) and compute its capacity C(K)

according to (7).
Step 4 If C(K) � M , then stop; otherwise, obtain γ (K) by (8).
Step 5 Update the lengths �̂, the costs ĉ and the bounds p̂ according to (9), (10) and

(11), respectively.
Step 6 If γ (K) = ξ(K), then stop; otherwise, update the budget B by (12) and go to

Step 3.

According to the above discussions, we can conclude that Algorithm 1 works cor-
rectly. We are now going to determine the time complexity of Algorithm 1. Step 1 and
Step 2 are performed in linear time. In each iteration of the algorithm, the cost of at
least one edge e of the minimum s− t cutK in N (Tcri) is updated to ĉe = M . Since an
edge e with ĉe = M is not contained anymore in any minimum s − t cut except in the
last iteration, the total number of iterations of the algorithm is bounded byO(|E |). The
task of finding a minimum s − t cut in N (Tcri) in each iteration can be done inO(|E |)
time, since N (Tcri) − {t} is an arborescence [see e.g., Vygen (2002)]. Moreover, the
time required for updating the data of the network N (Tcri) in each iteration is bounded
by O(|E |). Hence, the overall running time of Algorithm 1 is O(|E |2). Altogether,
we get

Theorem 1 The continuous reverse selective obnoxious center location problem with
arbitrary modification costs can be solved in O(|E |2) time on a tree T .

To illustrate Algorithm 1, let us consider an example.

Example Consider the tree T given in Fig. 1 with the prespecified facility location s
and the associated edge lengths �e, augmentation bounds pe and cost coefficients ce.
Assume that the set of existing customer points is Sc = {v3, v5, v6, v12, v13, v15}
and the total budget given for modifying the edge lengths is B = 7.8. We aim
to obtain an optimal solution of the continuous RSOCP model on T by apply-
ing Algorithm 1. First, the critical subtree Tcri is constructed by deleting the edges
(v3, v4), (v4, v5), (v6, v7), (v6, v8) and (v12, v13) on T .

The computational results of the execution of Algorithm 1 on the subtree Tcri are
summarized in Table 1.We observe that the optimal critical distance of Tcri is obtained
as ρ(Tcri, �∗) = 9.82. Hence, an optimal solution of the problem contains

p∗
(s,v1) = 2, p∗

(v1,v2)
= 1, p∗

(v2,v3)
= 0.62, p∗

(v9,v10)
= 0.32,

while the other decision variables are chosen to be 0.

3.2 The uniform cost model

This subsection is concerned with developing a novel linear time solution algorithm
for the continuous RSOCP model on the underlying tree network T with associated
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(4,3.5,5) 

Fig. 1 Illustration of the tree T with the corresponding input data

Table 1 The results obtained by applying Algorithm 1 on the tree T of Fig. 1

Iter. i E (K) C(K) γ (K) ρ(Tcri, �̃) B

0 – – – 6.2 7.8

1 {(v1, v2), (v12, t), (v15, t)} 1 1 7.2 6.8

2 {(s, v1), (v12, t), (v15, t)} 2 2 9.2 2.8

3 {(v2, v3), (v6, t), (v12, t), (v15, t)} 4 0.3 9.5 1.6

3 {(v2, v3), (v6, t), (v9, v10)} 5 0.32 9.82 0

cost coefficients C . We can assume that C = 1. Since otherwise, we can immediately
replace the budget constraint by

∑
e∈Ecri

pe � B/C, where Ecri is the edge set of the
critical subtree Tcri.

Observe that the critical distance ρ(Tcri, �) cannot exceed the bound

ρmax = min
z∈L(Tcri)

⎧
⎨

⎩
d�(s, z) +

∑

e∈E(P(s,z))

pe

⎫
⎬

⎭
(13)

after anymodification with respect to the given bounds pe, e ∈ Ecri. Hence, the critical
distance ρ(Tcri, �) can be augmented by at most

δmax = ρmax − ρ(Tcri, �)

subject to the modification bounds pe, e ∈ Ecri. In the following, we first try to derive
a procedure for augmenting ρ(Tcri, �) by any amount 0 < δ � δmax at the minimum
total cost

∑
e∈Ecri

pe with respect to the given modification bounds pe, e ∈ Ecri. This
procedurewill be applied as a subroutine in our solution algorithm,where it determines
an optimal solution for the problem after the optimal objective modification δ∗ is
computed.

Let all edges on the critical subtree Tcri be directed from the root s to the leaves. For
any edge e = (u, v) ∈ Ecri, let Tcri(e) denote the unique subtree of Tcri starting with
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the edge e which is rooted at u. First, we compute the critical distance ρ(Tcri(e), �) for
every edge e ∈ Ecri. Next, we scan the edges of the subtree Tcri in a depth-first-search
way starting with the edges e = (s, v) ∈ Ecri. Every edge e = (u, v) gets two label
δe and λu during the execution of the algorithm. The label δe denotes the amount by
which the critical distance of Tcri(e) has to be augmented in order that ρ(Tcri, �) is
augmented by δ. Moreover, the label λu is the length of the unique path from s to the
vertex u with respect to the edge lengths obtained from augmenting ρ(Tcri, �) by δ.

We are now ready to outline our novel approach for augmenting ρ(Tcri, �) by any
feasible amount δ as Procedure ACD.

Procedure ACD (augments ρ(Tcri, �) by the amount δ)

1. Direct all edges of Tcri from the root s to the leaves L(Tcri).
2. Compute the critical distance ρ(Tcri(e), �), for all edges e ∈ Ecri.
3. Set λs = 0.
4. For every edge e = (s, v) ∈ Ecri, call Subprocedure P(e).

Subprocedure P(e)] /* assume e = (u, v) */

1. Calculate δe = (
ρ(Tcri, �) + δ

) − (
λu + ρ (Tcri(e), �)

)
.

2. If δe � 0, then stop; otherwise, set

�̃e = �e + min
{
δe, pe

}
, λv = λu + �̃e.

3. If δe � pe, then stop; otherwise, for every edge e′ = (v,w) ∈ Ecri, call Subpro-
cedure P(e′).
Now, we analyze the time complexity of the procedure. Beginning from the leaves

to the root, the values ρ(Tcri(e), �) for all e ∈ Ecri can be computed in O(|E |) time.
The algorithm calls Subprocedure P(e) for at most |E | times and each P(e) takes a
constant time. Altogether, we get

Theorem 2 Procedure ACD augments the critical distance ρ(Tcri, �) by an amount
δ at the minimum total cost on a tree T in linear time.

For solving the continuous RSOCP model with uniform cost coefficients on the
tree T , we need the cost for augmenting the critical distance ρ(Tcri, �) by any feasible
amount δ. This cost is given by the “critical-distance cost function” f (δ). Observe
that the cost function f (δ) is a piecewise linear function which can be presented by
the start point δ0 = 0, the endpoint δk = δmax and k − 1 break points δi , where the
slopes of f (δ) vary. The slopes mi , i = 1, . . . , k, of the function f (δ) on any interval
[δi−1, δi ] are given as

m1 = α, mi = mi−1 + 1, i = 2, . . . , k,

where α equals the number of the vertex disjoint paths form s to the leaves of the
critical subtree Tcri having the length ρ(Tcri, �). It is clear that

0 = δ0 � δ1 � δ2 � · · · � δk = δmax
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and then according to the above statements, the critical-distance cost function f (δ) is
given by

f (δ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

αδ if 0 � δ � δ1,

(α + 1)δ − δ1 if δ1 � δ � δ2,
...

(α + k − 1)δ − ∑k−1
i=1 δi if δk−1 � δ � δk

(14)

which is piecewise linear and increasing on the interval [0, δmax]. In the following, we
present a procedure for determining the break points of f (δ):

Procedure BPCF (determines the break points of f (δ))

(i) Let pe be the amount by which the length of any edge e ∈ Ecri is augmented,
when we modify the critical distance ρ(Tcri, �) to ρ(Tcri, �)+ δmax by Procedure
ACD.

(ii) Construct an auxiliary tree T a with the same vertices and edges as the subtree
Tcri, where the edge lengths are given by �ae = pe for all e ∈ E(T a). Scan
the auxiliary tree T a in a breadth-first approach starting from the leaves to the
root s and associate with every edge e = (u, v) ∈ E(T a) two labels (hgte, ωe).
The label hgte stands for the height of the subtree T a(e) beginning with edge
e = (u, v) and the label ωe is a leaf of T a(e) which is the farthest vertex from u.

(iii) Using the labels (hgte, ωe) of the edges incident with the root vertex, find a
longest path on T a. Remove all edges of this longest path on T a to get a forest
of directed subtrees of T a with root set R.

(iv) For every edge e = (u, v)with u ∈ R, a new subtree T a(e) is derived.We number
these edges by e1, . . . , eθ and get the corresponding subtrees T a(e1), . . . , T a(eθ ).
For any i = 1, . . . , θ , a new break point δ = δmax − hgtei is computed.

(v) For any i = 1, . . . , θ , perform the steps (iii) and (iv) on the subtree T a(ei )
provided that T a(ei ) is not a single vertex. The above process is iterated until all
subtrees become single vertices.

Considering the steps of Procedure BPCF, we can get

Lemma 2 The break points of the critical-distance cost function f (δ) can be com-
puted in linear time by Procedure BPCF.

Proof Every leaf z ∈ L(Tcri) contributes the term

ζ(z) = max {ρ(Tcri, �) + δmax − d�(s, z), 0}

to f (δmax). Let T a(e) be a subtree identified in Step (iv) such that z ∈ L(T a(e)). The
amount ζ(z)−hgte is the augmentation value related to the intersection of P(s, z) and
the longest path of T a. In the augmenting process, when the critical distance ρ(Tcri, �)
reaches to the value

ρ(Tcri, �) + δmax − hgte

an edge of T a(e) is added to the set of augmenting edges. As a result, the slope of the
cost function is augmented by one unit. Then, δ = δmax−hgte is a break point of f (δ).
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The time complexity follows from the fact that the computation of all labels
(hgte, ωe) takes linear time. Furthermore, the decomposition of T a into subtrees and
hence the determination of the values δi are done in linear time. �	

In order to find an optimal solution for the uniform-cost continuous RSOCP model
on the underlying tree T , we have to find an interval [δi , δi+1], 0 � i � k − 1, which
contains the optimal objective modification δ∗, where f (δ∗) = B. A straightforward
approach for finding such an interval is to construct the function f (δ) directly and then
find an interval [ f (δi ), f (δi+1)] that contains B. To this end, we should first sort the
obtained break points δi in an increasing order. In this case, an optimal solution can
be found in O(|E | log |E |) time. But, we attempt to develop a linear time algorithm
for which the construction of the function f (δ) is not required and we only have to
determine the break points δi of f (δ) by Procedure BPCF.

Let S denote the set of all break points δi , i = 1, . . . , k, and ∼ be any of the
relations <,=,>,�,�. For any arbitrary amount μ with 0 < μ � δmax, we use the
notation Sμ∼ = {

δ ∈ S : δ ∼ μ
}
. Obviously, we have

f (μ) = (α + |Sμ
<|)μ −

∑

δ∈Sμ
<

δ.

In our solution approach, we first find the medianμ of the set S and compute f (μ).
If B < f (μ), then it means that δ∗ < μ. In this case, we delete all break points
δ ∈ Sμ

� from S. In an analogous way, if B > f (μ), then all break points δ ∈ Sμ

�
will be deleted. We again find the median of the new set S and continue this process
until S = ∅. Our new solution method for the uniform-cost model is summarized in
Algorithm 2.

Algorithm 2 (solves the uniform-cost continuous RSOCP model on a tree)

Step 1 Construct the critical subtree Tcri.
Step 2 Set a = 0, b = 0 and find the setS of the break points by applying Procedure

BPCF.
Step 3 If S �= ∅, then find the median μ of the set S; otherwise, go to Step 8.
Step 4 Compute

f (μ) = (α + |Sμ
<| + a)μ −

∑

δ∈Sμ
<

δ − b.

Step 5 If B > f (μ), then update a, b as

a = a + |Sμ

�|, b = b +
∑

δ∈Sμ
�

δ,

set S = Sμ
> and go to Step 3.

Step 6 If B < f (μ), then set S = Sμ
< and go to Step 3.

Step 7 If f (μ) = B, then let δ∗ = μ and stop.
Step 8 Set Δ = (B + b)/(α + a).
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Step 9 If Δ � δmax, then set δ∗ = Δ; otherwise, set δ∗ = δmax.
Step 10 Apply Procedure ACD to augment ρ(Tcri, �) by δ∗ and derive an optimal

solution.

Recall that the critical subtree Tcri is constructed in O(|E |) time. Let T (k) denote
the worst-case running time for k elements. The median of a set of k elements can be
determined in O(k) time [see e.g., Cormen et al. (2001)]. Moreover, in each iteration

of the algorithm, we drop O
(⌈ |S|

2

⌉)
elements of the current set S at Step 5 or

Step 6. Therefore, Step 3 up to Step 7 of the algorithm require the total running time

T (k) = T

(⌈
k

2

⌉)
+ O(k) which implies T (k) = O(k). Since we have k � |E |

and also the execution of Procedure ACD in Step 10 takes O(|E |) time, we finally
conclude.

Theorem 3 The continuous reverse selective obnoxious center location problem with
uniform modification costs is solvable in O(|E |) time on a given tree.

Example (Cont’d). Consider the tree T of Fig. 1 with uniform cost coefficient ce = 1
for all e ∈ E . By applying Procedure BPCF, the set of break points is found as
S = {3.3, 4.2, 5.2}. The computational results of the execution of Algorithm 2 are
given in Table 2. Then, an optimal modification value δ∗ = 5.1 and consequently the
optimal objective value ρ(Tcri, �∗) = 11.3 is derived. Moreover, an optimal solution
of the problem consists of

p∗
(s,v1) = 2, p∗

(v1,v2)
= 1, p∗

(v2,v3)
= 2.1, p∗

(v2,v6)
= 0.9,

p∗
(s,v9) = 1, p∗

(v9,v10)
= 0.8,

while all other decision variables are chosen to be 0.

4 Optimal algorithms for the integer RSOCP models

Asmentioned in Sect. 2, the integer RSOCPmodel on a tree T can be formulated as an
integer linear programming problem. The specific structure of our problem allows the
design of exact solution algorithms with polynomial running times. In the following,
we will always deal with the integer part of the augmentation bounds pe, e ∈ E , and
then we set pe = ⌊

pe
⌋
, without loss of generality, where .� stands for the floor

function.

Table 2 The results obtained by
applying Algorithm 2 to the
uniform-cost instance

Iter. i a b S μ f (μ)

1 0 0 {3.3, 4.2, 5.2} 4.2 5.1

2 2 7.5 {5.2} 5.2 8.1

3 2 7.5 ∅ – –
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4.1 The arbitrary cost model

Since the modification amounts of the edge lengths are provided to be integers, the
fractional part of any distance d�(s, z), z ∈ L(Tcri), remains unchanged in any feasible
augmentation of edge lengths. Then, in order to solve the integer RSOCP model with
arbitrary cost coefficients on T , we first define the auxiliary distances

da�(s, z) = d�(s, z)� ∀ z ∈ L(Tcri),

which by putting them in (2) and (3), we get the auxiliary critical distance ρa(Tcri, �)
and the auxiliary height hgta, respectively. Next, we construct a network N (Tcri) with
same vertices V̂ and edges Ê as the network of Sect. 3.1. We define the edge lengths
�̂, the upper bounds p̂ and the cost coefficients ĉ of the network N (Tcri) by (4), (5) and
(6), respectively, with respect to the values da� , ρ

a(Tcri, �), hgta. In order to determine
the integer part of the optimal critical distance ρ(Tcri, �∗), we are required to apply
Algorithm 1 with the parameter

ξ(K) =
⌊ B
C(K)

⌋

to the network N (Tcri) introduced above which yields the temporary length �te and
bound pte = pe − (�te − �e) for any edge e ∈ Ê . Note that the parameter γ (K) is an
integer value for every minimum cut K generated in each iteration of Algorithm 1.
Hence, we have �te − �e ∈ Z for all e ∈ Ê . Define

A = {
z ∈ L(Tcri) : d�t(s, z)� = ⌊

ρ(Tcri, �
t)
⌋ }

. (15)

The following lemma describes the connection between the optimal objective value
ρ(Tcri, �∗) and the temporary edge lengths �t.

Lemma 3 There exists a z∗ ∈ A, the so-called critical leaf z∗, such that ρ(Tcri, �∗) =
d�t(s, z

∗) and

d�∗(s, z) =
{
d�t(s, z) + 1 if z ∈ A, d�t(s, z) < d�t(s, z

∗),
d�t(s, z) else

(16)

for any leaf z ∈ L(Tcri), where �∗ is the optimal modified edge length.

Proof Suppose that ρ(Tcri, �∗) �= d�t(s, z), for all z ∈ A. Therefore, we get d�t(s, z) <

ρ(Tcri, �∗), for every z ∈ A. Based on the definition of ρ(Tcri, �∗), we can state
d�t(s, z) < d�∗(s, z), for all z ∈ A. Thismeans that the budget andbound constraints let
all distances d�t(s, z), z ∈ A, be augmented at least by one unit. Recall that the lengths

�t are obtained after the execution ofAlgorithm1with newparameter ξ(K) =
⌊

B
C(K)

⌋
.

This algorithm terminates if the upper bounds do not let further improvement or
γ (K) = ξ(K). The equality γ (K) = ξ(K) means that there is not enough budget to

123



444 R. Etemad, B. Alizadeh

augment all distances d�t(s, z), z ∈ A by one unit. This is a contradiction. Considering
the above arguments, we can immediately conclude the correctness of (16). �	

Lemma 3 implies that the integer part of the optimal critical distance ρ(Tcri, �∗) is
equal to

⌊
ρ(Tcri, �t)

⌋
. For obtaining the exact value ofρ(Tcri, �∗), we need to determine

the critical leaf z∗ ∈ A. To this end, we first sort all the values

d�t(s, z) ∈ [
ρ(Tcri, �

t), ρmax
]
,

z ∈ A, in a strictly decreasing order

d�t(s, z1) > d�t(s, z2) > · · · > d�t(s, zr ) = ρ(Tcri, �
t), (17)

where r � |A|. In the next step, we start with z1 and try to determine whether z∗ = z1
or not. Let B′ be the remaining budget at the end of Algorithm 1, namely

B′ = B −
∑

e∈Ecri

ce
(
�te − �e

)
.

Considering Lemma 3, we should check the possibility of augmenting all distances
d�t(s, z j ), j = 2, 3, . . . , r , by one under the condition that the incurred cost for this
modification does not exceed the remaining budget B′. To this end, we define the
network N = (V̂ , Ê) with the cost vector c = (ce)e∈Ê , where

ce =

⎧
⎪⎨

⎪⎩

ce if e ∈ Ecri, pte > 0,

0 if e = (z, t), d�t(s, z) � d�t(s, z1),

M else.

(18)

V̂ and Ê are the same vertex set and edge set of N (Tcri) and M is a very big value.
Let K be a minimum s − t cut in N with the corresponding capacity C(K). We can
observe that an edge of every path P(s, z j ), j = 2, 3, . . . , r, is contained in K. Now,
if C(K) � B′, then z∗ = z1 and consequently ρ(Tcri, �∗) = d�t(s, z1). If C(K) > B′,
then it is implied that the remaining budget B′ does not allow us to increase the critical
distance ρ(Tcri, �) to d�t(s, z1) and we should check the leaf z2. Repeating the above
procedure on the leaves zi , 2 � i � r , together with the following edge cost update

ce =
{
0 if e = (z, t), z ∈ L(Tcri), d�t(s, z) � d�t(s, zi )

ce else
(19)

in each shift from zi−1 to zi , we finally determine the critical leaf z∗ = zi∗ , 1 � i∗ � r ,
with corresponding minimum cut K∗

. Altogether, we summarize our procedure for
determining z∗ on Tcri as follows:

Procedure CL (finds the critical leaf z∗ and the cut K∗
)

1. Specify A according to (15).
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2. Sort the values d�t(s, z) ∈ [
ρ(Tcri, �t), ρmax

]
, z ∈ A, in a strictly decreasing order

as (17).
3. Set i = 1 and construct N = (V̂ , Ê) with edge costs (18).
4. If i = r , then let z∗ = zr , K∗ = ∅ and stop; otherwise, find a minimum cut K in

N .
5. If C(K) � B′, then set z∗ = zi , K∗ = K and stop; else update the costs c as in

(19), let i = i + 1 and return to Step 4.

Observe that the set A is determined in O(|E |) time in a depth-first way. The
ordering of the distances d�t(s, z) is performed in O(|E | log |E |) time. The number
of the iterations of Procedure CL is bounded by O(|E |). On the other hand, in any
iteration, a cut K is determined in O(|E |) time, since N is a tree-like network [see
e.g., Vygen (2002)]. Altogether, we get

Lemma 4 Procedure CL finds a critical leaf z∗ of the subtree Tcri in O(|E |2) time.
As soon as the leaf z∗ and the cutK∗

are determined by Procedure CL, the optimal
edge lengths of the integer RSOCP model on the given tree T can be obtained by

�∗
e =

⎧
⎪⎪⎨

⎪⎪⎩

�te + 1 if e ∈ Ecri ∩ E
(
K∗)

,

�te if e ∈ Ecri\E
(
K∗)

,

�e else.

(20)

Finally, our purely combinatorial approach for solving the integer RSOCP model
with arbitrary cost coefficients on the underlying tree graph T is outlined in Algorithm
3.

Algorithm 3 (solves the integer RSOCP model on a tree T )

Step 1 Specify the critical subtree Tcri.
Step 2 For every leaf z ∈ L(Tcri), define the auxiliary distance

da�(s, z) = d�(s, z)� .

Step 3 Construct the auxiliary network N (Tcri) with respect to the auxiliary values
da� , ρ

a(Tcri, �) and hgta.

Step 4 Apply Algorithm 1 with the parameter ξ(K) =
⌊

B
C(K)

⌋
to determine the

temporary lengths �t.
Step 5 Determine the critical leaf z∗ and the corresponding cut K∗

by executing
Procedure CL.

Step 6 Derive the optimal edge lengths �∗ according to (20).

We are now going to determine the time complexity of the algorithm: the critical
subtree Tcri and the auxiliary network N (Tcri) are constructed in linear time. Algorithm
1 is executed in O(|E |2) time. The time complexity of Procedure CL is O(|E |2) and
the optimal lengths �∗ are computed in O(|E |) time. Hence, we get
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Table 3 The results obtained by applying Algorithm 1 on N (Tcri)

Iter. i E (K) C(K) γ (K)
⌊
ρ(Tcri, �

t)
⌋ B

0 – – – 6 14.3

1 {(v1, v2), (v12, t), (v15, t)} 1 1 7 13.3

2 {(s, v1), (v12, t), (v15, t)} 2 2 9 9.3

3 {(v2, v3), (v6, t), (v9, v10)} 5 1 10 4.3

4 {(v2, v3), (v2, v6), (s, v9)} 7 0 10 4.3

Table 4 The results obtained by
executing Procedure CL on N

Iter. i E
(K)

C(K)

1 {(v2, v3), (v2, v6), (v12, t), (v15, t)} 5

2 {(v2, v3), (v6, t), (v12, t), (v15, t)} 4

Theorem 4 The integer reverse selective obnoxious center location problem with
arbitrary modification costs can be solved in O(|E |2) time on a given tree.

Example (Cont’d). Consider the integer RSOCP model on the tree T of Fig. 1 with
associated budget B = 14.3. Applying Algorithm 1 on the auxiliary network N (Tcri),
yields the results presented in Table 3. Algorithm 1 terminates in four iterations while
the temporary edge lengths

�t(s,v1) = 4.1, �t(v1,v2) = 2.1, �t(v2,v3) = 4, �t(v9,v10) = 4

and �te = �e for all other edges with corresponding ρ(Tcri, �t) = 10.2 are obtained.
For the next step, the remaining budget is B′ = 4.3. We get A = {v3, v6, v12} with
z1 = v12, z2 = v6 and z3 = v3. The computational results of the execution of
Procedure CL are given in Table 4. Then, the critical leaf z∗ = v6 is determined with
the corresponding cut

K∗ = {(v2, v3), (v6, t), (v12, t), (v15, t)} .

Finally, the optimal objective value ρ(Tcri, �∗) = 10.4 is given, where an optimal
length modification leads to

�∗
(s,v1) = 4.1, �∗

(v1,v2)
= 2.1, �∗

(v2,v3)
= 5, �∗

(v9,v10)
= 4,

and �∗
e = �e for all other edges.

4.2 The uniform cost model

Assume that in the integer RSOCPmodel on the underlying tree T , the associated cost
coefficients for modification of edge lengths are uniform. Without loss of generality,
suppose ce = 1 for all e ∈ E . In the following, we aim to develop a combinatorial
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algorithm with lower time complexity for this uniform cost model. Our method con-
tains two phases, where the integer part of the optimal objective value ρ(Tcri, �∗) is
determined in the first phase and then the exact optimal objective value ρ(Tcri, �∗)
and the optimal modified edge lengths �∗ are achieved in the second phase through
deriving the fractional part of ρ(Tcri, �∗).

In order to acquire the integer part of the optimal objective value ρ(Tcri, �∗), it is
equivalently required to find the maximum integer value δ∗ ∈ Z so that the incurred
cost for augmenting ρ(Tcri, �)� by δ∗ does not exceed the total budget B. For this
matter, we should first find a way for augmenting ρ(Tcri, �)� by any integer amount
δ ∈ Z

+ with δ � ρmax� − ρ(Tcri, �)� at the minimum total cost with respect to the
given modification bounds where ρmax is defined by (13). As a subroutine, this can be
done by executing Procedure ACD with the parameter

δe =
⌊
ρ(Tcri, �̃)

⌋
−

⌊
λu + ρ (Tcri(e), �)

⌋

in Subprocedure P(e).
Let f (δ) be a function which returns the cost for augmenting ρ(Tcri, �)� by any

amount δ ∈ Z
+. It is observed that f (δ) is piecewise linear and has a representa-

tion as (14), where α is the number of the vertex disjoint paths P(s, z), z ∈ L(Tcri),
with d�(s, z)� = ρ(Tcri, �)� . Moreover, the break points δ1, . . . , δk can be com-
puted applying Procedure BPCF, where in Step (i), ρ(Tcri, �)� is augmented to
ρ(Tcri, �) + δmax� in an optimal way and in Step (iv), a new break point is computed
by δ = ⌊

δmax − hgtei
⌋

. Note that we have δi ∈ Z, for i = 1, . . . , k. By applying
Algorithm 2 with the redefined parameters

Δ =
⌊B + b

α + a

⌋

and

δmax = ρmax� − ρ(Tcri, �)� ,

the integer value δ∗ and the temporary lengths �te, e ∈ Ecri, are attained. Define the
temporary bounds pte, e ∈ Ecri, by

pte = pe − (�te − �e) ∈ Z.

LetB′ be the remaining budget after augmenting the original lengths � to the temporary
length �t at the end of Algorithm 2.We can immediately conclude the following result.

Lemma 5 There exists a leaf z∗ ∈ L(Tcri) with d�t(s, z
∗)� = ⌊

ρ(Tcri, �t)
⌋
such that

ρ(Tcri, �∗) = d�t(s, z
∗).

According to Lemma 5, the integer part of the optimal objective value ρ(Tcri, �∗)
is equal to ρ(Tcri, �)� + δ∗. Moreover, the above lemma implies that the equality
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d�∗(s, z) = d�t(s, z)+1. is satisfied for every z ∈ L(Tcri) with d�t(s, z) < ρ(Tcri, �∗).
Therefore, the exact value of ρ(Tcri, �∗) can be determined, if we find the maxi-
mum value d�t(s, z

∗) such that the remaining budget B′ could augment all distances
d�t(s, z) < d�t(s, z

∗) by one unit. For determining d�t(s, z
∗), we proceed as follows:

We first construct a new tree T ′ from Tcri containing only the edges of Tcri that can be
augmented by at least one unit. The tree T ′ = (V ′, E ′) is constructed in the following
way. Direct all edges of Tcri from the root s to the leaves L(Tcri). Then, scan all edges
of Tcri in a breadth-first way starting with the edges (s, v) ∈ Ecri and contract all edges
that cannot be augmented anymore. For any edge e = (u, v), we do:

If pte = 0, do:

• For all descendant edges e′ = (v,w) ∈ Ecri, set �te′ = �te′ + �te.
• contract e.

Let �′
e be the length of the edge e ∈ E ′ obtained by the above procedure. We

compute for all edges e = (s, v) ∈ E ′ outgoing from s, the critical distance of the
subtrees T ′(e) with respect to the edge lengths �′ in linear time.

Define

I = {
e = (s, v) ∈ E ′ : ρ(T ′(e), �′) < ρmax,

⌊
ρ(T ′(e), �′)

⌋ = ⌊
ρ(Tcri, �

t)
⌋}

.

Observe that the remaining budget B′ can improve the lengths of
⌊B′⌋ edges in I by

one unit. Therefore, we get

Lemma 6 Let ρ∗ be the (
⌊B′⌋+1)-th largest value in the set

{
ρ(T ′(e), �′) : e ∈ I}

.

Then, we have ρ(Tcri, �∗) = ρ∗.

It should be noted that if |I| = 0, we have ρ(Tcri, �∗) = ρ(Tcri, �t). But, if 0 < |I| <⌊B′⌋ + 1, the equation ρ(Tcri, �∗) = ρmax is satisfied.
As soon as the optimal value ρ∗ is determined, we augment the length of the

corresponding original edge e ∈ Ecri of any edge e′ ∈ I with ρ(T ′(e′), �′) < ρ∗
to the optimal value �∗

e = �te + 1 and let all other temporary edge lengths remain
unchanged. Now, according to the above results and observations, we can summarize
our novel solution method in Algorithm 4.

Algorithm 4 (solves the uniform-cost integer RSOCP model on a tree T )

Step 1 Construct the critical subtree Tcri.
Step 2 Apply Algorithm 2 to obtain δ∗ and �t.
Step 3 Construct the tree T ′ and then specify the set I.
Step 4 Determine the optimal objective value ρ(Tcri, �∗) according to Lemma 6. The

optimal edge lengths �∗ are obtained immediately.

Note that the subtree Tcri is constructed in O(|E |) time. Since Algorithm 2 runs
in linear time, the temporary lengths �t and δ∗ are computed in O(|E |) time. The
required time for constructing T ′ and determining the set I is bounded by O(|E |).
Furthermore, the (

⌊B′⌋ + 1)-th largest element of a set is found in linear time [see
e.g., Cormen et al. (2001)]. Altogether, we conclude
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Fig. 2 Illustration of the tree T ′
with edge lengths �′

Theorem 5 The integer reverse selective obnoxious center location problem with
uniform modification costs is solvable in O(|E |) time on a tree T .

Example (Cont’d). Consider the uniform-cost version of the RSOCP model on the
tree T of Fig. 1 with the associated budget B = 7.8. By applying Algorithm 2, we
obtain δ∗ = 4 with the temporary edge lengths including

�t(s,v1) = 4.1, �t(v1,v2) = 2.1, �t(v2,v3) = 4, �t(s,v9) = 4.1

while all other edge lengths of T remain unchanged. We get ρ(Tcri, �t) = 10.2 and
B′ = 2.8. The corresponding tree T ′ of Tcri is constructed as shown in Fig. 2. We
derive the set I = {(s, v3), (s, v6), (s, v10)} and then according to Lemma 6, the
optimal critical distance ρ(Tcri, �∗) = 10.5 is achieved with

�∗
(s,v1) = 4.1, �∗

(v1,v2)
= 2.1, �∗

(v2,v3)
= 5, �∗

(v2,v6)
= 5.2, �∗

(s,v9) = 4.1

while the other original edge lengths remain unchanged.

5 Concluding remarks

If the incurred cost for changing the lengths of the tree T ismeasured by the bottleneck-
type Hamming distance, the problem can efficiently be solved by setting

p∗
e =

{
pe if ce � B,

0 else,

for all e ∈ E . Also, the optimal solution of the problem under the Chebyshev distance
is simply given by p∗

e = min{pe,B/ce}, for all e ∈ E . Moreover, in case of the
sum-type Hamming distance, we can easily conclude that the problem is NP-hard.

For further research, developing combinatorial solution algorithms for the problem
on other special networks like cycles, sun graphs and etc. is promising.
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