
Math Meth Oper Res (2018) 87:169–195
https://doi.org/10.1007/s00186-017-0614-0

ORIGINAL ARTICLE

An exact solution to a robust portfolio choice problem
with multiple risk measures under ambiguous
distribution

Zhilin Kang1,4 · Zhongfei Li2,3

Received: 18 June 2016 / Accepted: 14 September 2017 / Published online: 9 October 2017
© Springer-Verlag GmbH Germany 2017

Abstract This paper proposes a unified framework to solve distributionally robust
mean-risk optimization problem that simultaneously uses variance, value-at-risk (VaR)
and conditional value-at-risk (CVaR) as a triple-risk measure. It provides investors
with more flexibility to find portfolios in the sense that it allows investors to opti-
mize a return-risk profile in the presence of estimation error. We derive a closed-form
expression for the optimal portfolio strategy to the robust mean-multiple risk portfo-
lio selection model under distribution and mean return ambiguity (RMP). Specially,
the robust mean-variance, robust maximum return, robust minimum VaR and robust
minimum CVaR efficient portfolios are all special instances of RMP portfolios. We
analytically and numerically show that the resulting portfolio weight converges to the
minimum variance portfolio when the level of ambiguity aversion is in a high value.
Using numerical experiment with simulated data, we demonstrate that our robust port-
folios under ambiguity are more stable over time than the non-robust portfolios.
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1 Introduction

Since Markowitz (1952) developed the mean-variance portfolio model by incorpo-
rating the variance as a risk measure, the mean-risk framework is so intuitive and
powerful that it has stimulated intensive research activities in finance and risk man-
agement. In mean-risk models, two scalers or criteria are attached to each random
variable: the expected value and the value of a chosen risk measure. Rather than
a single optimal solution, we derive a set of optimal portfolios through trade-off
between risk and return. Thus, mean-risk models have a ready and proper interpreta-
tion of results and in most cases are very convenient from a computational point of
view.

Variance is the first risk measure used in mean-risk models and, in spite of many
subsequent proposals of risk measures, is still the most widely used measure of risk
in the practice of portfolio selection. However, this measure fails to capture the down-
side risk. To circumvent this problem, researchers proposed value-at-risk (VaR) and
conditional value-at-risk (CVaR), which have now been widely used as market risk
measures. They measure the probable loss from a different perspective. In practice,
however, no matter which type of risk measure is adopted, whether the risk of a
portfolio can be well evaluated depends mainly on the reliability and the accuracy
of the estimated parameters or the distributions of asset returns. Not only are we
unable to obtain the exact distributions of risky assets, but also to get exact esti-
mations of parameters. The common solution applied in practice is to replace the
unknown parameters by their sample estimators. Since the data are often prone to
errors, using estimates from limited historical data in the mean-risk models intro-
duces estimation risk in portfolio selection. A popular approach to tackle this issue
is to use robust portfolio optimization, which offers vehicles to incorporate estima-
tion error into the decision making process in portfolio choice. There exist many
studies on robust optimization methodology to deal with the effect of estimation
errors on the estimates of expected returns; see, for instance, Goldfarb and Iyengar
(2003) and Garlappi et al. (2007). To the best of our knowledge, with the exception
of Garlappi et al. (2007), Pinar (2016), Tang and Ling (2014), Chen et al. (2011)
and Pac and Pinar (2014), most of them concentrated on numerical solutions of
robust portfolio optimization problems, especially conic programming (e.g. second-
order cone programs or positive semidefinite programs) (Cornuejols and Tutuncu
2006).

Recently, researchers have recognized the usefulness of incorporating additional
criteria beyond only one measure of risk into the portfolio selection model. The opti-
mization approaches they proposed, however, are mostly based on scenario-based
methods or a heuristic multi-objective genetic algorithms; see, e.g., Roman et al.
(2007) and Baixauli-Soler et al. (2010). Despite the vast literature on robust portfolio
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optimization and many works on multiple risk measures in portfolio optimization,
there are few works that concern both multiple risk measures and robust portfo-
lios. The aim of this article is to propose a unified modeling framework and analysis
of worst-case mean-risk models where optimal portfolios are selected based on the
ambiguity of returns and three measures of risk (variance, VaR and CVaR). Moti-
vated by recent development in robust portfolio optimization, we suppose that the
decision-maker uses variance, VaR and CVaR to measure the portfolio risk and is
ambiguous about both the distribution and parameters, simultaneously. In our worst-
case optimization model of the portfolio selection, the expected return is maximized
and the risk are minimized. The main contribution of this study is to formulate a
robust mean-multiple risk optimization model that is elegant but simple enough to
obtain a closed-form expression for the optimal robust portfolio selection rule. The
robust portfolio has the nice property that it converges to the minimum variance port-
folio under very high levels of ambiguity. In particular, the robust mean-variance
portfolios (Garlappi et al. 2007), robust maximum return portfolios (Pinar 2016),
robust minimum VaR portfolios (Chen et al. 2011; Pac and Pinar 2014) and robust
minimum CVaR portfolios (Chen et al. 2011; Pac and Pinar 2014) are all special
instances of our robust mean-multiple risk portfolios, see, Corollary 1, Remarks 4 and
5. To the best of our knowledge, this is the first analytical result of applying robust
optimization approach to mean-multiple risk model optimization. Consequently, this
study may offer a new insight into the multi-objective decision making process
and robust portfolio optimization through finding the feasible analytical solution
set.

The outline of the paper is organized as follows. In Sect. 2, we provide an overview
of mean-risk optimization models and various kinds of risk measures. We derive an
optimal portfolio rule for the robust mean-multiple risk optimization model under
distribution ambiguity in Sects. 3. Section 4 analyzes several special cases of our
robust optimization framework. In Sect. 5, we perform some numerical experiments
using simulated data and real market data and report the results. The final section
concludes the paper.

2 Risk measures and robustness

Mean-riskmodels are used to determineoptimal portfolios.Consider afinancialmarket
consisting of n stocks.1 The investment period starts at t = 0 and ends at time t = 1.
Let ξ ∈ R

n be the random vector of the returns of n risky assets with mean vector μ

and covariance matrix Σ . Let x ∈ R
n denote the portfolio percentage weights of an

investor. The return of portfolio x is a random variable defined as Rx = ξ1x1 + · · · +

1 As stated in Zymler et al. (2013), the derivative returns are uniquely determined by the underlying asset
returns and modelled as convex piecewise linear or (possibly nonconvex) quadratic functions of the under-
lying asset returns, which are highly non-linear. Hence, there are difficulties in effectively implementing
derivatives. In order to simplify our problem and get better results, the underlying financial instruments
presented in this paper are constraint to stocks, as discussed in Garlappi et al. (2007), Chen et al. (2011)
and many other papers.
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ξnxn and the expected return of portfolio x is E(Rx ). Then, the mean-risk (MR) model
with the risk measure denoted by ρ(Rx ) is represented as follows:

(MR) : min
x∈X

− E(Rx ) + τρ(Rx ) (1)

where τ ≥ 0 is the investor’s risk aversion parameter that determines the trade-off
between expected return and risk andX ⊆ R

n denotes the admissible set of portfolios.
In this Section, we will briefly review the concepts of three widely used risk measures
and robustness. Readers can also refer to Fabozzi et al. (2010), Kim et al. (2014) and
Qian et al. (2015) for a survey on this subject.

2.1 Risk measures

In mean-risk models, many different risk measures are used. Generally speaking,
risk measures in finance can be divided into two main categories: moment based and
quantile based. In this subsection, we will discuss three measures: variance, value-at-
risk (VaR) and conditional value-at-risk (CVaR). FollowingArtzner et al. (1999),CVaR
is a coherent risk measure, which satisfies four properties: monotonicity, translation
invariance, homogeneity and subadditivity. However, it is known that VaR does not
satisfies subadditivity and the optimization of VaR leads to a non-convex NP-hard
problem, which is computationally intractable.

Varianceof returns is amoment-based riskmeasure,which incorporates information
about the first and second moments of the distribution of returns. As a traditional risk
metric, variance measures the dispersion. Mathematically, it can be expressed as

σ 2(x) = E[(Rx − E(Rx ))
2].

However, not only does the mean-variance method fail to control the risk of returns
on the down side, but it might also restrain the possible gains on the up side.

In contrast to moment-based risk measures, quantile-based risk measures are con-
cerned with the probability or magnitude of losses. The most popular quantile-based
risk measures are VaR and CVaR. The VaR measures the worst portfolio loss over a
given time under normal market conditions at a given confidence level. It sheds light
on what the maximum loss is over a time interval. Suppose that ξ has a probability
distribution p(ξ) with mean vector μ and covariance matrix Σ (which is assumed
to be positive definite throughout this paper) and the loss L associated with Rx is
described by the random variable−Rx , i.e., L = −Rx . Then, given a confidence level
β and a fixed x , the value-at-risk is defined as

VaRβ(L) = min

{
α ∈ R :

∫
{ξ :L≤α}

p(ξ)dξ ≥ β

}
.

The corresponding CVaR risk measure is defined as the expected value of the loss
L exceeding the VaR and can be expressed as
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CVaRβ(L) = E[L | L ≥ VaRβ(L)] = 1

1 − β

∫
{ξ :L≥VaRβ(L)}

Lp(ξ)dξ.

Rockafellar and Uryasev (2000) show that CVaR can be obtained by solving the
following convex program:

CVaRβ(L) = min
α∈R α + 1

1 − β
E[(L − α)+],

where [t]+ = max{0, t}. This formula brings computational convenience as the objec-
tive function is explicit and convex in α.

In addition, it is worth mentioning that when L = −Rx and ξ has a normal dis-
tribution, both VaRβ(L) and CVaRβ(L) have closed-form expressions (Qian et al.
2015):

VaRβ(L) = −μT x + κn
v

√
xTΣx, (2)

CVaRβ(L) = −μT x + κn
c

√
xTΣx, (3)

whereκn
v = 
−1(β), κn

c = 1√
2π(1−β)

exp(−(
−1(β))2/2) and
−1(·) is the inverse of
the cumulative distribution function of a standard normal distribution. The theoretical
literature mostly assumes normally distributed returns to easily capture the complete
dependence structure by the correlation coefficient (Alexander and Baptista 2002,
2004). Clearly, the computation of VaR (or CVaR) includes three components: the
mean, the variance, and the distribution of portfolio returns. It implies that an investor
who regards VaR (or CVaR) as the risk measure can adjust κn

v (or κn
c ) and μT x to

reduce the portfolio risk. In this sense, the VaR or CVaR risk measure is more flexible
than the variance.

As we mentioned before, different measures of risk focus on different properties of
returns. The variancemeasures the dispersion of returns and the VaR or CVaRmeasure
the probable loss. VaR focuses on the maximum likely loss of a portfolio for a given
confidence level. It does not take into account the shape of the tail, which is actually
non-negligible in many practical problems. In case of non-normal (leptokurtic, asym-
metric) return distributions, it may be useful to consider tail risk separately. Unlike
VaR risk measure, CVaR as an alternative measure of risk captures these losses, and
measures the expected loss if the loss is above a specified quantile. Therefore, CVaR
can be used in conjunction with VaR when estimating the risk with non-symmetric
return distribution. The two values coincide only if the tail is cut off. In summary, each
measure captures only one particular aspect of the uncertainty and each has its own
advantages and disadvantages.

2.2 Robust portfolios

Since the introduction of the mean-variance model for portfolio selection, many criti-
cisms have been raised on its practical relevance, especially in regard to the sensitivity
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of the optimal portfolios with respect to the statistical errors in the parameters. How-
ever, the estimating errors of the mean value and the variance can not be avoided if
the sample estimate of ξ is used in practice. To overcome these difficulties, in the last
decade portfolio models based on the robust optimization technique have become a
focal point of many researchers. The idea of robust optimization that address uncer-
tainties is to look for a solutionwhich is feasible in every possible scenario and optimal
in the worst case. We briefly review two cases of robustness, which are commonly
considered in the literature.

2.2.1 Parameter uncertainty

Several authors have pointed out that theMarkowitz optimal portfolio is extremely sen-
sitive to distributional input parameters, and amplifies the estimation errors (Broadie
1993; DeMiguel and Nogales 2009). Therefore, it is meaningful to handle uncertain
parameters by requiring the user to specify a uncertainty set based on some limited
information about their values. The key idea of parameter robust optimization is to
find an optimal solution to the problem that remain feasible for any realization of the
uncertain coefficients within the pre-specified (deterministic) uncertainty set. Lobo
and Boyd (2000) were the first to apply the worst-case analysis in portfolio selection,
and they presented several different methods for modelling the uncertainty sets for
the expected return and covariance matrices, such as box or ellipsoidal sets. In addi-
tion, Tutuncu and Koenig (2004) considered a portfolio selection problem with box
uncertainty sets for the returnmean and covariance and solved the resulting worst-case
Markowitz problem via a saddle-point algorithm. Instead of specifying the return by
an uncertainty set directly, Goldfarb and Iyengar (2003) defined asset returns by robust
factor models in which uncertainty was modeled by ellipsoidal sets and showed that
their portfolio choice problems can be reformulated as second-order cone program.

Since the effect of estimation error is known to be greater for the expected returns
of assets than the covariance of asset returns (Jagannathan and Ma 2003), to facilitate
subsequent analysis, we only focus on the uncertainty for the expected returns and
leave interested readers to reviewLobo andBoyd (2000) and Fabozzi et al. (2007). The
robust counterpart analogous to the mean-risk optimization problem (MR), where the
optimal decision is based on the worst scenario of the underlying uncertainty, becomes

(PRP) : min
x∈X

max
μ∈U

{−E(Rx ) + τρ(Rx )} (4)

whereU is a deterministic uncertainty set of themean return. Typically, the uncertainty
set is convex, and its size is related to some kind of guarantee on the probability that
the constraint involving the uncertain data will not be violated. The most often used
structure for tractability in robust optimization is

U = {μ ∈ R
n | (μ − μ̂)TΣ−1(μ − μ̂) ≤ γ }, (5)

which is an n-dimensional ellipsoid centered at the sample mean μ̂ with radius γ

(this parameter is called “the level of ambiguity aversion” in Fabretti et al. 2014).
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The uncertainty set of expected returns describes a geometric structure around the
estimate μ̂ and measures the combined deviation of all assets. Scherer (2007) points
out that there is no way to consistently determine the value of the parameter γ . Gen-
erally speaking, however, the larger the number of samples S, the more reliable the
estimated mean. Therefore, for simplicity, it may be straightforward to assume that
the level of uncertainty γ is a function of data sample size S, i.e., γ := d(S), which
is nonincreasing as S increases. Furthermore, γ tends to zero as S tends to infinity,
especially in the case where the return distribution follows a stationery process.

Decision making under uncertainty has been an active research area for several
domains; see e.g., Deng et al. (2005), Pinar (2014) and Fabretti et al. (2014). The
returns of risk assets in these models are all assumed to follow a known distribution
with uncertain parameters. However, such assumption can not reflect the real and
complex financial market, and in most cases we know little about the distributional
form of asset returns.

2.2.2 Distribution ambiguity

In uncertain environments, one mostly has only partial information on the underlying
probability distributional information which can be available. Therefore, it will be
more realistic for decision-maker to hedge the worst case over a pre-defined set of
probability measure D, which is defined by the limited available information. Then, a
mean-risk portfolio optimization model under ambiguous distribution, which explic-
itly trades risk against return in the objective function, is

(DRP) : min
x∈X

max
P∈D {−E(Rx ) + τρ(Rx )} (6)

Several different choices of the ambiguity set D based on the historical data sampled
from true probability distribution have been proposed; see, e.g., Qian et al. (2015).
For example, since the information on empirical estimates of the mean and covariance
matrix of random vector ξ can be relatively easily obtained from historical data,
decision makers in the finance industry may describe the uncertainty in returns of
assets by the mean and covariance. Hence, the moment-based ambiguity set can be
naturally constructed by letting E(ξ) and Cov(ξ) equal to their estimates respectively,
i.e.,

D0 =
{
P ∈ M+ : E(ξ) = μ̂,Cov(ξ) = Σ̂

}
,

where M+ represents the set of all probability distributions, and μ̂ and Σ̂ are statis-
tically inferred by the historical data.

There has been much research on this topic. Ghaoui et al. (2003) proposed to
maximize the VaR of a given portfolio over all asset return distributions when only the
first and second order moment information is available. Chen et al. (2011) considered
theworst-case lower partial moments and theworst-case conditional value-at-riskwith
respect to the only reliable data consisting of fixed first and second order moments,
extending the work of Zhu and Fukushima (2009), and derived tight bounds for these
two riskmeasures. However, this type of ambiguity setmight be insufficient to describe
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the uncertainty in real markets and thus not a very reasonable assumption, since in
practice the inferred sample mean μ̂ and covariance matrix Σ̂ can not completely
represent the actual values of mean and covariance. A criticism leveled against the
aforementioned ambiguity set is the sensitivity to uncertainties or estimation error
in the mean return data. To address this issue and further control the uncertainty of
moments, the ambiguity set D of distributions who take into account the knowledge
of the distribution’s support and of a confidence region for its mean and second-
moment matrix is presented. Natarajan et al. (2010) derived exact and approximate
optimal strategies for a worst-case expected utility model of portfolio selection under
distribution ambiguity using a piecewise linear concave utility function. In addition,
Delage andYe (2010) took into account themodel ambiguity in terms of the uncertainty
in the first and second moments. They demonstrated that the portfolio optimization
problem has an equivalent semi-definite programming reformulation. More recently,
Pac and Pinar (2014) considered the problem of optimal portfolio choice using lower
partial moments and CVaR measure, respectively, when the mean return is subject to
ellipsoidal uncertainty set in addition to distribution ambiguity.

In summary, each of these risk measures (variance, VaR and CVaR) captures a
different aspect of risk. Therefore, it could be worthy to introduce them jointly in
portfolio selection. Additionally, in most cases we only have a series of data samples
which can be collected from the true distribution. It may be unreasonable for decision-
maker to assume that the distributionof losses is precisely known, fromapractical point
of view. As a result, a remedy for both these difficulties is to adopt a distributionally
robust approach, which will be stated in the next section.

3 Robust mean-multiple risk model under ambiguity

While people all agree to take expected return as one common measure of portfo-
lio performance, there exists no consensus on which risk measure can best capture
investors’ risk attitudes. The question of which risk measure is most appropriate for
all portfolio selection problems is still the subject of much debate. In this section, a
robust optimization model with three risk measures (variance, VaR, CVaR), which
uses more information of the underlying distribution of portfolio returns, will be ana-
lyzed. The proposed model allows aforementioned one moment and two percentile
measures of risk to manage the risk of portfolio loss.

Since the real mean μ and covariance matrix Σ are not observable, their estimates
μ̂ and Σ̂ based on the available sample information have to be used. It is well-known
that variance-covariance estimates are relatively stable over time and can be predicted
more reliably than expected return; seeMerton (1980) and Jorion (1985). Additionally,
Jagannathan andMa (2003) have further argued that estimation error in sample means
has larger effect on portfolio optimization than that in sample covariance matrices. In
the remainder, we will ignore the estimation risk in the sample covariance matrix Σ̂

and suppose that the estimate is reasonably accurate, i.e., Σ = Σ̂.

Moreover, in practice, one only has limited information about the probability
distributions of asset returns. This implies that we do not assume the exact return
distributions and the exact moment information are known. However, investors can
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rely on empirical estimates of the mean μ̂ and covariance matrix Σ̂ of random returns
to construct an informational set D of the underlying distributions. In other words,
there may be an ambiguity set of many different distributions that are consistent with
the available information, and the decision maker has almost no possibility to single
out the true distribution among all conceivable distributions. Instead of pretending to
have full knowledge of the true distribution, therefore, we will assume that the true
distribution is ambiguous and only known to be an element of a given set, which can
be viewed as a confidence region in the space of return distributions.

Weapply a simplemultiple-objectiveweightedmethodbyFliege andWerner (2014)
to deal with our multiple risk measures. This leads to our robust mathematical pro-
gramming (RMP) model for the robust mean-multiple risk portfolio choice problem
with distribution ambiguity as below:

(RMP) : min
x∈X

max
P∈Dγ

{
−E(ξ T x) + ωVaRβ(−ξ T x) + θCVaRβ(−ξ T x) + λxTΣx

}
,

(7)

where

Dγ =
{
P ∈ M+ : (E(ξ) − μ̂)TΣ−1(E(ξ) − μ̂) ≤ γ

Cov(ξ) = Σ � 0

}

is the associated distributional set and M+ is the set of all probability measures on
the measure space (Rn,B), B is the Boreal σ -algebra on R

n , ω, θ and λ are the
non-negative weights balancing the importance of the three risk measures and can be
regarded as the degrees of VaR aversion, CVaR aversion and variance aversion, and the
parameter γ reflects the investor’s level of ambiguity aversion. It should be mentioned
that our model (RMP) has four objectives: the expected return is maximized, while
the variance, the VaR and the CVaR that measure risk from different perspectives
are minimized. Comparing with the mean-variance, the mean-VaR and the mean-
CVaR models, we use triple-risk measures instead of one single risk measure, and
our model includes robust mean-variance, the robust mean-VaR and the robust mean-
CVaR models as special cases. On the other hand, we assume not only knowledge of
the mean and covariance matrix of return distributions, but also uncertainty of its first
moment information.

Remark 1 In our robust model, although it is more flexible for investors to choose
different weighting coefficients according to their investment preferences and risk,
there is still no formal rule to guide an investor regarding an appropriate choice of
ω, θ and λ (Roman et al. 2007).

We start our analysis of the “max” function by assuming that the vector of portfolio
x is given. For the sake of our discussion, we first define the auxiliary function ϒ(x) :
R
n �→ R by

ϒ(x) = max
P∈Dγ

{
−E(ξ T x) + ωVaRβ(−ξ T x) + θCVaRβ(−ξ T x)

}
. (8)
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Then, (RMP) can be written as

min
x∈X

ϒ(x) + λxTΣx . (9)

Lemma 1 Assume that β ∈ (0.5, 1) and random vector ξ ∈ R
n with mean value μ

and covariance Σ follows a family of distributionsF , which is defined byF = {P ∈
M+| E(ξ) = μ,Cov(ξ) = Σ}. Then we have

max
P∈F

{
VaRβ(−ξ T x) + CVaRβ(−ξ T x)

}
= max

P∈F
VaRβ(−ξ T x) + max

P∈F
CVaRβ(−ξ T x).

(10)

Proof Obviously,

max
P∈F

{
VaRβ(−ξ T x) + CVaRβ(−ξ T x)

}
≤ max

P∈F
VaRβ(−ξ T x)+max

P∈F
CVaRβ(−ξ T x).

Since the function Fβ(x, α) = α + 1
1−β

E[(−ξ T x − α)+] is convex in α for every ξ

and F is a convex set, by Theorem 2.4 of Shapiro (2011), we have

max
P∈F

CVaRβ(−ξ T x) = max
P∈F

min
α∈R

Fβ(x, α)

= min
α∈R

max
P∈F

Fβ(x, α)

= min
α∈R

{
α + 1

1 − β
max
P∈F

E
[
(−ξ T x − α)+

]}
.

Similarly, the worst-case VaR can be obtained from

max
P∈F

VaRβ(−ξ T x) = max
P∈F

argmin
α∈R

Fβ(x, α)

= argmin
α∈R

max
P∈F

Fβ(x, α)

= argmin
α∈R

{
α + 1

1 − β
max
P∈F

E
[
(−ξ T x − α)+

]}
.

That is to say, to obtain the maximum values of CVaRβ(−ξ T x) and VaRβ(−ξ T x),
the first thing we should do is to derive the upper bound of first-order lower partial
moment E[(−ξ T x − α)+], which has been provided in Lemmas 2.2 and 2.4 of Chen
et al. (2011). Hence, there exists a member ofF that allows the worst-case CVaR and
the worst-case VaR of losses to get the maximum value at the same time. This leads
to the desired conclusion. 
�
Remark 2 The left and right-hand sides of (10) canbe considered as the different robust
counterparts to CVaR and VaR combined optimization for distribution ambiguity.
Generally, the robust counterpart of the left-hand side is less conservative, which
requires the distribution used in the CVaR and VaR of losses to be equal. However, by
assuming Fβ(x, α) has a unique minimum, we can observe that they are identical.
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We know from Appendix 1 in Chen et al. (2011) that the explicit expression for the
worst-case CVaR and the worst-case VaR over the family F which is composed of
all distributions with given mean and covariance can be obtained.

Define κc =
√

β
1−β

and κv = 2β−1
2
√

β(1−β)
.

Lemma 2 (Chen et al. 2011) Assume that β ∈ (0.5, 1) and random vector ξ ∈ R
n

with mean value μ and covariance Σ follows a family of distributions F . Then for
any x ∈ R

n,

max
P∈F

CVaRβ(−ξ T x) = −μT x + κc

√
xTΣx, (11)

max
P∈F

VaRβ(−ξ T x) = −μT x + κv

√
xTΣx . (12)

Since κc > κv , Lemma 2 implies that the worst-case VaR is always less than the
worst-case CVaR. As a consequence of Lemmas 1 and 2, the auxiliary function ϒ(x)
can be expressed explicitly.

Lemma 3 The following relation holds:

ϒ(x) = −(1 + ω + θ)μ̂T x + [
(1 + ω + θ)

√
γ + ωκv + θκc

] √
xTΣx . (13)

Proof Define

Uμ̂ =
{
μ ∈ R

n| (μ − μ̂)TΣ−1(μ − μ̂) ≤ γ
}

.

From Lemmas 1 and 2, we have

ϒ(x) = max
μ∈Uμ̂

max
P∈F

{
−E(ξ T x) + ωVaRβ(−ξ T x) + θCVaRβ(−ξ T x)

}

= max
μ∈Uμ̂

{
−μT x + max

P∈F
ωVaRβ(−ξ T x) + max

P∈F
θCVaRβ(−ξ T x)

}

= max
μ∈Uμ̂

{
−μT x + ω(−μT x + κv

√
xTΣx) + θ(−μT x + κc

√
xTΣx)

}

= −(1 + ω + θ) min
μ∈Uμ̂

xTμ + ωκv

√
xTΣx + θkc

√
xTΣx .

Note that x is fixed in problem minμ∈Uμ̂
xTμ, we are optimizing over variable μ. The

optimal solution to this problem can be shown to be

μ∗ = μ̂ −
√

γΣx√
xTΣx

. (14)

Substituting this into the representation ϒ(x) gives our desired result. 
�
The inclusion x ∈ X usually denotes the budget constraints that forces the sum of

the weights to be one, i.e., eT x = 1, where e denotes the vector of 1s. In the following,
we set X = {x ∈ R

n|eT x = 1} unless otherwise stated, and define
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A = eTΣ−1e, B = μ̂TΣ−1e,C = μ̂TΣ−1μ̂,Δ = AC − B2,√
γ

′ = (1 + ω + θ)
√

γ + ωκv + θκc.

By Cauchy–Schwarz inequality, we can check that Δ > 0. The following theorem
gives the main results of this paper.

Theorem 1 Suppose that β ∈ (0.5, 1). Then the robust mean-multiple risk model
(RMP) under distribution and mean return ambiguity has the optimal portfolio

x∗
RMP =

(
σ ∗
p√

γ
′ + 2λσ ∗

p

)
Σ−1

×
[
(1 + ω + θ)μ̂ − 1

A

(
(1 + ω + θ)B −

√
γ

′ + 2λσ ∗
p

σ ∗
p

)
e

]
, (15)

where σ ∗
p is the variance of the optimal portfolio and can be obtained from solving

the fourth degree polynomial equation

Aλ
′2

σ 4
p +2Aλ

′
√

γ
′
σ 3
p +(Aγ

′ −(1+ω+θ)2Δ−λ
′2

)σ 2
p −2λ

′
√

γ
′
σp−γ

′ = 0. (16)

See Appendix A for the proof of the theorem.
The (RMP) model is useful for an individual investor who decides to use variance,

VaR, and CVaR as one or more measures of risk but dose not impose a assumption
on distributions of asset returns. The constraint setX of (RMP) can be more general,
for example, the one with no-short selling. In this case, however, the explicit solution
may no longer be obtained.

The robust portfolio strategy x∗
RMP evidently depends on the ambiguity aversion

parameter γ . Its limiting behaviour is given by the following proposition.

Proposition 1 For (RMP), the robust portfolio strategy x∗
RMP(γ ) converges to the

minimum variance portfolio (MVP) x∗
min = Σ−1e

A when the level of ambiguity aversion
γ goes to infinite, that is,

lim
γ→∞ x∗

RMP(γ ) = Σ−1e

A
. (17)

The proof is straightforward from (44) in Appendix A. It suggests that an investor
with very high uncertainty in the reference noisy sample mean invests in the minimum
variance portfolio, which is free of ambiguity. If the risky assets are not correlated,
that is, Σ is a diagonal matrix only containing variance, then we find that the weight
of each asset i is inversely proportional to its variance σ 2

i in the limit of levels of

ambiguity aversion, i.e., x∗
i = (σ 2

i )−1∑n
i=1(σ

2
i )−1 . Further, when Σ = cIn (c > 0), where

In is the identity matrix, the robust portfolio strategy converges towards the “ 1n -naive
rule”. This strategy has been served as a well-known benchmark by academic research
and the investment management industry (DeMiguel et al. 2009).
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Fig. 1 Effect of increasing γ for the RMP strategy with n = 3, λ = ω = θ = 0.5. The data μ̂, Σ used by
Rockafellar and Uryasev (2000)

To provide a better understanding of the robust mechanisms of the optimal strategy
for (RMP), we numerically show that x∗

RMP(γ ) converges to the MVP as γ goes to
∞. According to (44), we define a shrinkage factor

ψ(γ ) =
(
1 −

√
γ

′
√

γ
′ + 2λσ ∗

p

)
(1 + ω + θ). (18)

As Scherer (2007) claimed, the Markowitz mean-variance optimal portfolio x∗
Mark

can be represented as the combination of the minimum variance portfolio x∗
min and a

speculative demand x∗
spec = 1

2λΣ−1(μ̂ − B
A e), i.e.,

x∗
Mark = x∗

spec + x∗
min. (19)

Hence, we can rewrite the optimal portfolio for (RMP) as

x∗
RMP = ψ(γ )x∗

spec + x∗
min. (20)

Since σ ∗
p is contained in ψ(γ ) and relates to γ , the curve of the shrinkage factor

as a function of ambiguity aversion level γ needs to be simulated numerically. A
simulated result is shown in Fig. 1. The figure demonstrates that ψ(γ ) ≥ 0 for
γ > 0 and that when γ → ∞, ψ(γ ) is decreasing and slowly close to 0 (maybe
at very high values of γ ). This together with (20) implies that, with γ > 0 increas-
ing, our robust optimal portfolio x∗

RMP invests less and less in x∗
spec and hence more

and more in x∗
min. Therefore, due to that estimation errors only affect x∗

spec but not
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x∗
min, we can significantly reduce the effect of estimation errors on the optimal port-
folio by incorporating robustness (embodied by γ ) into the portfolio construction
process. That is to say, robustness indeed canmarkedly improve the stability of optimal
portfolios.

4 Special cases

In this section, we examine some variations or special cases of problem (RMP) with
different values of risk aversion parameters λ, ω and θ . It can be shown that the
robust mean-variance, robust maximum return, robust minimum VaR (CVaR) optimal
portfolios are all special cases of our robust optimal portfolios.

4.1 Robust mean-variance portfolios

We consider the special case where the risk aversion parameter ω and θ are zero. In
this case, only variance measure is considered and thus less emphasis is placed on the
tail risk, and the robust mean-multiple risk model under distribution and mean return
ambiguity is just the classical robust mean-variance model proposed by Garlappi et al.
(2007).

Corollary 1 When ω = θ = 0, (RMP) reduces to the classical robust mean-variance
model

(RMv) : min
x∈X

max
P∈Dγ

{
−E(ξ T x) + λxTΣx

}
(21)

and its optimal portfolio becomes

x∗
RMv =

(
1 −

√
γ√

γ + 2λσ ∗
p

)
1

2λ
Σ−1

(
μ̂ − B

A
e

)
+ Σ−1e

A
(22)

=
(

2λσ ∗
p√

γ + 2λσ ∗
p

)
x∗
Mark +

(
1 − 2λσ ∗

p√
γ + 2λσ ∗

p

)
x∗
min,

where σ ∗
p , the variance of the optimal portfolio, is a positive solution of the fourth

degree polynomial equation

4Aλ2σ 4
p + 4Aλ

√
γ σ 3

p + (Aγ − Δ − 4λ2)σ 2
p − 4λ

√
γ σp − γ = 0. (23)

The result (22) is consistent with the one of Garlappi et al. (2007), and demonstrates
that the (RMv) portfolio is equivalent to a convex combination of two benchmark
portfolios: the mean-variance portfolio and the minimum variance portfolio, where
the weights reflect the investor’s degrees of ambiguity aversion and variance aversion.
Furthermore, the portfolio selection model (21) can accommodate a wide class of
portfolio selection models, including mean-variance model, minimum variance model
and so on.
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Case A ω = θ = 0, γ → 0 (mean-variance portfolio).
For a low level of ambiguity aversion (γ → 0), the investor is nearly ambiguity

neutral and does not doubt that the estimated mean μ̂ is equal to the true mean, and
the (RMP) reduces to the sample mean-variance model

(Mv) : min
x∈X

− μ̂T x + λxTΣx (24)

with the optimal portfolio x∗
Mv = x∗

spec + x∗
min.

Case B ω = θ = 0, γ → 0 and λ → ∞ (minimum variance portfolio).
Low ambiguity aversion (γ → 0) and high variance aversion (λ → ∞) will lead

to a portfolio close to the minimum variance portfolio x∗
min, which totally prevents

the effect of sampling errors in the mean and often leads to a better out-of-sample
performance than a mean-variance portfolios (Jagannathan and Ma 2003).

Case C ω = θ = 0, γ → ∞ (minimum variance portfolio).
As pointed out by Proposition 1, an investorwith high ambiguity aversion (γ → ∞)

will chose the minimum variance portfolio, because she considers the worst-case
occurrence of the true mean within a bigger set and hence takes a more conservative
choice.

Case D ω = θ = 0, λ = 0 (robust maximum return portfolio).
In this case, the model (RMP) reduces to

(RR) : min
x∈X

max
μ∈Uμ̂

−μT x, (25)

which actually maximizes the worst-case expected return. By virtue of (23), if γ A >

Δ, then the problem (25) has the optimal portfolio

x∗
RR = 1√

Aγ − Δ
Σ−1

(
μ̂ − B

A
e

)
+ Σ−1e

A
. (26)

The (RR) model is exactly identical to the one presented by Pinar (2016) (see, Propo-
sitions 5 and 6 there for detail).

Case E ω = θ = 0, λ = 0 and γ → 0 (maximum return portfolio).
In this case, the model (RMP) reduces to the one that maximizes the expected

return:

min
x∈X

− μ̂T x . (27)

If short-selling is not allowed, this problem achieves the highest expected return by
allocating all money in the asset with highest return. Otherwise, this problem has no
optimal solution.
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4.2 Robust mean-CVaR and robust mean-VaR portfolios

When the investor only considers the risk measured by CVaR or VaR, that is, when
λ = ω = 0 or λ = θ = 0, the model (RMP) becomes the robust mean-CVaR model

(RMC) : min
x∈X

max
P∈Dγ

− E(ξ T x) + θCVaRβ(−ξ T x) (28)

or the robust mean-VaR model

(RMV) : min
x∈X

max
P∈Dγ

− E(ξ T x) + ωVaRβ(−ξ T x). (29)

Define

η =
√
A((1 + θ)

√
γ + θκc)2 − (1 + θ)2Δ,

ϑ =
√
A((1 + ω)

√
γ + ωκv)2 − (1 + ω)2Δ.

Corollary 2 Let β ∈ (0.5, 1]. The model (RMC) has the optimal portfolio

x∗
RMC = 1

η
(1 + θ)Σ−1

(
μ̂ − B

A
e

)
+ Σ−1e

A
(30)

if κc > 1+θ
θ

(

√
Δ
A − √

γ ), and is unbounded otherwise. The model (RMV) has the
optimal portfolio

x∗
RMV = 1

ϑ
(1 + ω) Σ−1

(
μ̂ − B

A
e

)
+ Σ−1e

A
(31)

if κv > 1+ω
ω

(

√
Δ
A − √

γ ), and is unbounded otherwise.

This corollary implies that the investor must be careful in choosing the confidence
level β so that the problem (RMC) or (RMV) has a solution. We observe that the
functions κc and κv are increasing in β on (0.5, 1]. Thus we can find a minimal

level β0 ∈ (0.5, 1] to guarantee that the condition κc > 1+θ
θ

(

√
Δ
A − √

γ ) or κv >

1+ω
ω

(

√
Δ
A − √

γ ) holds for β ∈ (β0, 1].

Remark 3 By comparing Eqs. (30) and (31) with (19), we find that x∗
RMC and x∗

RMV
can be obtained from x∗

Mark by letting λ = η
2(1+θ)

and λ = ϑ
2(1+ω)

respectively.
That is to say, the optimal portfolios of models (RMC) and (RMV) are mean-variance
efficient. This will be further illustrated by the following example.
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Fig. 2 Mean-variance efficient frontier and the trajectories of variance and return of RMv, RMC, RMV
portfolios

Example 1 We take the sample mean return and covariance matrix from Gao et al.
(2016) as follows:

μ̂ =
⎛
⎝ 0.1213
0.0522
0.1645

⎞
⎠ , Σ =

⎛
⎝0.0390 0.0028 0.0504
0.0028 0.006 0.0023
0.0504 0.0023 0.0917

⎞
⎠ .

With λ ranging from 0.5 to 30, Fig. 2 plots the trajectory of points (return, variance)
corresponding to optimal portfolios for a model. The black thick curve is the mean-
variance efficient frontier and the yellow, red, and blue thin curves correspond to
trajectories for (RMv), (RMC), (RMV) respectively. We observe that the other three
trajectories are simply parts of the mean-variance efficient frontier, which verifies our
conclusion that the (RMv), (RMC) and (RMV)’s portfolios are nothing but mean-
variance portfolios with different values of λ.

Remark 4 When the level of CVaR aversion θ or the level of VaR aversion ω tends to
infinity, the model (RMC) or (RMV) becomes the robust minimum CVaR model

(RC) : min
x∈X

max
P∈Dγ

CVaRβ(−ξ T x),

or the robust minimum VaR model

(RV) : min
x∈X

max
P∈Dγ

VaRβ(−ξ T x),

and our Corollary 2 is exactly Theorem 5 of Pac and Pinar (2014).
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In particular, if we choose the ambiguity aversion level γ equal to zero, then the
models (RMC) and (RMV) respectively reduce to

(RMC0) : min
x∈X

max
P∈D0

− E(ξ T x) + θCVaRβ(−ξ T x), (32)

(RMV0) : min
x∈X

max
P∈D0

− E(ξ T x) + ωVaRβ(−ξ T x). (33)

Corollary 3 Let β ∈ (0.5, 1]. The model (RMC0) has the optimal portfolio

x∗
RMC0

= 1√
Aθ2κ2

c − (1 + θ)2Δ
(1 + θ)Σ−1

(
μ̂ − B

A
e

)
+ Σ−1e

A
(34)

if κc > 1+θ
θ

√
Δ
A , and is unbounded otherwise. The model (RMV0) has the optimal

portfolio

x∗
RMV0

= 1√
Aω2κ2

v − (1 + ω)2Δ
(1 + ω)Σ−1

(
μ̂ − B

A
e

)
+ Σ−1e

A
(35)

if κv > 1+ω
ω

√
Δ
A , and is unbounded otherwise.

Remark 5 When the level of CVaR aversion θ or the level of VaR aversion ω tends to
infinity, the model (RMC0) or (RMV0) becomes the robust minimum CVaR model

(RC0) : min
x∈X

max
P∈D0

CVaRβ(−ξ T x),

or the robust minimum VaR model

(RV0) : min
x∈X

max
P∈D0

VaRβ(−ξ T x),

and our Corollary 3 is identical to Theorem 2.9 of Chen et al. 2011.

It’s well-known that the mean-variance model (Mv) has the famous two-fund sep-
aration theorem, which plays a key role in a wide range of modern portfolio theory,
such as in the classical capital asset pricing model of Sharpe (1964). Here, we can
easily show that the two-fund separation theorem remains true for the models (RMC),
(RMv) and (RMV). Because the statement is similar, we only give the one for (RMC)
to conserve space.

Let x(θ) be the optimal solution of problem (RMC) associated with the CVaR
aversion level θ . Let S(x) be the set of all optimal solutions x(θ). By Corollary 2,

S(x) = {x(θ) : θ > max{θ̃ , 0}},

where θ̃ = δ
1−δ

and δ =
√

Δ
A −√

γ

κc
.
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Proposition 2 Assume that x(θ1), x(θ2) ∈ S(x), θ1 �= θ2. Then for any θ >

max{θ̃ , 0} and the corresponding solution x(θ), there exists a real number � , such
that

x(θ) = � x(θ1) + (1 − �)x(θ2), (36)

that is, the two-fund separation theorem holds.

Proof It is directly from the solution expression (30). 
�
It states that two efficient “mutual funds” (portfolios) can be established, so that any
efficient portfolio can be represented as a combination of these two. In other words, an
investor only needs to invest in two different funds. What she needs to do is to choose
the investment proportions � and 1 − � in these two funds.

4.3 Robust mean-variance-CVaR and robust mean-variance-VaR portfolios

When ω = 0 or θ = 0, the model (RMP) reduces to the robust mean-variance-CVaR
model

(RMvC) : min
x∈X

max
P∈Dγ

− E(ξ T x) + θCVaRβ

(
−ξ T x

)
+ λxTΣx, (37)

or the robust mean-variance-VaR model

(RMvV) : min
x∈X

max
P∈Dγ

− E(ξ T x) + ωVaRβ

(
−ξ T x

)
+ λxTΣx . (38)

Corollary 4 Let β ∈ (0.5, 1]. The model (RMvC) has the optimal portfolio

x∗
RMvC =

(
1 −

√
γ

′
√

γ
′ + 2λσ ∗

p

)
(1 + θ)

1

2λ
Σ−1

(
μ̂ − B

A
e

)
+ Σ−1e

A
, (39)

where
√

γ
′ = (1 + θ)

√
γ + θκc and σ ∗

p , the variance of the optimal portfolio, is a
positive solution of the fourth degree polynomial equation

4Aλ2σ 4
p + 4Aλ

√
γ

′
σ 3
p + (Aγ

′ − (1 + θ)2Δ − 4λ2)σ 2
p − 4λ

√
γ

′
σp − γ

′ = 0.

The model (RMvV) has the optimal portfolio

x∗
RMvV =

(
1 −

√
γ

′
√

γ
′ + 2λσ ∗

p

)
(1 + ω)

1

2λ
Σ−1

(
μ̂ − B

A
e

)
+ Σ−1e

A
, (40)

where
√

γ
′ = (1 + ω)

√
γ + ωκv and σ ∗

p , the variance of the optimal portfolio, is a
positive solution of the fourth degree polynomial equation

4Aλ2σ 4
p + 4Aλ

√
γ

′
σ 3
p + (Aγ

′ − (1 + ω)2Δ − 4λ2)σ 2
p − 4λ

√
γ

′
σp − γ

′ = 0.
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4.4 Robust mean-VaR-CVaR portfolios

When λ = 0, that is, the investor uses VaR and CVaR to evaluate risk, the model
(RMP) becomes the robust mean-VaR-CVaR model

(RMVC) : min
x∈X

max
P∈Dγ

− E(ξ T x) + ωVaRβ(−ξ T x) + θCVaRβ(−ξ T x).

Define

ζ =
√
A((1 + ω + θ)

√
γ + ωκv + θκc)2 − (1 + ω + θ)2Δ.

Corollary 5 Let β ∈ (0.5, 1]. The model (RMVC) has the optimal portfolio

x∗
RMVC = 1

ζ
(1 + ω + θ)Σ−1

(
μ̂ − B

A
e

)
+ Σ−1e

A
(41)

if ωκv + θκc > (1 + ω + θ)(

√
Δ
A − √

γ ), and is unbounded otherwise.

We have proven that all robust mean-risk models under mean return and distribu-
tion ambiguity can be solved explicitly under certain conditions. Table 1 shows that
our robust mean-multiple risk portfolio optimization framework is general enough to
capture a set of well-studied portfolios. The resulting robust optimal portfolios are all
mean-variance efficient. In next section, we briefly test the robustness and study the
cumulative wealth of different optimal portfolios.

Table 1 A unified formula x∗
Port = φPortΣ

−1(μ̂ − B
A e) + Σ−1e

A for optimal portfolios of different
models, where Port={RMP, Mv, minimum variance, RC, RV, RMv, RMC, RMV, RMvC, RMvV, RMVC}

and
√

γ
′ = (1 + ω + θ)

√
γ + ωkv + θkc

Portfolio strategy φPort

RMP
σ∗
p√

γ
′+2λσ∗

p

(1 + ω + θ)

Portfolio strategy φPort Portfolio strategy φPort

Mv 1
2λ Minimum variance 0

RC 1√
A(

√
γ+kc)2−Δ

RV 1√
A(

√
γ+kv)2−Δ

RMv
σ∗
p√

γ+2λσ∗
p

RMvC
σ∗
p

(1+θ)
√

γ+θκc+2λσ∗
p
(1 + θ)

RMC 1+θ
η RMvV

σ∗
p

(1+ω)
√

γ+ωκv+2λσ∗
p
(1 + ω)

RMV 1+ω
ϑ RMVC 1+ω+θ

ζ

The variance σ∗
p is derived from the fourth degree polynomial equation corresponding to the robust model
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5 Numerical experiments

In this section, we briefly present some numerical results based on the simulated data
and real market data to show the robustness and performance of the models discussed
in the previous section. The rolling horizon procedure similar to that in DeMiguel
and Nogales (2009) will be used to test our models. All computations are performed
on a PC with Intel Celeron(R) 1.70GHz processor and 2GB RAM and carried out in
MATLAB 2008a using CPLEX 12.1 (2009).

5.1 On the stability of RMC portfolios under ambiguity

This subsection presents a simulation that highlights the impact of estimation error on
optimal asset allocation.We evaluate and compare the (RMC)model under distribution
ambiguity and the non-robust mean-CVaR model (MC). Our experiment is conducted
as follows. We first randomly generate a time-series of 200 asset returns by sampling
from the true asset return distribution. Then, we carry out a rolling-horizon experiment
(DeMiguel and Nogales 2009) based on the time series data. We use the first 150
returns in the time series to estimate the sample mean of asset returns, and then repeat
this procedure by “rolling” the estimation window forward one period at a time and
simultaneously drop the data for the earliest period until the end of the time series
is reached. The investor is assumed to have a CVaR aversion level θ = 0.5 and a
confidence level β = 0.95.

We consider the case where returns of n = 2 assets follow multivariate Student’s t
distribution with 5 degrees of freedom and use monte carlo method to generate return
series (see Appendix B). That is,

ξ ∼ tν(μ,Σ),

where μ = 0.01e,Σ = 0.05In and ν is the degrees of freedom. The reason we use
t-distribution to generate the asset returns is that the multivariate normal distribution
assumptionmaynot be satisfied in real-world situation. Some asset returnsmay capture
a heavy-tailed distribution.

In practical calculations, CVaR optimization problem is usually solved by scenario
method (Rockafellar and Uryasev 2000). Therefore, given ξ[1], ξ[2], . . . , ξ[S], where
each ξ[i] is an independent sample of the mean return vector from its assumed distri-
bution and S is the number of chosen samples or scenarios, the (MC) model takes the
form by introducing new variables zi ,

(MC) : min
(x,α,z)∈Rn+1+S

{
− 1

S

S∑
i=1

ξ T[i]x + θ

(
α + 1

(1 − β)S

S∑
i=1

zi

)}

s.t. zi ≥ −ξ T[i]x − α, i = 1, . . . , S,

zi ≥ 0, i = 1, . . . , S,

x ∈ X .
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Fig. 3 Time-varying portfolio weights for (MC) and (RMC) with n = 2

Figure 3 depicts the times series of 200 returns for the two assets and the time-
varying portfolio weights for each portfolio strategy. We find that (RMC)’s portfolios
provide an improved stability in the portfolio composition over (MC)’s portfolios and
that the robust optimization approach yields more stable strategies over time, and
the greater the level of ambiguity aversion γ , the better the robustness of the resulting
portfolio performs. And from Panels (c) and (d), as γ is increasing, (RMC)’s portfolios
do not distinguish the assets and allocates the wealth equally among them.

5.2 Out-of-sample evaluation using real market data

In this part, we briefly compare the (RMvC)model with the (RMv) and (RMC)models
to study the cumulative wealth of different portfolios. Our experiment setting follows
closely the one in Rockafellar and Uryasev (2000), where the risky assets are the
Standard & Poor index (S&P 500), the long-term US Government Bond (Bond) and
the US Small capital index (SmallCap). Historical return data is obtained from the
Center for Research in Security Prices (CRSP) database, which is one of the most
complete sources of the U.S. Equity Indexes available. For the three assets, monthly
returns span January 1998 to December 2016, for a total of 228 observations. We now
evaluate the portfolio strategies under the same rolling-horizon procedure described
in the previous section but with real market data. We use an estimation window of 84
months and rebalance on a monthly basis. The level of ambiguity aversion is set to 0.1.

In Fig. 4 we plot the cumulated wealth of the (Mv)’s portfolio with λ = 0.5,
the (RMv)’s portfolio with λ = 0.5, the (RMC)’s portfolio with θ = 0.5, and the
(RMvC)’s portfolio with λ = 0.5 and θ = 0.5 over the time from January 2005 to
December 2016. We find that the optimal portfolios based on the robust approach can
help preserve the accumulated wealth when the market is volatile (for instance, during
the financial crisis), whereas the optimal portfolio obtained from the non-robust (Mv)
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Fig. 4 The cumulative wealth of the optimal portfolios using monthly rebalancing between January 2005
and December 2016. The evolution of S&P500 index is also provided for reference purposes

approach is very erratic. That is, for this particular data set, the optimal portfolios
of (RMv), (RMC) and (RMvC) systematically outperform the the one of (Mv). This
is because the (Mv)’s portfolios may have extreme negative weights in a number of
assets. Moreover, we observe that the portfolios of (RMC) and (RMvC) perform better
than the ones of (Mv) and (RMv), and (RMvC) is very close to (RMC) over time.

6 Conclusions

In this paper, we combine the variance, value-at-risk and conditional value-at-risk
as a risk measure in a mean-risk optimization model under mean return and distri-
bution ambiguity. The main advantage of our model is that it makes no assumption
on probability distribution and leads to a simple closed-form expression for the port-
folio strategies. In this manner, the robust mean-variance, robust maximum return,
robust minimum VaR and robust minimum CVaR models are all special cases of ours.
The numerical experiments using simulated data indicate that our robust model under
ambiguity is able to deliver more stability in the portfolio weights in comparison to
non-robust approaches. The analysis conducted so far is not intended to provide spe-
cific advice or recommendations for any investor. The main purpose of this paper is to
provide an analytical framework for investors with more flexibility to find portfolios
in that it allows investors to optimize a return-risk profile in the presence of estimation
error andmeanwhilemake a better understanding of themechanics of robustness.More
comprehensive performance analysis of different investment strategies are outside the
scope of this article and, therefore, left for future research.
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Appendix A: Proof for Theorem 1

Proof Let λ
′ = 2λ. By Lemma 3, we can rewrite the model (9) as

min
x∈X

− (1 + ω + θ)μ̂T x +
√

γ
′√xTΣx + λ

′

2
xTΣx . (42)

Similar to the proof of Proposition 2 in Garlappi et al. (2007), we first define Λ(x) ≡
Σ(λ

′ + 2
√

γ
′

√
xT Σx

) for x ∈ X . Then the above model can be further reformulated as

min
x∈X

− (1 + ω + θ)μ̂T x + 1

2
xTΛ(x)x . (43)

The Lagrangian function of the above optimization problem is

L(x, ν) = −(1 + ω + θ)μ̂T x + 1

2
xTΛ(x)x − ν

(
1 − eT x

)
,

where ν is the Lagrangian multiplier for the budget constraint. Clearly, the first order
conditions with respect to x is given by

∂L

∂x
= −(1 + ω + θ)μ̂ +

(√
γ

′ + λ
′√

xTΣx√
xTΣx

)
Σx + νe = 0.

Let σp = √
xTΣx . We have

−(1 + ω + θ)μ̂ +
(√

γ
′ + λ

′
σp

σp

)
Σx + νe = 0.

Thus, we get the candidate solution

x =
(

σp√
γ

′ + λ
′
σp

)
Σ−1 [

(1 + ω + θ)μ̂ − νe
]
.

Substituting it into the budget constraint eT x = 1, we get

(
σp√

γ
′ + λ

′
σp

) [
(1 + ω + θ)μ̂ − νe

]T
Σ−1e = 1.

That is,

(
σp√

γ
′ + λ

′
σp

)
[(1 + ω + θ)B − νA] ,
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where A = eTΣ−1e, B = μ̂TΣ−1e. This means that

ν = 1

A

[
(1 + ω + θ)B −

√
γ

′ + λ
′
σp

σp

]
.

Substituting ν into the candidate solution x yields

x =
(

σp√
γ

′ + λ
′
σp

)
Σ−1

[
(1+ω + θ)μ̂ − 1

A

(
(1 + ω + θ)B −

√
γ

′ + λ
′
σp

σp

)
e

]
.

Substituting it into σp = √
xTΣx , we obtain the following polynomial equation about

σ ∗
p :

Aλ
′2

σ 4
p+2Aλ

′
√

γ
′
σ 3
p +

(
Aγ

′ − (1 + ω + θ)2Δ − λ
′2)

σ 2
p − 2λ

′
√

γ
′
σp − γ

′ = 0,

where C = μ̂TΣ−1μ̂,Δ = AC − B2. Define the function

g(σp) = Aλ
′2

σ 4
p + 2Aλ

′
√

γ
′
σ 3
p +

(
Aγ

′ − (1 + ω + θ)2Δ − λ
′2)

σ 2
p

−2λ
′
√

γ
′
σp − γ

′
.

for σp ∈ [0,+∞). Because g(0) = −γ
′
< 0 and lim

σp→+∞ g(σp) = +∞, the Eq. (16)

has at least one positive real root σ ∗
p . Consequently, the optimal portfolio is given by

x∗
RMP =

(
σ ∗
p√

γ
′ + 2λσ ∗

p

)
Σ−1

×
[
(1 + ω + θ)μ̂ − 1

A

(
(1 + ω + θ)B −

√
γ

′ + 2λσ ∗
p

σ ∗
p

)
e

]

=
(
1 −

√
γ

′
√

γ
′ + 2λσ ∗

p

)
(1 + ω + θ)

1

2λ
Σ−1

(
μ̂ − B

A
e

)
+ Σ−1e

A
. (44)

This completes the proof. 
�

Appendix B: Generation of random samples

Procedure: Generatingmultivariate t-distribution return series of tν(μ,Σ)with degree
of freedom ν, expected returns μ and covariance matrix Σ .

(1) Decompose Σ via Cholesky decomposition to obtain a lower triangular matrix G
such that Σ = GGT .
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(2) Generate an n × 1 vector z with z ∼ N (0, In), where In is an n × n identity
matrix. Setting y = Gz, then y ∼ N (0,Σ).

(3) Generate a random variable d with chi-squared distribution χ2
ν .

(4) Setting h = y
√

ν
d + μ, then h ∼ tν(μ,Σ).
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