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Abstract The simplex method, created by George Dantzig, optimally solves a linear
program by pivoting. Dantzig’s pivots move from a basic feasible solution to a differ-
ent basic feasible solution by exchanging exactly one basic variable with a nonbasic
variable. This paper introduces the double pivot simplex method, which can transition
between basic feasible solutions using two variables instead of one. Double pivots are
performed by identifying the optimal basis in a two variable linear program using a
new method called the slope algorithm. The slope algorithm is fast and allows an iter-
ation of DPSM to have the same theoretical running time as an iteration of the simplex
method. Computational experiments demonstrate that DPSM decreases the average
number of pivots by approximately 41% on a small set of benchmark instances.
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1 Introduction

In 1947, George Dantzig created the simplex method, which optimally solves a lin-
ear program (Dantzig 1947, 1982). The simplex method is one of the most famous
and important developments in science and was recognized by the Journal of Com-
puting in Science and Engineering as one of the top 10 algorithms of the twentieth
century (Dongarra and Sullivan 2000). This paper improves the simplex method by
constructing an efficient algorithm to perform double pivots.

Some of the earliest applications of linear programs were developed by Nobel
Laureates (Kantorovich 1939; Koopmans 1949). The simplex method changed linear
programs from an interesting model to a practical tool (Dorfman 1984). Currently,
linear programs dramatically impact society by finding better solutions to problems
in numerous industries including logistics (Spitter et al. 2005; Kunnumkal et al. 2012;
García et al. 2013), finance (Chalermkraivuth et al. 2005; Mansini et al. 2007; Nadara-
jah et al. 2015), manufacturing (Tang et al. 2000; Gomes and Oliveira 2006; Rong and
Lahdelma 2008), medicine (Lee et al. 2003; Alterovitz et al. 2006; Romeijn et al.
2006), and governmental policy (Gautier et al. 2000; Bartolini et al. 2007; Zhou and
Ang 2008). It suffices to state that millions of linear programs are solved every day,
which helps create a more efficient world.

Thepractical importanceof solving linear programs faster hasmotivated researchers
to pursue numerous advancements. The first major advancement occurred when
Dantzig and Orchard-Hays (1954) created the revised simplex method. The revised
simplexmethod is an identical algorithm, but requires less computational time because
it utilizes matrix operations. The running time of the revised simplex method has a
worst-case bound of O(2n) (Klee and Minty 1972). However, Spielman and Teng
(2004) demonstrated that the revised simplex method may run in polynomial time
when instances are randomly generated and slightly perturbed.

Thenextmajor development occurredwhenKhachiyan (1979) created a polynomial
time ellipsoid algorithm to solve linear programs. Due to the high dependency on
the input data, Khachiyan’s ellipsoid algorithm proved to be ineffective in practice
(Goldfarb and Todd 1989). Next, Karmarkar (1984) proposed the first polynomial time
algorithm to solve linear programs that is effective in practice. Numerous researchers
have proposed alternate interior point algorithms andone of the computationally fastest
algorithms is the infeasible primal-dual (Kojima et al. 1989; Megiddo 1989; Mehrotra
1992;Kojima et al. 1993; Lustig et al. 1994;Gondzio 2012). Currently, there still exists
a debate as to whether or not interior point algorithms are computationally faster than
the simplex method (Terlaky and Zhang 1993; Bertsimas and Tsitsiklis 1997; Illés and
Terlaky 2002; Gondzio 2012).

Numerous other researchers developed computational improvements to the simplex
method. Exploiting the sparseness of matrices (Tolla 1986; Suhl and Suhl 1990),
handling degeneracy with reduced basis (Elhallaoui et al. 2010; Raymond et al. 2010),
and implementing decomposition methods (Ford and Fulkerson 1958; Dantzig and
Wolfe 1960; Gilmore and Gomory 1961, 1963; Appelgren 1969) have all improved
the computational performance of the simplex method.

From a high level perspective, the simplex method starts with a feasible basis and
pivots to another feasible basis. A pivot, which is called a classic pivot in this paper,
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exchanges exactly one element in the basis with an element that is not in the basis.
This paper introduces a double pivot, which can exchange two elements into the basis
instead of one. The slope algorithm is a newmethod that quickly determines the leaving
basis elements by finding the optimal basis of a two variable linear program. Double
pivots are guaranteed to improve the objective function value by at least as much
as classic pivots. Implementing double pivots instead of classic pivots in a simplex
framework is called the double pivot simplex method. Performing an iteration of the
double pivot simplex method requires the same theoretical effort as an iteration of
the simplex method. Computational experiments demonstrate that the double pivot
simplex method has on average 41% fewer pivots than the simplex method on a small
set of benchmark instances.

The remainder of the paper is organized as follows. Section 2 provides some back-
ground information about linear programming. The slope algorithm is presented in
Sect. 3, and the double pivot simplex method is presented in Sect. 4. Sections 5 and 6
contain a computational study, conclusions, and future research topics.

2 Linear programming basics and background information

The necessary background information to understand this paper is taught in numer-
ous undergraduate and graduate courses in various disciplines worldwide. Additional
information is found in Winston (2004), Bazaraa et al. (2009), and Hillier and Lieber-
man (2015).

A linear program (LP)withn′ variables and r constraints takes the formofmaximize
z′ = c′T x ′ subject to A′x ′ ≤ b and x ′ ≥ 0, where n′ and r are positive integers,
c′ ∈ R

n′
, x ′ ∈ R

n′
, A′ ∈ R

r×n′
, and b ∈ R

r . Let N ′ = {1, . . . , n} be the set of variable
indices and R = {1, . . . , r} be the set of constraint indices. The feasible region of an
LP is denoted by S′ = {x ′ ∈ R

n′
+ : A′x ′ ≤ b} and the optimal solution of an LP is

(z′∗, x ′∗), where x ′∗ ∈ S and z′∗ = c′T x ′∗ ≥ c′T x ′′ for all x ′′ ∈ S.
Given an LP, the simplexmethod (SM) requires that all constraints be converted into

linear equations by adding r slack variables. This new problem is called the standard
linear program (SLP) and is defined as maximize z = cT x subject to Ax = b and
x ≥ 0, where x ∈ R

n+r , c ∈ R
n+r is c′ augmented with r zeros, and A ∈ R

r×(n+r) is
A′ augmented with an r × r identity matrix. Let N = {1, . . . , n + r} be the variable
indices and S = {x ∈ R

n+r+ : Ax = b} be the feasible region of an SLP.
Initially, SM requires a starting basic feasible solution. Formally, BV ⊆ N is

called a basis if |BV | = |R| and A.BV is nonsingular. The set of nonbasic indices is
N BV = N \BV . The corresponding basic and nonbasic variables are xBV and xN BV ,
respectively. If A.BV

−1b ≥ 0, then BV is a feasible basis with xBV = A.BV
−1b and

xN BV = 0 being the corresponding basic feasible solution. This paper follows the
common notation that a dot “.” represents all the columns or rows of a given vector
or matrix. Furthermore, a set as a subscript restricts the matrix or vector to only those
indices of the set. Therefore, A.BV represents the columns of A restricted to the indices
in BV , and xBV is the x values of the indices in BV . In addition, since SM exchanges
an element in BV with an element in N BV , order is important and every basis in the
remainder of this paper is viewed as an r tuple.
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112 F. Vitor, T. Easton

The input to SM is an SLP and a feasible basis BV ⊆ N . The algorithm evaluates
each nonbasic variable’s reduced cost, which is equal to cBV T A.BV

−1A.i − ci for
all i ∈ N BV . If all nonbasic reduced costs are nonnegative, then the corresponding
basic feasible solution and z = cBV T xBV represents an optimal solution to SLP.
Furthermore, BV is said to be an optimal basis. If BV is not optimal, then there exists
an entering variable with index p ∈ N BV such that cp < 0. In order to determine a
leaving variable, define R+ = { j ∈ R : (A.BV

−1A.p) j > 0}. If R+ = ∅, then the
problem is unbounded. If not, SM performs the ratio test and identifies j∗ ∈ R+ such

that
(A.BV

−1b) j∗
(A.BV

−1A.p) j∗
≤ (A.BV

−1b) j
(A.BV

−1A.p) j
for all j ∈ R+. SM replaces the j∗th element in BV

with p. This process is referred to as a pivot and is called a classic pivot in this paper.
The algorithm continues pivoting until an optimal basis to SLP is identified or SLP is
shown to be unbounded.

In order to generalize SM for other pivoting algorithms, define a simplex framework
as the basic steps of SM independent of the pivoting method. A simplex framework
starts with a basis BV and identifies Q ⊆ N BV . A new basis BV ⊆ BV ∪ Q is
identified and replaces BV . The act of selecting Q and replacing BV with BV is
called a pivot. The simplex framework repeats this process until an optimal basis to
SLP is obtained or SLP is shown to be unbounded.

An alternative view of a classic pivot, which led directly to the development of this
research, defines the ratio test as optimally solving an SLP with r + 1 variables and
r constraints. If one could solve an SLP with r + 2 variables about as quickly as the
ratio test solves the r + 1 problem, then one would expect improved pivots resulting
in faster computational performance. The next section describes the slope algorithm,
which can rapidly solve SLPs with r + 2 variables.

3 The slope algorithm

One of the simplest LPs has only two variables. These LPs can be easily solved
by the graphical method, which is commonly presented in courses teaching linear
programming. Many authors have proposed efficient algorithms to solve such simple
problems. For instance, Shamos and Hoey (1976) present a O(rlog(r)) algorithm that
can solve two variable LPs while Megiddo (1983) and Dyer (1984) present linear time
algorithms to solve two or three variable LPs. Even though these methods can rapidly
find the optimal solution of a two variable LP, such algorithms do not necessarily
determine the optimal basis. For instance, if the two variable LP has three or more
constraints intersecting the optimal solution, then these methods do not necessarily
obtain the optimal basis. If on the other hand, exactly two constraints intersect the
optimal solution, then these algorithms can be easily modified to return the optimal
basis. Since an iteration of the double pivot simplex method requires the optimal basis
from a two variable LP and not the optimal solution, this section presents the slope
algorithm (SA), a new method that identifies both the optimal basis and the optimal
solution of a two variable LP.

Since SA is implemented within a simplex framework, these two variable LPs
satisfy three conditions: the cost coefficients of both variables are positive, both of the
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variables have nonnegativity constraints, and the right-hand side of every constraint
is nonnegative. Formally, let c1, c2 ∈ R+ \ {0}, A ∈ R

r×2, and b ∈ R
r+. Define a

simplex two variable linear program (S2LP) as maximize z = c1x1 + c2x2, subject
to a j,1x1 + a j,2x2 ≤ b j for all j ∈ R, x1 ≥ 0, and x2 ≥ 0. Define S2 = {x ∈ R

2+ :
a j,1x1 + a j,2x2 ≤ b j ∀ j ∈ R} to be the feasible region of an S2LP.

In order to implement SA, the nonnegativity constraints are converted into less than
or equal to constraints. Define a slope algorithm two variable linear program (SA2LP)
as maximize z = c1x1 + c2x2, subject to a j,1x1 + a j,2x2 ≤ b j for all j ∈ R′ =
{1, . . . , r + 2}, where c1 > 0, c2 > 0, b j ≥ 0 for all j ∈ R′, ar+1,2 = ar+2,1 = 0,
ar+1,1 = ar+2,2 = −1, and br+1 = br+2 = 0.

SA evaluates the angle or “slope” of each constraint and compares it to the slope
formed by the cost coefficients c1 and c2. Each constraint j ∈ R′ is partitioned into
one of nine sets, and each set assigns a value for a slope coefficient, α j , as follows:

α j =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−2M If j ∈ R′=< where R′=< = { j ∈ R′ : a j,1 = 0, a j,2 < 0}
−M + a j,2

a j,1
If j ∈ R′

>< where R′
>< = { j ∈ R′ : a j,1 > 0, a j,2 < 0}

−M If j ∈ R′
>= where R′

>= = { j ∈ R′ : a j,1 > 0, a j,2 = 0}
a j,2
a j,1

If j ∈ R′
>> where R′

>> = { j ∈ R′ : a j,1 > 0, a j,2 > 0}
M If j ∈ R′=> where R′=> = { j ∈ R′ : a j,1 = 0, a j,2 > 0}
M − a j,1

a j,2
If j ∈ R′

<> where R′
<> = { j ∈ R′ : a j,1 < 0, a j,2 > 0}

2M If j ∈ R′
<= where R′

<= = { j ∈ R′ : a j,1 < 0, a j,2 = 0}
3M If j ∈ R′== where R′== = { j ∈ R′ : a j,1 = 0, a j,2 = 0}
3M If j ∈ R′

<< where R′
<< = { j ∈ R′ : a j,1 < 0, a j,2 < 0}.

Assign M > max
{
max
j∈R′

{∣
∣ a j,1
a j,2

∣
∣ : a j,2 �= 0

}
,max
j∈R′

{∣
∣ a j,2
a j,1

∣
∣ : a j,1 �= 0

}
, c2
c1

}
. Due to

the large value ofM , viewing the constraints in ascending order according to the values
of the α j ’s creates a counterclockwise orientation of the constraints’ slopes starting
from the x1 axis. Figure 1 depicts the constraints with their respective α j values.
Observe that only eight constraints are viewable because R′== defines the entire two
dimensional space.

The first step in creating SAdetermineswhether or not an SA2LP is unbounded. The
following lemmaprovides a relationship between the coefficients from two constraints,
which helps derive conditions of an unbounded SA2LP.

Lemma 1 If an SA2LP has j and k ∈ R′ such that α j < αk and αk ≤ −M, then
a j,2ak,1 < a j,1ak,2.

Proof Assume an SA2LP has j and k ∈ R′ such that α j < αk and αk ≤ −M . If
α j = −2M , then a j,1 = 0, a j,2 < 0, and −2M < αk ≤ −M . Thus, ak,1 > 0.
Consequently, a j,2ak,1 < 0, ak,2a j,1 = 0, and a j,2ak,1 < a j,1ak,2.

If −2M < α j < −M , then a j,1 > 0, a j,2 < 0, and α j < αk ≤ −M . If αk < −M ,
then −M + a j,2

a j,1
< −M + ak,2

ak,1
, which results in a j,2ak,1 < a j,1ak,2. If αk = −M ,
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114 F. Vitor, T. Easton

Fig. 1 Sample α j for eight classes of constraints of SA2LP

then ak,1 > 0 and ak,2 = 0. Thus, a j,2ak,1 < 0 and ak,2a j,1 = 0. Consequently,
a j,2ak,1 < a j,1ak,2. �

Since the origin (0, 0) is feasible, c1 > 0, c2 > 0, x1 ≥ 0, and x2 ≥ 0 for
every SA2LP, any feasible ray d = (d1, d2) ∈ R

2 implies that SA2LP is unbounded.
Therefore, if there exists d = (d1, d2) ∈ R

2+ such that a j,1d1 + a j,2d2 ≤ 0 for all
j ∈ R′, then SA2LP is unbounded. The following theorem provides necessary and
sufficient conditions for an unbounded SA2LP.

Theorem 1 An SA2LP is unbounded if and only if the following three conditions hold:

(i) R′
>> = ∅;

(ii) If R′
>= �= ∅, then R′=> = ∅ and R′

<> = ∅;
(iii) If R′

>< �= ∅, then R′=> = ∅ and
a j,2
a j,1

≤ ak,2
ak,1

for every j ∈ R′
>< and every

k ∈ R′
<>.

Proof Assume an SA2LP is unbounded, then there exists a ray d = (d1, d2) such that
a j,1d1+a j,2d2 ≤ 0 for all j ∈ R′ and c1d1+c2d2 > 0. Since x1 ≥ 0, x2 ≥ 0, c1 > 0,
and c2 > 0, the unbounded ray must satisfy d1 ≥ 0, d2 ≥ 0, and d1 + d2 > 0.

Assume there exists a j ∈ R′
>>, then a j,1 > 0 and a j,2 > 0. Evaluating d on the

j th constraint results in a j,1d1 + a j,2d2 > 0, contradicting d being a feasible ray.
Thus, R′

>> = ∅ and (i) is satisfied.
Assume there exists a j ∈ R′

>=, then a j,1 > 0 and a j,2 = 0. Since d1 ≥ 0, d1 = 0
or d is not a feasible ray for the j th constraint. Thus, d = (0, d2) where d2 > 0. If
any k ∈ R′ has ak,2 > 0, then d is not a feasible direction for the kth constraint. Thus,
R′=> = ∅ and R′

<> = ∅, which satisfies (ii).
Assume there exists a j ∈ R′

><, then a j,1 > 0 and a j,2 < 0. For contradiction,
assume k ∈ R′=>, which implies ak,1 = 0 and ak,2 > 0. In order for d to be an
improving direction that is feasible on the kth constraint, d2 = 0 and d1 > 0. Thus,
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a j,1d1 + a j,2d2 > 0, contradicting d being a feasible direction for the j th constraint.
Consequently, R′=> = ∅ and the first condition of (iii) is satisfied.

Assume there exists j ∈ R′
>< and k ∈ R′

<>, which implies a j,1 > 0, a j,2 < 0,
ak,1 < 0, and ak,2 > 0. Since d is an improving direction and feasible on the j th
and kth constraints, d1 > 0, d2 > 0, a j,1d1 + a j,2d2 ≤ 0, and ak,1d1 + ak,2d2 ≤
0. Therefore, d1 ≤ − a j,2d2

a j,1
. Substituting into the second inequality results in

ak,1
( − a j,2d2

a j,1

) + ak,2d2 ≤ 0, which implies d2
(

− ak,1a j,2
a j,1

+ ak,2
)

≤ 0. Since d2 > 0,

− ak,1a j,2
a j,1

+ ak,2 ≤ 0, implying that
a j,2
a j,1

≤ ak,2
ak,1

. Therefore, the second condition of
(iii) is satisfied.

Conversely, assume an SA2LP satisfies conditions (i), (ii), and (iii). Let j∗ ∈
R′=< ∪ R′

>< ∪ R′
>= such that α j∗ ≥ α j for all j ∈ R′=< ∪ R′

>< ∪ R′
>=. The claim is

that the j∗th constraint defines a ray of unboundedness, which is d = (−a j∗,2, a j∗,1).
Trivially, c1(−a j∗,2) + c2(a j∗,1) > 0 for any j∗ ∈ R′=< ∪ R′

>< ∪ R′
>=. Since the

origin is feasible, it suffices to show that d is a feasible direction for each k ∈ R′.
Let k ∈ R′ such that αk < α j∗ . The conditions of Lemma 1 are satisfied and

ak,2a j∗,1 < ak,1a j∗,2, which implies ak,2a j∗,1 − ak,1a j∗,2 < 0. If k ∈ R′ such that
αk = α j∗ , then the j∗th and k∗th constraints are parallel and ak,2a j∗,1−ak,1a j∗,2 = 0.
Consequently, d is a feasible direction for every such constraint and the remainder of
the cases need only consider αk > α j∗ .

If j∗ ∈ R′=<, then R′
>< = ∅ and R′

>= = ∅ because α j∗ ≥ α j for all j ∈ R′=< ∪
R′

><∪R′
>=. Since R′

>> = ∅, ak,1 ≤ 0 for all k ∈ R′. Thus, ak,1(−a j∗,2)+ak,2(0) ≤ 0
for all k ∈ R′ and d is a feasible improving ray.

If j∗ ∈ R′
><, a j∗,2 < 0, a j∗,1 > 0, R′

>> = ∅, R′=> = ∅, and R′
>= = ∅ due

to (i), the first condition of (iii), and α j∗ being the maximum α j for all j ∈ R′=< ∪
R′

>< ∪ R′
>=. For any k ∈ R′

<= ∪ R′== ∪ R′
<<, ak,1(−a j∗,2) ≤ 0 and ak,2(a j∗,1) ≤ 0,

so ak,1(−a j∗,2) + ak,2(a j∗,1) ≤ 0. If k ∈ R′
<>, ak,1 < 0. The second condition

of (iii), (
a j∗,2
a j∗,1

≤ ak,2
ak,1

for all k ∈ R′
<>), implies a j∗,2ak,1 ≥ ak,2a j∗,1. Therefore,

ak,1(−a j∗,2)+ak,2(a j∗,1) ≤ 0. Consequently, d is a feasible direction for each k ∈ R′
such that αk > α j∗ . Thus, d is a ray of unboundedness.

If j∗ ∈ R′
>=, then R′

>> = ∅, R′=> = ∅, and R′
<> = ∅ according to (i) and (ii).

Therefore, ak,2 ≤ 0 and ak,1(0) + ak,2(a j∗,1) ≤ 0 for all k ∈ R′ such that αk > α j∗ .
Consequently, d is a feasible improving ray. Since all cases have an improving ray,
SA2LP is unbounded. �

The three graphs in Fig. 2 illustrate the conditions of Theorem1. The j∗ constraint is
labeled in eachfigure and is represented by the solid line. This constraint identifies a ray
of unboundedness as shown in the theorem. The dashed lines demonstrate constraints
that cannot exist for SA2LP to be unbounded.

Since the origin is feasible, an optimal solution to SA2LP exists whenever SA2LP is
bounded. The following lemma and two corollaries provide other useful relationships
between the coefficients of two constraints and also the objective coefficients c1 and
c2. From any SA2LP, define SA2LP j,k to be an SA2LP with only four constraints.
The constraints are the two nonnegativity constraints and the j th and kth constraints
from SA2LP.
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Fig. 2 Graphical representation of Theorem 1—a depicts condition (i), b represents condition (ii), and c
corresponds to condition (iii)

Lemma 2 If an SA2LP has j and k ∈ R′ such that SA2LP j,k is bounded, α j < M,
−M < αk ≤ 2M, and α j < αk , then a j,2ak,1 < a j,1ak,2.

Proof Assume an SA2LP has j and k ∈ R′ such that SA2LP j,k is bounded, α j < M ,
−M < αk ≤ 2M , and α j < αk . From Theorem 1, the potential combinations for
the j and k constraints are limited. The proof shows that a j,2ak,1 < a j,1ak,2 for all
possible values of α j .

If α j = −2M , then a j,1 = 0 and a j,2 < 0. Since SA2LP j,k is bounded and from
the conditions of Theorem 1, αk < M . So ak,1 > 0 and ak,2 > 0. Consequently,
a j,2ak,1 < a j,1ak,2.

If −2M < α j < −M , then a j,1 > 0, a j,2 < 0, and αk < 2M or SA2LP j,k

is unbounded from Theorem 1. If αk ≤ M , then ak,1 > 0 and ak,2 ≥ 0. Thus,
a j,2ak,1 < 0 and a j,1ak,2 ≥ 0, which implies a j,2ak,1 < a j,1ak,2. If αk > M and
because SA2LP j,k is bounded,

a j,2
a j,1

>
ak,2
ak,1

by Theorem 1. Hence, a j,2ak,1 < ak,2a j,1.
If α j = −M , then a j,1 > 0, a j,2 = 0, and αk < 2M or SA2LP j,k is unbounded.

Thus, ak,2 > 0, a j,2ak,1 = 0, and a j,1ak,2 > 0. Therefore, a j,2ak,1 < a j,1ak,2.
If −M < α j < M , then a j,1 > 0 and a j,2 > 0. If αk < M , then

a j,2
a j,1

<
ak,2
ak,1

and
a j,2ak,1 < a j,1ak,2, because α j < αk . If M ≤ αk < 2M , then ak,1 ≤ 0 and ak,2 > 0.
Consequently, a j,2ak,1 < a j,1ak,2. If αk = 2M , then ak,1 < 0 and ak,2 = 0, and so
a j,2ak,1 < a j,1ak,2 = 0. �

Observe that the right-hand side b j and bk are not contained in the proofs or state-
ments of Lemmas 1 and 2. These lemmas are based solely on the slopes, represented
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by α j and αk . Thus, these relationships remain between a constraint and the cost coef-
ficients c1 and c2. Since c1 > 0 and c2 > 0, the α value of the objective function
is equivalent to c2

c1
. Since −M < c2

c1
< M , the following two corollaries are direct

applications of Lemma 2.

Corollary 1 If an SA2LP has a j ∈ R′ such that α j < c2
c1
, then a j,2c1 < a j,1c2. �

Corollary 2 If an SA2LP has a k ∈ R′ such that c2c1 ≤ αk ≤ 2M, then c2ak,1 ≤ c1ak,2.

Proof Assume an SA2LP has a k ∈ R′ such that c2
c1

< αk . From Lemma 2, c2ak,1 <

c1ak,2. If
c2
c1

= αk , then ak,1 > 0 and ak,2 > 0. Thus, c2
c1

= ak,2
ak,1

and c2ak,1 = c1ak,2,
which implies c2ak,1 ≤ c1ak,2. �

There are typically an infinite number of points in R
2 that satisfy both the j th and

kth constraints. This paper defines the intersection point of the j th and kth constraints
as the unique extreme point of the feasible region defined by only these two constraints.
If no such extreme point exists, then the j th and kth constraints are parallel, a j,1ak,2−
a j,2ak,1 = 0, and the constraints are said to be nonintersecting. Consequently, any
intersecting constraints satisfy a j,1ak,2 − a j,2ak,1 �= 0, and the intersection point is

given by x = (x1, x2), where x1 = b j ak,2−bka j,2
a j,1ak,2−a j,2ak,1

and x2 = a j,1bk−b j ak,1
a j,1ak,2−a j,2ak,1

.

Theorem 2 identifies nonsupportive constraints in S2 by evaluating x on a particular
constraint. A constraint is said to support a polyhedron if there exists a point in the
polyhedron that meets the constraint at equality.

Theorem 2 If a bounded SA2LP has i , j , and k ∈ R′ such that αi < α j < αk ≤ 2M,
α j < M, and the intersection point of the j th and kth constraints violates the i th
constraint, then the j th constraint does not support S2.

Proof Assume an SA2LP is bounded and there exists constraints i , j , and k ∈ R′
such that αi < α j < αk ≤ 2M , α j < M , and the intersection point of the j th and kth
constraints, x , violates the i th constraint. The points in R

2 that meet the j th constraint
at equality can be expressed as x+ρ(a j,2,−a j,1) and x+λ(−a j,2, a j,1)where ρ ≥ 0
and λ > 0.

Evaluating x +ρ(a j,2,−a j,1) for all ρ ≥ 0 on the i th constraint results in ai,1x1 +
ai,2x2 + ρ(ai,1a j,2 − ai,2a j,1). Since x violates the i th constraint, ai,1x1 + ai,2x2 >

bi . The i th and j th constraints satisfy either the conditions of Lemmas 1 or 2 and
ai,2a j,1 < ai,1a j,2. Therefore, ai,1x1 + ai,2x2 + ρ(ai,1a j,2 − ai,2a j,1) > bi for all
ρ ≥ 0, and none of these points is in S2.

Evaluating x +λ(−a j,2, a j,1) for all λ > 0 on the kth constraint results in ak,1x1 +
ak,2x2+λ(−ak,1a j,2+ak,2a j,1). Since x satisfies the kth constraint, ak,1x1+ak,2x2 =
bk . The j th and kth constraints satisfy either the conditions of Lemmas 1 or 2 and
a j,2ak,1 < a j,1ak,2. Thus, ak,1x1 + ak,2x2 + λ(−ak,1a j,2 + ak,2a j,1) > bk for all
λ > 0, and none of these points is in S2. Consequently, the j th constraint does not
support S2. �

Corollary 3 trivially extends this result to constraints with larger slope values. The
proof is obtained by simply swapping x1 and x2 and applying Theorem 2.
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Corollary 3 If a bounded SA2LP has j , k, and l ∈ R′ such that α j < αk < αl ≤ 2M,
−M < αk , and the intersection point of the j th and kth constraints violates the lth
constraint, then the kth constraint does not support S2. �

The next two corollaries identify intersection points of constraints and apply The-
orem 2 and Corollary 3 to determine nonsupporting constraints. Combining these
results enables the creation of a linear time procedure to identify a feasible extreme
point of S2, assuming α is sorted.

Corollary 4 If a bounded SA2LP has h, i, j , and k ∈ R′ such that αh < αi < α j <

αk ≤ 2M, α j < M, and the intersection point of the j th and kth constraints satisfies
the i th constraint but violates the hth constraint, then the i th and jth constraints do
not support S2.

Proof Assume a bounded SA2LP has constraints h, i, j , and k ∈ R′ such that αh <

αi < α j < αk ≤ 2M , α j < M , the intersection point of the j th and kth constraints,
x , satisfies the i th constraint, and violates the hth constraint. Let the intersection
point of the i th and kth constraints be x . Since x satisfies the i th constraint, x =
x + λ(ak,2,−ak,1) for some λ ≥ 0. Evaluating x on the hth constraint results in
ah,1x1 + ah,2x2 +λ(ah,1ak,2 − ah,2ak,1). Since x violates the hth constraint, ah,1x1 +
ah,2x2 > bh . The hth and kth constraints satisfy either the conditions of Lemma 1 or
Lemma 2 and ah,2ak,1 < ah,1ak,2. Thus, ah,1x1 + ah,2x2 + λ(ah,1ak,2 − ah,2ak,1) >

bh . Consequently, x violates the hth constraint and the conditions of Theorem 2 are
satisfied, which implies that the i th and j th constraints do not support S2. �

Corollary 5 If a bounded SA2LP has j, k, l, and m ∈ R′ such that α j < αk < αl <

αm ≤ 2M,−M < αk , and the intersection point of the j th and kth constraints satisfies
the lth constraint, but violates the mth constraint, then the lth and kth constraints do
not support S2. �

SA identifies an optimal solution to SA2LP by finding constraints j and k ∈ R′
such that α j < c2

c1
≤ αk , SA2LP j,k is bounded, the intersection point of the j th and kth

constraints is feasible, and αk − α j is minimized. The following theorem formalizes
that the first three conditions are sufficient to identify an optimal solution to SA2LP.

Theorem 3 An optimal solution to SA2LP occurs at the intersection point of the j th
and kth constraints if the following three conditions hold:

(i) α j < c2
c1

≤ αk ≤ 2M;
(ii) SA2LP j,k is bounded;
(iii) The intersection point of the j th and kth constraints is feasible.

Proof Assume SA2LP has j and k ∈ R′ such that SA2LP j,k is bounded, α j < c2
c1

≤
αk ≤ 2M , and the intersection point of the j th and kth constraints, x , is feasible.
The proof shows that every direction from x is either infeasible or nonimproving. So,
partition all possible directions in R

2 \ {(0, 0)} into the following four sets:

– D1 = {d ∈ R
2\{(0, 0)} : d = β(a j,2,−a j,1)+(1−β)(ak,2,−ak,1) ∀β ∈ [0, 1)};

– D2 = {d ∈ R
2\{(0, 0)} : d = β(−a j,2, a j,1)+(1−β)(ak,2,−ak,1) ∀β ∈ (0, 1)};
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– D3 = {d ∈ R
2\{(0, 0)} : d = β(−a j,2, a j,1)+(1−β)(−ak,2, ak,1) ∀β ∈ (0, 1]};

– D4 = {d ∈ R
2\{(0, 0)} : d = β(a j,2,−a j,1)+(1−β)(−ak,2, ak,1) ∀β ∈ [0, 1]}.

Since −M < c2
c1

≤ αk , the j th and kth constraints satisfy Lemma 2 and a j,2ak,1 <

a j,1ak,2. Evaluating any d ∈ D1 on the j th constraint results in β(a j,1a j,2) + (1 −
β)(a j,1ak,2) − β(a j,2a j,1) − (1 − β)(a j,2ak,1) = (1 − β)(a j,1ak,2 − a j,2ak,1) > 0
for all β ∈ [0, 1). Thus, x + λd violates the j th constraint for every λ > 0, and D1 is
a set of infeasible directions from x .

Evaluating any d ∈ D2 on the j th constraint results in −β(a j,1a j,2) + (1 −
β)(a j,1ak,2) + β(a j,2a j,1) − (1 − β)(a j,2ak,1) = (1 − β)(a j,1ak,2 − a j,2ak,1) > 0
for all β ∈ (0, 1). Thus, x + λd violates the j th constraint for every λ > 0, and D2 is
a set of infeasible directions from x .

Evaluating any d ∈ D3 on the kth constraint results in −β(ak,1a j,2) − (1 −
β)(ak,1ak,2) + β(ak,2a j,1) + (1− β)(ak,2ak,1) = β(−ak,1a j,2 + ak,2a j,1) > 0 for all
β ∈ (0, 1]. Thus, x + λd violates the kth constraint for every λ > 0, and D3 is a set
of infeasible directions from x .

Evaluating any d ∈ D4 on the objective function results in β(c1a j,2 − c2a j,1) +
(1− β)(−c1ak,2 + c2ak,1). Since α j < c2

c1
, the conditions of Corollary 1 are satisfied

and a j,2c1 < a j,1c2. Thus, β(c1a j,2 − c2a j,1) ≤ 0 for all β ∈ [0, 1]. Since c2
c1

≤ αk ,
c2ak,1 ≤ c1ak,2 by Corollary 2 and (1 − β)(−c1ak,2 + c2ak,1) ≤ 0 for all β ∈ [0, 1].
Consequently, every d ∈ D4 is a nonimproving direction. Since every direction from
x is infeasible or nonimproving and SA2LP is a linear convex problem, x is an optimal
solution. �

The above results enable the creation of SA (Algorithm 1), which optimally solves
S2LPs. The input to SA is an S2LP, and SA returns that either S2LP is unbounded
or the optimal solution z∗, x∗ along with j∗ ∈ R′, k∗ ∈ R′, α j∗ , and αk∗ . The j∗
and k∗ represent the intersecting constraints that provide the optimal solution to S2LP.
Even though j∗, k∗, α j∗ , and αk∗ are not part of S2LP’s solution, this information is
necessary to identify the optimal basis.

SA correctly solves any SA2LP. The check for unboundedness follows the condi-
tions of Theorem 1 when the constraints are viewed from their α values. If SA2LP is
bounded, then the algorithm returns an x∗ at the intersection point of two constraints,
j∗ and k∗. Clearly, such a j∗ and k∗ exist due to the nonnegativity constraints. One
constraint has an α value less than c2

c1
and the other constraint has an α value greater

than or equal to c2
c1
. The point is validated against all constraints according to The-

orem 2 and Corollaries 3, 4, and 5. From Theorem 3, x∗ is an optimal solution to
SA2LP.

To determine the running time of SA, observe that SA first calculates every element
of the array α in O(r) and sorts this array (lines 3–4). There are numerous sorting
algorithms and let S(r) be the effort required by the selected algorithm to sort r
elements. Themain step of SA (lines 5–28) first determines two intersecting constraints
in O(r). The check for unboundedness is performed in O(1). If SA2LP is bounded,
then SA calculates x in O(1). Each iteration of the while loop either validates that the
current x is feasible on up to two constraints in O(1) or that x violates a constraint.
If a violation occurs, a new x is calculated. From Corollaries 4 and 5, if x violates
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Algorithm 1 - The slope algorithm (SA)
1: begin
2: From S2LP, create the corresponding SA2LP;
3: Calculate α = (α1, α2, . . . , αr+2);
4: Let P = (ρ1, . . . , ρr+2)be the array of constraint indices such thatαρ j ≤ αρ j+1 ∀ j ∈ {1, . . . , r+1};
5: Find j ′ ∈ R′ = {1, . . . , r + 2} such that αρ j ′ <

c2
c1

≤ αρ j ′+1
;

6: k′ ← j ′ + 1;

7: if
(
αρ j ′ = −2M and αρk′ ≥ M

)
or

(
−2M < αρ j ′ < −M and αρk′ = 2M

)
or

(
αρ j ′ = −M and αρk′ = 2M

)
or

(
−2M < αρ j ′ < −M and M < αρk′ < 2M and

aρ j ′ ,2
aρ j ′ ,1

≤ aρk′ ,2
aρk′ ,1

)
then

8: return S2LP is unbounded;
9: else
10: j ← j ′;
11: k ← k′;
12: Calculate x = (x1, x2) from constraints ρ j ′ and ρk′ ;
13: while j > 1 or k < r + 2 do
14: if j > 1 then j ← j − 1;
15: if aρ j ,1x1 + aρ j ,2x2 > bρ j then

16: j ′ ← j ;
17: k ← k′;
18: Calculate x = (x1, x2) from ρ j ′ and ρk′ ;
19: if k < r + 2 then k ← k + 1;
20: if aρk ,1x1 + aρk ,2x2 > bρk then
21: k′ ← k;
22: j ← j ′;
23: Calculate x = (x1, x2) from ρ j ′ and ρk′ ;
24: z∗ ← c1x1 + c2x2;
25: x∗ ← x ;
26: j∗ ← ρ j ′ ;
27: k∗ ← ρk′ ;
28: return z∗, x∗, j∗, k∗, α j∗ , and αk∗ ;
29: end

a constraint, then every constraint between j ′ and j or k′ and k is nonsupportive in
SA2LP. Consequently, the while loop is repeated at most O(r) times. Thus, the entire
main step requires O(r) effort. Furthermore, SA requires O(1) to report a solution to
SA2LP or that SA2LP is unbounded. Consequently, SA requires O(S(r)) effort and
the most time-consuming step is sorting the array α. Frommerge sort, S(r) = r log(r)
and SA runs in O(r log(r)) time. Example 1 demonstrates SA.
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Fig. 3 Graphical representation of Example 1

Example 1 Consider the following S2LP.

Maximize z = 2x1 + x2
Subject to −3x1 − 5x2 ≤ 0 (1)

4x1 + 3x2 ≤ 100 (2)

2x1 − x2 ≤ 20 (3)

x1 + x2 ≤ 9 (4)

−2x1 + x2 ≤ 6 (5)

x2 ≤ 6 (6)

3x1 + x2 ≤ 37 (7)

x1 ≤ 9 (8)

x1 − x2 ≤ 3 (9)

x1, x2 ≥ 0

The first step of SA converts S2LP into SA2LP by changing the nonnegativ-
ity conditions into constraints −x1 ≤ 0 (10), −x2 ≤ 0 (11), and assigning
R′ = {1, 2, . . . , 11}. Figure 3 presents a graphical representation of SA2LP in R

2.
SA calculates α = (3M, 3

4 ,−M − 1
2 , 1, M + 2, M, 1

3 ,−M,−M − 1, 2M,−2M)
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and then sorts the indices of the constraints according to these values, resulting in
P = (11, 9, 3, 8, 7, 2, 4, 6, 5, 10, 1). SA identifies j ′ = 5 and k′ = 6 because
αρ j ′ = 1

3 < c2
c1

= 1
2 ≤ αρ j ′+1

= 3
4 . Since −M < αρ j ′ , none of the conditions

for an unbounded SA2LP are satisfied. The algorithm continues by setting j = 5,
k = 6, and calculating the intersection point of the ρ5 and ρ6 constraints, (7) and (2).

This intersection point is x =
(
11
5 , 152

5

)
, represented by x1 in Fig. 3.

SA assigns j = 4 and the feasibility of x is validated on the ρ4 constraint, (8),
because 11

5 < 9. Next, k = 7 and the point is tested on the ρ7 constraint, (4). This
point is infeasible because 11

5 + 152
5 > 9. From Corollary 3, (2) does not support S2

and SA assigns k′ = 7 and j returns to 5. From SA, x becomes (14,−5), which is
the intersection point of (7) and (4) and is represented by x2 in Fig. 3. SA updates
j = 4 and x is evaluated on (8), which indicates an infeasibility since 14 > 9. Thus,
j ′ = 4 and k = 7. The updated x occurs at (9, 0), the intersection of (8) and (4),
and is represented by x3 in Fig. 3. SA assigns k = 8 and x does not violate (6), (3),
and (5), but it does violate (9). From Theorem 2 and Corollary 4, both (8) and (3) do
not support S2. The algorithm assigns j ′ = 2 and k = 7. The new x = (6, 3) is the
intersection point of (9) and (4), and is identified by x4 in Fig. 3. SA follows with
k = 8 and this point does not violate (6), (11), (5), (10), and (1). Thus, x = (6, 3)
satisfies all the constraints and by Theorem 3, this point is the optimal solution to
S2LP. SA reports z∗ = 15, x∗ = (6, 3), j∗ = 9, k∗ = 4, α9 = −M − 1, and α4 = 1.

Similar to the dual simplex method, SA starts super optimal and moves toward
feasibility while still maintaining the optimality condition. When an x is infeasible,
one constraint is replaced with another constraint, which maintains a basis structure.
From the corresponding basis of the starting constraints, one could create dual simplex
pivots to obtain SA’s sequence of super optimal solutions. However, the order of pivots
would be unique and a standard implementation of the dual simplexmethod is unlikely
to result in the identical sequence of super optimal solutions. Furthermore, the dual
simplex method does not necessarily have a starting basis and thus it is unlikely to
start with a basis that corresponds to the first x .

In summary, SA is a new method to solve simple two variable LPs with fairly
stringent assumptions. The authors believe that a straightforward exercise can modify
SA to solve any two variable LP. For this paper, the true benefit of SA is realized as a
pivoting technique incorporated in a simplex framework. The next section discusses
the concept of a multiple pivot simplex method and presents the double pivot simplex
method.

4 Multiple pivots and the double pivot simplex method

A common technique to decrease the solution time of LPs is to solve the problem on a
subset of variables. The optimal basis from this subproblem is used to identify a new
subset of variables, and the process repeats until the optimal basis to a subproblem
identifies the optimal basis of the original instance. In this paper, this general method-
ology is called a multiple pivot simplex method. Block pivots (Howard 1960; Padberg
1999; Ye 2011), decomposition methods (Dantzig and Wolfe 1960), and column gen-
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eration (Ford and Fulkerson 1958; Gilmore andGomory 1961, 1963; Appelgren 1969)
can all be classified as multiple pivot simplex methods.

Formally, a multiple pivot simplex method starts with an SLP and a feasi-
ble basis BV ⊆ N . The method identifies Q ⊆ N BV such that Q �= ∅
and cBV T A.BV

−1A.q − cq < 0 for some q ∈ Q. Define a multiple pivot lin-
ear program (MPLP) as maximize z = −(cBV T A.BV

−1A.Q − cQ)xQ subject to
(A.BV

−1A.BV )xBV + (A.BV
−1A.Q)xQ = A.BV

−1b, xBV ≥ 0, and xQ ≥ 0. Let BV ∗
be an optimal basis to MPLP and BV ∗ replaces BV . This process continues until an
optimal basis to SLP is obtained. Observe that if a non-optimal basis is selected to
MPLP, then BV ∪ Q could remain unchanged, and the algorithm may never termi-
nate. Consequently, either Shamos and Hoey (1976), Megiddo (1983), or Dyer (1984)
algorithms cannot be directly applied to solve the MPLP when |Q| = 2 since none of
these methods determine the optimal basis.

In order to view SM in terms of a multiple pivot simplex method, observe that
|Q| = 1 and MPLP consists of r + 1 variables, r constraints, and r + 1 nonnegativity
constraints. The r +1 variables are the r basic variables and the one entering nonbasic
variable. The ratio test identifies the optimal basis of this problem. Therefore, a classic
pivot identifies the optimal basis of an MPLP with r + 1 variables.

The next section describes the double pivot simplex method (DPSM), which is
a novel multiple pivot simplex method. DPSM has |Q| = 2 and each subproblem
is optimized using SA. Even though other researchers have created multiple pivot
simplex methods with |Q| > 2, these researchers used classic pivots to obtain the
optimal basis to their subproblems (Howard 1960; Padberg 1999; Ye 2011). Thus,
DPSM is novel and could be used to solve the subproblems from these other multiple
pivot methods as well.

4.1 The double pivot simplex method

The first step in generating the double pivot simplex method (DPSM) is to prove
that SA identifies an optimal basis for any MPLP with |Q| = 2. To prove this claim,
convert S2LP into standard form (SS2LP) by adding r slack variables. Each constraint
of SS2LP has the form of a j,1x1 + a j,2x2 + x j+2 = b j for all j ∈ R. If implemented
within a simplex method environment, these slack variables are precisely the existing
basic variables. Furthermore, the only nonzero reduced costs are c1 and c2, which are
both positive. The right-hand side is precisely the values of the basic variables, which
are greater than or equal to zero. Removing the basic variables from this instance
results in S2LP. Theorem 4 proves that SA returns sufficient information to determine
an optimal basis, assuming that SS2LP is bounded. In addition, this result also provides
an alternate proof to Theorem 3 in which SA identifies an optimal solution to S2LP.

Theorem 4 Implementing SA on a bounded S2LP with output j∗, k∗, α j∗ , and αk∗
results in the following sets being an optimal basis for SS2LP:

(i) If α j∗ = −2M, then BV = {3, 4, . . . , k∗ + 1, 1, k∗ + 3, . . . , r + 2};
(ii) If αk∗ = 2M, then BV = {3, 4, . . . , j∗ + 1, 2, j∗ + 3, . . . , r + 2};
(iii) If α j∗ �= −2M and αk∗ �= 2M, then BV = {3, 4, . . . , j∗+1, 1, j∗+3, . . . , k∗+

1, 2, k∗ + 3, . . . , r + 2}.
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Proof Implementing SA on a bounded S2LP returns j∗, k∗, α j∗ , and αk∗ . In order to
prove BV is an optimal basis to SS2LP, all possible cases of α j∗ and αk∗ are examined.

Assume α j∗ = −2M , and let BV = {3, 4, . . . , k∗ + 1, 1, k∗ + 3, . . . , r + 2} with
N BV = {2, k∗ + 2}. Since S2LP is bounded, −M < αk∗ < M , ak∗,1 > 0, and
ak∗,2 > 0; therefore, cπ

k∗+2 = c1
ak∗,1

> 0 and cπ
2 = ak∗,2c1

ak∗,1
− c2, where cπ is the

calculated reduced cost. According to SA, c2
c1

≤ αk∗ and the conditions of Corollary
2 are satisfied. Therefore, c2ak∗,1 ≤ c1ak∗,2, which implies cπ

2 ≥ 0. Since ak∗,1 > 0,
the columns of BV = {3, 4, . . . , k∗ + 1, 1, k∗ + 3, . . . , r + 2} in SS2LP are linearly
independent and therefore, BV is an optimal basis to SS2LP.

Assume αk∗ = 2M , BV = {3, 4, . . . , j∗ + 1, 2, j∗ + 3, . . . , r + 2}, and N BV =
{1, j∗ + 2}. Since SS2LP is bounded, −M < α j∗ < M , a j∗,1 > 0, and a j∗,2 > 0;
therefore, cπ

j∗+2 = c2
a j∗,2

> 0 and cπ
1 = a j∗,1c2

a j∗,2
− c1. According to SA, α j∗ < c2

c1
and

the conditions of Corollary 1 are satisfied. Therefore, c1a j∗,2 < c2a j∗,1, which implies
cπ
1 > 0. Since a j∗,2 > 0, the columns of BV = {3, 4, . . . , j∗+1, 2, j∗+3, . . . , r+2}
in SS2LP are linearly independent, and BV is an optimal basis to SS2LP.

Assume that α j∗ �= −2M , αk∗ �= 2M , BV = {3, 4, . . . , j∗+1, 1, j∗+3, . . . , k∗+
1, 2, k∗ + 3, . . . , r + 2}, and N BV = { j∗ + 2, k∗ + 2}. The first step is to prove that
the columns of BV in SS2LP are linearly independent. Since α j∗ < c2

c1
≤ αk∗ ≤

2M , the conditions of Lemma 2 are satisfied. Thus, a j∗,2ak∗,1 < a j∗,1ak∗,2 and so
a j∗,2ak∗,1 − a j∗,1ak∗,2 < 0 (†). Consequently, the columns of BV in SS2LP are

linearly independent. One can verify that cπ
k∗+2 = −c2a j∗,1+c1a j∗,2

a j∗,2ak∗,1−a j∗,1ak∗,2
. The conditions

of Corollary 1 are satisfied, so a j∗,2c1 < a j∗,1c2. Combining this fact with (†) results

in cπ
k∗+2 > 0. Similarly, cπ

j∗+2 = c2ak∗,1−c1ak∗,2
a j∗,2ak∗,1−a j∗,1ak∗,2

. The conditions of Corollary 2

are satisfied, so c2ak∗,1 ≤ c1ak∗,2. Coupling this fact with (†) results in cπ
j∗+2 ≥ 0.

Thus, BV is an optimal basis for SS2LP. �

With the primary results, DPSM (Algorithm 2) is presented within the context of
a revised simplex framework. The reader can easily create a dictionary, or tableau
version. Even though not necessary, DPSM follows the spirit of Dantzig’s rule and
selects the two indices with the most negative reduced cost for the entering variables.
DPSM’s input is an SLP, a feasible basis BV (typically the slack variables), and a
sufficiently large number M . Observe that DPSM performs a classic pivot if there is
only one negative reduced cost (lines 14–22).

In the absence of degeneracy (Sect. 4.2), DPSMoptimally solves anLP following an
identical argument as the proof of correctness for SM. If the current solution has two or
more variables with negative reduced costs, then DPSMperforms a double pivot. If the
current solution has only one variable with negative reduced cost, then DPSM selects
this variable and performs a classic pivot. Therefore, either pivot results in an updated
basis with an improved objective value (considering a nondegenerate problem). Since
there are a finite number of bases, DPSM either finds a ray of unboundedness or the
optimal basis, which identifies the optimal solution.

In order to assess the benefit of DPSM, one should compare the improvement and
effort per iteration of SM and DPSM. Assume both methods have the same basic
feasible variables. If one of DPSM’s entering variables is identical to the entering
variable, xp, in SM, then the objective value from DPSM’s pivot is at least as good as
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Algorithm 2 - The double pivot simplex method (DPSM)
1: begin
2: while cBV T A.BV

−1A − c � 0 do
3: p ← argmin

p∈N\BV
cTBV A.BV

−1A.p − cp ;

4: q ← argmin
q∈N\(BV∪{p})

cTBV A.BV
−1A.q − cq ;

5: if cBV T A.BV
−1A.q − cq < 0 then

6: Let S2LP be: Maximize z = −(cBV
T A.BV

−1A.p − cp)xp − (cBV
T A.BV

−1A.q − cq )xq
Subject to (A.BV

−1A.p)xp + (A.BV
−1A.q )xq ≤ A.BV

−1b
xp ≥ 0 and xq ≥ 0;

7: Solve S2LP with SA;
8: if S2LP is unbounded then return SLP is unbounded;
9: if α j∗ = −2M then BVk∗ ← p;

10: if αk∗ = 2M then BVj∗ ← q;

11: if α j∗ �= −2M and αk∗ �= 2M then
12: BVj∗ ← p;
13: BVk∗ ← q;

14: else
15: θ ← M ;
16: for each i ∈ R do

17: if (A.BV
−1A.p)i > 0 and (A.BV

−1b)i
(A.BV

−1A.p)i
< θ then

18: θ ← (A.BV
−1b)i

(A.BV
−1A.p)i

;

19: l ← i ;
20: if θ = M then return SLP is unbounded;
21: else
22: BVl ← p;

23: return x∗
BV ← A.BV

−1b, x∗
N\BV = 0, and z∗ = cT x∗;

24: end

the objective value from SM’s pivot. Furthermore, SM and DPSM only pivot to the
same basis when SA returns α j∗ = −2M .

The theoretical effort required by an iteration of SM with a classic pivot involves
calculating A.BV

−1 and identifying an improving variable xp, which is achieved
by evaluating cBV T A.BV

−1A.N BV − cN BV . The ratio test calculates A.BV
−1A.p,

A.BV
−1b, and performs a division. Changing the entering variable with the leaving

variable requires O(1) effort. Numerous methods have been developed to decrease the
computational effort required to perform each of these tasks and the fastest running
times are dependent upon the implemented improvements. For example, finding the
inverse can be accomplished in O(r3) (Edmonds 1967; Schrijver 1998), but there are
faster methods to merely update an inverse (Strassen 1969; Coppersmith and Wino-
grad 1990; Williams 2012). Thus, the effort per iteration is limited by calculating the
inverse and identifying the entering and leaving variables. Consequently, each itera-
tion of SM requires O(rn + I (r)) effort where I (r) is the time required to find the
inverse of an r × r matrix.

The theoretical effort for an iteration of DPSM requires calculating A.BV
−1 and

identifying two improving variables, xp and xq . These steps are nearly identical to SM
and require identical theoretical effort. SA determines the leaving variables in O(S(r))
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effort, where S(r) is the time required to sort a set of r elements. Exchanging the basic
variables is performed again in O(1). Thus, each double pivot is restricted by calcu-
lating the inverse and identifying the entering variables, which requires O(rn+ I (r))
effort. Consequently, a double pivot and a classic pivot require the same theoretical
effort per iteration.

In practice, commercial or open source solvers do not calculate the inverse at every
iteration, instead solvers update the basis. Numerous researchers devised schemes to
efficiently update the basis matrix (Dantzig and Orchard-Hays 1954; Bartels 1971;
Forrest and Tomlin 1972; Reid 1982; Eldersveld and Saunders 1992; Suhl and Suhl
1993; Huangfu and Julian Hall 2015). Consequently, the theoretical run time of SM in
practice is O(rn +U (r)) whereU (r) is the effort required to update the basis matrix
of a problem with r constraints. Since n ≥ r due to the addition of slack or artificial
variables, SA’s run time is dominated. Thus, DPSM also requires O(rn+U (r)) effort
in practice. Example 2 demonstrates DPSM in a tableau format.

Example 2 Consider the following LP.

Maximize z = 20x1 + 12x2 + 15x3 + 6x4
Subject to x1 − 2x2 + 3x3 + x4 ≤ 99 (1)

x1 + x3 ≤ 40 (2)
4x1 + 9x2 + x3 + 4x4 ≤ 106 (3)
2x1 + 2x2 + x3 + x4 ≤ 60 (4)
2x1 − x2 + 5x3 ≤ 170 (5)
x1, x2, x3, x4 ≥ 0

Table 1 contains three tableaus that demonstrate DPSM’s pivots. The first tableau
represents the above LP in standard form and DPSM begins with BV = {5, 6, 7, 8, 9}.
The variables with the two most negative reduced costs correspond to x1 and x3 with
p = 1 and q = 3. SA solves maximize z = 20x1 +15x3 subject to A.{1,3}(x1, x3)T ≤
b, x1 ≥ 0, and x3 ≥ 0. SA calculates α = (3, 1, 1

4 ,
1
2 ,

5
2 , 2M,−2M) and identifies

α4 = 1
2 < c3

c1
= 15

20 ≤ α2 = 1 with x = (x1, x3) = (20, 20). This point satisfies

all constraints, and SA returns j∗ = 4, k∗ = 2, α4 = 1
2 , and α2 = 1. Due to the

returned values, the nonbasic indices 1 and 3 replace the fourth and second elements
in BV , resulting in BV = {5, 3, 7, 1, 9}. The second tableau in Table 1 demonstrates
this double pivot’s outcome.

The next iteration begins by identifying the variables with the two most negative
reduced costs, x2 and x4, resulting in p = 2 and q = 4. SA solves maximize z =
2x2+ x4 subject to A−1

.BV A.{2,4}(x2, x4)T ≤ A−1
.BV b, x2 ≥ 0, and x4 ≥ 0. SA calculates

α = ( 32 , 3M, 1
3 ,

1
2 ,

3
5 , 2M,−2M), identifies α3 = 1

3 < c4
c2

= 1
2 ≤ α4 = 1

2 , and
assigns x to (−14, 48). SA eventually determines that the optimal solution occurs at
x∗ = (0, 6), the intersection point of (3) and (6), and returns j∗ = 3, k∗ = 6, α3 = 1

3 ,
and α6 = 2M . Since αk∗ = 2M , the nonbasic index 4 replaces the third element in
BV , resulting in BV = {5, 3, 4, 1, 9}. The third tableau in Table 1 presents the result
of this double pivot. Observe that there are no variables with negative reduced cost in
the third tableau. Thus, BV = {5, 3, 4, 1, 9} is an optimal basis to the SLP and DPSM
reports the optimal solution z∗ = 706 and x∗ = (14, 0, 26, 6, 1, 0, 0, 0, 12).
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Table 1 Double pivot simplex tableau—Example 2

BV z x1 x2 x3 x4 x5 x6 x7 x8 x9 RHS

1 − 20 − 12 −15 − 6 0 0 0 0 0 0

x5 0 1 − 2 3 1 1 0 0 0 0 99

x6 0 1 0 1 0 0 1 0 0 0 40

x7 0 4 9 1 4 0 0 1 0 0 106

x8 0 2 2 1 1 0 0 0 1 0 60

x9 0 2 − 1 5 0 0 0 0 0 1 170

1 0 −2 0 −1 0 10 0 5 0 700

x5 0 0 2 0 3 1 − 5 0 2 0 19

x3 0 0 − 2 1 −1 0 2 0 − 1 0 20

x7 0 0 3 0 1 0 2 1 − 3 0 6

x1 0 1 2 0 1 0 − 1 0 1 0 20

x9 0 0 5 0 3 0 − 8 0 3 1 30

1 0 1 0 0 0 12 1 2 0 706

x5 0 0 − 7 0 0 1 − 11 −3 11 0 1

x3 0 0 1 1 0 0 4 1 − 4 0 26

x4 0 0 3 0 1 0 2 1 − 3 0 6

x1 0 1 − 1 0 0 0 − 3 −1 4 0 14

x9 0 0 − 4 0 0 0 − 14 −3 12 1 12

When comparing SM to DPSM, SM solves the LP from Example 2 with four
iterations. Starting with BV = {5, 6, 7, 8, 9}, SM moves to the following bases:
{5, 6, 1, 8, 9}, {5, 6, 1, 3, 9}, {5, 2, 1, 3, 9}, and {5, 4, 1, 3, 9}. Consequently, DPSM
performs 50% fewer iterations than SM.

Observe that DPSM has three types of double pivots and this example presents two
of them. The first double pivot replaces two variables in the basis. The second double
pivot exchanges only one variable in the basis, which implies that one of the entering
variables, x2, is also a “leaving” variable. In this pivot, the index that enters the basis
corresponds to the variable with the second most negative reduced cost, x4. The other
type of double pivot (α j∗ = −2M) corresponds exactly to a classic pivot and the
variable with the most negative reduced cost is the only entering variable.

Double pivots are guaranteed to improve the objective function by at least as much
as classic pivots. The classic pivot from the starting basis results in an objective value
of z = 530. Thus, the relative improvement of a double pivot is

( 700
530 − 1

) × 100% =
32.1%. Performing a classic pivot from BV = {5, 3, 7, 1, 9} results in an objective
value of z = 704. The second double pivot’s relative improvement is

( 706−700
704−700 − 1

)×
100% = 50%. Thus, even if a double pivot has a single entering and leaving variable,
the benefit may be substantial.
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4.2 The double pivot simplex method and degeneracy

Degeneracy causes issues for SM and occurs when at least one basic variable of an
SLP equals zero. Degenerate SLPs may force SM to complete extra operations by
performing multiple iterations at the same feasible solution. Additionally, degenerate
SLPs may cycle, which prohibits SM from terminating. Implementing anti-cycling
techniques enables SM to avoid cycling and terminate (Bland 1977; Todd 1985; He
1999; Elhallaoui et al. 2010; Raymond et al. 2010). This section demonstrates that
implementing SA instead of the ratio test in a simplex framework diminishes some of
the issues caused by degeneracy.

Theorem 3 guarantees that an optimal solution to a bounded SA2LP occurs at
the intersection point of the j th and kth constraints as long as this point is feasible,
α j < c2

c1
, αk ≥ c2

c1
, and SA2LP j,k is bounded. SA returns constraints j∗ and k∗, which

not only fulfill Theorem 3’s conditions, but also satisfy αk∗ − α j∗ ≤ αk − α j for all
j and k pairs of constraints that meet Theorem 3’s conditions (Algorithm 1, line 5).
The selection of these particular constraints results in an optimal basis according to
Theorem 4. Example 3 provides a degenerate problem that helps explain this concept.

Example 3 Consider the following S2LP.

Maximize z = 5x1 + 4x2
Subject to x1 − x2 ≤ 3 (1)

x1 ≤ 3 (2)
2x1 + x2 ≤ 6 (3)
3x1 + 2x2 ≤ 10 (4)
x1 + x2 ≤ 4 (5)
2x1 + 3x2 ≤ 10 (6)
x1 + 2x2 ≤ 6 (7)
x2 ≤ 3 (8)
−x1 + x2 ≤ 3 (9)
−x1 − x2 ≤ 0 (10)
x1, x2 ≥ 0

The graphical representation of the S2LP is presented in Fig. 4. Solving this S2LP
with SA results in z∗ = 18, x∗ = (2, 2), j∗ = 4, k∗ = 5. Observe that α4 = 2

3 < c2
c1

=
4
5 < α5 = 1 and α5−α4 = 1

3 . There are six pairs of constraints that satisfy Theorem 3
and identify the optimal solution: (3) and (5), (3) and (6), (3) and (7), (4) and (5), (4)
and (6), and (4) and (7). The reader can verify that none of the bases corresponding
to these pairs of constraints are optimal unless the basis is derived from (4) and (5).
Therefore, SA identifies the optimal basis even for degenerate S2LPs. Observe that
the algorithms by Shamos and Hoey (1976), Megiddo (1983), or Dyer (1984) all solve
two variable LPs. However, these algorithms may end with any one of these six pairs
of constraints intersecting at the optimal solution. Consequently, these fast algorithms
do not always identify the optimal basis and cannot be used as a multiple pivoting
strategy within a simplex framework as previously mentioned.
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Fig. 4 Graphical representation
of Example 3

In contrast, implementing classic pivots on this degenerate S2LP demonstrates a
weakness of SM. Performing four classic pivots with Bland’s rule results in a basis
with constraints (5) and (6). Even though this basis identifies the optimal solution, one
more pivot is required to obtain the optimal basis. Thus, degeneracy caused additional
work for SM, but not for DPSM.

In order to determine whether or not DPSM performs better than SM on degenerate
problems that cycle, consider the 11 instances summarized by Gass and Vinjamuri
(2004). These 11 problems cycle when solved with SM without any anti-cycling
technique. However, DPSM identifies the optimal solution (or an unbounded LP)
in every one of these 11 LPs. Therefore, DPSM avoids cycling on these frequently
demonstrated degenerate LPs.

In conclusion, DPSM handles the problems caused by degenerate LPs more effec-
tively than SM. One should not infer from this section that DPSM completely
eliminates all issues of degenerate LPs, and determining whether or not DPSM cycles
is an important unresolved research question.

5 Computational study

This section discusses the authors’ attempts to determine whether or not DPSM is
computationally faster than SM. The study was performed on an Intel� CoreTM i7-
6700 3.4GHz processor with 32 GB of RAM, and coded in C++. A portion of the
study implements DPSM and SM with CPLEX Version 12.5, a high performance
mathematical programming solver. CPLEX’s preprocessing operations were turned
off in order to measure the true effectiveness of DPSM over SM.
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5.1 Implementation of DPSM and SM

The authors began the study by implementing DPSM and SM explicitly. The code
not only computes A.BV

−1 at every iteration using LU decomposition (Press et al.
2007), but determines explicitly the reduced cost cBV T A.BV

−1A − c of all nonbasic
variables, the right-hand side A−1

.BV b, and the constraint values A
−1
.BV A.p and A−1

.BV A.q

of both improving variables.
This implementation was tested on 3000 randomly generated instances and DPSM

outperformed SM with an average improvement in solution time of approximately
17% for dense instances and 30% for sparse problems. Furthermore, DPSM also
had an average of approximately 17% fewer pivots for dense instances and 30% for
sparse problems. The number of pivots was highly correlated to the solution time.
These instances were also run with CPLEX’s primal algorithm. CPLEX surpassed
both methods and solved the instances in a few seconds, while both DPSM and SM
required hours. This result is not surprising as explicitly implementing DPSM or SM
eliminates decades of computational advancements.

To attempt to take advantage of these computational advancements, the authors
implemented DPSM and SM using many of the routines available in CPLEX. Enter-
ing variable for SM is obtained from the CPXgetdj routine. Routines CPXgetx and
CPXbinvacol are used to perform the ratio test and determine the leaving variable. The
CPXpivot routine updates the basis by swapping the leaving variable with the entering
variable.

A similar implementation is followed for DPSM. Both entering variables are
obtained from the CPXgetdj routine. Two calls to the CPXbinvacol routine and one
call to the CPXgetx routine creates an S2LP. SA solves the S2LP and identifies the
leaving and entering variable(s). Unfortunately, the CPXpivot routine only allows for
a single exchange of variables. Thus, if two variables enter the basis, the CPXpivot
routine is called twice. If either of the other type of pivots occur, the CPXpivot routine
is called once.

Both DPSM and SM require a starting feasible basis, which can be obtained from
a Phase 1 implementation using either DPSM or SM. In this study, CPLEX’s Phase 1
reported a feasible basis, which is used as the starting basis for both DPSM and SM.

Solution times obtained with these implementations became comparable with
CPLEX’s primal algorithm. Obviously, these implementations are still slower, but
it only slowed the solution time by less than 50%. With a reasonable implementation
of DPSM and SM, the study solved benchmark problems from Netlib (Gay 1985) and
MIPLIB (Koch et al. 2011). Instances from MIPLIB are mixed integer programs and
were changed to LPs by eliminating the integrality constraints. To avoid the upper
and lower bound simplex implementations, additional constraints were added to the
problems in order to represent variables with lower and upper bounds.

During the computational experiments, the authors encountered serious issues with
numerical instability from theCPXpivot routine. This issue prohibited DPSM and SM
from terminating and/or led to numerically singular bases for many of the benchmark
instances.When a basis is found to be singular, CPLEX removes one or more variables
from the current basis and re-includes these variables on further iterations when an
optimal basis is obtained. If after re-including these variables the basis is no longer
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optimal, then CPLEX proceeds until an optimal basis is found; otherwise, an optimal
solution to the problem has been found.

Unfortunately, the authors could not duplicate CPLEX’s internal repair process in
the implementation of SM or DPSM. Failure to correctly repair the basis may result
in incorrect and/or illegal pivots. The authors attempted to fix this problem through
more frequent refactoring of the basis (CPX_PARAM_REINV ), restricting the number
of times CPLEX repairs the basis (CPX_PARAM_SINGLIM), and tracking the kappa
value to identify when a pivot makes the basis become unstable. However, none of
these attempts resolved the issue.

The reader should know thatCPLEX’s numerical instability occurred in bothDPSM
and SM. The computational experiments found problems where DPSM solved, but
SMdid not, and vice versa. Therefore, this computational study only reports the results
of the benchmark problems where both DPSM and SM solved the instance.

5.2 Computational results and analysis

Tables 2 and 3 describe all instances solved from Netlib and MIPLIB, respectively.
These tables present the number of pivots (Phase 2 only) performed by each method,
including CPLEX’s primal algorithm. It also describes the percentage improvement
obtained with DPSM over SM and DPSM over CPLEX. Improvement is defined as
δ DPSM

SM
= ySM −yDPSM

ySM
× 100% and δ DPSM

CPLEX
= yCPLEX −yDPSM

yCPLEX
× 100% where yDPSM

is the number of pivots performed by DPSM, ySM indicates the number of pivots
performed by SM, and yCPLEX equals the number of pivots performed by CPLEX’s
primal algorithm.

Tables 2 and 3 show that DPSM averages 41% fewer pivots than SM and 23% fewer
pivots thanCPLEX’s primal algorithm. Each double pivot identified an average of only
2 constraints that updated x , implying that Theorem 2 and Corollaries 3, 4, and 5 are
infrequently implemented. The study shows that on average 83% of pivots entered two
variables in the basis, 2% entered the variable with the most negative reduced cost,
and 15% entered the variable with the second most negative reduced cost. Overall,
only 0.05% of the iterations had a single negative reduced cost, which implies that the
vast majority of the iterations pivoted with SA and not with the ratio test.

The average objective’s relative improvement per pivot of all benchmark instances
solved is δ = 170%. Define the objective’s improvement per iteration as δ =(
zdouble pivot−zcurrent

zclassic−zcurrent
− 1

)
× 100% where zcurrent is the z value of the current basis,

zdouble pivot is the z value after a double pivot, and zclassic is the z value after
a classic pivot. If a classic pivot does not improve the objective function, then

δ =
(
zdouble pivot−zcurrent

zcurrent

)
× 100%. In other words, δ represents the percent in objec-

tive improvement that occurs by using a double pivot compared to the improvement
attributed to the use of a classic pivot. Thus, all values of δ are averaged to create δ.

When analyzing based on pivot type, δ = 473% for double pivots that enter two
nonbasic variables into the basis, δ = 135% for double pivots that enter the variable
with the second most negative reduced cost, and obviously δ = 0% for double pivots
that enter the variable with the most negative reduced cost.
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Table 2 Results of instances from Netlib

Name Rows Columns Nonzeros Number of Pivots δ DPSM
SM

(%) δ DPSM
CPLEX

(%)

CPLEX SM DPSM

ADLITTLE 57 97 465 58 100 56 44.0 3.4

AGG 489 163 2541 64 85 45 47.1 29.7

AGG2 517 302 4515 85 87 55 36.8 35.3

BANDM 306 472 2659 227 305 152 50.2 33.0

BEACONFD 174 262 3476 88 95 52 45.3 40.9

BRANDY 221 249 2150 194 271 208 23.2 −7.2

CZPROB 930 3523 14173 1122 3741 1681 55.1 −49.8

DEGEN2 445 534 4449 1041 6771 1145 83.1 −10.0

FIT1D 25 1026 14430 911 1064 847 20.4 7.0

FIT1P 628 1677 10894 987 1357 797 41.3 19.3

FIT2D 26 10500 138018 20166 13298 11663 12.3 42.2

GANGES 1310 1681 7021 294 678 268 60.5 8.8

GROW15 301 645 5665 977 871 759 12.9 22.3

GROW7 141 301 2633 208 246 139 43.5 33.2

KB2 44 41 291 35 40 37 7.5 −5.7

LOTFI 154 308 1086 177 377 261 30.8 −47.5

RECIPELP 92 180 752 33 34 16 52.9 51.5

SC50A 51 48 131 20 18 11 38.9 45.0

SC50B 51 48 119 19 16 11 31.3 42.1

SCAGR25 472 500 2029 357 433 259 40.2 27.5

SCAGR7 130 140 553 81 84 52 38.1 35.8

SCFXM1 331 457 2612 171 227 118 48.0 31.0

SCFXM2 661 914 5229 327 503 276 45.1 15.6

SCFXM3 991 1371 7846 502 794 445 44.0 11.4

SCORPION 389 358 1708 270 271 242 10.7 10.4

SHARE1B 118 225 1182 150 404 198 51.0 −32.0

SHARE2B 97 79 730 40 80 39 51.3 2.5

SHELL 537 1775 4900 325 404 244 39.6 24.9

SHIP04L 403 2118 8450 346 366 195 46.7 43.6

SHIP04S 403 1458 5810 155 145 76 47.6 51.0

SHIP08L 779 4283 17085 668 717 382 46.7 42.8

SHIP08S 779 2387 9501 454 567 291 48.7 35.9

SHIP12L 1152 5427 21597 276 262 153 41.6 44.6

SHIP12S 1152 2763 10941 187 187 101 46.0 46.0

STANDATA 360 1075 3038 138 113 62 45.1 55.1

STANDMPS 468 1075 3686 418 409 245 40.1 41.4

STOCFOR1 118 111 474 91 59 32 45.8 64.8

STOCFOR3 16676 15695 74004 18931 21221 18254 14.0 3.6

Average 40.2 22.4
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Table 3 Results of instances from MIPLIB

Name Rows Columns Nonzeros Number of Pivots δ DPSM
SM

(%) δ DPSM
CPLEX

(%)

CPLEX SM DPSM

50v-10 233 2013 2745 222 212 116 45.3 47.7

dfn-gwin-UUM 158 938 2632 137 126 76 39.7 44.5

ger50_17_trans 499 22414 172035 751 623 345 44.6 54.1

germanrr 10779 10813 175547 78 77 55 28.6 29.5

ic97_potential 1046 728 3138 47 48 24 50.0 48.9

janos-us-DDM 760 2184 6384 342 318 161 49.4 52.9

mcsched 2107 1747 8088 3118 4158 3666 11.8 −17.6

noswot 182 128 735 10 33 10 69.7 0.0

ns1766074 182 100 666 83 224 137 38.8 −65.1

timtab1 171 397 829 54 53 30 43.4 44.4

Average 42.1 23.9

Even though DPSM outperforms SM and CPLEX’s primal algorithm in number of
pivots, the question of whether or not DPSM is computationally faster still remains.
Tables 2 and 3 do not include solution times because the vastmajority of these instances
were solved by DPSM, SM and CPLEX’s primal algorithm in less than a tenth of a
second. Obtaining reliable data on such small time increments is both inconclusive
and unconvincing. It suffices to say that DPSM, SM, and CPLEX’s primal algorithm
were very close in computational time for these instances.

To provide a partial answer, some dense and sparse random LPs that did not present
numerical instability issues with respect to the CPXpivot routine were solved with
DPSM and SM. These LPs were large enough to produce reasonable solution times for
comparison. In total, 50 problems that ranged from2000 to 10,000 variables and 1000–
5000 constraints were solved. On average, these problems solved with DPSM in 62s,
SM in 54s, and CPLEX’s primal algorithm in 39s. When broken down by steps, SM
spent on average 1% of the solution time to find the entering variable, 6% to obtain the
right-hand side values and constraint matrix values of the entering variable, 1% to per-
form the ratio test, 91% to swap the leaving and entering variables using the CPXpivot
routine, and 1% for all other operations. Similarly, DPSM spent on average 1% to find
both entering variables, 11% to create S2LPs, 1% to find the leaving variable(s) with
SA, 86% to exchange the leaving with entering variable(s) using theCPXpivot routine
(called once or twice depending on the type of pivot), and 1% for all other operations.
Therefore, the vastmajority of time is spent pivoting and creating data for the ratio tests
or S2LPs. Thus, SA is similar in computational speed to the ratio test, which follows
the theoretical analysis that both algorithms have the same theoretical running time per
iteration.

This small study demonstrates that SA does not significantly impact DPSM’s solu-
tion time. The most expensive step corresponds to the CPXpivot routine. This routine
not only updates the basis’ inverse factorization, but also calculates the solution of all

123



134 F. Vitor, T. Easton

basic variables, reduced cost values, dual price values, etc. Unfortunately, DPSM fre-
quently calls theCPXpivot routine twice during an iteration, which forces unnecessary
work. Thus, this implementation of DPSM is at a competitive disadvantage compared
to both SM and CPLEX’s primal algorithm. Consequently, only a full implementation
of DPSM in a quality commercial or open source linear programming solver can truly
answer whether or not DPSM is faster than SM. Fully implementing DPSM requires
the development of an efficient method to update the basis for double pivots.

6 Conclusions and future research

This paper introduces the double pivot simplex method, which improves one of
the most famous and useful algorithms in science. At each iteration, the double
pivot simplex method pivots on two variables, while the simplex method pivots
on only one. The paper first presents the slope algorithm, a fast method to find
the optimal basis and the optimal solution of a two variable linear program. Com-
bining the slope algorithm within a simplex framework creates the double pivot
simplex method. The slope algorithm is fast, and the most time-consuming step
is sorting an array of numbers with size equal the number of constraints. This
result enables an iteration of the double pivot simplex method to have the same
theoretical running time as an iteration of the simplex method. Moreover, the objec-
tive value improvement per iteration of a double pivot is at least as large as the
improvement from a classic pivot. In addition, the double pivot simplex method
also diminishes some of the negative effects caused by degenerate linear programs.
Computational experiments tested the double pivot simplex method on a small
set of benchmark instances from Netlib and MIPLIB and showed that it reduces
the number of pivots compared to the simplex method by over 40% on aver-
age.

The double pivot simplex method lays the foundation for a host of important future
research topics. The first topic should determine the benefit of double pivots in state
of the art linear programming solvers. The primary research task should develop an
efficient method to update the basis factorization with two variables.

Another topic should extend double pivots to other simplex method results, includ-
ing creating the double pivot dual simplexmethod, developing the double pivot simplex
method with upper bounds, finding a small instance that cycles with the double pivot
simplex method (or proving that the double pivot simplex method does not cycle),
and generating pivoting rules to avoid cycling for the double pivot simplex method.
Furthermore, the development of a triple (or more) pivot method is another promising
research topic.

Research should also investigate how the double pivot simplex method can benefit
from parallel computing. Since DPSM requires more work per iteration than SM
(creating S2LP), can a portion of this step be performed in parallel? Along the same
lines, if one answers the aforementioned triple or more pivot problem, a parallel
implementation should become more effective.

Expanding the applicability of the slope algorithm generates additional future
research topics. Currently, the majority of optimization algorithms move from one
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solution to another solution by following a single direction, which involves solving
a one dimensional search problem. In contrast, the slope algorithm moves between
solutions over a two dimensional space. Consequently, the slope algorithm is a two
dimensional search algorithm. Can two dimensional search methods be developed to
improve the solution time of interior point methods, nonlinear programming algo-
rithms, and other optimization techniques?
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