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Abstract We investigate a class of optimal stopping problems arising in, for exam-
ple, studies considering the timing of an irreversible investment when the underlying
follows a skew Brownian motion. Our results indicate that the local directional pre-
dictability modeled by the presence of a skew point for the underlying has a nontrivial
and somewhat surprising impact on the timing incentives of the decision maker. We
prove that waiting is always optimal at the skew point for a large class of exercise
payoffs. An interesting consequence of this finding, which is in sharp contrast with
studies relying on ordinary Brownian motion, is that the exercise region for the prob-
lem can become unconnected even when the payoff is linear. We also establish that
higher skewness increases the incentives to wait and postpones the optimal timing of
an investment opportunity. Our general results are explicitly illustrated for a piecewise
linear payoff.
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1 Introduction

Standard Brownian motion constitutes without a doubt the most commonly utilized
model for the factor dynamics driving the underlying stochasticity in financial models.
Its analytical tractability and computational facility makes it a compelling model with
many desirable properties ranging from the independence of its increments to the
Gaussianity of its probability distribution. Unfortunately, for many financial return
variables the presence of autocorrelation of the driving dynamics and/or skewness of
the probability distributions constitutes a rule rather than an exception. It is clear that
in such a case relying on a simple Gaussian structure may result in wrong conclusions
concerning both the valuation and the timing of investment opportunities.

In contrast with the standard Gaussian framework, relatively recent empirical
research indicates that even though the exact value of an asset is unpredictable, the
direction towards which the asset value is expected to develop may be predictable to
some extent [see, for example, Anatolyev and Gerko (2005), Anatolyev and Gospodi-
nov (2010), Bekiros andGeorgoutsos (2008a, b), Chevapatrakul (2013), Christoffersen
and Diebold (2006), Christoffersen et al. (2006), Nyberg (2011), Rydberg and Shep-
ard (2003) and Skabar (2013)]. More precisely, expressing the return of an asset as
the product of its sign and its absolute value and investigating the behavior of these
factors separately indicates that the sign variable capturing the directional behavior of
the return can be forecasted correctly with an accuracy ranging from 52% to even 60%
[for a recent survey of studies focusing on directional predictability, see Hämäläinen
(2015)]. This empirical observation has not went completely unnoticed in theoretical
finance studies and it has resulted into the introduction and the analysis of driving
dynamics possessing at least some of the skewness and the local (in space) predictive
properties encountered in financial data. One of the proposed modeling approaches is
based on skew Brownian motion and skew diffusion processes in general (cf. Corns
and Satchell 2007; Decamps et al. 2005, 2006a, b; Presman 2012; Presman and Yurin-
sky 2012; Rosello 2012). Basically, a skew Brownian motion behaves like an ordinary
Brownian motion outside the origin but at the origin the process has more tendency
to move, say, upwards than downwards resulting in a sense into a larger number of
positive than negative excursions starting from the origin. In that way it offers a math-
ematical model for local directional predictability of the driving random factor and,
consequently, to an asymmetric and skewed probability distribution of the underlying
randomdynamics. For results on skewBrownianmotion, see, for example,Appuhamil-
lage et al. (2011), Appuhamillage and Sheldon (2012), Barlow (1988), Borodin and
Salminen (2015), Burdzy and Chen (2001), Harrison and Shepp (1981), Itô and McK-
ean (1974), Lejay (2006), Lejay et al. (2014), Ouknine (1991), Vuolle-Apiala (1996)
and Walsh (1978).

Motivated by the arguments above, we investigate in this paper how the singu-
larity generated by the positive skewness of the underlying driving diffusion affect
optimal stopping policies within an infinite horizon setting. Our approach for solving
the considered optimal stopping problem is based on the scrutinized analysis of the
superharmonic functions. For papers on optimal stopping, where the superharmonic
functions play prominent role, we refer to Alvarez (2003), Beibel and Lerche (1997),
Beibel and Lerche (2001), Christensen and Irle (2011), Crocce and Mordecki (2014),
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Dayanik and Karatzas (2003), Ekström and Villeneuve (2006), Salminen (2000) and
Salminen and Ta (2015) and references therein. In particular, we use the Martin repre-
sentation theory of superharmonic functions (cf. Christensen and Irle 2011; Salminen
1985). We demonstrate that positive skewness increases the incentives to wait at the
singularity so radically that the skewpoint is always included in the continuation region
provided that the exercise payoff is increasing at the skew point. This observation is
in sharp contrast with results based on standard Brownian motion and illustrates how
even relatively small local predictability of the underlying diffusion generates incen-
tives to wait and, in that way, postpone the optimal stopping of the underlying process.
An interesting and to some extent surprising implication of this observation is that the
optimal stopping policy for skew BM can become a three-boundary policy even in
the case where the exercise payoff is piecewise linear (call option type). Such config-
urations cannot appear in models relying on standard BM. We also demonstrate that
the sign of the dependence of the value of the optimal policy and the skewness of the
underlying diffusion is positive. Consequently, higher skewness increases the value of
the optimal policy and expands the continuation region. An interesting implication of
this observation is that the value of the optimal stopping strategy for a positively skew
BM dominates the corresponding value for standard BM.

The contents of this study are as follows. The basic properties of the underlying
dynamics, i.e., skew Brownian motion, are discussed in Sect. 2. In Sect. 3 the con-
sidered stopping problem and some key facts are presented. Our main findings on
optimal stopping of skew Brownian motion are summarized in Sect. 4. These results
are then numerically illustrated in an explicitly parameterized piecewise linear model
in Sect. 5.

2 Underlying dynamics: Skew Brownian motion

Our main objective is to investigate how the potential directional asymmetry of the
underlying diffusion affects the optimal exercise strategies and their values. In order
to accomplish this task, we assume that the underlying diffusion process is a skew
Brownian motion (abbreviated from now on as SBM) characterized as the unique
strong solution of the stochastic equation (cf. Harrison and Shepp 1981)

Xt = x + Wt + (2β − 1)l Xt , (1)

where x ∈ R is the initial value of the process, β ∈ [0, 1] is a parameter capturing
the skewness of the process, {Wt }t≥0 is a standard Brownian motion and {l Xt }t≥0 is
the local time at zero of the process {Xt }t≥0 normalized with respect to Lebesgue’s
measure. As is clear from (1), the process {Xt }t≥0 coincides with standard Brownian
motion when β = 1/2 and with reflected Brownian motion when β = 0 or β = 1.
The process {Xt }t≥0 behaves like ordinary Brownian motion outside the skew point 0
and has for all t > 0 the property P0[Xt ≥ 0] = β (cf. Borodin and Salminen 2015, p.
130). Thus, the process has in a sense more tendency to move up than down from the
origin whenever β > 1/2. Moreover, the known transition probability density reads
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as [see, for example, Borodin and Salminen (2015, p. 130) or Lejay (2006, p. 420)]

Px [Xt ∈ dy] =
(

1√
2π t

e− (x−y)2

2t + (2β − 1)sgn(y)
1√
2π t

e− (|x |+|y|)2
2t

)
dy. (2)

The scale function and the speed measure of X are given by

S(x) =
{
x/β, x ≥ 0,

x/(1 − β), x ≤ 0,

and

m(dx) =
{
2βdx, x > 0,

2(1 − β)dx, x < 0,

respectively. The fact that S(x) → ±∞ as x → ±∞ implies that X is recurrent.
Finally, the increasing and the decreasing fundamental solutions associated with X
are (cf. Borodin and Salminen 2015, p. 130)

ψr (x) = eθx −
(
1 − 1

2β

) (
eθx − e−θx)+ =

{
1
2β e

θx +
(
1 − 1

2β

)
e−θx , x ≥ 0,

eθx , x ≤ 0,
(3)

and

ϕr (x) = e−θx + 2β − 1

2(1 − β)
(e−θx −eθx )+ =

{
e−θx , x ≥ 0,

1
2(1−β)

(
(1 − 2β)eθx + e−θx

)
, x ≤ 0,

(4)
respectively, where θ = √

2r is the so-called Wronskian of the fundamental solutions
with respect to the scale function. It is easily seen thatψr and ϕr are differentiable with
respect to S everywhere (also at 0), but not in the ordinary sense at 0. In particular, we
notice that

lim
x→0− ψ ′

r (x) = θ and lim
x→0+ ψ ′

r (x) = θ

(
1 − β

β

)
. (5)

Recall also that the Laplace transformof the first hitting time τ̃a = inf{t ≥ 0 : Xt = a}
to the state a ∈ R can be expressed as follows (cf. Borodin and Salminen 2015, p. 18)

Ex

[
e−r τ̃a

]
=

{
ψr (x)/ψr (a), x ≤ a,

ϕr (x)/ϕr (a), x ≥ a.
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3 Problem setting and some preliminary results

Our task is to investigate for SBM X with β > 1/2 how the skewness and the resulting
local directional predictability of the underlying affects the value and optimal exercise
policy in the optimal stopping problem (OSP):
Find a stopping time τ ∗ such that

V (x) := sup
τ∈T

Ex
[
e−rτ g(Xτ )

] = Ex

[
e−rτ∗

g(Xτ∗)
]
, (6)

where r > 0 denotes the prevailing discount rate, T is the set of all stopping times
with respect to the natural filtration generated by X , and g:R 
→ R+ is the exercise
reward satisfying:

(g1) g is continuous, non-decreasing, non-negative, and has finite left and right
derivatives,

(g2) limx→∞ g(x)/ψr (x) = 0 and limx→−∞ g(x)/ψr (x) = 0.

In (6) we use the convention that if τ(ω) = ∞ then

e−rτ(ω)g(Xτ(ω)(ω)) := lim sup
t→∞

e−r t g(Xt (ω)).

As is known from the literature on optimal stopping V is the smallest r -excessive
majorant of g [cf. Theorem 1 on p. 124 of Shiryaev (1978)]. Recall that for a regular
diffusion on R a measurable function h:R 
→ R+ is called r -excessive if it satisfies
for all x ∈ R and t ≥ 0 the inequality (cf. Borodin and Salminen 2015, pp. 32–35)

Ex
[
e−r t h(Xt )

] ≤ h(x)

as well as the limiting condition

lim
t↓0 Ex

[
e−r t h(Xt )

] = h(x).

As usual, we call Γ := {x : V (x) = g(x)} the stopping region and C := {x : V (x) >

g(x)} the continuation region. Let

M := argmax
x∈R

{g(x)/ψr (x)} (7)

denote the set of points at which the ratio g/ψr is maximized. We can now prove the
following:

Lemma 1 The value of the optimal policy is finite, i.e. V (x) < ∞ for all x ∈ R.
The stopping region is nonempty; in fact, M ⊂ Γ . Moreover, if x∗ ∈ M, then
(−∞, x∗)\M ⊂ C.
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Proof Assumptions (g1) and (g2) guarantee that the set of maximizers M is non-
empty. Hence, for all x ∈ R it holds that

V (x) = sup
τ∈T

Ex

[
e−rτ g(Xτ )

ψr (Xτ )
ψr (Xτ )

]
≤ sup

y∈R
g(y)

ψr (y)
sup
τ∈T

Ex
[
e−rτψr (Xτ )

]

≤ ψr (x) sup
y∈R

g(y)

ψr (y)
.

(8)

For the last inequality in (8) we use the optional sampling theorem which is justified
since {e−r tψr (Xt )}t≥0 is a positive supermartingale. This proves that V (x) < ∞ for
all x ∈ R. In order to show that M ⊂ Γ , let x∗ ∈ M and utilize (8) to obtain

V (x∗) ≤ ψr (x
∗) g(x∗)

ψr (x∗)
= g(x∗)

proving that x∗ ∈ Γ . Finally, let x ∈ (−∞, x∗)\M. It is then clear that since x /∈ M

V (x) ≥ Ex
[
e−rτx∗ g(Xτx∗ )

] = ψr (x)
g(x∗)
ψr (x∗)

> g(x) (9)

demonstrating that x ∈ C as well.

Next we establish a result used to verify that a candidate strategy is optimal. This is
essentially Corollary on p. 124 in Shiryaev (1978).We present the proof for readability
and completeness.

Lemma 2 Let A be a nonempty Borel subset of R and τA := inf{t ≥ 0 : Xt ∈ A}.
Assume that the function

V̂ (x) := Ex
[
e−rτA g(XτA)

]

is r-excessive and dominates g. Then, V = V̂ and τA is an optimal stopping time.
Moreover, τA is finite almost surely.

Proof Clearly, τA < ∞ almost surely since X is recurrent and A is nonempty. By the
definition of V it holds for all x

V (x) = sup
τ∈T

Ex
[
e−rτ g(Xτ )

] ≥ Ex
[
e−rτA g(XτA)

] = V̂ (x).

On the other hand, V̂ being an r -excessive majorant of g yields

V (x) = sup
τ∈T

Ex
[
e−rτ g(Xτ )

] ≤ sup
τ∈T

Ex

[
e−rτ V̂ (Xτ )

]
≤ V̂ (x).

Consequently, V = V̂ and τA is an optimal stopping time.
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In many optimal stopping problems the set A appearing in Lemma 2 turns out to
be Γ explaining the terminology “stopping set” for Γ . This is also the case in our
subsequent analysis where we establish conditions under which the optimal stopping
rule equals τΓ .

4 Main results

Typically optimal stopping problems of the type (6) can be investigated quite efficiently
by relying on variational inequalities and approaches utilizing the differential operator
associated with the generator of the underlying diffusion. Unfortunately, the use of
those approaches for SBM is challenging due to the extra drift component involving
a local time term at the skew point, see stochastic equation (1). In order to circumvent
this problem, we first focus on the general properties of r -excessive functions and
characterize general conditions under which the skew point (i.e. the origin) is in the
continuation region.

Proposition 1 Assume that either 0 ≤ g′(0−) < g′(0+) or 0 < g′(0−) ≤ g′(0+).
Then, for SBM with β > 1/2 the state 0 is for all r > 0 in the continuation region
C = {x : V (x) > g(x)} .
Proof Sinceψr and ϕr are differentiable everywhere with respect to the scale function
S it follows that any r -excessive function h has the left and the right scale derivatives
d−h/dS and d+h/dS, respectively, and these satisfy for all x [cf. Corollary 3.7 in
Salminen (1985)]

d−h
dS

(x) ≥ d+h
dS

(x). (10)

Let V be the value function defined in (6) and recall that V is the smallest r -excessive
majorant of g. Assume now that 0 ∈ Γ . Then V (0) = g(0) and since V (x) ≥ g(x)
for all x ∈ R we have for δ > 0

V (0) − V (−δ)

S(0) − S(−δ)
≤ g(0) − g(−δ)

S(0) − S(−δ)
.

Letting δ ↓ 0 yields

d−V
dS

(0) ≤ (1 − β)g′(0−).

Similarly, for δ > 0

V (δ) − V (0)

S(δ) − S(0)
≥ g(δ) − g(0)

S(δ) − S(0)

leading, when letting δ ↓ 0, to

d+V
dS

(0) ≥ βg′(0+).
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Therefore, using the assumptions on g,

d−V
dS

(0) − d+V
dS

(0) ≤ (1 − β)g′(0−) − βg′(0+) ≤ (1 − 2β)g′(0+) < 0

since β > 1/2. But this contradicts (10) and, hence, 0 /∈ Γ .

Remark 1 1. In the proof of Proposition 1 we do not rely on particular properties of
SBM and, therefore, the conclusions can be extended to all appropriately defined
general skew diffusions.

2. The conclusions of Proposition 1 could alternatively be proved by investigating
the behavior of the ratio

uλ(x) := g(x)

λψr (x) + (1 − λ)ϕr (x)
,

where λ ∈ [0, 1]. By Theorem 2.1 in Christensen and Irle (2011) 0 ∈ Γ if and only
if there exists a λ ∈ [0, 1] such that 0 ∈ argmax{uλ(x)}. Assuming that this is the
case implies that u′

λ(0+) ≤ 0 ≤ u′
λ(0−) which can be shown to coincide with the

requirement βg′(0+) ≤ (1 − β)g′(0−). Noticing that this inequality cannot be
satisfied under the conditions of Proposition 1 demonstrates that 0 ∈ C as claimed.

3. The optimal stopping of skew geometric Brownian motion with a piecewise linear
payoff has been studied in Presman and Yurinsky (2012). In particular, they show
that when the process is downwards skew at, say, x0 > 0 then, with appropriate
parameter values, x0 may be an isolated element in the stopping set.

Proposition 1 essentially states that if the exercise payoff is increasing in some
small open neighborhood of the origin, then the skew point is always included into
the continuation region. Put somewhat differently, the directional predictability of the
underlying process generates incentives to wait in a neighborhood of the skew point
whenever the exercise reward is locally increasing at the state where the underlying
process has more tendency to move upwards instead of moving downwards. Since
upward movements are in the present setting more favorable from the perspective of
the decision maker, waiting becomes optimal even in cases where exercising would
be optimal in the absence of skewness. This is an interesting and nontrivial property
generated by the singularity of the process at the origin.

Combining Proposition 1with Lemma 1 shows how the ratio g/ψr can be utilized in
the characterization of subsets of the continuation region. An interesting implication
of these findings is that (−∞, infM) ⊂ C . Hence, if the maximizing threshold
x∗ of the ratio g/ψr is negative, unique, and the exercise payoff is increasing and
either differentiable or locally convex at the origin, then the continuation region must
necessarily contain both the set (−∞, x∗) as well as an open neighborhood of the
origin. This result again illustrates nicely the intricacies associated with the singularity
of the underlying diffusion at the skewpoint.Aswewill later observe, this phenomenon
arises even for piecewise linear reward functions.

The key comparative static properties of the value and optimal exercise strategy are
given in the following
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Proposition 2 The value function V is non-decreasing as a function of β. In par-
ticular, the value function of the OSP for SBM with β > 1/2 dominates the value
of the corresponding OSP for standard BM. Moreover, higher skewness expands the
continuation region.

Proof In order to analyze the impact of skewness on the value of the optimal timing
policy, we first notice that using (2) for a measurable function h : R 
→ R yields

Ex [h(Xt )] = E [h(x + Wt )] + (2β − 1)
∫ ∞

0

1√
2π t

e− (|x |+y)2

2t (h(y) − h(−y))dy

in case the expectation exists. Consequently, for a non-decreasing h it holds that

∂

∂β
Ex [h(Xt )] = 2

∫ ∞

0

1√
2π t

e− (|x |+y)2

2t (h(y) − h(−y))dy ≥ 0. (11)

Consider the sequence of functions {Fn}n≥0 defined inductively (cf. Shiryaev 1978,
pp. 121–122) by

F0(x) := g(x)

Fn+1(x) := sup
t≥0

Ex
[
e−r t Fn(Xt )

]
.

Then Fn+1(x) ≥ Fn(x) for all x and n. Moreover, x 
→ Fn(x) is non-decreasing for
everyn since g is assumed to be non-decreasing and expectation preserves the ordering.
Thus, the increased skewness does not decrease their expected value by (11). On the
other hand, since Fn converges pointwise to V (cf. Shiryaev 1978, Lemma 5 on p.
121) we notice that increased skewness increases or leaves unchanged V . The alleged
dominance follows by setting β = 1/2. Finally, assume that β̂ > β and denote by
V

β̂
the value and by C

β̂
= {x ∈ R: V

β̂
(x) > g(x)} the continuation region of the

stopping problem associated with the SBM having skewness parameter β̂. If x ∈ C ,
then V

β̂
(x) ≥ V (x) > g(x) implies that x ∈ C

β̂
as well and, consequently, that

C ⊂ C
β̂
as claimed.

Proposition 2 demonstrates that the sign of the relationship between the increased
skewness and the value of the optimal exercise strategy is positive. This result is
intuitively clear since it essentially states that themore probable upward excursions are,
the larger is the value ofwaiting formore favorable states resulting into a higher payoff.
It is worth emphasizing that the positive skewness is not needed for the positivity of
the dependence of the skewness and the value, and the conclusion is valid whenever
β ∈ [0, 1].

It is also worth pointing out that according to Proposition 2, the sign of the rela-
tionship between the skewness of the underlying SBM and the incentives to postpone
rational exercise and wait for better states are positive for any β ∈ [0, 1]. This observa-
tion again emphasizes the interaction between the monotonicity of the payoff and the
expected incidence of positive excursions resulting into higher payoffs. As β becomes
lower positive excursions become less frequent thereby resulting into lower incentives
to wait.
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Before stating our main results on the single stopping boundary case, we introduce
for a differentiable function F

(Lψ F)(x) := ψ2
r (x)

S′(x)
d

dx

[
F(x)

ψr (x)

]

=
{

1
2

(
eθx (F ′(x) − θF(x)) + (2β − 1)e−θx (F ′(x) + θF(x))

)
, x > 0,

(1 − β)eθx (F ′(x) − θF(x)), x < 0,
(12)

and

(LϕF)(x) := ϕ2
r (x)

S′(x)
d

dx

[
F(x)

ϕr (x)

]

=
{

βe−θx (F ′(x) + θF(x)), x > 0,
1
2

(
e−θx (F ′(x) + θF(x)) − (2β − 1)eθx (F ′(x) − θF(x))

)
, x < 0.

(13)
Recall that if F is an r -excessive function of X then Lψ F and LϕF are associated

with the representing measure of F [for a precise characterization and the integral rep-
resentation of excessive functions, see Borodin and Salminen (2015, p. 33), Salminen
(1985, (3.3) Proposition), and Salminen and Ta (2015, Theorem 2.4)]. In the proofs
of Propositions 3 and 4 we use the representation theory to verify the excessivity of
the proposed value function.

Proposition 3 Assume that M = {x∗}, where x∗ > 0, and that in addition to (g1)
and (g2) the reward function g has the following properties

(i) g ∈ C2([x∗,∞)) i.e. g is twice continuously differentiable on [x∗,∞),
(ii) g′′(x) − 2rg(x) ≤ 0 for all x ≥ x∗.
Then, τx∗ = inf{t ≥ 0 : Xt ≥ x∗} is an optimal stopping time and the value reads as

V (x) = Ex
[
e−rτx∗ g(Xτx∗ )

] =
{
g(x), x ≥ x∗,
ψr (x)

g(x∗)
ψr (x∗) , x < x∗.

(14)

Proof Let Ṽ denote the proposed value function on the right hand side of (14). Since

V (x) := sup
τ∈T

Ex
[
e−rτ g(Xτ )

]
,

we find that V ≥ Ṽ .
To show that V = Ṽ we apply Lemma 2 and establish that Ṽ is an r -excessive

majorant of g. Since x∗ ∈ M it is immediate that Ṽ (x) ≥ g(x) for all x ∈ R (cf. 9). To
show the r -excessivity of Ṽ weuse the representation theory of excessive functions (cf.
Salminen 1985). Let x0 > x∗ so that g(x0) > 0 and define the mapping H :R 
→ R+
as H(x) := Ṽ (x)/Ṽ (x0) = Ṽ (x)/g(x0). Moreover, let for x ≥ x0

σ H
x0 ((x,∞]) := βψr (x0)

θg(x0)

(
ϕr (x)Ṽ

′(x) − ϕ′
r (x)Ṽ (x)

)
= ψr (x0)

θg(x0)
(Lϕg)(x) (15)
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and for x ≤ x0

σ H
x0 ([−∞, x)) := βϕr (x0)

θg(x0)

(
ψ ′
r (x)Ṽ (x) − ψr (x)Ṽ

′(x)
)

=
{

− ϕr (x0)
θg(x0)

(Lψg)(x), x ∈ (x∗, x0],
0, x ≤ x∗.

(16)

We now show that these definitions induce a probability measure on [−∞,+∞].
Firstly, by themonotonicity and the non-negativity of gwehave that g′(x)+θg(x) ≥ 0.
Hence, (Lϕg)(x) ≥ 0 for all x ≥ x∗, i.e., σ H

x0 ((x,∞]) ≥ 0 for all x ≥ x0. Moreover,
from assumptions (i) and (ii)

(Lϕg)
′(x) = (

g′′(x) − 2rg(x)
)
ϕr (x)β ≤ 0

for all x ≥ x∗ implying that x 
→ σ H
x0 ((x,∞]) is non-increasing. Secondly, since

x∗ ∈ M we have (Lψg)(x∗) = 0. Assumptions (i) and (ii) guarantee that

(Lψg)
′(x) = (

g′′(x) − 2rg(x)
)
ψr (x)β ≤ 0,

and, therefore, (Lψg)(x) ≤ 0 for all x ≥ x∗, i.e., σ H
x0 ([−∞, x)) ≥ 0 for all x ≤

x0, and x 
→ σ H
x0 ([−∞, x)) is non-decreasing. Thirdly, from the definition of the

Wronskian we have that

σ H
x0 ([−∞, x0)) + σ H

x0 ((x0,∞])
= ψr (x0)

θg(x0)

(
g′(x0)
S′(x0)

ϕ(x0) − ϕ′(x0)
S′(x0)

g(x0)

)

− ϕr (x0)

θg(x0)

(
g′(x0)
S′(x0)

ψ(x0) − ψ ′(x0)
S′(x0)

g(x0)

)

= 1

θ

(
ψ ′(x0)
S′(x0)

ϕr (x0) − ϕ′
r (x0)

S′(x0)
ψ(x0)

)
= 1.

Combining now the three steps above and setting σ H
x0 ({x0}) = 0 show that σ H

x0
constitutes a probability measure on [−∞,+∞]. Thus, σ H

x0 induces via the Martin
representation an r -excessive function [cf. Borodin and Salminen (2015, p. 33) and
Salminen (1985)] which coincides with H . Since Ṽ (x) = Ṽ (x0)H(x) the proposed
value Ṽ is excessive as well. Invoking Lemma 2 completes the proof.

Remark 2 1. The conclusions of Proposition 3 are also valid under the weaker
assumptions:
(i) g ∈ C1([x∗,∞)),

(ii) Lϕg and Lψg are non-increasing on [x∗,∞).
2. In the proof of Proposition 3 it is seen that σ H

x0 induces a probability measure
on [−∞,+∞]. In fact, σ H

x0 ({−∞}) = 0 and σ H
x0 ({+∞}) = 0. Indeed, the first

statement is immediate from (16). The second one follows if limx→+∞(Lϕg)(x) =
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0 (cf. 15). To verify this, recall from the proof of Proposition 3 that (Lψg)(x) ≤ 0
for x > x∗, and, hence,

g′(x) ≤ ψ ′
r (x)

ψr (x)
g(x) = eθx − (2β − 1)e−θx

eθx + (2β − 1)e−θx
θg(x) ≤ θg(x).

Consequently, for x ≥ x0

(Lϕg)(x) = β(g′(x) + θg(x))

eθx
≤ 2βθe−θx g(x). (17)

Because limx→∞ e−θxψr (x) = 1 and, by assumption, limx→∞ g(x)/ψr (x) = 0
we have σ H

x0 ({∞}) = limx↑∞ σ H
x0 ((x,∞]) = 0, as claimed.

3. Alternatively, the r -excessivity of the proposed value function Ṽ can be established
by relying on the generalization of the Itô–Tanaka formula developed in Peskir
(2005). More precisely, let τN be an increasing sequence of bounded stopping
times converging towards an arbitrary stopping time τ . Since Ṽ ′′(x) is locally
bounded for all x ∈ R\{0, x∗} and Ṽ (x) is continuously differentiable for all
x ∈ R\{0} we find by applying the extension of the change-of-variable formula
presented in Remark 2.3 of Peskir (2005) to the discounted value of the proposed
value function

e−rτN Ṽ (XτN ) = Ṽ (x) +
∫ τN

0
e−rs

(
1

2
Ṽ ′′(Xs) − r Ṽ (Xs)

)
1{Xs /∈{0,x∗}}ds

+ 1

2

∫ τN

0
e−rs(Ṽ ′(Xs+) + Ṽ ′(Xs−))(dWs + (2β − 1)dl Xs )

+ 1

2

∫ τN

0
e−rs(Ṽ ′(Xs+) − Ṽ ′(Xs−))1{Xs=0}dl Xs .

Since Ṽ (x) = (g(x∗)/ψr (x∗))ψr (x) in a neighborhood of 0 we find by utilizing
(5) that

(2β − 1)(Ṽ ′(0+) + Ṽ ′(0−)) + Ṽ ′(0+) − Ṽ ′(0−) = 0.

Consequently, we notice that the integrals with respect to l Xt cancel each other
and, therefore, that

e−rτN Ṽ (XτN ) = Ṽ (x) +
∫ τN

0
e−rs

(
1

2
Ṽ ′′(Xs) − r Ṽ (Xs)

)
1{Xs /∈{0,x∗}}ds

+
∫ τN

0
e−rs Ṽ ′(Xs)1{Xs �=0}dWs .
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Taking expectations and invoking the condition Ṽ ′′(x) ≤ 2r Ṽ (x) for all x ∈
R\{0, x∗} yields

Ex

[
e−rτN Ṽ (XτN )

]
≤ Ṽ (x)

which proves the r -excessivity of Ṽ .

Proposition 3 states a set of conditions under which the general optimal timing
problem constitutes a standard single exercise boundary problemwhere the underlying
process is stopped as soon as it hits the critical threshold x∗ > 0 at which the ratio
g/ψr is maximized. These results can naturally be extended to the case where the
maximizing threshold is negative, i.e., to the case where x∗ < 0. However, it is
clear from Proposition 1 that in that case the exercise payoff has to be constant in a
neighborhood of the skew point since otherwise the origin could not belong to the
stopping set.

Our main results on the case where x∗ < 0 are now summarized in the following
proposition.

Proposition 4 Assume that M = {x∗}, where x∗ < 0, and that in addition to condi-
tions (g1) and (g2) the exercise payoff g satisfies the conditions

(i) g ∈ C2([x∗,∞)),
(ii) (1 − β)θe−θx∗

g(x∗) > βg′(0) > 0,
(iii) g′′(x) − 2rg(x) < −ε for all x ≥ x∗ and some ε > 0.

Then, the equation system

{
(Lψg)(x) = (Lψg)(y)

(Lϕg)(x) = (Lϕg)(y)
(18)

has a unique solution y∗ = (y∗
1 , y

∗
2 ) such that y∗ ∈ (x∗, 0) × (0,∞). Moreover,

τ ∗ = inf{t ≥ 0 : Xt ∈ A} with A = [x∗, y∗
1 ] ∪ [y∗

2 ,∞) is the optimal stopping time,
and the value reads as

V (x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

g(x), x ∈ [x∗, y∗
1 ] ∪ [y∗

2 ,∞),

g(x∗) ψr (x)
ψr (x∗) , x ∈ (−∞, x∗),

g(y∗
1 ) Ex

[
e
−r τ̂y∗1 ; τ̂y∗

1
< τ̂y∗

2

]
+g(y∗

2 ) Ex

[
e
−r τ̂y∗2 ; τ̂y∗

2
< τ̂y∗

1

]
, x ∈ (y∗

1 , y
∗
2 ),

(19)

where

Ex

[
e
−r τ̂y∗1 ; τ̂y∗

1
< τ̂y∗

2

]
= ϕr (x)ψr (y∗

2 ) − ψr (x)ϕr (y∗
2 )

ψr (y∗
2 )ϕr (y

∗
1 ) − ϕr (y∗

2 )ψr (y∗
1 )

Ex

[
e
−r τ̂y∗2 ; τ̂y∗

2
< τ̂y∗

1

]
= ψr (x)ϕr (y∗

1 ) − ϕr (x)ψr (y∗
1 )

ψr (y∗
2 )ϕr (y

∗
1 ) − ϕr (y∗

2 )ψr (y∗
1 )

.

123



390 L. H. R. Alvarez E., P. Salminen

Proof Wefirst establish that equation system (18) has a unique solution y∗ ∈ (x∗, 0)×
(0,∞). In order to accomplish this task, we first observe that (18) can be re-expressed
by using (12) and (13) as

{
(1 − β)(q1(x) + q2(x)) = β(q1(y) + q2(y))

q1(x) − q2(x) = q1(y) − q2(y),
(20)

where q1(x) := eθx (g′(x)−θg(x)) and q2(x) := e−θx (g′(x)+θg(x)). Consider now
the behavior of the functions h1 := q1 + q2 and h2 := q1 − q2. Since x∗ < 0 and
(Lψg)(x∗) = 0 it follows from (12) that q1(x∗) = 0 and, hence, h1(x∗) = −h2(x∗) =
e−θx∗

2θg(x∗) > 0. Moreover, h1(0) = 2g′(0) > 0, h2(0) = −2θg(0) < 0, and

h′
1(x) = (eθx + e−θx )(g′′(x) − 2rg(x)) (21)

h′
2(x) = (eθx − e−θx )(g′′(x) − 2rg(x)). (22)

Our assumption (iii) guarantees that h′
1(x) < 0 for all x > x∗. In a completely

analogous fashion we find that h′
2(x) < 0 for x > 0 and h′

2(x) > 0 for x ∈ (x∗, 0).
Moreover, if x > z > 0 then applying the standard mean value theorem yields

h1(x) − h1(z) =
∫ x

z
(eθ t + e−θ t )(g′′(t) − 2rg(t))dt

= (g′′(ξ) − 2rg(ξ))

θ

[
(eθx − e−θx ) − (eθ z − e−θ z)

]

demonstrating that limx→∞ h1(x) = −∞. In an analogous way we find that
limx→∞ h2(x) = −∞ as well. Consider now for a given x ∈ [x∗, 0] equation
h2(ỹx ) = h2(x) where ỹx ∈ [0,∞). The continuity of h2(x) at the origin implies
that for x = 0 we have ỹ0 = 0. Utilizing (22), in turn, implies that for all x ∈ (x∗, 0)
there is a unique ỹx ∈ (0, ỹx∗) satisfying h2(ỹx ) = h2(x) (since h2(x) ↓ −∞ as
x ↑ ∞). Implicit differentiation yields

ỹ′
x = h′

2(x)

h′
2(ỹx )

< 0.

Consider next for a given x ∈ [x∗, 0] equation l(x) = l(ŷx ), where

l(x) =
{

βh1(x), x > 0,

(1 − β)h1(x), x < 0,

and ŷx ∈ [0,∞). The monotonicity of h1(x) implies that l(x) is monotonically
decreasing on (x∗, 0) ∪ (0,∞). Moreover, since

l(0+) − l(0−) = βh1(0) − (1 − β)h1(0) = (2β − 1)2g′(0) > 0,

l(x∗) − l(0+) = 2((1 − β)θe−θx∗
g(x∗) − βg′(0)) > 0,
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and l(x) ↓ −∞ as x ↑ ∞ we notice that there exists necessarily a unique x̂ ∈ (x∗, 0)
such that l(x̂) = l(0+) and, consequently, such that ŷx̂ = 0. On the other hand, since
l(x) < 0 for x > l−1(0) we notice that there is a unique ŷ0 ∈ (0, l−1(0)) such that
l(ŷ0) = l(0−). Moreover, implicit differentiation yields

ŷ′
x = (1 − β)h′

1(x)

βh′
1(ŷx )

> 0.

Combining these findings show that ỹ0 = 0 < ŷ0 and ỹx∗ > ỹx̂ > 0 = ŷx̂ . The
continuity and the monotonicity of the solution curves x 
→ ỹx and x 
→ ŷx , x ∈
(x∗, 0) then proves that they have a unique interception point x∗∗ ∈ (x̂, 0) such that
ỹx∗∗ = ŷx∗∗ and, consequently, such that (20) holds.

We now prove that (19) constitutes the value and τ ∗ the optimal stopping strategy
of (6). To this end, let Ṽ denote the proposed value function on the right hand side
of (19) with y∗

1 := x∗∗ and y∗
2 := ỹx∗∗ = ŷx∗∗ . It is again clear that V ≥ Ṽ . In

order to prove the opposite inequality, we first notice that Ṽ is continuous and non-
negative. To demonstrate that Ṽ is r -excessive, we let x0 > y∗

2 and define the mapping
Ĥ : R 
→ R+ as Ĥ(x) := Ṽ (x)/Ṽ (x0) = Ṽ (x)/g(x0). As in the proof of Proposition
3, define for x ≥ x0

σ Ĥ
x0 ((x,∞]) := ψr (x0)

θg(x0)
(Lϕg)(x)

and for x ≤ x0

σ Ĥ
x0 ([−∞, x)) := ϕr (x0)

θg(x0)

(
Ṽ (x)

d−ψr

dS
(x) − ψr (x)

d−Ṽ
dS

(x)

)

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

− ϕr (x0)
θg(x0)

(Lψg)(x), x ∈ (y∗
2 , x0],

− ϕr (x0)
θg(x0)

(Lψg)(y∗
1 ), x ∈ (y∗

1 , y
∗
2 ],

− ϕr (x0)
θg(x0)

(Lψg)(x), x ∈ (x∗, y∗
1 ],

0, x ∈ (−∞, x∗],

where the identity (Lψg)(y∗
1 ) = (Lψg)(y∗

2 ) is used. We now show that these defini-
tions induce a probability measure on [−∞,+∞]. Firstly, the monotonicity and the
non-negativity of the exercise payoff g imply that g′(x) + θg(x) > 0 and, therefore,

from (13) (Lϕg)(x) ≥ 0 for all x ≥ y∗
2 , i.e., σ

Ĥ
x0 ((x,∞]) ≥ 0 for x ≥ x0. Moreover,

(Lϕg)
′(x) = β(g′′(x) − 2rg(x))ϕr (x) < 0

for all x ∈ [x0,∞) implying that x 
→ σ Ĥ
x0 ((x,∞]) is non-increasing. Secondly, since

(Lψg)(x∗) = 0 and

(Lψg)
′(x) =

{
β(g′′(x) − 2rg(x))ψr (x), x ∈ (0,∞),

(1 − β)(g′′(x) − 2rg(x))ψr (x), x ∈ (x∗, 0),
(23)
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it is seen by applying assumption (iii) that Lψg is decreasing and negative on (x∗,∞).

Consequently, x 
→ σ Ĥ
x0 ([−∞, x)) is non-negative and non-decreasing for x ≤ x0.

Thirdly, we should check that

σ Ĥ
x0 ([−∞, x0)) + σ Ĥ

x0 ([x0,+∞]) = 1,

but this follows similarly as in the proof of Proposition 3 exploiting the Wronskian

relationship. This concludes the proof that σ Ĥ
x0 constitutes a probability measure on

[−∞,+∞]. The probability measure σ Ĥ
x0 induces via the Martin representation an

r -excessive function [cf. Borodin and Salminen (2015, p. 33) and Salminen (1985)]
which coincides with Ĥ . Since Ṽ (x) = Ṽ (x0)Ĥ(x) we find that the proposed value
Ṽ (x) is r -excessive as well.

It remains to prove that Ṽ dominates the exercise payoff g. It is clear that Ṽ ≥ g for
all x ∈ (−∞, y∗

1 ] ∪ [y∗
2 ,∞). It is, thus, sufficient to analyze the difference Δ(x) :=

Ṽ (x) − g(x) on (y∗
1 , y

∗
2 ). Notice that Δ(y∗

1 ) = Δ(y∗
2 ) = 0. Applying formula (3.4)

in Salminen (1985) where we choose x0 = y∗
2 results in

Ṽ (x)

Ṽ (x0)
= σ Ĥ

x0 ([−∞, x))

ϕr (y∗
2 )

ϕr (x) + σ Ĥ
x0 ((x,∞])
ψr (y∗

2 )
ψr (x), x ∈ (y∗

1 , y
∗
2 ).

Since σ Ĥ
x0 ([y∗

1 , y
∗
2 ]) = 0 this expression simplifies and yields

Ṽ (x) = g(y∗
2 )

(
− ϕr (y∗

2 )

θg(y∗
2 )

(Lψg)(y
∗
2 )

)
ϕr (x)

ϕr (y∗
2 )

+ g(y∗
2 )

(
ψr (y∗)
θg(y∗

2 )
(Lϕg)(y

∗
2 )

)
ψr (x)

ψr (y∗
2 )

= − (Lψg)(y∗
2 )

θ
ϕr (x) + (Lϕg)(y∗

2 )

θ
ψr (x).

Moreover, utilizing (23), assumption (iii), and noticing that

d

dx

[
Δ(x)

ψr (x)

]
= S′(x)

ψ2
r (x)

(
(Lψg)(y

∗
i ) − (Lψg)(x)

)

for x ∈ (y∗
1 , 0) ∪ (0, y∗

2 ) show that Δ/ψr is increasing on (y∗
1 , 0) and, consequently,

that Δ(x) > 0 for all x ∈ (y∗
1 , 0). In an completely analogous fashion, we find

that Δ(x)/ψr (x) is decreasing for x ∈ (0, y∗
2 ) and, therefore, that Δ(x) > 0 for all

x ∈ (0, y∗
2 ) as well. The continuity ofΔ then proves thatΔ(x) > 0 for all x ∈ (y∗

1 , y
∗
2 )

and, consequently, that the proposed value Ṽ dominates the exercise payoff g. Wemay
now evoke Lemma 2 to complete the proof of the proposition.

Remark 3 1. The conclusions of Proposition 4 are derived from the general properties
of excessive mappings and their representing measures and as such do not require
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detailed process specific information besides the singularity at the skew point and
the generator of the driving process. In that respect, the developed proof applies
even under more general circumstances than in the SBM setting.

2. Establishing the r -excessivity of the proposed value using the generalized Itô–
Tanaka formula is a bit more involved in this case but can also be done as indicated
in Remark 2.3.

As the proof of Proposition 4 indicates, there are circumstances under which the
problem can be reduced into a two boundary problem where the lower boundary
x∗ = y∗

1 constitutes a tangency point of the value. A set of conditions under which
this observation is true are stated in the following corollary.

Corollary 1 Assume that M = {x∗, y∗
2 }, where x∗ < 0 < y∗

2 . Assume also that
conditions (i)–(iii) of Proposition 4 are satisfied. Then Γ = {x∗} ∪ [y∗

2 ,∞), C =
(−∞, x∗) ∪ (x∗, y∗

2 ), and the value is

V (x) =
{
g(x), x ∈ {x∗} ∪ [y∗

2 ,∞),

ψr (x)
g(y∗

2 )

ψr (y∗
2 )

, x ∈ (−∞, x∗) ∪ (x∗, y∗
2 ).

(24)

Proof The statement is a direct implication of Lemma 1, Propositions 3 and 4.

An interesting yet untreated case arises when the reward function is a constant in a
neighborhood of the origin. Such a configuration may appear for instance in the case
of a capped call g(x) = (x − K )+ − (x − M)+, where M > K . For this consider the
exercise payoff

g(x) = g̃(x) ∧ g̃(xM ) =
{
g̃(xM ), x ≥ xM ,

g̃(x), x ≤ xM ,

where xM ≤ 0, and g̃ : R 
→ R+ is a continuous and nondecreasing function such
that g satisfies our standing assumptions (g1) and (g2).

Proposition 5 Assume thatM = {x∗}, where x∗ ≤ xM ≤ 0. Assume also in addition
that g̃ has the following properties

(i) g̃ ∈ C2([x∗, xM ]),
(ii) g̃′′(x) − 2r g̃(x) ≤ 0 for all x ∈ [x∗, xM ].
Then, τx∗ = inf{t ≥ 0 : Xt ≥ x∗} is an optimal stopping time and the value reads as
in (14).

Proof The proof is a slight modification of the proof of Proposition 3.

5 Explicit illustration

Our objective is now to illustrate the main results in Sect. 4 explicitly by assuming that
the exercise reward reads as g(x) := (x + K )+ with K > 0. Recall that M denotes
the set of maximum points of the ratio g/ψr , cf. (7). Our main result on the value and
the optimal stopping strategy are presented in the following:
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Proposition 6 For all β ∈ (1/2, 1) and K > 0 there is a unique critical discount rate
r̂ = r̂(β, K ) satisfying the identity

β + β ln

(
β +

√
β2 + (2β − 1)e2(

√
2r̂ K−1)

)
=

√
β2 + (2β − 1)e2(

√
2r̂ K−1). (25)

Moreover, r̂ is increasing as a function of β.

(A) Assume that r < r̂ . Then,M = {x∗} with x∗ > 0. The optimal stopping strategy
is τ ∗ = inf{t ≥ 0 : Xt ≥ x∗} and the value is as in (14).

(B) Assume that r = r̂ . Then M = {x∗
1 , x

∗}, where x∗ > 0 and

x∗
1 = 1

θ
− K < 0. (26)

The optimal stopping strategy is τ ∗ = inf{t ≥ 0 : Xt ∈ {x∗
1 } ∪ [x∗,∞)} and the

value is as in (24).
(C) Assume that r > r̂ . Then, M = {x∗

1 } where x∗
1 is as given in (26). The optimal

stopping strategy is τ ∗ = inf{t ≥ 0 : Xt ∈ [x∗
1 , y

∗
1 ]∪[y∗

2 ,∞)}, where (y∗
1 , y

∗
2 ) ∈

(x∗
1 , 0) × (0,∞) constitute the unique solution of the equation system (18), and

the value is as in (19).

Proof In what follows we will show that the three different cases (A)–(C) appearing
above and corresponding to the cases characterized in Propositions 3, 4 and Corollary
1 arise depending on the precise magnitude of the key parameters β, r and K . We start
by proving that for any β ∈ (1/2, 1) and K > 0 Eq. (25) has a unique solution r̂ . To
this end, fix K > 0 and consider for θ > 0 and β ∈ [1/2, 1] the function

C(θ, β) := β + β ln

(
β +

√
β2 + (2β − 1)e2(θK−1)

)
−

√
β2 + (2β − 1)e2(θK−1).

Standard differentiation yields

Cθ (θ, β) = − (2β − 1)e2(θK−1)K

β + √
β2 + (2β − 1)e2(θK−1)

< 0

Cβ(θ, β) = 1 + ln

(
β +

√
β2 + (2β − 1)e2(θK−1)

)

+ β − √
β2 + (2β − 1)e2(θK−1)

2β − 1

(27)

Consequently, from (27), C is monotonically decreasing as a function of θ . In partic-
ular, for all β ∈ (1/2, 1) we have

C(1/K , β) = β + β ln

(
β +

√
β2 + 2β − 1

)
−

√
β2 + 2β − 1 > 0,

C(θ∗, β) = β

(
ln

(
β

1 − β

)
− 2β − 1

1 − β

)
< 0,
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where

θ∗ =
(
1 + ln

(
β

1 − β

))
1

K
>

1

K
. (28)

Invoking the monotonicity and the continuity of C as a function of θ shows that Eq.
(25) has a unique solution, as claimed.

Next we show that β 
→ r̂(β) is increasing. To see that this is indeed the case,
consider the function θ̂ := √

2r̂ and observe that implicit differentiation of equation
C(θ̂ , β) = 0 yields

θ̂ ′ = −Cβ(θ̂ , β)

Cθ (θ̂ , β)
. (29)

Since Cθ < 0 by (27), it is sufficient to study the sign of Cβ along the solution curve
β 
→ θ̂ (β). Since θ̂ < θ∗ and θ̂K − 1 < ln (β/(1 − β)), we have from (27) using the
identity C(θ̂ , β) = 0 that

Cβ(θ̂ , β) = 1 − β

β(2β − 1)

(
β2

1 − β
−

√
β2 + (2β − 1)e2(θ̂K−1)

)
> 0. (30)

Therefore, from (29) to (27) it follows that θ̂ ′ > 0 and, hence, r̂ is increasing.
We now proceed to proving (A)–(C). From our general analysis we known that we

should consider the maximum points of the function

ur (x) := (x + K )+

ψr (x)
=

⎧⎨
⎩

2β(x + K )

eθx + (2β − 1) e−θx
, x > 0,

e−θx (x + K )+, x ≤ 0.

Standard differentiation yields

l(x) := ψ2
r (x)u′

r (x)

=

⎧⎪⎪⎨
⎪⎪⎩

1
2β e

θx (1 − θ(x + K )) +
(
1 − 1

2β

)
e−θx (1 + θ(x + K )), x > 0,

eθx (1 − θ(x + K )), −K < x < 0,

0, x < −K .

We immediately notice the following

l(0−) = 1 − θK , l(0+)=1 −
(
1

β
− 1

)
θK , l(0+) − l(0−) = 2β − 1

β
θK > 0,

and limx→∞ l(x) = −∞. Moreover, since for x > −K

l ′(x) =
{

−θ2(x + K )
(

1
2β e

θx +
(
1 − 1

2β

)
e−θx

)
, x > 0,

−eθxθ2(x + K ), −K < x < 0,
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two different configurations may arise depending on the precise values of θ, β, and
K . First, if θK ≤ 1, then l(0−) ≥ 0 and the monotonicity of l guarantees that ur
attains a unique globalmaximum at x∗ > 0 satisfying the ordinary first order condition
u′
r (x

∗) = 0 which is equivalent with

eθx∗
(1 − θ(x∗ + K )) + (2β − 1) e−θx∗

(1 + θ(x∗ + K )) = 0. (31)

This case corresponds to the one characterized in Proposition 3 and, hence, proves
claim (A) when θK ≤ 1.

Second, if θK > 1 then l(−K ) = e−θK > 0 and the monotonicity of l on (−K , 0)
guarantees that ur attains a local maximum at the point

x∗
1 = 1

θ
− K < 0.

If l(0+) = 1 −
(
1
β

− 1
)

θK > 0, then ur attains a local maximum at the threshold

x∗ > 0 satisfying (31) as well. However, if l(0+) ≤ 0, then the monotonicity of l
implies that x∗

1 constitutes a global maximum point of ur and M = {x∗
1 }. Hence, in

the case where l(0+) > 0 the setM has at most two points. In order to determine the
parameter values for which M = {x∗

1 , x
∗} we consider the equation

ur (x
∗) − ur (x

∗
1 ) = 0. (32)

Since u′
r (x

∗) = u′
r (x

∗
1 ) = 0 it holds that ur (x∗) = 1/ψ ′

r (x
∗) and ur (x∗

1 ) = 1/ψ ′
r (x

∗
1 ).

Hence, (32) is equivalent with

1

ψ ′
r (x

∗)
− 1

ψ ′
r (x

∗
1 )

= 2β

θ(eθx∗ − (2β − 1)e−θx∗
)

− 1

θ
eθK−1 = 0. (33)

Consequently, M = {x∗
1 , x

∗} with x∗ > 0 as in (31) if and only if x∗ satisfies also
(33), which is equivalent with

e2θx
∗ − 2βe1−θK eθx∗ − (2β − 1) = 0 (34)

implying that

x∗ = 1

θ
ln

(
βe1−θK +

√
β2e2(1−θK ) + (2β − 1)

)
. (35)

Substituting the expression for 2β − 1 obtained from (34) into (31) yields

eθx∗ = βe1−θK (1 + θ(x∗ + K )). (36)

By applying (35) in (36) we conclude that M = {x∗
1 , x

∗} if and only if β ∈ [1/2, 1]
and θ > 0 are such that C(β, θ) = 0, as claimed. This proves case (B), and also (A)
and (C) since the value is a non-increasing function of r .
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Fig. 1 Critical boundary; with K = 1

Remark 4 For β = 1 Eq. (25) with θ̂ := √
2r̂ reads as

1 + ln

(
1 +

√
1 + e2(θ̂K−1)

)
=

√
1 + e2(θ̂K−1),

and the unique solution is given by θ̂K ≈ 1.64132. Notice that β 
→ θ(β) being
increasing the limit of θ(β) as β ↓ 1/2 exists. As β ↓ 1/2 then necessarily x∗ in
(35) tends to 0. Therefore, limβ↓1/2 θ(β) = 1/K . Consequently, the critical param-
eter boundary β 
→ θ(β) is an increasing function connecting the extremal points
(1/2, 1/K ) and (1, 1.64132/K ). This is illustrated in Fig. 1 when K = 1.

The optimal boundaries associated with the optimal exercise strategies are illus-
trated as functions of the skewness parameter β in Fig. 2 under the assumptions that
K = 1 and r = 0.95. As is clear from the figure, the considered stopping problem
constitutes a three-boundary problem as long as the skewness parameter β remains
below the critical level β∗ which under our parameter assumptions is β∗ ≈ 0.7445. As
soon as skewness exceeds this critical level, the problem becomes a single boundary
problem, where the decision maker waits until the underlying hits the upper threshold
maximizing the ratio (x + K )+/ψr (x). The reason for this observation is clear: for
sufficiently low values of β the attainable intertemporal gains accrued by waiting and
postponing the timing decision further into the future exceed the return accrued by
exercising immediately in a neighborhood of the origin. As the skewness parameter
increases, more and more of the excursions are expected to end to the positive side,
thus increasing the incentives to wait for higher payoffs.

The optimal boundaries associated with the optimal exercise strategies are, in turn,
illustrated as functions of the parameter θ in Fig. 3 under the assumptions that K =
1 and β = 0.55. In contrast with the effect of the skewness parameter β, higher
discounting accelerates optimal timing and, thus, decreases the incentives to wait.
Accordingly, we now notice from Fig. 3 that the considered problem constitutes a
single boundary problem only as long as the discount rate is lower than the critical
level r̂ ≈ 0.5983. Above this critical level waiting for for future potentially higher
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Fig. 2 Optimal stopping boundaries; with K = 1 and r = 0.95
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Fig. 3 Optimal stopping boundaries; with K = 1 and β = 0.55

payoffs is no longer optimal at all states and the optimal exercise strategy becomes a
three-boundary stopping rule.
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