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Abstract We consider Cournot oligopoly models in which some variables represent
indivisible quantities. Thesemodels can be addressed by computing equilibria of Nash
equilibrium problems in which the players solve mixed-integer nonlinear problems. In
the literature there are nomethods to compute equilibria of this type ofNash games.We
propose a Jacobi-type method for computing solutions of Nash equilibrium problems
with mixed-integer variables. This algorithm is a generalization of a recently proposed
method for the solution of discrete so-called “2-groups partitionable”Nash equilibrium
problems. We prove that our algorithm converges in a finite number of iterations to
approximate equilibria under reasonable conditions. Moreover, we give conditions for
the existence of approximate equilibria. Finally, we give numerical results to show the
effectiveness of the proposed method.

Keywords Nash equilibrium problem · Mixed-integer nonlinear problem ·
Cournot oligopoly · Numerical solution

1 Introduction

Cournot oligopolies can be modeled as Nash equilibrium problems, see e.g. Başar
and Olsder (1989), Tirole (1988). The Nash equilibrium problem is a key model in
game theory and several algorithms have been proposed for its solution, see e.g. the

The work of the author has been partially supported by Avvio alla Ricerca 2015 Sapienza University of
Rome, under Grant 488.

B Simone Sagratella
sagratella@dis.uniroma1.it

1 Department of Computer, Control and Management Engineering Antonio Ruberti, Sapienza Uni-
versity of Rome, Via Ariosto 25, 00185 Rome, Italy

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00186-017-0599-8&domain=pdf
http://orcid.org/0000-0001-5888-1953


550 S. Sagratella

monograph (Facchinei and Pang 2003) and the references therein. Also for its general-
ized version (the generalized Nash equilibrium problem) can be found in the literature
many solution methods, see e.g. Aussel and Sagratella (2017), Dreves et al. (2011,
2012), Dreves and Kanzow (2011), Facchinei and Kanzow (2010), Facchinei et al.
(2012, 2014), Facchinei and Lampariello (2011), Facchinei and Sagratella (2011),
Nabetani et al. (2011), Pang and Fukushima (2009). But all these methods assume
that the feasible region of all the players is continuous. Besides some specific proce-
dures for some particular applications (see e.g. Fabrikant et al. 2004; Stengel 2002),
recently some numerical methods for the solution of Nash equilibrium problems with
discrete strategy spaces have been proposed (Sagratella 2016).

We consider themost challenging case of Nash equilibrium problems in which each
player solves a mixed-integer nonlinear problem (see e.g. Belotti et al. 2013, 2009;
Bienstock 1996; Lazimy 1982; Nowak 2006; Tawarmalani and Sahinidis 2002 as
excellent references on this type of optimization problems) since some of its variables
represent indivisible quantities. In particular, we generalize the Jacobi-type algorithm
proposed in Sagratella (2016) for discrete so-called “2-groups partitionable” Nash
equilibrium problems.

In Sect. 2 we describe the Cournot oligopoly model with mixed-integer quantities.
In Sect. 3 we define the Jacobi-type method for computing solutions of the Nash
model with mixed-integer variables and we prove that it converges in a finite number
of iterations to an approximate equilibrium under reasonable conditions. In Sect. 4 we
give numerical results to show the effectiveness of the proposed method.

Notation: M ∈ Rm×n is a matrix with m rows and n columns; Mj∗ denotes the j th
row of M and M∗i denotes the i th column of M ; given a set of row indices Jr and a
set of column indices Jc, MJr Jc is the submatrix with rows in Jr and columns in Jc;
given v ∈ R

n, Dv denotes the square matrix whose diagonal entries are those of v.

2 A Cournot oligopoly model

Consider a market in which N firms produce multiple goods in order to increase their
profits as much as possible. Assuming that the firms act rationally, there is no explicit
collusion among them, and all of them have complete information, then the Nash
equilibrium paradigm fits well within this framework, see e.g. Tirole (1988).

Each firm ν ∈ {1, . . . , N } produces nν goods and must decide the amount of all
its goods it will produce. Namely, by considering the realistic case of an initial stage
(which is not an equilibrium) in which each firm ν produces quantities q̂ν ∈ R

nν+ of its
goods, the decision variables of each firm ν are xν ∈ R

nν which represent deviations
from q̂ν , so that the amounts of produced goods are actually qν � xν + q̂ν . We
further define the vector x−ν � (xμ)Nν �=μ=1 and write R

n � x � (xν, x−ν), where

n � n1 + · · · + nN .
The consumers’ inverse demand function for each firm ν ∈ {1, . . . , N } is linear:

pν(xν, x−ν) � aν −
N

∑

μ=1

Cνμ(xμ + q̂μ),
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Computing equilibria of Cournot oligopoly models with... 551

where aν ∈ R
nν ,Cνμ ∈ Rnν×nμ for allμ, and pν(xν, x−ν) indicates the market prices

corresponding to deviations x. Notice that, if Cνμ
i j ≥ 0 then the j th product of firm

μ is a substitute for the i th product of firm ν since the price of the second product
decreases as the quantity of the first product increases. On the other hand, if Cνμ

i j ≤ 0
then the j th product of firm μ is a complement for the i th product of firm ν.

Each firm ν ∈ {1, . . . , N } has quadratic production costs:

Costν(x
ν) � (xν + q̂ν)T cν − (xν + q̂ν)T Dkν (xν + q̂ν),

where cν, kν ∈ R
nν+ . This structure for the production costs allows to model, for

example, the presence of economies of scale.
The overall profit of each firm ν ∈ {1, . . . , N } is the following:

Profitν(x
ν, x−ν) � pν(xν, x−ν)T (xν + q̂ν) − Costν(x

ν).

Observe that Profitν(xν, x−ν) is a quadratic function.
Assume, without loss of generality, that the first iν goods of each firm ν are indivis-

ible (like houses, cars and machines) or must be produced in lots, while the remaining
nν − iν goods are perfectly divisible. Namely, we assume that xν

j , q̂
ν
j ∈ Z for all

j ≤ iν .
The optimization problem faced by each firm ν ∈ {1, . . . , N } is the following:

minimizexν θν(x
ν, x−ν) � −Profitν(x

ν, x−ν)

lν ≤ xν ≤ uν

xν
j ∈ Z, j = 1, . . . , iν, (1)

where lν, uν ∈ R
nν are suitable bounds, namely, −q̂ν ≤ lν ≤ uν and lνj , u

ν
j ∈ Z

for all j ≤ iν . Each (1) is a mixed-integer nonlinear problem, specifically, it is a
mixed-integer quadratic problem (MIQP), see e.g. Bienstock (1996), Lazimy (1982).
The whole game is a standard Nash equilibrium problem (NEP) since the objective
function of each player ν depends on the rivals’ variables x−ν .

Let us introduce the best response set at x ∈ X for each firm ν:

x̂ν(x−ν) � arg min
xν∈Xν

θν(x
ν, x−ν),

where

Xν �
{

xν ∈ R
nν : lν ≤ xν ≤ uν, xν

j ∈ Z, j = 1, . . . , iν
}

and X �
N

∏

ν=1

Xν .

Given ε > 0, we say that x ∈ X is an ε-approximate equilibrium if, for all ν ∈
{1, . . . , N }, it holds that

θν(x
ν, x−ν) − θν (̂x

ν, x−ν) ≤ ε,

where x̂ν ∈ x̂ν(x−ν).
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3 A Jacobi-type algorithm

To compute approximate equilibria of NEP (1), we propose the Jacobi-type method
defined in Algorithm 1. This algorithm is an extension of Algorithm 7 in Sagratella
(2016) for the mixed-integer case. The non-standard choice of the subset J k of the
firms that “play” at each iteration makes Algorithm 1 really flexible. Namely, as
special cases, by selecting only one firm at each iteration we get a Gauss–Southwell
scheme, while if the firms take turns to move their variables we get a Gauss–Seidel
scheme, and, finally, if at each iteration all the firms solve their optimization problems
simultaneously we get a Jacobi scheme.

Algorithm 1: Jacobi-type method

1 choose a starting point x0 ∈ X and set k := 0;

2 while xk is not an ε-approximate equilibrium do
3 choose a subset J k ⊆ {1, . . . , N } of the firms;

4 forall the ν ∈ J k do
5 compute a best response x̂k,ν ∈ x̂ν(xk,−ν);

6 if θν(xk,ν , xk,−ν) − θν (̂xk,ν , xk,−ν) > ε then
7 set xk+1,ν := x̂k,ν ;
8 else
9 set xk+1,ν := xk,ν ;

10 end
11 end
12 forall the ν /∈ J k do
13 set xk+1,ν := xk,ν ;
14 end
15 set k := k + 1;
16 end

Result: an ε-approximate equilibrium xk

It is well known that best response methods, like Algorithm 1, do not lead to solu-
tions of NEPs in general, even in a totally continuous setting. However, as witnessed
by Theorem 1 below, and similarly to what done in Sagratella (2016), we can define
an interesting class of Cournot models with mixed-integer variables for which Algo-
rithm 1 effectively works.

Definition 1 We say that the NEP defined by (1) is 2-groups partitionable if X is non-
empty and compact, Qν � Cνν − Dkν 	 0 for all ν, and a partition of the variables
indices into two groups, G1 and G2, exists such that, for all (ν, i) �= (μ, j):

Cνμ
i j ≤ 0 if (ν, i) ∈ G1 � (μ, j) or (ν, i) ∈ G2 � (μ, j), (2)

Cνμ
i j ≥ 0 if (ν, i) ∈ G1 �� (μ, j) or (ν, i) ∈ G2 �� (μ, j). (3)

The assumption Qν 	 0 in Definition 1 is strong but quite standard in a Nash game
setting, since it entails the convexity of the objective function of any player’s problem
(1). Anyhow, it can be noted that the objective function of any player ν can always
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be reformulated as a convex function, regarding the discrete variables, by adding a
term α(lν − xν)T (uν − xν), with α sufficiently large, that vanishes in case of binary
constraints xν ∈ {lν, uν}.

Conditions (2) and (3) in Definition 1 simply require that all the goods must be
divided into two groups such that: two goods of the same group are complements,
while two goods of different groups are substitutes. See Sect. 2 for a definition of
complements and substitutes.

We give a small example of a 2-groups partitionable Cournot model.

Example 1 There are three firms with the following data: nν = 1, q̂ν = 0, aν =
2, cν = 1, kν = 1

2 , iν = 1, lν = 0, and uν = 1, for all ν ∈ {1, 2, 3};C11 =
1,C12 = 0,C13 = −1,C21 = 1,C22 = 1,C23 = 0,C31 = 0,C32 = 1, and
C33 = 1. This Cournot model is 2-groups partitionable since: X is non-empty and
compact, Qν = Cνν − kν = 1

2 for all ν, and, by partitioning the variables indices into
G1 = {(1, 1), (3, 1)} and G2 = {(2, 1)}, conditions (2) and (3) are satisfied. Notice
that the good produced by firm 1 is a complement for that of firm 3 and vice versa
(they are both in G1). On the other hand, the good of firm 2 is a substitute for that
produced by firm 1 and for that produced by firm 3 and vice versa (the good of firm 2
is not in G1).

The following theorem gives sufficient conditions for the convergence of Algorithm 1.

Theorem 1 Assume that the NEP defined by (1) is 2-groups partitionable with groups
G1 and G2.

For all ν ∈ {1, . . . , N } and all i ∈ {1, . . . , nν}, let x0,νi = lνi if (ν, i) ∈ G1, and let

x0,νi = uν
i if (ν, i) ∈ G2. Let a finite positive integer h exist such that ν ∈ ∪k+h

t=k J t for
each player ν and each iterate k.

Then, for each iterate k and each player ν ∈ J k , a best response x̂k,ν ∈ x̂ν(xk,−ν)

can be computed such that

x̂k,νi ≥ xk,νi , ∀ (ν, i) ∈ G1, x̂ k,νi ≤ xk,νi , ∀ (ν, i) ∈ G2. (4)

By computing x̂k,ν for all k and all ν ∈ J k such that (4) holds, Algorithm 1 converges,
in a finite number of iterations, to an ε-approximate equilibrium of the NEP, given any
ε > 0.

Proof First of all note that the set x̂ν(x−ν) is non-empty for any ν and any x ∈ X
since X is non-empty and compact.

Let us consider the first iteration. Since x1 ∈ X then it holds that x1,νi ≥ x0,νi if

(ν, i) ∈ G1, and x1,νi ≤ x0,νi if, otherwise, (ν, i) ∈ G2.
Now let us consider the second iteration. In order to prove that, for all ν, a best

response x̂1,ν ∈ x̂ν(x1,−ν) exists such that for all i ∈ {1, . . . , nν}:

x̂1,νi ≥ x1,νi , if (ν, i) ∈ G1, and, x̂1,νi ≤ x1,νi , if (ν, i) ∈ G2, (5)

we have to consider two possibilities. If ν /∈ J 0, or, in general, x1,ν is not updated
as in line 7 of the algorithm, then x1,ν = x0,ν and then (5) is trivially satisfied.
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Otherwise ν ∈ J 0 and x1,ν is updated as in line 7 of the algorithm, then we suppose
by contradiction that for all yν ∈ x̂ν(x1,−ν) a non-empty set of indices J ⊆ {1, . . . , nν}
exists such that for all i ∈ J it holds that yν

i < x1,νi if (ν, i) ∈ G1 and yν
i > x1,νi if

(ν, i) ∈ G2. Now we show that this is impossible. Let J̄ � {1, . . . , nν} \ J , for all
j ∈ J̄ we have yν

j ≥ x1,νj if (ν, j) ∈ G1 and yν
j ≤ x1,νj if (ν, j) ∈ G2. We define

ȳν, ỹν ∈ Xν such that ȳν
J = yν

J , ȳ
ν

J̄
= x1,ν

J̄
, ỹν

J = x1,νJ and ỹν

J̄
= yν

J̄
. Recalling

Qν � Cνν − Dkν , the following chain of inequalities holds:

[

(ỹν)T Qν ỹν − (yν)T Qν yν
] −

[

(x1,ν)T Qν(x1,ν) − (ȳν)T Qν ȳν
]

=
[

2
(

(yν
J )

T (yν

J̄
)T

)

(

Qν
J J

Qν¯J J

)

(

x1,νJ − yν
J

)

+
(

x1,νJ − yν
J

)T

Qν
J J

(

x1,νJ − yν
J

)

]

−
[

2
(

(yν
J )

T (x1,ν
J̄

)T
)

(

Qν
J J

Qν¯J J

)

(

x1,νJ − yν
J

)

+
(

x1,νJ − yν
J

)T

Qν
J J

(

x1,νJ − yν
J

)

]

= 2
(

yν

J̄
− x1,ν

J̄

)T

Qν¯J J
(

x1,νJ − yν
J

)

≤ 0, (6)

where the last inequality holds because:

– for all j ∈ J̄ :
(

yν
j − x1,νj

)

≥ 0 if (ν, j) ∈ G1 and
(

yν
j − x1,νj

)

≤ 0 if (ν, j) ∈ G2,

– for all j ∈ J̄ and all i ∈ J : Qν
j i ≤ 0 if (ν, j) ∈ G1 � (ν, i) or (ν, j) ∈ G2 � (ν, i),

by (2), and Qν
j i ≥ 0 if (ν, j) ∈ G1 �� (ν, i) or (ν, j) ∈ G2 �� (ν, i), by (3),

– for all i ∈ J :
(

x1,νi − yν
i

)

> 0 if (ν, i) ∈ G1 and
(

x1,νi − yν
i

)

< 0 if (ν, i) ∈ G2.

Let bν � 2Qν q̂ν −aν +cν +∑N
ν �=μ=1 C

νμq̂μ. By using (6), we canwrite the following
chain of inequalities

0 ≥ (ỹν)T Qν ỹν − (yν)T Qν yν − (x1,ν)T Qν(x1,ν) + (ȳν)T Qν ȳν

(A)≥ (ỹν)T Qν ỹν − (yν)T Qν yν +
⎡

⎣bν +
N

∑

ν �=μ=1

Cνμx0,μ

⎤

⎦

T

J

(x1,νJ − yν
J )

(B)≥ (ỹν)T Qν ỹν − (yν)T Qν yν +
⎡

⎣bν +
N

∑

ν �=μ=1

Cνμx1,μ

⎤

⎦

T

J

(x1,νJ − yν
J )

= (ỹν)T Qν ỹν − (yν)T Qν yν +
⎡

⎣bν +
N

∑

ν �=μ=1

Cνμx1,μ

⎤

⎦

T

(ỹν − yν),

where (A) holds since x1,ν ∈ x̂ν(x0,−ν) (remember that we are considering the case
in which ν ∈ J 0 and x1,ν is updated as in line 7 of the algorithm), and ȳν is fea-
sible for player ν; while (B) is true since for all i ∈ J : if (ν, i) ∈ G1 we have
[

∑N
ν �=μ=1 C

νμ(x0,μ − x1,μ)
]

i
≥ 0 and (x1,νi − yν

i ) > 0, and if (ν, i) ∈ G2 we have

123



Computing equilibria of Cournot oligopoly models with... 555

[

∑N
ν �=μ=1 C

νμ(x0,μ − x1,μ)
]

i
≤ 0 and (x1,νi − yν

i ) < 0. Then we can conclude that

θν(ỹν, x1,−ν) ≤ θν(yν, x1,−ν) and, since ỹν
i ≥ x1,νi for all (ν, i) ∈ G1 and ỹν

i ≤ x1,νi
for all (ν, i) ∈ G2, this is a contradiction. Therefore, for all ν ∈ J 1, we can set
x̂1,ν ∈ x̂ν(x1,−ν) satisfying (5) for all i ∈ {1, . . . , nν}, and then we obtain

x2,νi ≥ x1,νi , ∀ (ν, i) ∈ G1, x2,νi ≤ x1,νi , ∀ (ν, i) ∈ G2.

At a generic iterate k ≥ 2, assuming that for all t < k

xk,νi ≥ xt,νi , ∀ (ν, i) ∈ G1, xk,νi ≤ xt,νi , ∀ (ν, i) ∈ G2,

we can do similar considerations in order to prove that we can get for all (ν, i):

xk+1,ν
i ≥ xk,νi , if (ν, i) ∈ G1, and, xk+1,ν

i ≤ xk,νi , if (ν, i) ∈ G2. (7)

Namely, we have the following two possibilities for any ν ∈ J k : if ν /∈ ∪k−1
t=0J t ,

or, in general, xk,ν = x0,ν , then (7) is trivially satisfied, otherwise, as above we can
contradict the fact that any point yν in x̂ν(xk,−ν) has a non-empty set of indices J such
that for all i ∈ J it holds that yν

i < xk,νi if (ν, i) ∈ G1 and yν
i > xk,νi if (ν, i) ∈ G2.

We define ȳν and ỹν as above. Let p < k be the last iterate at which xν is updated as
in line 7 of the algorithm. By the same considerations made above, we can write the
chain of inequalities

0 ≥ (ỹν)T Qν ỹν − (yν)T Qν yν − (xk,ν)T Qν(xk,ν) + (ȳν)T Qν ȳν

≥ (ỹν)T Qν ỹν − (yν)T Qν yν +
⎡

⎣bν +
N

∑

ν �=μ=1

Cνμx p,μ

⎤

⎦

T

J

(

xk,νJ − yν
J

)

≥ (ỹν)T Qν ỹν − (yν)T Qν yν +
⎡

⎣bν +
N

∑

ν �=μ=1

Cνμxk,μ

⎤

⎦

T

J

(

xk,νJ − yν
J

)

= (ỹν)T Qν ỹν − (yν)T Qν yν +
⎡

⎣bν +
N

∑

ν �=μ=1

Cνμxk,μ

⎤

⎦

T

(

ỹν − yν
)

,

which proves the contradiction in the same way as above.
Therefore, we can say that the entire sequence {xk} is such that xk ∈ X and (7) is

true for all (ν, i). Now, let us suppose, by contradiction, that sequence {xk} is infinite.
In this case, by recalling that ν ∈ ∪k+h

t=k J t for each player ν and each iterate k, for any
k we obtain that an iteration t , with k ≤ t ≤ k + h, and a firm μ exist such that

θμ(xt,μ, xt,−μ) − θμ(xt+1,μ, xt,−μ) > ε. (8)
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Let us denote

τ � max
ν∈{1,...,N }max

x∈X
∥

∥∇xν θν(xt )
∥

∥

2 .

By the assumptions, τ is finite. Then (8) implies that

ε < θμ(xt,μ, xt,−μ) − θμ(xt+1,μ, xt,−μ)

(A)≤ ∇xμθμ(xt,μ, xt,−μ)T (xt,μ − xt+1,μ)

≤ ∥

∥∇xμθμ(xt,μ, xt,−μ)
∥

∥

2

∥

∥

∥xt,μ − xt+1,μ
∥

∥

∥

2

≤ τ

∥

∥

∥xt,μ − xt+1,μ
∥

∥

∥

2
,

where (A) holds by the convexity of θμ. Then we obtain

ε2

τ 2
<

∥

∥

∥xt,μ − xt+1,μ
∥

∥

∥

2

2
≤ n

∥

∥

∥xt,μ − xt+1,μ
∥

∥

∥

2

∞ .

Therefore an index i ∈ {1, . . . , nμ} exists such that

xt+1,μ
i > xt,μi + ε

τ
√
n

, if (μ, i) ∈ G1, and, xt+1,μ
i < xt,μi − ε

τ
√
n

, if (μ, i) ∈ G2,

but this contradicts the boundedness of X , and, therefore, {xk} is finite. Thus, the
point returned by Algorithm 1 is an ε-approximate equilibrium of the NEP. ��
It is worth to spend some words about the proof of Theorem 1. First of all, we note
that the proof of Theorem 1 is very similar to that of Theorem 4.2 in Sagratella (2016).
The main difference is that here we consider the mixed-integer setting and then, to
prove that the sequence produced by the algorithm is finite, we focus on ε-approximate
equilibria with ε > 0.

The first part of the proof is quite identical to that in Sagratella (2016), and it is
devoted to proving that, starting from the point x0 (such that x0,νi = lνi if (ν, i) ∈ G1,

and x0,νi = uν
i if (ν, i) ∈ G2), then the algorithm can always produce a sequence {xk}

such that (7) is true for all (ν, i). Therefore, once any variable xν
i leaves its starting

bound during the iterations, it goes towards the other bound never coming back. It
is important to notice that this behaviour is independent from the fact that xν

i is a
continuous or a discrete variable.

The last part of the proof differs from that in Sagratella (2016) due to the pres-
ence of continuous variables. Here we show that, by exploiting the convexity and the
smoothness of any θν , and by recalling (7) and the compactness of X , the sequence
produced by the algorithm must be finite. Finally, any point returned by the algorithm
is, by definition, an ε-approximate equilibrium of the game.

Moreover, we observe that the starting points for which the convergence of the
algorithm is proved in Theorem 1 are two: the one defined in the theorem and the
other one that can be obtained by switching the two groups of indices.
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Example 2 Consider again the model of example 1. The problems solved by the firms
are the following

minimizex1 θ1(x
1, x2, x3) = 1

2
(x1)2 − x1x3 − x1, s.t. x1 ∈ {0, 1},

minimizex2 θ2(x
1, x2, x3) = 1

2
(x2)2 + x1x2 − x2, s.t. x2 ∈ {0, 1},

minimizex3 θ3(x
1, x2, x3) = 1

2
(x3)2 + x2x3 − x3, s.t. x3 ∈ {0, 1}.

Starting from the point indicated in Theorem 1, that is (0, 1, 0), Algorithm 1, with any
ε < 1

2 and any order of play, produces the following sequence

(0, 1, 0) → (1, 1, 0) → (1, 0, 0) → (1, 0, 1)
θ1 : 0 − 1

2 − 1
2 − 3

2
θ2 : − 1

2
1
2 0 0

θ3 : 0 0 0 − 1
2

that terminates in (1, 0, 1) which is an ε-approximate equilibrium of the game. Notice
that (1, 0, 1) is the other possible starting point for which the convergence is proved
in Theorem 1. It is directly an equilibrium of the game.

Moreover, if we consider any possible other mixed-integer setting, e.g. i1 = 0, i2 =
1, and i3 = 1, then the sequence produced by the algorithm is the same, and (1, 0, 1)
is an equilibrium of the game.

The following result is about the complexity of Algorithm 1.

Proposition 1 Let us suppose that all the assumptions in Theorem 1 are fulfilled. Then
Algorithm 1 converges to an ε-approximate equilibrium of the NEP defined by (1),
with ε > 0, in at most

h

[

N
∑

ν=1

nν
∑

i=1

(uν
i − lνi )

τ
√
n

ε

]

iterations.

Proof As stated in the proof of Theorem 1, sequence {xk}, generated by Algorithm 1,
is such that xk ∈ X and (7) is true for all (ν, i). By recalling that ν ∈ ∪k+h

t=k J t for each

player ν and each iterate k, then, if for an iteration k̄ it holds that xk̄ = xk̄+h+1, then
xk̄+h+1 is a solution of the discrete NEP. Otherwise at least one (ν, i) exists such that

x
˜k+1,ν
i > x

˜k,ν
i + ε

τ
√
n
, if (μ, i) ∈ G1, and, x

˜k+1,ν
i < x

˜k,ν
i − ε

τ
√
n
, if (μ, i) ∈ G2,
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where k̄ ≤ ˜k ≤ k̄ + h. Therefore Algorithm 1 can do no more than

h

[

N
∑

ν=1

nν
∑

i=1

(uν
i − lνi )

τ
√
n

ε

]

iterations before xk,νi = uν
i if (ν, i) ∈ G1 and xk,νi = lνi if (ν, i) ∈ G2, for all

ν ∈ {1, . . . , N } and all i ∈ {1, . . . , nν}. ��

The following corollary gives conditions for the existence of ε-approximate equilibria.
It is a direct consequence of Theorem 1.

Corollary 1 A 2-groups partitionable NEP has at least one ε-approximate equilib-
rium for any given ε > 0.

The following example shows that if the Cournot model is not partitionable into two
groups then there is no hope to obtain the good results of Theorem 1, Proposition 1,
and Corollary 1. In particular, the game in the example is partitionable into three, but
not into two, groups and it does not have any equilibrium.

Example 3 Let us consider again the model of example 1, but with C13 = 1. In
this case the good produced by firm 3 is no longer a complement for that of firm 1,
but it is a substitute. Therefore the variables are partitionable into three groups, but
not into two groups. In particular, we can partition the variables indices in this way:
G1 = {(1, 1)},G2 = {(2, 1)}, and G3 = {(3, 1)}. The problem solved by firm 1 is the
following

minimizex1 θ1(x
1, x2, x3) = 1

2
(x1)2 + x1x3 − x1, s.t. x1 ∈ {0, 1},

while the other firms solve the same problems as before (see example 2). Starting from
(0, 1, 0), Algorithm 1, with any ε < 1

2 and any order of play, produces the following
infinite sequence

(0, 1, 0) → (1, 1, 0) → (1, 0, 0) → (1, 0, 1) → (0, 0, 1) → (0, 1, 1) → (0, 1, 0) → · · ·
θ1 : 0 − 1

2 − 1
2

1
2 0 0 0

θ2 : − 1
2

1
2 0 0 0 − 1

2 − 1
2

θ3 : 0 0 0 − 1
2 − 1

2
1
2 0

While starting from (0, 0, 0) or (1, 1, 1), which are the only other points that are not
in the sequence above, the algorithm never stops since they are not ε-approximate
equilibria for any ε < 1

2 . Therefore, starting from any feasible point, the algorithm
does not converge. However, the game does not have any ε-approximate equilibrium
with ε < 1

2 , and this indicates that no method can be more effective than Algorithm 1
on this game.
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4 Numerical experiments

Models described in this paper are particularly relevant if the number of players is
small, and challenging if the number of decision variables of each of these few players
is large. Thus, in our experimentswe assume that there are N = 3 firms each producing
nν = 100 products. For any player ν, the first iν = 50 products are indivisible, while
the other 50 are modeled with continuous variables. We assume that any product, of
any firm, belongs to one of two groups following assumptions (2) and (3). We recall
that two products of the same group are complements, while two products of different
groups are substitutes. The first group of products is made up of the first 50 products
of firm 1, the first 25 products of firm 2 and the first 75 products of firm 3. The second
group is made up of the other products. Let hν ∈ {−1, 1}100 be a vector, for any
firm ν, whose entries are equal to 1 if the corresponding product belongs to the first
group, or are equal to -1 otherwise. For any couple of firms ν and μ, we computed
matrix Cνμ in the following way: Cνμ = − [

(wν ◦ hν) (vνμ ◦ hμ)T
] ◦ Mνμ, where

wν, vνμ ∈ R
100+ , ◦ denotes the element-wise product, and Mνμ ∈ Rnν×nμ has the

following entries:

Mνμ
i j =

⎧

⎨

⎩

5 if ν �= μ and hν
i h

μ
j < 0

0.05 if ν �= μ and hν
i h

μ
j > 0

0.5 if ν = μ.

Matrix Mνμ is intended to emphasize the effect of substitute goods of different firms
and to decrease the effect of complement ones. Moreover, in order to get any Qν � 0,
we set the diagonal elements of Qν equal to 10 times the sum of the absolute values
of the corresponding (off-diagonal) row elements of the symmetric part of Qν .

For any firm ν, the parameters were generated in the following way: aν were
randomly generated in [10 000, 20 000]100 by using the uniform distribution, and then
rounded off to the nearest integer values; cν = 0.5 aν ; wν and vνμ, for all μ, were
randomly generated in [0.9, 1.1]100 and [0, 1]100 respectively by using the uniform
distribution; q̂ν = x̂ν(0) in the case of null initial quantities and lower bounds, and
large upper bounds (= 100); lν = max{−q̂ν,−10} and uν = 10.

We generated 3 different instances of the game (denoted by A, B, and C), and
solved them by using Algorithm 1 in 4 different variants: pure Jacobi (Ja), Gauss–
Seidel in which the order of play is: firm 1 for first, firm 2 for second and firm 3 for
third (GS123), Gauss–Seidel in which the order of play is: firm 2 for first, firm 3 for
second and firm 1 for third (GS231), and Gauss–Seidel in which the order of play
is: firm 3 for first, firm 1 for second and firm 2 for third (GS312). We considered 3
different starting points: quantity deviations of the first group goods start from their
lower bounds and the others from their upper bounds (sp1); quantity deviations of the
first group goods start from their upper bounds and the others from their lower bounds
(sp2); all the quantity deviations start from zero (sp3). Notice that (sp1) and (sp2)
are the two starting points for which the convergence is proved in Theorem 1, while
starting from (sp3) Algorithm 1 could not converge.
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Table 1 Amount of best
responses computed (CPU time
in seconds consumed) by
Algorithm 1 to return an
ε-approximate equilibrium

Ja GS123 GS231 GS312

A

sp1 42 (27) 24 (15) 27 (22) 24 (16)

sp2 42 (45) 24 (43) 24 (26) 24 (23)

sp3 42 (33) 21 (26) 21 (15) 24 (20)

B

sp1 45 (48) 24 (28) 27 (23) 27 (28)

sp2 48 (50) 27 (31) 27 (26) 27 (25)

sp3 Failure 24 (25) 18 (16) 24 (21)

C

sp1 45 (51) 24 (27) 27 (36) 27 (31)

sp2 57 (89) 33 (50) 36 (62) 33 (58)

sp3 54 (90) 33 (58) 21 (30) 24 (42)

0 2 4 6 8 10 12 14
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2.6

2.8

3

x 106

iteration

pr
ofi

t

firm 1
firm 2
firm 3

Fig. 1 A-Ja-sp3

All the experiments were carried out on an Intel Core i7-4702MQ CPU
@2.20GHz×8 with Ubuntu 14.04 LTS 64-bit and by using Matlab 7.14.0.739
(R2012a). We implemented Algorithm 1 by using AMPL and we computed all the
best responses by using the convex mixed-integer quadratic programming solver of
CPLEX 12.6.0.1 with default options. We set ε = 1e − 4.

In Table 1 we report the amount of best responses computed (i.e. the amount of
optimization problems solved with CPLEX), and the total CPU time consumed, by
Algorithm 1 to return an ε-approximate equilibrium of the game. We considered all
the pairs “(algorithm variant)-(starting point)” and all the instances. An ε-approximate
equilibrium is computed for any run of the algorithm except for B-Ja-sp3, which is a
case not covered by Theorem 1. In Figs. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 and 12 we plot
the profits of all the firms for any iteration. Note that, although for B-Ja-sp3 there is
no convergence, it computes points that are close to the equilibrium computed in the
other cases, see the figures. All in all, the different versions of Algorithm 1 computed
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Fig. 2 A-GS123-sp3
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Fig. 3 A-GS231-sp3
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Fig. 4 A-GS312-sp3
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Fig. 5 B-Ja-sp3
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Fig. 6 B-GS123-sp3
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Fig. 7 B-GS231-sp3
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Fig. 8 B-GS312-sp3
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Fig. 9 C-Ja-sp3
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Fig. 10 C-GS123-sp3
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Fig. 11 C-GS231-sp3
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Fig. 12 C-GS312-sp3

ε-approximate equilibria of the game in few iterations and few seconds. The different
Gauss–Seidel versions perform similarly and they are faster than the Jacobi one.
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