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Abstract This paper concentrates on solving bilevel programming problems where
the lower level programs are max–min optimization problems and the upper level
programs have max–max or max–min objective functions. Because these bilevel pro-
gramming problems include nonconvex and nonsmooth lower level programproblems,
it is a challenging undonework.Giving some assumptions,we translate these problems
into general single level optimization problems or min–max optimization problems.
To deal with these equivalent min–max optimization problems, we propose a class of
regularization methods which approximate the maximum function by using a family
of maximum entropy functions. In addition, we examine the limit situations of the
proposed regularization methods and show that any limit points of the global optimal
solutions obtained by the approximation methods are the same as the ones of the orig-
inal problems. Finally, we apply the proposed methods to newsvendor problems and
use a numerical example to show their effectiveness.
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1 Introduction

Bilevel programming problem (BLPP) is an important optimization problem, which
includes optimization problems in the constraints. The general formulation of BLPP
is

min
x∈X, y∈S(x)

u(x, y), (1.1)

where S(x) denotes the set of solutions of the following lower level program:

min
y∈Y (x)

l(x, y), (1.2)

where X ⊂ R
n , Y (x) ⊂ R

m for any x ∈ X , and u, l : Rn ×R
m → R are continuous

functions.
Let x and y respectively denote the decision variables of the upper level (leader)

and the lower level (follower). BLPP (1.1)–(1.2) represents an optimistic approach in
which the follower is assumed to be cooperative and the leader is allowed to choose
the most suitable element from the set of solutions of the follower. On the contrary, a
pessimistic approach deals with the case that the follower may be noncooperative. In
this case, the leader cannot decide which of the best responses is implemented by the
follower so that he/she chooses a decision that performs best in the case that the worst
follower response happens, that is, solving the following pessimistic BLPP:

min
x∈X max

y∈S(x)
u(x, y). (1.3)

BLPP has been always an important research area. It was initially introduced byVon
Stackelberg (1952) for modeling a duopoly market. A number of contributions includ-
ing theories, algorithms and applications for BLPP have been made by researchers
(Allende and Still 2013; Vicente and Calamai 1994; Colson et al. 2005; Ye and Zhu
1995;Bard 1998;Dempe 2002;Dempe andZemkoho 2013;Dempe et al. 2012;Dempe
and Zemkoho 2014; Ye and Zhu 2010; Lin et al. 2014). In the case that the lower level
program is a convex optimization problem and its global optimal solutions can be
computed, a common approach to BLPP is to replace the lower level program by its
first order optimality condition or Karush–Kuhn–Tucker (KKT) condition and then
solve a mathematical program with equilibrium constraints (MPEC) or mathematical
program with complementarity constraints (MPCC). However, it is difficult to solve
MPEC and MPCC because their constraints fail to satisfy the standard constraint
qualifications, such as the most commonly used Mangasarian–Fromovitz constraint
qualification (MFCQ). Even under some convexity conditions on the function u and
the set X , MPEC and MPCC are still not easy to be solved due to the nonconvexities
that occur in the Lagrangean or complementarity constraints. Till now, great efforts
have been made to solve MPEC andMPCC (Luo et al. 1996; Facchinei et al. 1999; Ye
2005; Fletcher et al. 2006; Guo et al. 2015; Lin and Fukushima 2005; Scholtes 2001;
Zhu and Lin 2016). However, all these available methods can only find out stationary
points, there is no guarantee that they are optimal.
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In the case that the lower level program is not a convex optimization problem, the
KKT based method may not be valid in general, BLPP is still a difficult problem to be
solved. Another approach to BLPP is to reformulate it as a single level optimization
problemwith considering the optimal value function of the lower level program.Define
the optimal value function of (1.2) as

v(x) := min
y∈Y (x)

l(x, y), (1.4)

then BLPP (1.1)–(1.2) can be reformulated as the following single level optimization
problem:

min u(x, y)

s.t. l(x, y) − v(x) ≤ 0,

x ∈ X, y ∈ Y (x). (1.5)

This reformulation was first introduced by Outrata (1990) for obtaining a numerical
solution and subsequently used by Ye and Zhu (1995) for obtaining necessary opti-
mality conditions. Recently, Lin et al. (2014) used this reformulation to solve a simple
BLPP where the constraint set of the lower level program does not depend on x , that
is, Y (x) ≡ Y . Xu and Ye (2014) proposed a smoothing projected gradient algorithm
for solving (1.5) by using some smooth functions to approximate the optimal value
function. All these available methods need some strong assumptions and can only find
stationary points, which may still not be optimal.

Although there is a rich literature on BLPP, to the best of our knowledge, there
is no paper handling BLPPs with nonconvex nonsmooth lower level programs due
to its inherent mathematical difficulties and the lack of an applied background. In
recent years, Guo (2011) initially proposed the one-shot decision theory (OSDT) for
decisionmaking under uncertainty. TheOSDThas awide-ranging applied background
in business and management (Li and Guo 2015; Guo 2010a, b; Guo and Li 2014;
Guo and Ma 2014; Wang and Guo 2017). There are four decision models which are
introduced as follows:

• Model I:

max
x∈X max

y∈S1(x)
f (x, y), (1.6)

where S1(x) denotes the set of solutions of the following lower level program:

max
y∈Y min{g(y), f (x, y)}, (1.7)

where X := [xl , xu] and Y := [yl , yu] are bounded subsets of R, f (x, y) :
R × R → [0, 1] and g(y) : R → [0, 1] are continuously differentiable functions.

• Model II:

max
x∈X max

y∈S2(x)
f (x, y), (1.8)
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where S2(x) denotes the set of solutions of the following lower level program:

max
y∈Y min{1 − g(y), f (x, y)}. (1.9)

• Model III:

max
x∈X min

y∈S3(x)
f (x, y), (1.10)

where S3(x) denotes the set of solutions of the following lower level program:

max
y∈Y min{g(y), 1 − f (x, y)}. (1.11)

• Model IV:

max
x∈X min

y∈S4(x)
f (x, y), (1.12)

where S4(x) denotes the set of solutions of the following lower level program:

max
y∈Y min{1 − g(y), 1 − f (x, y)}. (1.13)

Let us give a brief introduction of Models I, II, III and IV in the following. In
these models, x represents a decision alternative and y is a scenario. For each decision
alternative x , the lower level program is to seek a suitable scenario y which has a
relatively high g(y) and relatively high f (x, y) (Model I); or a relatively low g(y)
and relatively high f (x, y) (Model II); or a relatively high g(y) and relatively low
f (x, y) (Model III); or a relatively low g(y) and relatively low f (x, y) (Model IV).
The sought scenario is called the focus point of x . For the case that there exist multiple
focus points of x in the lower level program, the upper level program is to find the
optimal decision alternative to make f maximize in an optimistic way (Models I, II),
or in a pessimistic way (Models III, IV).

Clearly, the OSDT based decision Models I, II, III and IV are some special BLPPs
which are difficult to be solved because they include nonconvex nonsmooth lower
level programs. Although the optimal value function based method can generally
reformulate the bilevel programming problem as a single level optimization problem,
nevertheless solving the equivalent single level optimization problem (1.5) is still
difficult. First, (1.5) is a nonsmooth optimization problem since the optimal value
function is usually nonsmooth even when the objective function of the lower level
program is smooth. Second, the commonly used nonsmooth MFCQ for single level
optimization problems will never be satisfied because the inequality constraint of
(1.5) is actually an equality constraint, and hence there is no guarantee that the optimal
solution of (1.5) is a stationary point of (1.5). Last but the most important, (1.5) cannot
be solved directly by utilizing the approaches to the general nonsmooth optimization
problems since the optimal value function that occurs in the inequality constraint
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usually cannot be expressed by an explicit one. In other words, (1.5) is not a traditional
single level optimization problem, it remains difficulties to be solved.

This research is the first attempt to overcome some difficulties of (1.5). By tak-
ing into account the characteristics of the OSDT based models and the optimal value
function based method, we succeed in translatingModels I–II into general single level
optimization problems so that they can be solved by the commonly used optimiza-
tion approaches, and Models III–IV into min–max optimization problems with some
assumptions. In order to solve the equivalent min–max optimization problems, we pro-
pose a class of regularization methods via approximating the maximum function by
using a family ofmaximum entropy functions. Finally, we apply the proposedmethods
to newsvendor problems and use a numerical example to show their effectiveness.

The remainder of this paper is organized as follows. In Sect. 2, the equivalent
forms of Models I, II, III and IV are proposed. In Sect. 3, newsvendor models are
analyzed using the proposed methods and a numerical example is used to demonstrate
the proposed approaches. Finally, we conclude our research in Sect. 4.

2 The solutions of Models I, II, III and IV

In this section, we solveModels I, II, III and IV by translating them into general single
level optimization problems or min–max optimization problems. For this purpose, we
first give the following definition and assumption that will be used.

Definition 2.1 (Stephen and Vandenberghe 2004) Let C be a convex set and let
f : C → R be a continuous function.

• f is called quasi-concave if for all x, y ∈ C and λ ∈ [0, 1], we have

F
(
λx + (1 − λ)y

) ≥ min
{
F(x), F(y)

}
.

• f is called strictly quasi-concave if for all x, y ∈ C where y �= x and λ ∈ (0, 1),
we have

F
(
λx + (1 − λ)y

)
> min

{
F(x), F(y)

}
.

• f is called (strictly) quasi-convex if − f is (strictly) quasi-concave.

Assumption 2.1 For the functions f (x, y) and g(y) given inModels I–IV, we assume
that

• for any x ∈ X , f (x, y) and g(y) are quasi-concave for the variable y in Y ;
• g(yl) = g(yu) = 0 and there exists yc ∈ (yl , yu) such that g(yc) = 1.

2.1 Equivalent model of Model I

In this subsection, we reformulate Model I as a general single level optimization
problem.

123



260 X. Zhu, P. Guo

Theorem 2.1 With Assumption 2.1, the global optimal solutions of Model I are equiv-
alent to the ones of the following optimization problem:

max f (x, y)

s.t. f (x, y) − g(y) ≤ 0,

x ∈ X, y ∈ Y. (2.1)

Proof Let x̄ ∈ X and suppose ȳ ∈ S1(x̄), that is, ȳ is one of the global optimal
solutions of the following optimization problem:

max
y∈Y min{g(y), f (x̄, y)}. (2.2)

We divide the difference of f (x̄, ȳ) and g(ȳ) into two cases, that is, g(ȳ)− f (x̄, ȳ) ≤ 0
and g(ȳ) − f (x̄, ȳ) > 0. In the first case, that is, g(ȳ) ≤ f (x̄, ȳ), we have

g(ȳ) = min{g(ȳ), f (x̄, ȳ)} ≥ min{g(y), f (x̄, y)}, ∀ y ∈ Y, (2.3)

which implies that ȳ is a global optimal solution of the following optimization prob-
lem:

max g(y)

s.t. g(y) ≤ f (x̄, y), y ∈ Y. (2.4)

In fact, the inequality constraint of (2.4) is actually an equality constraint at the global
optimal solutions, that is, g(ȳ) = f (x̄, ȳ). The reason is as follows. Based on the fact
that f (x, y), g(y) ∈ [0, 1] and Assumption 2.1, we have

g(yc) = max
y∈Y g(y) = 1 ≥ f (x̄, ȳ). (2.5)

Clearly, if g(ȳ) < f (x̄, ȳ), then ȳ �= yc. Considering the continuities of the functions
g(y) and f (x̄, y) aswell as (2.5), we know that there exists yx̄ ∈ (ȳ, yc) or yx̄ ∈ (yc, ȳ)
such that

g(ȳ) < g(yx̄ ) = f (x̄, yx̄ ) < f (x̄, ȳ), (2.6)

which conflicts with the assumption that ȳ is the global optimal solution of (2.4), so
we have g(ȳ) = f (x̄, ȳ) in the first case. Combined with the second case, that is,
g(ȳ) > f (x̄, ȳ), we can easily understand that the global optimal solutions of (2.2)
must satisfy g(ȳ) ≥ f (x̄, ȳ).

Define the optimal value function of the lower level program problem (1.7) as v1(x),
that is, v1(x) := maxy∈Y min{g(y), f (x, y)}. From the above analysis, we have

v1(x) = max
y∈Y { f (x, y) | f (x, y) − g(y) ≤ 0}, (2.7)
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then BLPP (1.6)–(1.7) can be reformulated as the following optimization problem:

max
x∈X max

y∈Y { f (x, y) | f (x, y) − g(y) ≤ 0}. (2.8)

Clearly, (2.8) and (2.1) are equivalent. 
�
In the following, we will give another equivalent form of Model I by considering

its first order optimality condition. For this purpose, we give another assumption as
follows.

Assumption 2.2 For the functions f (x, y) and g(y) given inModels I–IV, we assume
that

• for any x ∈ X , f (x, y) is concave and g(y) is quasi-concave for the variable y in
Y ;

• g(yl) = g(yu) = 0 and there exists yc ∈ (yl , yu) such that g(yc) = 1;
• g′(y) > 0 for all y ∈ (yl , yc) and g′(y) < 0 for all y ∈ (yc, yu).

It should be noted that the first order condition is necessary and sufficient for
optimality for convex optimization problems. This claim still holds for quasi-convex
optimization problems if the first order condition is satisfied only at the global optimal
solutions [see Sects. 3.4, 4.2 of Stephen and Vandenberghe (2004)]. It follows from
Assumption 2.2 that g′(y) �= 0 for all y ∈ (yl , yc) ∪ (yc, yu), that is, g(y) has a
unique maximum. Hence solving the lower level program problem (1.7) is equivalent
to solving its first order optimality condition, namely, finding out y ∈ (yl , yu) such
that

0 ∈ ∂y min{g(y), f (x, y)}, (2.9)

where ∂y min{g(y), f (x, y)} denotes the subdifferential of min{g(y), f (x, y)} at the
point y (Rockafellar and Wets 1998), that is,

∂y min{g(y), f (x, y)} :=
⎧
⎨

⎩

{g′(y)} if f (x, y) > g(y),
{ f ′

y(x, y)} if f (x, y) < g(y),{
λg′(y) + (1 − λ) f ′

y(x, y) | λ ∈ [0, 1]} if f (x, y) = g(y).
(2.10)

Further, we can rewrite the first order optimality condition (2.9) as

⎧
⎨

⎩

g′(y) = 0, if f (x, y) − g(y) > 0;
f ′
y(x, y) = 0, if f (x, y) − g(y) < 0;

g′(y) f ′
y(x, y) ≤ 0, if f (x, y) − g(y) = 0.

(2.11)

It is trivial to verify that the first item of (2.11) does not hold under Assumption
2.2, which implies S1(x) can be denoted by

S1(x) = {
y ∈ (yl , yu) | f ′

y(x, y) = 0, f (x, y) − g(y) < 0
} ∪

{
y ∈ (yl , yu) | g′(y) f ′

y(x, y) ≤ 0, f (x, y) − g(y) = 0
}
. (2.12)
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In the following, we will appropriately expand S1(x) to the following set

S1(x) := {
y ∈ (yl , yu) | g′(y) f ′

y(x, y) ≤ 0, f (x, y) − g(y) ≤ 0
}
. (2.13)

Clearly, for any x ∈ X , it is easy to check that S1(x) is just a proper subset of S1(x),
and the difference of them can be given by

S1(x) − S1(x) = {
y ∈ (yl , yu) | g′(y) f ′

y(x, y) ≤ 0, f (x, y) − g(y) < 0, f ′
y(x, y) �= 0

}
. (2.14)

Theorem 2.2 With Assumption 2.2, the global optimal solutions of Model I are equiv-
alent to the ones of the following optimization problem:

max f (x, y)

s.t. g′(y) f ′
y(x, y) ≤ 0,

f (x, y) − g(y) ≤ 0,

x ∈ X, y ∈ Y. (2.15)

Proof Consider the following optimization problem:

max f (x, y),

s.t. x ∈ X, y ∈ S1(x), (2.16)

where S1(x) is given by (2.13). Taking the conditions f (x, y) ≤ g(y) and g(yl) =
g(yu) = 0 into account, we know that (2.16) and (2.15) are equivalent. To prove the
global optimal solutions of Model I and (2.15) are equivalent, it suffices to show that,
for any x ∈ X , it holds that

f (x, ȳ) > f (x, ỹ), ∀ ȳ ∈ S1(x), ỹ ∈ S1(x) − S1(x). (2.17)

Let us prove (2.17) in what follows. First of all, it follows from (2.12) and (2.14)
that

f ′
y(x, ȳ) = 0, g(ȳ) − f (x, ȳ) > 0; or g′(ȳ) f ′

y(x, ȳ) ≤ 0, g(ȳ) − f (x, ȳ) = 0, (2.18)

and

g′(ỹ) f ′
y(x, ỹ) ≤ 0, f ′

y(x, ỹ) �= 0, g(ỹ) − f (x, ỹ) > 0, (2.19)

respectively. In the following, we discuss the details.
In the case that f ′

y(x, ȳ) = 0 and g(ȳ) − f (x, ȳ) > 0, if f ′
y(x, ỹ) < 0 and

g(ỹ) − f (x, ỹ) > 0 hold, then f (x, y) is a decreasing function in variable y at the
interval [ȳ, ỹ], which implies (2.17). If f ′

y(x, ỹ) > 0 and g(ỹ) − f (x, ỹ) > 0 hold,
then f (x, y) is an increasing function in variable y at the interval [ỹ, ȳ], which implies
(2.17).

In the case that g′(ȳ) = 0 and g(ȳ) − f (x, ȳ) = 0, we can obtain f (x, ȳ) =
g(ȳ) = 1. Combined with f (x, ỹ) < g(ỹ) ≤ 1, we have (2.17).
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In the case that f ′
y(x, ȳ) = 0 and g(ȳ) − f (x, ȳ) = 0, we know ȳ =

argmaxy∈Y f (x, y). Combined with f ′
y(x, ỹ) �= 0, we have (2.17).

In the case that f ′
y(x, ȳ) < 0, g′(ȳ) > 0 and g(ȳ) − f (x, ȳ) = 0, if f ′

y(x, ỹ) < 0,
g′(ỹ) ≥ 0 and g(ỹ) − f (x, ỹ) > 0 hold, then f (x, y) is a decreasing function in
variable y at the interval [ȳ, ỹ], which implies (2.17). If f ′

y(x, ỹ) > 0, g′(ỹ) ≤ 0 and
g(ỹ)− f (x, ỹ) > 0 hold, then f ′

y(x, ỹ) > 0 > f ′
y(x, ȳ) and g

′(ỹ) ≤ 0 < g′(ȳ)which
conflict with the definitions of these two functions.

In the case that f ′
y(x, ȳ) > 0, g′(ȳ) < 0 and g(ȳ) − f (x, ȳ) = 0, if f ′

y(x, ỹ) > 0,
g′(ỹ) ≤ 0 and g(ỹ) − f (x, ỹ) > 0 hold, then f (x, y) is an increasing function in
variable y at the interval [ỹ, ȳ], which implies (2.17). If f ′

y(x, ỹ) < 0, g′(ỹ) ≥ 0
and g(ỹ) − f (x, ỹ) > 0 hold, it is easy to verify that this result conflicts with the
definitions of these two functions.

From the above analysis, we know that (2.17) holds for any x ∈ X , which implies
the global optimal solutions of the BLPP (1.6)–(1.7) and (2.15) are equivalent. 
�

By comparing models (2.15) and (2.1), we can find that the feasible region of (2.15)
is a subset of (2.1), (2.15) further indicates that the global optimal solutions ofModel I
must occur not only in the case that f (x, y) ≤ g(y) but also in the case that g′(y) = 0,
f ′
y(x, y) = 0 or g′(y) f ′

y(x, y) < 0.

2.2 Equivalent model of Model II

In this subsection, we reformulate Model II as a general single level optimization
problem.

Theorem 2.3 WithAssumption 2.1, the global optimal solutions ofModel II are equiv-
alent to the ones of the following optimization problem:

max f (x, y)

s.t. f (x, y) + g(y) − 1 ≤ 0,

x ∈ X, y ∈ Y. (2.20)

Proof Let x̄ ∈ X and suppose ȳ ∈ S2(x̄), that is, ȳ is one of the global optimal
solutions of the following optimization problem:

max
y∈Y min{1 − g(y), f (x̄, y)}. (2.21)

We divide the difference of f (x̄, ȳ) and 1− g(ȳ) into two cases, that is, 1− g(ȳ) <

f (x̄, ȳ) and 1 − g(ȳ) ≥ f (x̄, ȳ). In fact, the first case is impossible. The reason is as
follows. If the first case holds, that is, 1 − g(ȳ) < f (x̄, ȳ), then we have

1− g(ȳ) = min{1− g(ȳ), f (x̄, ȳ)} ≥ min{1− g(y), f (x̄, y)}, ∀ y ∈ Y, (2.22)

123



264 X. Zhu, P. Guo

which implies that ȳ is a global optimal solution of the following optimization prob-
lem:

max 1 − g(y)

s.t. 1 − g(y) < f (x̄, y), y ∈ Y. (2.23)

Based on the fact that f (x, y), 1 − g(y) ∈ [0, 1] and Assumption 2.1, we have

1 − g(yl) = 1 − g(yu) = max
y∈Y 1 − g(y) = 1 ≥ f (x̄, ȳ). (2.24)

It is clear that yl < ȳ < yu . Considering the continuities of the functions 1 − g(y)
and f (x̄, y) as well as (2.24), we know that there exists yx̄ ∈ (yl , ȳ) or yx̄ ∈ (ȳ, yu)
such that

1 − g(ȳ) < 1 − g(yx̄ ) = f (x̄, yx̄ ) < f (x̄, ȳ), (2.25)

which conflicts with the assumption that ȳ is the global optimal solution of (2.23),
so we can easily understand that the global optimal solutions of (2.21) must satisfy
1 − g(ȳ) ≥ f (x̄, ȳ).

Define the optimal value function of the lower level program problem (1.9) as v2(x),
that is, v2(x) := maxy∈Y min{1 − g(y), f (x, y)}. From the above analysis, we have

v2(x) = max
y∈Y { f (x, y) | f (x, y) + g(y) − 1 ≤ 0}, (2.26)

then BLPP (1.8)–(1.9) can be reformulated as the following optimization problem:

max
x∈X max

y∈Y { f (x, y) | f (x, y) + g(y) − 1 ≤ 0}. (2.27)

Clearly, (2.27) and (2.20) are equivalent. 
�

2.3 Equivalent model of Model III

In this subsection, we translateModel III into amin–max optimization problem.More-
over, we propose a class of regularization methods to solve it.

Theorem 2.4 With Assumption 2.1, the global optimal solutions of Model III are
equivalent to the ones of the following continuous min–max optimization problem:

min
x∈X max

y∈Y {− f (x, y) | 1 − f (x, y) − g(y) = 0}. (2.28)

Proof Let x̄ ∈ X and suppose ȳ ∈ S3(x̄), that is, ȳ is one of the global optimal
solutions of the following optimization problem:

max
y∈Y min{g(y), 1 − f (x̄, y)}. (2.29)
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Under Assumption 2.1, the global optimal solution ȳ ∈ S3(x̄) must satisfy

g(ȳ) = 1 − f (x̄, ȳ). (2.30)

The reason is as follows.
If (2.30) does not hold, we divide the difference of g(ȳ) and 1 − f (x̄, ȳ) into two

cases, that is, g(ȳ) < 1 − f (x̄, ȳ) and g(ȳ) > 1 − f (x̄, ȳ). If g(ȳ) < 1 − f (x̄, ȳ)
holds, then we have

g(ȳ) = min{g(ȳ), 1 − f (x̄, ȳ)} ≥ min{g(y), 1 − f (x̄, y)}, ∀ y ∈ Y, (2.31)

which implies that ȳ is a global optimal solution of the following optimization prob-
lem:

max g(y)

s.t. g(y) < 1 − f (x̄, y), y ∈ Y. (2.32)

Based on the fact that 1 − f (x, y), g(y) ∈ [0, 1] and Assumption 2.1, we have

g(yc) = max
y∈Y g(y) = 1 ≥ 1 − f (x̄, ȳ). (2.33)

It is clear that ȳ �= yc. Considering the continuities of functions g(y) and 1− f (x̄, y)
as well as (2.33), we know there exists yx̄ ∈ (ȳ, yc) or yx̄ ∈ (yc, ȳ) such that

g(ȳ) < g(yx̄ ) ≤ 1 − f (x̄, yx̄ ) < 1 − f (x̄, ȳ), (2.34)

which is not consistent with the assumption that ȳ is the global optimal solution of
(2.32). On the other hand, if g(ȳ) > 1 − f (x̄, ȳ) holds, then we have

1− f (x̄, ȳ) = min{g(ȳ), 1− f (x̄, ȳ)} ≥ min{g(y), 1− f (x̄, y)}, ∀ y ∈ Y, (2.35)

which implies that ȳ is a global optimal solution of the following problem:

max 1 − f (x̄, y)

s.t. 1 − f (x̄, y) < g(y), y ∈ Y. (2.36)

Based on the fact that 1 − f (x, y), g(y) ∈ [0, 1] and Assumption 2.1, we have

1 − f (x̄, y) ≥ g(yl) = g(yu) = 0, ∀ y ∈ Y. (2.37)

It is clear that yl < ȳ < yu . Considering the continuities of functions g(y) and
1 − f (x̄, y) as well as (2.33), we know that there exists yx̄ ∈ (yl , ȳ) or yx̄ ∈ (ȳ, yu)
such that

1 − f (x̄, ȳ) < 1 − f (x̄, yx̄ ) ≤ g(yx̄ ) < g(ȳ), (2.38)
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which is not consistent with the assumption that ȳ is the global optimal solution of
(2.36).

Define the optimal value function of the lower level program problem (1.11) as
v3(x), that is, v3(x) := maxy∈Y min{g(y), 1− f (x, y)}. From the above analysis, we
have

v3(x) = max
y∈Y {1 − f (x, y) | 1 − f (x, y) − g(y) = 0}, (2.39)

then BLPP (1.10)–(1.11) can be reformulated as the following optimization problem:

max
x∈X min

y∈Y { f (x, y) | 1 − f (x, y) − g(y) = 0}. (2.40)

Clearly, the global optimal solutions of (2.40) and (2.28) are equivalent. 
�
In what follows, we translate the continuous min–max problem (2.28) as a discrete

min–max problem. First of all, it follows from Assumption 2.1 that, for any x ∈ X ,
we have

1 − f (x, yl ) − g(yl ) ≥ 0, 1 − f (x, yc) − g(yc) ≤ 0, 1 − f (x, yu) − g(yu) ≥ 0, (2.41)

so it is easy to understand that solving the equation 1− f (x, y)−g(y) = 0 is equivalent
to finding out y ∈ {y1, y2} such that

1 − f (x, y1) − g(y1) = 0, y1 ∈ [yl , yc]; 1 − f (x, y2) − g(y2) = 0, y2 ∈ [yc, yu ]. (2.42)

Denote Y1 := [yl , yc] and Y2 := [yc, yu], then (2.28) can be rewritten as the following
optimization problem

min max{− f (x, y1),− f (x, y2)}
s.t. x ∈ X, y1 ∈ Y1, y2 ∈ Y2,

1 − f (x, yi ) − g(yi ) = 0, i = 1, 2. (2.43)

In what follows, we design a class of regularization methods to solve (2.43) by
using a smoothing function to approximate the maximum function. For a sufficiently
large k > 0, we define the maximum entropy function (Li and Fang 1997) as

ϕk(x, y1, y2) := k−1 ln
(
exp

( − k f (x, y1)
) + exp

( − k f (x, y2)
))

. (2.44)

Denote ϕ(x, y1, y2) := max{− f (x, y1),− f (x, y2)}, it follows from the study (Li
and Fang 1997) that {ϕk : k = 1, 2, . . .} is a family of smoothing approximations for
the maximum function ϕ, and it holds that

0 ≤ ϕk(x, y1, y2) − ϕ(x, y1, y2) ≤ k−1ln 2. (2.45)
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Thus for a sufficiently large k > 0, a smoothing approximation of (2.43) can be given
as:

min ϕk(x, y1, y2)

s.t. x ∈ X, y1 ∈ Y1, y2 ∈ Y2,

1 − f (x, yi ) − g(yi ) = 0, i = 1, 2. (2.46)

Obviously, (2.46) is a conventional single level optimization problem which can be
solved by the commonly used optimizationmethods. The following theorem examines
the convergence of the global optimal solutions of (2.46) as k → ∞.

Theorem 2.5 Let k = 1, 2, . . . and suppose (xk, yk1 , y
k
2 ) is a global optimal solution

of (2.46). If (x∗, y∗
1 , y

∗
2 ) is a limit point of the sequence (xk, yk1 , y

k
2 ), then (x∗, y∗

1 , y
∗
2 )

is a global optimal solution of (2.43).

Proof Denote byF the feasible set of (2.43) and (2.46). Considering the boundedness
of X , Y1 and Y2, we know thatF is also a closed set, which implies that the limit point
of the sequence (xk, yk1 , y

k
2 ) is still feasible for (2.43) and (2.46), that is,

(x∗, y∗
1 , y

∗
2 ) ∈ F .

Since (xk, yk1 , y
k
2 ) is the global optimal solution of (2.46) for each k = 1, 2, . . ., we

have

ϕk(x
k, yk1 , y

k
2 ) − ϕk(x, y1, y2) ≤ 0, ∀ (x, y1, y2) ∈ F , ∀ k.

Let k → ∞, considering the continuity of ϕk(x, y1, y2) and the compactness of F ,
we have

ϕ(x∗, y∗
1 , y

∗
2 ) − ϕ(x, y1, y2) ≤ 0, ∀ (x, y1, y2) ∈ F ,

which implies (x∗, y∗
1 , y

∗
2 ) is a global optimal solution of (2.43). 
�

2.4 Equivalent model of Model IV

In this subsection, we translate Model IV into a min–max optimization problem.
Moreover, we propose a class of regularization methods to solve it.

Theorem 2.6 With Assumption 2.1, the global optimal solutions of Model IV are
equivalent to the ones of the following continuous min–max optimization problem:

min
x∈X max

y∈Y {− f (x, y) | g(y) − f (x, y) ≤ 0}. (2.47)
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Proof Let x̄ ∈ X and suppose ȳ ∈ S4(x̄), that is, ȳ is one of the global optimal
solutions of the following optimization problem:

max
y∈Y min{1 − g(y), 1 − f (x̄, y)}. (2.48)

In fact, under Assumption 2.1, the global optimal solution ȳ ∈ S4(x̄) must satisfy:

1 − g(ȳ) ≥ 1 − f (x̄, ȳ). (2.49)

The reason is given as follows.

If (2.49) does not hold, that is, 1 − g(ȳ) < 1 − f (x̄, ȳ), then we have

1 − g(ȳ) = min{1 − g(ȳ), 1 − f (x̄, ȳ)} ≥ min{1 − g(y), 1 − f (x̄, y)}, ∀ y ∈ Y,

(2.50)

which implies that ȳ is a global optimal solution of the following optimization prob-
lem:

max 1 − g(y)

s.t. 1 − g(y) < 1 − f (x̄, y), y ∈ Y. (2.51)

Based on the fact that 1 − f (x, y), 1 − g(y) ∈ [0, 1] and Assumption 2.1, for any
y ∈ Y , we have

max
y∈Y 1 − g(y) = 1 − g(yl) = 1 − g(yu) = 1 ≥ 1 − f (x̄, y). (2.52)

It is clear that yl < ȳ < yu . Considering the continuities of the functions 1− g(y) and
1 − f (x̄, y) as well as (2.52), we know that there exists yx̄ ∈ (yl , ȳ) or yx̄ ∈ (ȳ, yu)
such that

1 − g(ȳ) < 1 − g(yx̄ ) ≤ 1 − f (x̄, yx̄ ) < 1 − f (x̄, ȳ), (2.53)

which is not consistent with the assumption that ȳ is the global optimal solution of
(2.51)

Define the optimal value function of the lower level program problem (1.13) as
v4(x), that is, v4(x) := maxy∈Y min{1− g(y), 1− f (x, y)}. From the above analysis,
we have

v4(x) = max
y∈Y {1 − f (x, y) | g(y) − f (x, y) ≤ 0}, (2.54)

then BLPP (1.12)–(1.13) can be reformulated as the following optimization problem:

max
x∈X min

y∈Y {1 − f (x, y) | g(y) − f (x, y) ≤ 0}. (2.55)

Clearly, the global optimal solutions of (2.55) and (2.47) are equivalent. 
�
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In what follows, we translate the continuous min–max problem (2.47) as a discrete
min–max problem. First of all, from Assumption 2.1, for any x ∈ X , we have

g(yl) = 0 ≤ f (x, yl), g(yu) = 0 ≤ f (x, yu), (2.56)

and

max{− f (x, yl),− f (x, yu)} = max
y∈Y − f (x, y) ≥ − f (x, y), ∀ y ∈ Y. (2.57)

Moreover, if f (x, y) is strictly quasi-concave in variable y, we can further obtain

max{− f (x, yl),− f (x, yu)} > − f (x, y), ∀ y ∈ (yl , yu). (2.58)

So it is easy to understand that (2.47) can be rewritten as the following discrete min–
max problem:

min
x∈X max{− f (x, yl),− f (x, yu)}. (2.59)

Like (2.46), we design a class of regularization methods to solve (2.59) by using the
maximum entropy function to approximate the maximum function. For a sufficiently
large k > 0, we define the maximum entropy function as

φk(x, yl , yu) := k−1 ln
(
exp

( − k f (x, yl)
) + exp

( − k f (x, yu)
))

. (2.60)

Denote φ(x, yl , yu) := max{− f (x, yl),− f (x, yu)}, it follows from the study (Li and
Fang 1997) that

0 ≤ φk(x, yl , yu) − φ(x, yl , yu) ≤ k−1ln 2. (2.61)

Thus for a sufficiently large k > 0, a smoothing approximation of (2.59) can be given
as:

min
x∈X φk(x, yl , yu). (2.62)

Obviously, (2.62) is a conventional single level optimization problem which can be
easily solved with the commonly used optimization methods. Like Theorem 2.5, the
following theorem examines the convergence of the global optimal solutions of (2.62)
as k → ∞. We omit the proof here.

Theorem 2.7 Let k = 1, 2, . . . and suppose xk is a global optimal solution of (2.62).
If x∗ is a limit point of the sequence xk , then x∗ is a global optimal solution of (2.59).
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3 Applications to newsvendor problems

Consider a retailer who orders a product prior to the selling season. Suppose the
demand y is distributed normally with mean μ and variance σ 2. Denote the set of
demand as D := [μ − y0, μ + y0] with y0 > 0. We have the following normalized
probability density function

g(y) := ρ(y) − ρl

ρu − ρl
, y ∈ D, (3.1)

where ρ(y) is the original probability density function, that is,

ρ(y) := 1√
2πσ

exp
(

− (y − μ)2

2σ 2

)
, y ∈ D, (3.2)

ρl and ρu respectively denote the lower and upper bounds of ρ(y) in D, that is,

ρu = ρ(μ) = 1√
2πσ

, ρl = ρ(yl) = ρ(yu) = 1√
2πσ

exp
(

− y20
2σ 2

)
. (3.3)

g(y) is used to represent the relative likelihood degree of y. It is easy to check that
g(y) is strictly quasi-concave continuous and differentiable and satisfies

max
y∈D g(y) = g(μ) = 1, min

y∈D g(y) = g(μ − y0) = g(μ + y0) = 0. (3.4)

Denote x as the retailer’s order quantity, w is the unit wholesale price, r is the unit
revenue with r > w. Any excess product can be salvaged at the unit salvage price
s0 > 0. If there is a shortage, the unit opportunity cost is su > 0. The profit function
of the retailer is

p(x, y) :=
{
r y + (x − y)s0 − wx, y < x;
(r − w)x − su(y − x), y ≥ x .

(3.5)

Because the set of uncertain demand is D, a reasonable order quantity should also lie
in this region. Given an order quantity x ∈ D, the function for evaluating the order
quantity with considering the regret of the retailer is given as

h(x, y) := −(
p(x, y) − pu(x)

)2
, (3.6)

where pu(x) denotes the highest profit for an order x , that is,

pu(x) = max
y∈D p(x, y) = (r − w)x . (3.7)
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Thus, we have

h(x, y) :=
{−(r − s0)2(x − y)2, y < x;

−s2u (x − y)2, y ≥ x .
(3.8)

The satisfaction level of the retailer is represented by a satisfaction function, which
is obtained by normalizing h(x, y), that is,

f
(
h(x, y)

) := h(x, y) − hl
hu − hl

, (3.9)

where hl and hu are the lower and upper bounds of h(x, y) in D × D, respectively.
Clearly, the highest value is hu = 0, that is, the demand is equal to the order quantity.
The lowest value is hl := min

{−(r−s0)2(yu−yl)2, −s2u (yu−yl)2
}
. The satisfaction

function is strictly increasing in v, and the lowest satisfaction level is 0 and the highest
satisfaction level is 1. In addition, it is easy to prove that f

(
h(x, y)

)
is a concave

function in D × D. For convenience, the satisfaction function is written as f (x, y) in
the following parts.

For newsvendor problems, a real demand that represents a scenariowhichwill occur
in the future and the retailer knows that there is usually only one opportunity to order
products before the selling season because the procurement lead-time is usually longer
than the selling season. Considering the one-time feature of newsvendor problems, it
is reasonable to argue that the retailer needs to contemplate which demand ought to
be taken into account before making the order. For each order quantity, the retailer
chooses one demand amongst all possible ones while considering the satisfaction
level caused by the occurrence of the demand and the relative likelihood degree of the
demand occurring. The selected demand is called the focus point of the order quantity.
We consider the following four types of focus points:

• The active focus point of an order quantity x , denoted as y1(x), is a demand that
has a higher relative likelihood degree and a higher satisfaction level for an order
quantity x , that is

y1(x) ∈ D1(x) := argmaxy∈D min{g(y), f (x, y)}. (3.10)

• The daring focus point of an order quantity x , denoted as y2(x), is a demand that
has a lower relative likelihood degree and a higher satisfaction level for an order
quantity x , that is

y2(x) ∈ D2(x) := argmaxy∈D min{1 − g(y), f (x, y)}. (3.11)

• The passive focus point of an order quantity x , denoted as y3(x), is a demand that
has a higher relative likelihood degree and a lower satisfaction level for an order
quantity x , that is

y3(x) ∈ D3(x) := argmaxy∈D min{g(y), 1 − f (x, y)}. (3.12)
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• The apprehensive focus point of an order quantity x , denoted as y4(x), is a demand
that has a lower relative likelihood degree and a lower satisfaction level for an order
quantity x , that is

y4(x) ∈ D4(x) := argmaxy∈D min{1 − g(y), 1 − f (x, y)}. (3.13)

The retailer considers the focus point as his/her most appropriate scenario for each
order quantity and chooses one order quantity which can bring about the highest
satisfaction level with the assumption that the focus point comes true. Hence, the
optimal order quantities are obtained as follows.

• The optimal active order quantity, denoted as x1, is

x1 ∈ argmaxx∈D maxy1(x)∈D1(x) f
(
x, y1(x)

)
. (3.14)

• The optimal daring order quantity, denoted as x2, is

x2 ∈ argmaxx∈D maxy2(x)∈D2(x) f
(
x, y2(x)

)
. (3.15)

• The optimal passive order quantity, denoted as x3, is

x3 ∈ argmaxx∈D miny3(x)∈D3(x) f
(
x, y3(x)

)
. (3.16)

• The optimal apprehensive order quantity, denoted as x4, is

x4 ∈ argmaxx∈D miny4(x)∈D4(x) f
(
x, y4(x)

)
. (3.17)

Clearly, the above newsvendor models (3.14) with (3.10), (3.15) with (3.11), (3.16)
with (3.12) and (3.17) with (3.13) are special cases of Models I, II, III and IV, respec-
tively. It follows from Sect. 2 that solving the models (3.14) with (3.10), (3.15) with
(3.11), (3.16) with (3.12) and (3.17) with (3.13) are equivalent to solving the models
(2.15), (2.20), (2.43) and (2.59) with X = Y = D, respectively.

We demonstrate the proposed approaches with the following example. A sports
clothing store, located in Tokyo, is planning to order a new fashion sportswear before
the selling season. The unit wholesale price w, the unit revenue r , the unit salvage
price s0 and the unit opportunity cost su are 6, 9, 4 and 3 (thousand JPY), respectively.
The demand is distributed normally with mean 500 and variance 2002. The range of
the possible demand is [200, 800].

By using (3.1), the normalized probability density function is

g(y) := exp
( − (y − 500)2/80000

) − exp(−9/8)

1 − exp(−9/8)
. (3.18)

By using (3.8), we have

h(x, y) :=
{−25(x − y)2, y < x;

−9(x − y)2, y ≥ x,
(3.19)
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Table 1 Numerical results for the newsvendor example

Retailer x y g(y) f (x, y)

Active 498.9477 500.1752 1.0000 1.0000

Daring 800.0000 800.0000 0.0000 1.0000

Passive 431.8985 229.7410/770.0530 0.1135/0.1143 0.8865/0.8857

Apprehensive 424.4930 200.0000/800.0000 0.0000/0.0000 0.8600/0.8590

where 200 ≤ x, y ≤ 800. The highest value is hu = 0 and the lowest value is
hl = −9000000.

By using (3.9), the satisfaction function is obtained as

f (x, y) :=
{

− 1
6002

(x − y)2 + 1, y < x;
− 1

10002
(x − y)2 + 1, y ≥ x .

(3.20)

In our experiments, we use the interior-point algorithm fromOptimization Toolbox
of MATLAB 7.10.0 to solve the models (2.15), (2.20), (2.46) and (2.62), and the
starting points are the lower bound of the feasible regions. For approximation problems
(2.46) and (2.62), we set the parameter k as 500. The numerical results are listed in
Table 1.

The numerical results show that the optimal order quantities of the retailer satisfy
x4 < x3 < x1 < x2. It is in perfect accordance with the situations occurred in the real
world of business.

4 Conclusions

In this paper, we examine four types of bilevel programming problemswhere the lower
level programs aremax–min optimization problems and the upper level programs have
max–max ormax–min objective functions. The existing optimizationmethodsmay not
be applicable for solving these problems because they include nonconvex nonsmooth
lower level programs.

We translate these problems into conventional single level optimization problems
or min–max optimization problems and prove that they have the same global optimal
solutions under some assumptions. Furthermore, we propose a class of regularization
methods to solve the equivalent min–max optimization problems by using a family
of maximum entropy functions to approximate the maximum function. We also show
that any limit points of the global optimal solutions obtained by the approximation
methods are the same as the ones of the original problems. As an application, we
utilize the proposed methods to the newsvendor problem and use a numerical example
to show their effectiveness.

This research not only materializes such optimization problems with managerial
meaning but also provides effective approaches to solve them. It is a good beginning
to push forward the progress of the research on bilevel programming problems with
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nonconvex nonsmooth lower level programs. In this paper, only one dimensional case
is studied. How to generalize it into finite dimensional Euclidean spaces will be our
future work.
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