
Math Meth Oper Res (2017) 86:215–254
DOI 10.1007/s00186-017-0591-3

ORIGINAL ARTICLE

How to solve a design centering problem

Stuart M. Harwood1 · Paul I. Barton2

Received: 18 May 2016 / Accepted: 3 May 2017 / Published online: 16 May 2017
© Springer-Verlag Berlin Heidelberg 2017

Abstract This work considers the problem of design centering. Geometrically, this
can be thought of as inscribing one shape in another. Theoretical approaches and refor-
mulations from the literature are reviewed; many of these are inspired by the literature
on generalized semi-infinite programming, a generalization of design centering. How-
ever, the motivation for this work relates more to engineering applications of robust
design.Consequently, the focus is on specific forms of design spaces (inscribed shapes)
and the case when the constraints of the problemmay be implicitly defined, such as by
the solution of a system of differential equations. This causes issues for many existing
approaches, and so this work proposes two restriction-based approaches for solving
robust design problems that are applicable to engineering problems. Another feasible-
point method from the literature is investigated as well. The details of the numerical
implementations of all these methods are discussed. The discussion of these imple-
mentations in the particular setting of robust design in engineering problems is new.

Keywords Gsip · Design centering · Lower level duality · Global optimization

This research was funded by Novartis Pharmaceuticals as part of the Novartis-MIT Center for Continuous
Manufacturing.

B Paul I. Barton
pib@mit.edu

1 Present Address: ExxonMobil Research and Engineering, Annandale NJ, 08801, USA

2 Process Systems Engineering Laboratory, Massachusetts Institute of Technology, Cambridge,
MA 02139, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00186-017-0591-3&domain=pdf


216 S. M. Harwood, P. I. Barton

1 Introduction

This work discusses the theoretical and practical issues involved with solving design
centering problems. The problems considered will be in the general form

sup
x

vol(D(x)) (DC)

s.t.D(x) ⊂ G,

x ∈ X,

where Y ⊂ R
ny , g : Y → R

m , G = {y ∈ Y : g(y) ≤ 0}, X ⊂ R
nx , D is a set-valued

mapping from X to R
ny (denoted D : X ⇒ R

ny ), and vol(·) denotes the “volume” of
a set (or some suitable proxy- in this work D will either be ball- or interval-valued,
and the choice of volume/proxy will be clear). D(x) is called a “candidate” design
space, which is feasible if D(x) is a subset of G, and optimal if it is the “largest” such
feasible design space.

Ensuring feasibility of the solution is typically of paramount importance in any
method for the solution of (DC).An application of (DC) is to robust design problems. In
this case, g represents constraints on a system or process. Given some input parameters
y, one desires, for instance, on-specification product, or perhapsmore importantly, safe
system behavior, indicated by g(y) ≤ 0. In robust design, one seeks a nominal set point
yc at which to operate the system, and further determine the amount one can deviate
from this set point (with respect to some norm) and still have safe process behavior.
Then the result is that one seeks a set D(yc, δ) = {y : ‖y − yc‖ ≤ δ} ⊂ G. One
goal might be to maximize operational flexibility, in which case the largest D(yc, δ)
is sought, i.e. (yc, δ) with the largest δ. This example provides some basic motivation
for the focus of this work: The focus on the case that D is ball- or interval-valued
comes from the fact that a solution should yield an explicit bound on the maximum
acceptable deviation from some nominal set point. The focus on solution methods
that are feasible point methods comes from the fact that a solution which violates
D(x) ⊂ G is not acceptable, especially when safety is concerned.

Under some subtle assumptions (discussed in Sect. 2), problem (DC) is equivalent
to a generalized semi-infinite program (GSIP) expressed as

sup
x

vol(D(x)) (GSIP)

s.t. gi (y) ≤ 0, ∀y ∈ D(x), ∀i ∈ {1, . . . ,m},
x ∈ X.

We note that problem (GSIP) is a specific instance of the broader class of generalized
semi-infinite programs, in which g is allowed dependence on the variables x. Because
design centering problems are a particular instance of GSIP, this work approaches
design centering problems from the perspective of and with tools from the GSIP
literature (see Stein (2012) for a recent review). This approach is hardly original
(Stein 2006; Stein andWinterfeld 2010; Winterfeld 2008), however, bringing together
these ideas in one work is useful. Further, this work compares different numerical

123



How to solve a design centering problem 217

approaches from the GSIP literature. In particular, global optimization methods are
considered; as a consequence, challenges and advantages appear that are not present
when applying local optimization methods.

The end goal of this work is the casewhen the constraints of the system g are implic-
itly defined by the solution of systems of algebraic or differential equations, as is often
the case for robust design in engineering applications. In this case, explicit expressions
for g and its derivatives are, in general, difficult to obtain, and many methods for GSIP
require this information in a numerical implementation. Consequently, the focus turns
toward approximate solution methods inspired by global, feasible point methods. This
discussion, and in particular the challenges in implementing the numerical methods,
is original. Some of these approximations come from restrictions of (DC) which are
apparent when considering the GSIP reformulation. Other approximations come from
terminating a feasible point method early.

Connections to previous work in the literature are pointed out throughout this work.
We mention a few references which do not quite fit into the rest of the organization
of this work. Approaches to robust design and design centering specific to various
application domains abound. In mechanical engineering, robust design of structures
is considered in Parkinson et al. (1993). A design centering method is applied to a
complex system such as a life-support system in Salazar and Rocco (2007). A design
centering applied to circuit design is considered in Abdel-Malek and Hassan (1991).
An approach in the specific case that ny = 3 is considered in Nguyen and Strodiot
(1992), with the classic application of gemstone cutting.

The rest of this work is organized as follows. Section 2 discusses some important
concepts and the relationship between (DC) and (GSIP), and assumptions that will
hold for the rest of this work. Some interesting cases of (DC) and connections to other
problems including “flexibility indices” are also discussed. Section 3 discusses the
case when g is an affine function. Reformulations as smooth, convex programs with
polyhedral feasible sets are possible in this case. The main purpose of this section is
to point out this special and tractable case. These reformulations are not necessarily
apparent when approaching (DC) from the more general perspective taken in the GSIP
literature, which is to use duality results for the lower level programs (see Sect. 2) to
reformulate the infinite constraints. This approach is the subject of Sect. 4; thus in this
section the lower level programs are convex programs, or more generally, strong dual-
ity holds for the lower-level programs. A number of reformulations of (DC) to simpler
problems (finite nonlinear programs (NLPs) or standard semi-infinite programs (SIPs))
are possible. The application of global optimization methods to these reformulations
reveals some interesting behavior that is not apparent when applying local methods, as
in previous work; see Sect. 4.2.2. A numerical example demonstrates that infeasible
points can be found when applying a global method to previously published reformu-
lations. Section 5 discusses the most general case, when the lower-level programs are
not necessarily convex, and the subsequent need for the aforementioned approximate
solution methods inspired by global, feasible point methods. The numerical develop-
ments in this section are new, and in particular the result that a significant amount
of the implementation can rely on commercially available optimization software is
interesting. Examples of robust design from engineering applications are considered.
Section 6 concludes with some final thoughts.

123



218 S. M. Harwood, P. I. Barton

2 Preliminaries

2.1 Notation

As already seen, vectors are denoted by lowercase bold letters, while matrices are
denoted by uppercase bold letters. A vector of ones whose size is inferred from context
is denoted 1. Similarly, a vector or matrix of zeros whose size is inferred from context
is denoted 0. Sets are typically denoted by uppercase italic letters. A vector-valued
function f is called convex if each component fi is convex, and similarly for concavity.
Denote the set of symmetric matrices inR

n×n by S
n×n . For a symmetric matrixM, the

notation M � 0 (M 	 0) means that M is positive (negative) semidefinite. Similarly,
M 
 0 (M ≺ 0) means M is positive (negative) definite. For vectors, inequalities
hold componentwise. Denote the determinant of a matrix M by det(M) and a square
diagonal matrix with diagonal given by the vector m by diag(m). Denote the dual
norm of a norm ‖·‖ by ‖·‖∗.

2.2 Equivalence of (DC) and (GSIP)

Throughout this work, the terms “equivalent” and “equivalence” are used to relate two
mathematical programs in the standard way.

Definition 1 (Equivalence) Two mathematical programs

sup
x

f (x) sup
x,z

f (x)

s.t. x ∈ X, s.t. (x, z) ∈ S,

are said to be equivalent if for each x ∈ X , there exists z such that (x, z) ∈ S, and for
each (x, z) ∈ S, x ∈ X .

It is clear that if two programs are equivalent, then the solution sets (if nonempty) have
the same “x” components since the objective functions are the same.

Next, we state an assumption under which it is shown that (DC) and (GSIP) are
equivalent. Nearly all of the results in this work include hypotheses which imply this
assumption.

Assumption 1 Assume that in (DC), D(x) is a subset of Y for all x ∈ X .

Consider the lower level programs (LLPs) of (GSIP), forx ∈ X and i ∈ {1, . . . ,m}:

g∗
i (x) = sup {gi (y) : y ∈ D(x)} . (LLP i)

In the context of robust design, y represents parameters or inputs to a system. In the
context of GSIP, y are called the lower (level) variables, while x are called the upper
variables. For x ∈ X , it is clear that if D(x) is nonempty, then x is feasible in (GSIP)
iff g∗

i (x) ≤ 0 for each i . On the other hand, if D(x) is empty, then no constraints

123



How to solve a design centering problem 219

are required to hold in (GSIP), and so x is feasible (alternatively one could define the
supremum of a real function on the empty set as −∞).

Consider the fact that G is defined as a subset of Y . If Assumption 1 did not hold,
the constraints in (GSIP) would need to be modified to read

gi (y) ≤ 0, ∀y ∈ D(x) ∩ Y.

However, this leads to complications. If, for instance, D(x) is nonempty, but D(x)∩Y
is empty, then neither D(x) nor D(x) ∩ Y are acceptable solutions to (DC).

Understanding this, the equivalence of (DC) and (GSIP), established in the follow-
ing result, is intuitive.

Proposition 1 Under Assumption 1, problems (DC) and (GSIP) are equivalent.

Proof Since the objective functions in (DC) and (GSIP) are the same, we just need
to establish that their feasible sets are the same. So consider x feasible in (DC). Then
x ∈ X and D(x) ⊂ G. This means that for all y ∈ D(x), y ∈ Y and g(y) ≤ 0. We
immediately have that x is feasible in (GSIP).

Conversely, choose x feasible in (GSIP). Again, x ∈ X and for all y ∈ D(x),
g(y) ≤ 0. Under Assumption 1, D(x) is a subset of Y , and so for all y ∈ D(x), we
have y ∈ G. Thus D(x) ⊂ G and x is feasible in (DC). ��

2.3 Related problems

A related problem is that of calculating a “feasibility index” for process design under
uncertainty. This idea goes back to Halemane and Grossmann (1983), Swaney and
Grossmann (1985a, b), and has been addressed more recently in Floudas et al. (2001),
Stuber and Barton (2011) and Stuber and Barton (2015). This problem can be written
equivalently as an SIP in the forms

inf
x

f (x) ⇐⇒ inf
x

f (x)

s.t. g̃(x, y) ≤ 0, ∀y ∈ ˜Y , s.t. 0 ≥ sup{g̃(x, y) : y ∈ ˜Y }. (1)

One interpretation of this problem is that x represents some process design decisions,
while y is a vector of uncertain model parameters. The goal is to minimize some
economic objective f of the design variables which guarantees safe process design
for any realization of the uncertain parameter y (indicated by g̃(x, y) ≤ 0, for any
y ∈ ˜Y ).

The definition of the “flexibility index” in Equation 8 of Swaney and Grossmann
(1985a) is a kind of GSIP. The rest of that work focuses on conditions that allow this
definition to be reformulated as an SIP of the form (1). The results in Swaney and
Grossmann (1985a) focus on the case when D is interval-valued. A similar argument
is repeated below, which depends on having a design space which is the image of the
unit ball under an affine mapping. In this case the proxy for volume is taken to be the
determinant of the matrix in the affine transformation.

123



220 S. M. Harwood, P. I. Barton

Proposition 2 Suppose X ⊂ Y × R
ny×ny , D : (yc,P) �→ {yc + Pyd : ‖yd‖ ≤ 1}

for some norm ‖·‖ on R
ny , D(yc,P) ⊂ Y for all (yc,P) ∈ X, and vol(D(yc,P)) =

det(P). Then (GSIP) is equivalent to the SIP

sup
yc,P

det(P)

s.t. g(yc + Pyd) ≤ 0, ∀yd ∈ B1 ≡ {y : ‖y‖ ≤ 1},
(yc,P) ∈ X. (2)

Proof The reformulation is immediate given the form of D. But to be explicit, consider
the problem for given (yc,P) ∈ X

g∗∗
i (yc,P) = sup{gi (yc + Pyd) : yd ∈ B1}.

For y feasible in (LLP i), by definition there exists yd ∈ B1 such that y = yc + Pyd .
Thus g∗

i (yc,P) ≤ g∗∗
i (yc,P). Conversely, for yd ∈ B1, there exists y ∈ D(yc,P)with

y = yc + Pyd . Thus g∗∗
i (yc,P) ≤ g∗

i (yc,P), and together the inequalities imply that
the feasible sets of (GSIP) and (2) are the same, and so equivalence follows. ��

In robust design applications, an extra step is required to make use of this form of
D. To check that an operating condition or process parameters y are in the calculated
design space requires checking that the norm of the solution yd of y−yc = Pyd is less
than one. Consequently, the LU factorization of the optimal P should be computed to
minimize this computation, especially if it is to be performed online. Further, SIP (2) is
still a somewhat abstract problem and assuming more structure leads to more tractable
restrictions such as

sup
yc,d

ny
∑

i=1

ln(di )

s.t. g(yc + diag(d)yd) ≤ 0, ∀yd : ‖yd‖ ≤ 1,

(yc,d) ∈ X ⊂ {(yc,d) ∈ Y × R
ny : d > 0}, (3)

where in effect the variable P in SIP (2) has been restricted to (a subset of) the space of
diagonal positive-definitematrices (see also the proof of Corollary 5 for justification of
the use of the logarithm of the objective). Of course (3) is still a semi-infinite problem,
but under further assumptions on g and the norm used, finite convex reformulations
are possible (see Sect. 3.2).

3 Affine constraints

This section deals with the case that g is an affine function and Y = R
ny . Specifically,

assume that for each i ∈ {1, . . . ,m},

gi (y) = cTi y − bi ,

123



How to solve a design centering problem 221

for some ci ∈ R
ny and bi ∈ R. Consequently, G is a (convex) polyhedron. Reformu-

lations for different forms of D are given; in each case the reformulation is a convex
program.

In Sect. 4, reformulations of (GSIP) are presented which rely on strong duality
holding for each (LLP). Consequently, the reformulations in Sect. 4 will be applicable
to the current situation with g affine and D convex-valued. However, in the best
case those reformulations involve nonconvex NLPs, which do not reduce to convex
programs under the assumptions of the present section. Thus, it is worthwhile to be
aware of the special reformulations in the present section.

3.1 Ball-valued design space

Let the upper variables x of (DC) be (yc, δ) ∈ R
ny ×R, and let D(x) be the closed δ-ball

around yc for some norm ‖·‖: D : (yc, δ) �→ {y : ‖y − yc‖ ≤ δ}. Then problem (DC)
becomes

sup
yc,δ

δ

s.t. cTi y − bi ≤ 0, ∀y : ‖y − yc‖ ≤ δ, ∀i ∈ {1, . . . ,m},
yc ∈ R

ny , δ ≥ 0. (4)

Assumption 1 holds, since D(yc, δ) must trivially be a subset of Y = R
ny .

Problem (4) can be reformulated as a linear program (LP), following the ideas
in §8.5 of Boyd and Vandenberghe (2004). Problem (4) is related to the problem of
Chebyshev centering. For specific norms, this reformulation also appears in Hendrix
et al. (1996).

Theorem 3 Problem (4) is equivalent to the LP

sup
yc,δ

δ

s.t. cTi yc + (‖ci‖∗)δ ≤ bi ∀i ∈ {1, . . . ,m},
yc ∈ R

ny , δ ≥ 0. (5)

Proof See Boyd and Vandenberghe (2004, § 8.5.1). ��

3.2 General ellipsoidal design space

A convex reformulation is also possible when the design space is an ellipsoid and
its “shape” is a decision variable. This is a special case of the reformulation in
Proposition 2. In this case, let X ⊂ {(yc,P) ∈ R

ny × S
ny×ny : P 
 0} and

D : (yc,P) �→ {yc + Pyd : ‖yd‖2 ≤ 1}, i.e., the design space is the image of
the unit two-norm ball under an affine transformation, and thus an ellipsoid. Let
vol(D(·)) : (yc,P) �→ det(P) and Y = R

ny . Problem (DC) becomes

123



222 S. M. Harwood, P. I. Barton

sup
yc,P

det(P)

s.t. cTi (yc + Pyd) − bi ≤ 0, ∀yd : ‖yd‖2 ≤ 1, ∀i ∈ {1, . . . ,m},
(yc,P) ∈ X.

Similarly to the result in Theorem 3 (and taking the logarithm of the objective), this
becomes

sup
yc,P

ln(det(P))

s.t. cTi yc +
∥

∥

∥cTi P
∥

∥

∥

2
− bi ≤ 0, ∀i ∈ {1, . . . ,m},

(yc,P) ∈ X. (6)

Problem (6) is in fact a convex program and enjoys a rich history of analysis; see Boyd
and Vandenberghe (2004, § 8.4.2), Nesterov and Nemirovski (1994, Sections 6.4.4
and 6.5), Khachiyan and Todd (1993). However, further reformulation to a “standard”
form (such as a semidefinite program) is necessary in order to apply general-purpose
software for cone programs such as (YALMIP 2015; Lofberg 2004) and CVX (Grant
and Boyd 2008, 2014) (both of which provide front-ends for the solvers SeDuMi
(Sturm 1999; SeDuMi 2015) and MOSEK (MOSEK (2015)). This is possible by the
arguments in Nesterov and Nemirovski (1994, § 6.4.4) or Ben-Tal and Nemirovski
(2001, § 4.2).

3.3 Interval-valued design space

In the case of the infinity-norm, one can generalize the form of the design space a little
more, and still obtain a fairly tractable formulation. In this case, let the upper variables
x of (DC) be (yL , yU ) ∈ R

ny × R
ny , and let D(yL , yU ) be a nonempty compact

interval: D : (yL , yU ) �→ [yL , yU ]. Again with affine g, problem (DC) becomes

sup
yL ,yU

∏

j

(yUj − yLj )

s.t. cTi y − bi ≤ 0, ∀y ∈ [yL , yU ], ∀i ∈ {1, . . . ,m},
yL ≤ yU ,

(yL , yU ) ∈ R
ny × R

ny . (7)

The constraints yL ≤ yU ensure that D(yL , yU ) is nonempty.
The reformulation of this problem has been considered in Bemporad et al. (2004)

and Seifi et al. (1999).

Theorem 4 Consider the linearly-constrained NLP

sup
yL ,yU

∏

j

(yUj − yLj )

123



How to solve a design centering problem 223

s.t. cTi M
L
i y

L + cTi M
U
i y

U ≤ bi , ∀i,
yL ≤ yU ,

(yL , yU ) ∈ R
ny × R

ny , (8)

where ML
i and MU

j are diagonal ny by ny matrices where the j th element of the

diagonals, mL
i, j and mU

i, j , respectively, are given by

mL
i, j =

{

1 ci, j < 0,

0 ci, j ≥ 0,
and mU

i, j =
{

0 ci, j < 0,

1 ci, j ≥ 0.

Problem (8) is equivalent to problem (7).

Proof Begin by analyzing the lower-level programs of (7): g∗
i (y

L , yU ) = sup{cTi y :
y ∈ [yL , yU ]}−bi . Again, if (yL , yU ) is feasible in (7), then g∗

i (y
L , yU ) ≤ 0. Further,

the lower-level programs are linear programs with box constraints, and consequently
can be solved by inspection: an optimal solution yi of the i th lower-level program can
be constructed by letting yij = yUj if ci, j ≥ 0 and yij = yLj otherwise (where ci, j
denotes the jth component of ci ).

The constraint in (7) that cTi y − bi ≤ 0, for all y ∈ [yL , yU ], is equivalent (when
yL ≤ yU ) to sup{cTi y : y ∈ [yL , yU ]} ≤ bi , which by the previous discussion is
equivalent to cTi M

L
i y

L +cTi M
U
i y

U ≤ bi , which are the constraints in (8). Finally, both
formulations include the constraints yL ≤ yU , thus the feasible sets of Problems (8)
and (7) are equivalent. Since the objective functions are the same, the problems are
equivalent. ��

A more numerically favorable restriction of (8) is possible, at the expense of the
restriction potentially being infeasible if G is “thin.”

Corollary 5 Consider the convex program

sup
yL ,yU

∑

j

ln(yUj − yLj )

s.t. cTi M
L
i y

L + cTi M
U
i y

U ≤ bi , ∀i,
yU − yL ≥ ε1,

(yL , yU ) ∈ R
ny × R

ny , (9)

where ε > 0, and ML
i and MU

j are defined as in Theorem 4. If an optimal solution

(yL ,∗, yU,∗) of problem (7) satisfies yU,∗ − yL ,∗ ≥ ε1, then this is also a solution of
problem (9).

Proof Since ln(·) is a nondecreasing concave function and for each j , (yLj , y
U
j ) �→

(yUj − yLj ) is a concave function, then the objective function
∑

j ln(y
U
j − yLj ) is

123



224 S. M. Harwood, P. I. Barton

concave on the convex feasible set, and so this maximization problem is indeed a
convex program.

Denote the feasible set of problem (9) by XR . Denote the objective function of
(7) by f (yL , yU ) = ∏

j (y
U
j − yLj ). Note that f is positive on XR . If an opti-

mal solution (yL ,∗, yU,∗) of problem (7) satisfies yU,∗ − yL ,∗ ≥ ε1, then clearly
(yL ,∗, yU,∗) ∈ XR . Since ln(·) is increasing, argmax{ f (yL , yU ) : (yL , yU ) ∈ XR} =
argmax{ln( f (yL , yU )) : (yL , yU ) ∈ XR}, and so (yL ,∗, yU,∗) is a solution of prob-
lem (9). ��

4 Convex LLP

For themost part, in this section it is assumed that theLLPs are convexprograms (and so
g is a concave function), but to bemore accurate, the main focus of this section is when
duality results hold for each LLP. When this is the case, a number of reformulations
provide a way to solve (GSIP) via methods for NLPs or SIPs. In Sect. 4.1.4, the LLPs
have a specific form and the concavity of g is not necessary. Reformulation results
from the literature are reviewed and numerical examples considered.

Before continuing, we mention a connection to another field. As mentioned, the
main focus of this section is when duality results hold for each LLP.A similar approach
is taken in the study of the “robust” formulation of mathematical programs with uncer-
tain data (Ben-Tal and Nemirovski 1998, 1999). In that work, the robust mathematical
program is typically a semi-infinite program. These SIPs are reduced to finite NLPs
through similar techniques that are employed in this section.

4.1 Reformulation

4.1.1 KKT conditions

In the literature, one of the first reformulations of (GSIP) when the LLPs are convex
programs comes from replacing the LLPs with algebraic constraints which are nec-
essary and sufficient for a maximum; i.e., their KKT conditions. This approach can
be found in Stein and Still (2003) and Stein and Winterfeld (2010), for instance. The
following result establishes the equivalence of (GSIP) with a mathematical program
with complementarity constraints (MPCC), a type of NLP. Refer to MPCC (10) as the
“KKT reformulation.”

Proposition 6 Suppose Y is a nonempty, open, convex set. Suppose D(x) is compact
for each x ∈ X and D(x) = {y ∈ Y : h(x, y) ≤ 0} for some h : X × Y → R

nh

where h(x, ·) is convex and differentiable for each x ∈ X. Suppose that for each
i ∈ {1, . . . ,m} and each x ∈ X the Slater condition holds for (LLP): there exists a
ys ∈ Y such that h(x, ys) < 0. Suppose that g is concave and differentiable. Then
(GSIP) is equivalent to the MPCC

123



How to solve a design centering problem 225

sup
x,y1,µ1,...,ym ,µm

vol(D(x))

s.t. gi (yi ) ≤ 0, ∀i,
h(x, yi ) ≤ 0, ∀i,
∇gi (yi ) − ∇yh(x, yi )µi = 0, ∀i,
µi ≥ 0, yi ∈ Y, ∀i,
μi

j h j (x, yi ) = 0, ∀(i, j),

x ∈ X. (10)

Proof See Stein and Still (2003, § 3). ��
Note that the assumptions imply that D(x) is nonempty and a subset of Y for all x ∈

X ; thus Assumption 1 is still satisfied. For each i ∈ {1, . . . ,m}, the hypotheses imply
that (LLP i) is a differentiable convex program (satisfying a constraint qualification)
which achieves its maximum; thus there exists a µi ∈ R

nh such that (yi ,µi ) is a
KKT point iff yi is a global optimum of (LLP i). It can be shown that the result in
Proposition 6 holds under weaker conditions than the Slater condition for the LLPs,
as in Stein and Still (2003). However, the Slater condition has a natural interpretation
in design centering problems; a design space must have some minimum size or afford
some minimum amount of operational flexibility. The Slater condition is common to
many reformulations in this work. Indeed, a Slater-like condition has already been
used in Corollary 5 and will be used throughout the rest of Sect.4.

The constraints μi
j h j (x, yi ) = 0, μi

j ≥ 0, and h j (x, yi ) ≤ 0 in NLP (10) are the
complementarity constraints which give the class of MPCC its name. Unfortunately,
there are numerical difficulties involved in solving MPCCs. This relates to the fact
that the Mangasarian–Fromovitz Constraint Qualification is violated everywhere in
its feasible set (Diehl et al. 2013). This motivates the reformulation of Sect. 4.1.3.

4.1.2 Lagrangian dual

It is helpful to analyze a reformulation of (GSIP) based on Lagrangian duality at this
point. Assume D(x) = {y ∈ Y : h(x, y) ≤ 0} for some h : X × Y → R

nh . Define the
dual function qi (x, ·) and its effective domain by

qi (x,µ) = sup{gi (y) − µTh(x, y) : y ∈ Y },
dom(qi (x, ·)) = {µ ∈ R

nh : qi (x,µ) < +∞}.

Then define the (Lagrangian) dual problem of (LLP) by

q∗
i (x) = inf {qi (x,µ) : µ ≥ 0,µ ∈ dom(qi (x, ·))} . (11)

Under appropriate assumptions, one can establish that g∗
i (x) = q∗

i (x) (known as
strong duality) for each x. This forms the basis for the following results. The first

123



226 S. M. Harwood, P. I. Barton

result establishes that one can always obtain an SIP restriction of (GSIP). The set M
is included to facilitate certain numerical developments; see § 5.1.2.

Proposition 7 (Proposition 3.1 in Harwood and Barton (2016)) Suppose D(x) =
{y ∈ Y : h(x, y) ≤ 0} for some h : X × Y → R

nh . For any M ⊂ R
nh and for any

(x,µ1, . . . ,µm) feasible in the SIP

sup
x,µ1,...,µm

vol(D(x))

s.t. gi (y) − (µi )Th(x, y) ≤ 0, ∀y ∈ Y, ∀i,
µi ≥ 0, µi ∈ M, ∀i,
x ∈ X, (12)

x is feasible in (GSIP).

The next result establishes that SIP (12) is equivalent to (GSIP) under hypotheses
similar to those in Proposition 6.

Proposition 8 Suppose Y is convex. Suppose D(x) = {y ∈ Y : h(x, y) ≤ 0} for
some h : X × Y → R

nh . For all x ∈ X, suppose g is concave, h(x, ·) is convex,
g∗
i (x) (defined by (LLP)) is finite for all i , and there exists a ys(x) ∈ Y such that

g(ys(x)) > −gb for some gb > 0 and h(x, ys(x)) ≤ −hb for some hb > 0. Then for
compact M = [0,b∗] ⊂ R

nh (where b∗
j = maxi {gb,i }/hb. j ), (GSIP) is equivalent to

SIP (12).

Proof Follows from Lemmata 3.3 and 3.4 and Theorem 3.2 in Harwood and Barton
(2016).

4.1.3 Wolfe dual

To obtain a more numerically tractable reformulation than the KKT reformulation
(10), one follows the ideas in Diehl et al. (2013) to obtain a reformulation of (GSIP)
which does not have complementarity constraints. This follows by looking at the
dual function qi (x, ·) and noting that if Y is a nonempty open convex set and gi and
−h(x, ·) are concave and differentiable, then for µ ≥ 0, the supremum defining the
dual function is achieved at y if and only if ∇gi (y) − ∇yh(x, y)µ = 0. Consequently,
one obtains the Wolfe dual problem of (LLP i):

qWi (x) = inf
{

gi (y) − µTh(x, y) : y ∈ Y,µ ≥ 0,∇gi (y) − ∇yh(x, y)µ = 0
}

.

(13)
Under suitable assumptions (namely, that (LLP i) achieves its supremum and a Slater
condition), strong duality holds. An alternate proof follows, based on (much better
established) Lagrangian duality results. See also Section 6.3 in Geoffrion (1971).

Lemma 9 Suppose Y is a nonempty open convex set. For a given x ∈ X and i ∈
{1, . . . ,m}, suppose the following: D(x) is compact and D(x) = {y ∈ Y : h(x, y) ≤

123



How to solve a design centering problem 227

0} for some h(x, ·) : Y → R
nh which is convex and differentiable. Suppose that the

Slater condition holds for (LLP i) (there exists a ys ∈ Y such that h(x, ys) < 0).
Suppose gi is concave and differentiable. Then there exists (yi ,µi ) satisfying µi ≥ 0,
yi ∈ Y , ∇gi (yi ) − ∇yh(x, yi )µi = 0, and g∗

i (x) = gi (yi ) − (µi )Th(x, yi ). Further,
qWi (x) = g∗

i (x).

Proof First, it is established that the Wolfe dual is weaker than the Lagrangian dual
(11) (i.e. qWi (x) ≥ q∗

i (x), thus establishing weak duality between (LLP i) and the
Wolfe dual). As before, since Y is a nonempty open convex set and gi and −h are
concave and differentiable, then for µ̃ ≥ 0, sup{gi (y)−µ̃Th(x, y) : y ∈ Y } is achieved
at ỹ ∈ Y if and only if ∇gi (̃y) − ∇yh(x, ỹ)µ̃ = 0. Let

FW = {(̃y, µ̃) : µ̃ ≥ 0, ỹ ∈ Y,∇gi (̃y) − ∇yh(x, ỹ)µ̃ = 0}.

Thus, for all (̃y, µ̃) ∈ FW , we have

sup{gi (y) − µ̃Th(x, y) : y ∈ Y } = gi (̃y) − µ̃Th(x, ỹ),

which also implies that µ̃ ∈ dom(qi (x, ·)). It follows that for all (̃y, µ̃) ∈ FW , we
have µ̃ ≥ 0, µ̃ ∈ dom(qi (x, ·)), and qi (x, µ̃) = gi (̃y) − µ̃Th(x, ỹ). Therefore, by
definition of the dual problem (11), for all (̃y, µ̃) ∈ FW , we have

q∗
i (x) ≤ gi (̃y) − µ̃Th(x, ỹ).

Consequently, taking the infimum over all (̃y, µ̃) ∈ FW yields q∗
i (x) ≤ qWi (x), by the

definition of the Wolfe dual. Note that FW may be empty, in which case the infimum
in the definition of qWi (x) is over an empty set, and the inequality q∗

i (x) ≤ qWi (x)
holds somewhat trivially.

Next we establish qWi (x) ≤ g∗
i (x), using strong duality for the Lagrangian dual.

Since gi is differentiable on Y , it is continuous on Y and since D(x) is compact, (LLP
i) achieves its supremum (since D(x) is nonempty under the Slater condition). Under
the convexity assumptions and Slater conditions, strong duality holds for (LLP i); i.e.
q∗
i (x) = g∗

i (x) (see for instance Proposition 5.3.1 in Bertsekas (2009)). Further, a
duality multiplier exists; that is, there exists µi ≥ 0 such that g∗

i (x) = sup{gi (y) −
(µi )Th(x, y) : y ∈ Y }. Since (LLP i) achieves its supremum, there exists a maximizer
yi of (LLP i). Because a duality multiplier exists, by Proposition 5.1.1 in Bertsekas
(1999), we have yi ∈ argmax{gi (y) − (µi )Th(x, y) : y ∈ Y }, and thus

g∗
i (x) = gi (yi ) − (µi )Th(x, yi ).

Again, since Y is a nonempty open set we have ∇gi (yi ) − ∇yh(x, yi )µi = 0. In
other words, (yi ,µi ) ∈ FW defined before, which establishes the first claim. Finally,
applying the definition of qWi (x) as an infimum over FW , we get that g∗

i (x) ≥ qWi (x).
But since g∗

i (x) = q∗
i (x) and q∗

i (x) ≤ qWi (x) (established above), we have g∗
i (x) =

qWi (x). ��

123



228 S. M. Harwood, P. I. Barton

With this, one can establish an NLP reformulation of (GSIP) which does not have
complementarity constraints. Refer to NLP (14) as the “Wolfe reformulation.”

Proposition 10 Suppose Y is a nonempty open convex set. Suppose D(x) is compact
for each x ∈ X and D(x) = {y ∈ Y : h(x, y) ≤ 0} for some h : X × Y → R

nh

where h(x, ·) is convex and differentiable for each x ∈ X. Suppose that for each
i ∈ {1, . . . ,m} and each x ∈ X the Slater condition holds for (LLP i): there exists a
ys ∈ Y such that h(x, ys) < 0. Suppose g is concave and differentiable. Then (GSIP)
is equivalent to the NLP

sup
x,y1,µ1,...,ym ,µm

vol(D(x))

s.t. gi (yi ) − (µi )Th(x, yi ) ≤ 0, ∀i,
∇gi (yi ) − ∇yh(x, yi )µi = 0, ∀i,
µi ≥ 0, yi ∈ Y, ∀i,
x ∈ X. (14)

Proof Choose x ∈ X feasible in (GSIP), then g∗
i (x) ≤ 0 for each i . By Lemma 9,

there exists (yi ,µi ) such that µi ≥ 0, yi ∈ Y , ∇gi (yi ) − ∇yh(x, yi )µi = 0, and
g∗
i (x) = gi (yi ) − (µi )Th(x, yi ). In other words, (x, y1,µ1, . . . , ym,µm) is feasible

in (14).
Conversely, choose (x, y1,µ1, . . . , ym,µm) feasible in (14). Again, by Lemma 9

(in fact, weak duality between (LLP i) and the Wolfe dual (13) suffices), we must
have g∗

i (x) ≤ 0 for each i , which establishes that x is feasible in (GSIP). Equivalence
follows. ��

One notes that indeed NLP (14) does not have the complementarity constraints that
make MPCC (10) numerically unfavorable. Proposition 10 is similar to Corollary 2.4
in Diehl et al. (2013). The difference is that the latter result assumes that−g and h(x, ·)
are convex on all of Y = R

ny . As this is a rather strong assumption, this motivates the
authors of Diehl et al. (2013) to weaken this, and merely assume that g is concave on
D(x) for each x. They then obtain an NLP which adds the constraints h(x, yi ) ≤ 0 to
NLP (14). In design centering applications, assuming that g is concave on Y versus
assuming g is concave on D(x) for all x is typically not much stronger anyway.

4.1.4 General quadratically constrained quadratic LLP

When Y = R
ny , D(x) is defined in terms of a ball given by a weighted 2-norm,

and each gi is quadratic, a specific duality result can be used to reformulate (GSIP).
It should be stressed that this does not require that the LLPs are convex programs,
despite the fact that this is part of a section titled “Convex LLP.” This duality result
applies to the general case of a quadratic program with a single quadratic constraint;
given A0, A ∈ S

ny×ny , b0, b ∈ R
ny , and c0, c ∈ R, define

p∗ = sup{yTA0y + 2bT0y + c0 : y ∈ R
ny , yTAy + 2bTy + c ≤ 0}. (15)

123



How to solve a design centering problem 229

The (Lagrangian) dual of this problem is

qQ : μ �→ sup{yT(A0 − μA)y + 2(b0 − μb)Ty + c0 − μc : y ∈ R
ny },

d∗ = inf{qQ(μ) : μ ∈ dom(qQ), μ ≥ 0}. (16)

Noting that the Lagrangian of (15) is a quadratic function, for given μ ≥ 0 the supre-
mum defining the dual function qQ is achieved at y∗ iff the second-order conditions
A0 − μA 	 0, (A0 − μA)y∗ = −(b0 − μb), are satisfied; otherwise the supremum
is +∞. This leads to

d∗ = inf
μ,y

yT(A0 − μA)y + 2(b0 − μb)Ty + c0 − μc

s.t. (A0 − μA)y = −(b0 − μb),

A0 − μA 	 0,

μ ≥ 0, y ∈ R
ny (17)

(note the similarity to the Wolfe dual in Sect. 4.1.3). Whether or not program (15) is
convex, strong duality holds assuming (15) has a Slater point. That is to say, p∗ = d∗
(and the dual solution set is nonempty) assuming there exists ys such that yTs Ays +
2bTys+c < 0. A proof of this can be found in Appendix B of Boyd andVandenberghe
(2004). The proof depends on the somewhat cryptically named “S-procedure,” which
is actually a theorem of the alternative. A review of results related to the S-procedure
or S-lemma can be found in Polik and Terlaky (2007). The required results are stated
formally in the following.

Lemma 11 Consider the quadratically constrained quadratic program (15) and its
dual (16). Suppose there exists ys such that yTs Ays + 2bTys + c < 0. Then p∗ = d∗.
Further, if p∗ is finite, then the solution set of the dual problem (16) is nonempty.

Proof See Boyd and Vandenberghe (2004, § B.4) ��
Lemma 12 Consider problem (15) and its dual (16). If p∗ = d∗ (strong duality
holds), and there exists (μ∗, y∗) with μ∗ in the solution set of the dual (16) and y∗ in
the solution set of problem (15), then (μ∗, y∗) is optimal in problem (17).

Proof Since there is no duality gap, μ∗ is a duality multiplier (see Proposition 5.1.4
in Bertsekas (1999)). Thus, any optimal solution of the primal problem (15) maxi-
mizes the Lagrangian for this fixed μ∗, i.e. qQ(μ∗) = (y∗)T(A0 − μ∗A)y∗ + 2(b0 −
μ∗b)Ty∗ + c0 − μ∗c (see Proposition 5.1.1 in Bertsekas (1999)). Thus the second-
order conditions A0 − μ∗A 	 0, (A0 − μ∗A)y∗ = −(b0 − μ∗b), are satisfied. Since
d∗ = qQ(μ∗), (μ∗, y∗) must be optimal in (17). ��

A reformulation of (GSIP) when the LLPs are quadratically constrained quadratic
programs follows.

Proposition 13 Suppose Y = R
ny , and that for i ∈ {1, . . . ,m} there exist

(Ai ,bi , ci ) ∈ S
ny×ny × R

ny × R such that gi : y �→ yTAiy + 2bTi y + ci . Sup-
pose X ⊂ {(P, yc) ∈ S

ny×ny × R
ny : P 
 0}. Suppose that D(P, yc) = {y :

123



230 S. M. Harwood, P. I. Barton

(y − yc)TP(y − yc) ≤ 1} and vol(D(P, yc)) = det(P)−1. Then (GSIP) is equivalent
to the program

sup
P,yc,µ,y1,...,ym

det(P)−1

s.t. (yi )TAiyi + 2bTi y
i + ci

− μi

(

(yi − yc)TP(yi − yc) − 1
)

≤ 0, ∀i,
(Ai − μiP)yi = −(bi + μiPyc), ∀i,
Ai − μiP 	 0, ∀i,
μi ≥ 0, yi ∈ R

ny , ∀i,
(P, yc) ∈ X. (18)

Proof Note that D(P, yc) = {y : yTPy − 2yTc Py + yTc Pyc − 1 ≤ 0}. Also, for all
(P, yc) ∈ X , a solution exists for (LLP i) for each i sinceP is constrained to be positive
definite and so D(P, yc) is compact. Further, by assumption on X , yc is a Slater point
for each LLP for all (P, yc) ∈ X . Consequently, by Lemma 11, strong duality holds
for each LLP and an optimal dual solution exists.

Choose (P, yc) feasible in (GSIP). Then for all i , g∗
i (P, yc) ≤ 0. ThenbyLemma12,

there exists (μi , yi ) optimal in the dual of (LLP i) written in the form (17), and com-
binedwith strong duality (P, yc,µ, y1, . . . , ym) is feasible in (18). Conversely, choose
(P, yc,µ, y1, . . . , ym) feasible in (18). Weak duality establishes that g∗

i (P, yc) ≤ 0
for each i , and so (P, yc) is feasible in (GSIP). Equivalence follows. ��

Note that program (18) contains nonlinear matrix inequalities. Consequently, many
general-purpose software for the solution of NLP cannot handle this problem. Choos-
ing P by some heuristic leads to a more practical reformulation. Further, Y can be
restricted to a subset of R

ny by taking advantage of strong duality. Refer to NLP (19)
as the “Quadratic reformulation.”

Corollary 14 Suppose that for i ∈ {1, . . . ,m} there exist (Ai ,bi , ci ) ∈ S
ny×ny ×

R
ny × R such that gi : y �→ yTAiy + 2bTi y + ci . Suppose P ∈ S

ny×ny is given and
P 
 0, and further X ⊂ {(yc, δ) : yc ∈ R

ny , δ ≥ ε} for some ε > 0. Suppose that
D(yc, δ) = {y : (y − yc)TP(y − yc) ≤ δ2}, vol(D(yc, δ)) = δ, and that Y ⊂ R

ny

satisfies D(yc, δ) ⊂ Y for all (yc, δ) ∈ X. Then (GSIP) is equivalent to the program

sup
yc,δ,µ,y1,...,ym

δ

s.t. gi (yi ) − μi

(

(yi − yc)TP(yi − yc) − δ2
)

≤ 0, ∀i,
(Ai − μiP)yi = −(bi + μiPyc), ∀i,
Ai − μiP 	 0, ∀i,
μi ≥ 0, yi ∈ Y, ∀i,
(yc, δ) ∈ X. (19)

123



How to solve a design centering problem 231

Proof The proof is similar to that of Proposition 13. The added constraint that the
yi components of the solutions of (19) are in Y does not change the fact that (19)
is a “restriction” of (GSIP) (i.e. for (yc, δ,µ, y1, . . . , ym) feasible in (19), (yc, δ) is
feasible in (GSIP)).

We only need to check that for (yc, δ) feasible in (GSIP), that there exist (μi , yi )
such that (yc, δ,µ, y1, . . . , ym) is feasible in (19) (specifically that yi ∈ Y for each
i). But this must hold since we can take yi and μi to be optimal solutions of (LLP i)
and its dual, respectively, for each i . Thus yi ∈ D(yc, δ) ⊂ Y for each i , and so by
strong duality and Lemma 12, (yc, δ,µ, y1, . . . , ym) is feasible in (19). ��

The Quadratic reformulation (19) is still nonlinear and nonconvex, but the matrix
inequality constraints are linear, and as demonstrated by the example in Sect. 4.2.2,
these can sometimes be reformulated as explicit constraints on µ.

4.1.5 Convex quadratic constraints

This section discusses a special case of what was considered in Sect. 4.1.4, when D(x)
is defined in terms of a ball given by a weighted 2-norm, and each gi is convex and
quadratic. In this case, a convex reformulation is possible. This case has the geomet-
ric interpretation of inscribing the maximum volume ellipsoid in the intersection of
ellipsoids, and has been considered in Ben-Tal and Nemirovski (2001, § 4.9.1), Boyd
et al. (1994, § 3.7.3), Boyd and Vandenberghe (2004, § 8.5). The representation of the
design space is a little different from what has been considered so far; it depends on
the inverse of the symmetric square root of a positive semidefinite matrix.

Proposition 15 Suppose Y = R
ny , and that for i ∈ {1, . . . ,m} there exist

(Ai ,bi , ci ) ∈ S
ny×ny ×R

ny ×R, withAi 
 0, such that gi : y �→ yTAiy+2bTi y+ci .
Suppose X ⊂ {(P, yc) ∈ S

ny×ny × R
ny : P 
 0}. Suppose that D(P, yc) = {y :

(y − yc)TP−2(y − yc) ≤ 1} and vol(D(P, yc)) = det(P). Then (GSIP) is equivalent
to the program

sup
P,yc,µ

det(P)

s.t. µ ≥ 0, (P, yc) ∈ X,
⎡

⎣

−A−1
i −A−1

i bi − yc P
(−A−1

i bi − yc)T μi − (bTi A
−1
i bi − ci ) 0

P 0 −μi I

⎤

⎦ 	 0, ∀i. (20)

Proof The proof depends on the following characterization of (in essence) the dual
function of (LLP) in this case:AssumingP,Ai are positive definite symmetricmatrices
and μi ≥ 0, we have

sup
{

yTAiy + 2bTi y + ci − μi

(

(y − yc)TP−2(y − yc) − 1
)

: y ∈ R
ny

}

≤ 0 (21)

123



232 S. M. Harwood, P. I. Barton

if and only if

⎡

⎣

−A−1
i −A−1

i bi − yc P
(−A−1

i bi − yc)T μi − (bTi A
−1
i bi − ci ) 0

P 0 −μi I

⎤

⎦ 	 0.

A proof of this equivalence can be found in §3.7.3 of Boyd et al. (1994).
Choosing (P, yc) feasible in (GSIP), by strong duality (Lemma 11) we have that for

each i there existsμi ≥ 0 such that the dual function is nonpositive (i.e. Inequality (21)
holds). Thus (P, yc,µ) is feasible in problem (20). Conversely, for (P, yc,µ) feasible
in problem (20), by the above equivalence and weak duality (P, yc) is feasible in
(GSIP). ��

The matrix constraints in problem (20) are linear inequalities, and reformulating
the objective along the lines of the discussion in Sect. 3.2 yields an SDP. As another
practical note, the explicit matrix inverses in problem (20) could be removed, for
instance, by introducing new variables (Ei ,di , fi ) and adding the linear constraints
AiEi = I, Aidi = bi , bTi di = fi , for each i .

4.2 Numerical examples

In this section global NLP solvers are applied to the reformulations of design center-
ing problems discussed in the previous sections. The studies are performed in GAMS
version 24.3.3 (GAMS Development Corporation 2014). Deterministic global opti-
mizers BARON version 14.0.3 (Tawarmalani and Sahinidis 2005; Sahinidis 2014) and
ANTIGONE version 1.1 (Misener and Floudas 2014) are employed. Algorithm 2.1 in
Mitsos (2011), a global, feasible-point method, is applied to the SIP reformulation. An
implementation is coded in GAMS, employing BARON for the solution of the sub-
problems (see also the discussion in Sect. 5.1.2). The initial parameters are εg,0 = 1,
r = 2, and Y LBP,0 = YUBP,0 = ∅. These examples have a single infinite constraint
(single LLP), and so the subscripts on g and solution components are dropped. All
numerical studies were performed on a 64-bit Linux virtual machine allocated a single
core of a 3.07 GHz Intel Xeon processor and 1.28 GB RAM.

4.2.1 Convex LLP with interval design space

The following design centering problem is considered:

sup
yL ,yU

vol([yL , yU ])

s.t. g(y) = −(y1 + 1)2 − (y2 − 1)2 + 1 ≤ 0, ∀y ∈ [yL , yU ], (22)

where vol([yL , yU ]) = (yU1 − yL1 )(yU2 − yL2 ).

123



How to solve a design centering problem 233

For the KKT and Wolfe reformulations, letting Y = (−2, 2) × (−2, 2), X =
{(yL , yU ) ∈ [−1, 1]2 × [−1, 1]2 : yU1 − yL1 ≥ 0.002, yU2 − yL2 ≥ 0.002}, and

h : X × Y � (yL , yU , y) �→
[−I

I

]

y +
[

yL

−yU

]

it is clear that the hypotheses of Propositions 6 and 10 hold. The corresponding refor-
mulations are solved to global optimality with BARON and ANTIGONE. The relative
and absolute optimality tolerances are both 10−4. The solution obtained in each case
is (yL , yU ) = (0,−1, 1, 1). The other components of the solution and the solution
times are in Table 1.

Meanwhile, the SIP reformulation fromProposition 8 holds forM = [0,b∗], where
b∗ = (18 × 103)1 (for instance, by noting that g(y) ≥ −18 for all y ∈ Y and tak-
ing hb,i = 0.001). However, to apply the feasible-point, global solution method for
SIP from Mitsos (2011), Y needs to be compact, and so let Y = [−2, 2] × [−2, 2]
for the purposes of this reformulation. This method requires continuous objective,
g, and h, and this clearly holds. The overall relative and absolute optimality tol-
erances for the method in Mitsos (2011) each equal 10−4, and the subproblems
required by the method are all solved with relative and absolute optimality toler-
ances equal to 10−5. The method terminates in 28 iterations and the solution obtained
is (yL , yU ) = (−1,−1, 1, 0). Although different from what was obtained with the
NLP reformulations, the optimal objective value is the same and it is still optimal. The
solution time is included in Table 1.

As expected, the NLP reformulations are quicker to solve than the SIP reformula-
tion. What is somewhat surprising is that the KKT reformulation, which is an MPCC,
solves more quickly than the Wolfe reformulation, which omits the complementar-
ity constraints. This is perhaps due to the nature of the global solvers BARON and
ANTIGONE, which can recognize and efficiently handle the complementarity con-
straints (Sahinidis 2014), and overall make use of the extra constraints to improve
domain reduction through constraint propagation.

However, note that the KKT and Wolfe reformulations involve the derivatives of
g and h. Subsequently, solving these reformulations with implementations of global
methods such as BARON and ANTIGONE requires explicit expressions for these
derivatives. In a general-purpose modeling language such as GAMS, supplying these
derivative expressions typically must be done by hand which is tedious and error

Table 1 Solution times and solutions for problem (22) by various reformulations

Method Solution time (s) Solution

BARON ANTIGONE yL yU µ y

KKT reformulation (10) 0.07 0.05 (0, −1) (1, 1) (2, 0, 0, 0) (0, 1)

Wolfe reformulation (14) 0.65 0.29 (0, −1) (1, 1) (2, 0, 0, 0) (0, 1)

SIP reformulation (12) 10.5 (−1,−1) (1, 0) (0, 0, 0, 2)

The SIP reformulation was solved by the SIP method from Mitsos (2011)

123



234 S. M. Harwood, P. I. Barton

prone. In contrast, the solution method for the SIP (12) from Mitsos (2011) involves
the solution of various NLP subproblems which are defined in terms of the original
functions g and h.

4.2.2 Nonconvex quadratic LLP

The following design centering problem is considered:

sup
yc,δ

δ

s.t. g(y) = y21 − y22 ≤ 0, ∀y : ‖y − yc‖2 ≤ δ. (23)

Note that g is a nonconvex quadratic function, and that the lower-level program is
a quadratically-constrained quadratic program. Lemma 11 asserts that strong duality
holds for the lower-level program assuming a Slater point exists. Each of the refor-
mulations of Sect. 4 are considered. This is to demonstrate what happens when strong
duality holds for the lower-level program, but an inappropriate reformulation is used.
It will be seen that the KKT and Wolfe reformulations fail to give a correct answer,
while the SIP reformulation succeeds.

Let X = {(yc, δ) : ‖yc‖2 ≤ 2, 0.1 ≤ δ ≤ 2}. Let
A = [

1 0
0 −1

]

and P = I,

where I is the identitymatrix, so that g(y) = yTAy and D(yc, δ) = {y : (y−yc)TP(y−
yc) ≤ δ2}. With Y = [−4, 4]×[−4, 4], the Quadratic reformulation (19) is applicable
by Corollary 14. Further, since A and P are diagonal, the matrix inequality constraint
A − μP 	 0 in that problem can be reformulated as nonpositivity of the diagonal
elements of A − μP, which reduces to μ ≥ 1 (and μ ≥ −1, but this is redundant).
General-purpose solvers can handle this form of the constraint more easily.

The Quadratic reformulation (19) is solved to global optimality with BARON and
ANTIGONE. The relative and absolute optimality tolerances are both 10−4. The solu-
tion obtained in each case is yc = (0,−2), δ = 1.414. The other components of the
solution and solution statistics are in Table 2.

The SIP reformulation is also applicable in this case. The center of the design
space yc is a Slater point for the lower-level program for all (yc, δ) ∈ X , and so
g(yc) ≥ −4 for all (yc, δ) ∈ X . Further, let h(yc, δ, y) = (y − yc)TP(y − yc) − δ2,

Table 2 Solution times and solutions for problem (23) by various reformulations

Method Solution time (s) Solution

BARON ANTIGONE yc δ μ y

Quadratic reformulation (19) 2.07 17.08 (0, −2) 1.414 1 (4,−1)

KKT reformulation (10) 0.01 0.01 (0, 0) 2 0 (0, 0)

Wolfe reformulation (14) 0.01 0.01 (0, 0) 2 0 (0, 0)

SIP reformulation (12) 22.76 (0, 2) 1.414 1

The SIP reformulation was solved by the SIP method from Mitsos (2011)

123



How to solve a design centering problem 235

so that h(yc, δ, yc) = −δ2 ≤ −0.01 for all (yc, δ) ∈ X . With Lemma 3.4 in Harwood
and Barton (2016) and the strong duality result from Lemma 11, the conclusion of
Proposition 8 holds with M = [0, 400]. The overall relative and absolute optimality
tolerances for the method in Mitsos (2011) each equal 10−4, and the subproblems
required by the method are all solved with relative and absolute optimality tolerances
equal to 2 × 10−5. The method terminates in 33 iterations and the solution obtained
is (yc, δ) = (0, 2, 1.414), a different optimal solution for (23). What is interesting to
note is that the SIP solution method is competitive with the solution of the Quadratic
reformulation for this example; see Table 2.

Not surprisingly, the KKT and Wolfe reformulations fail to provide even a feasible
solution. Quite simply, this is due to the omission of the constraintμ ≥ 1, which is the
only difference between theWolfe reformulation (14) and the Quadratic reformulation
(19). Consequently, even when strong duality holds, one must be careful if attempting
to apply the KKT and Wolfe reformulations when global optima are sought. Mean-
while, in Diehl et al. (2013), the authors apply reformulations similar to (10) and (14)
to a problem with quadratic LLPs, but do not include the constraint on the duality
multiplier for a nonconvex LLP. However, the focus of that work is on local solutions
and methods. In particular, for the numerical results, convergence of a local solution
method to an infeasible point might not be observed if the starting point is sufficiently
close to a local minimum.

5 Nonconvex LLP

In this section, approaches for finding a feasible solution of (GSIP) are considered,
with optimality being a secondary concern. To this end, the focus is on constructing
restrictions of (GSIP) which can be solved to global optimality practically. This has
the benefit that these methods do not rely on initial guesses that typically must be
supplied to a local optimization method.

Furthermore, the motivation of this section are those instances of (GSIP) when
g might not be explicitly defined. For instance, in many engineering applications,
the design constraints g may be defined implicitly by the solution of a system of
algebraic or differential equations; the example in Sect. 5.2.1 provides an instance.
In this case, many solution methods are impractical if not impossible to apply. For
example, in the previous section, global solution of the NLP reformulations (10) and
(14) typically requires explicit expressions for the derivative of g. Thus applying these
reformulations does not lead to a practical method. In the context of SIP, (Stuber and
Barton 2015) provides a good discussion of why many methods (for SIP) cannot be
applied practically to infinitely-constrained problems in engineering applications.

5.1 Methods

5.1.1 Interval restriction with branch and bound

In this section, amethod for solving a restriction of (GSIP) is described. The restriction
is constructed by noting that the constraint gi (y) ≤ 0 for all y ∈ D(x) is equivalent

123



236 S. M. Harwood, P. I. Barton

to g∗
i (x) ≤ 0, where g∗

i is defined by (LLP i). To describe the restriction and solution
method, make the following assumption; as in Sect. 3.3, it is assumed that a candidate
design space is an interval parameterized by its endpoints.

Assumption 2 Let IY denote the set of all nonempty interval subsets of Y (IY =
{[v,w] ⊂ Y : [v,w] �= ∅}). Suppose that X ⊂ {(v,w) ∈ R

ny × R
ny : v ≤ w} and

denote the upper variables of (GSIP) as x = (yL , yU ) and let D(yL , yU ) = [yL , yU ].
Assume that for interval A, vol(A) equals the volume of A. Assume that for each i , the
function gUi : IY → R satisfies gUi (D(x)) ≥ g∗

i (x), for all x ∈ X . Assume that each
gUi is monotonic in the sense that gUi (A) ≤ gUi (B) for all A, B ∈ IY with A ⊂ B.

Under Assumption 2, the following program is a restriction of (GSIP):

sup
x

vol(D(x))

s.t. gUi (D(x)) ≤ 0,∀i,
x ∈ X. (24)

One could take gUi (A) = max{gi (y) : y ∈ A} (so that gUi (D(x)) = g∗
i (x) trivially).

There exist a number of results dealing with such mappings; (Aubin and Frankowska
1990; Bank et al. 1983; Klatte and Kummer 1985; Ralph and Dempe 1995) are among
a few dealing with the continuity and differentiability properties of such maps. Then
one approach to solve (GSIP) might be to analyze (24) as an NLP using some of these
parametric optimization results. This characterizes the “local reduction” approaches in
Hettich and Kortanek (1993), Kanzi and Nobakhtian (2010), Rückmann and Shapiro
(1999) and Still (1999), as well as a local method for SIP which takes into account the
potential nonsmoothness of g∗

i in Polak (1987).
The subject of this section is a different approach, where the restriction (24) is

solved globally with branch and bound. In this case, one can take advantage of gUi
which are cheap to evaluate. For instance, let Gi be an interval-valued mapping on
IY . Gi is said to be inclusion monotonic if it satisfies Gi (A) ⊂ Gi (B) for all A,
B ∈ IY with A ⊂ B. Further, Gi is said to be an inclusion function of gi if it satisfies
Gi (A) � gi (y), for all y ∈ A, A ∈ IY . Then letting gUi be the upper bound of Gi ,
we have that gUi satisfies Assumption 2. See Moore et al. (2009) for an introduction
to interval arithmetic and inclusion functions. The benefit is that the interval-valued
inclusion functions are typically cheaper to evaluate than the global optimization
problems defining g∗

i . The idea of using interval arithmetic to construct a restriction is
related to the method in Rocco et al. (2003), except that the optimization approach in
that work is based on an “evolutionary” optimization algorithm. Conceptually similar
are the methods for the global solution of SIP in Bhattacharjee et al. (2005a, b).

To solve problem (24) via branch and bound, one needs to be able to obtain lower
bounds and upper bounds on the optimal objective values of the subproblems

f ∗
k = sup{vol(D(x)) : x ∈ Xk, g

U
i (x) ≤ 0,∀i},

where Xk ⊂ X . For this discussion assume Xk is a nonempty interval subset of X .
This means Xk will have the form [vLk , vUk ] × [wL

k ,wU
k ] for vLk , vUk , wL

k , w
U
k ∈ R

ny .

123



How to solve a design centering problem 237

Under Assumption 2, one always has yL ≤ yU for (yL , yU ) = x ∈ X . Thus, if Xk is
a subset of X , one has vUk ≤ wL

k . Furthermore,

[vUk ,wL
k ] ⊂ [yL , yU ] ⊂ [vLk ,wU

k ],
∀(yL , yU ) ∈ [vLk , vUk ] × [wL

k ,wU
k ] ⊂ X.

Consequently, UBk = vol([vLk ,wU
k ]) is an upper bound for the optimal subproblem

objective f ∗
k . Meanwhile, any feasible point provides a lower bound. In the context of

the current problem, there are two natural choices:

1. The point (vLk ,wU
k ) represents the “largest” candidate design space possible in Xk .

Consequently, if feasible, it gives the best lower bound for this node.
2. The point (vUk ,wL

k ) represents the “smallest” candidate design space possible
in Xk , and thus is more likely to be feasible, and thus to provide a nontrivial
lower bound. However, if it is infeasible, i.e. if gUi (vUk ,wL

k ) > 0 for some i , then
gUi (yL , yU ) > 0 for all (yL , yU ) = x ∈ Xk (by the monotonicity property in
Assumption 2), and thus Xk can be fathomed by infeasibility.

As noted, with the definition gUi (D(x)) = g∗
i (x), determining whether either of these

points is feasible requires evaluating g∗
i , which is still a global optimization problem.

In contrast, if the gUi are cheap to evaluate, these lower and upper bounds are also
cheap to obtain.

Under mild assumptions, if (GSIP) has a solution, so does the restriction (24),
although it may be a somewhat trivial solution. Assume gUi ([y, y]) = gi (y) for all
y (as is the case when gUi is the upper bound of an interval extension of gi ). Let
D(x∗) = [yL ,∗, yU,∗] be a solution of (GSIP); then for any ŷ ∈ D(x∗), one has
gi (̂y) ≤ 0 for all i , and so [̂y, ŷ] is feasible in the restriction (24), assuming (̂y, ŷ) ∈ X .
Although [̂y, ŷ]would violate theSlater condition that has beenpresent inmany results,
it is unnecessary in this approach.

Numerical experiments (see Sect.5.2.1) show that the branch and bound algorithm
applied to this problem can be slow. To try to explain why this might be the case,
consider the lower and upper bounds described above. For a nonempty interval subset
Xk = [vLk , vUk ] × [wL

k ,wU
k ] of X , in the worst case f ∗

k = vol(D(vUk ,wL
k )), while the

upper bound is UBk = vol(D(vLk ,wU
k )). In one dimension (ny = 1), for example,

vol(D(yL , yU )) = yU − yL , so f ∗
k = wL

k − vUk and UBk = wU
k − vL

k . Meanwhile,
the width (or diameter) of Xk is diam(Xk) = max{(wU

k −wL
k ), (vUk −vL

k )}. Thus one
has

UBk − f ∗
k = (wU

k − wL
k ) + (vUk − vL

k ) ≤ 2 diam(Xk).

Thus, the bounding procedure described is at least first-order convergent (see Defi-
nition 2.1 in Wechsung (2013), noting that the present problem is a maximization).
See “Appendix” for the general case. However, also note that for all α > 0, there

123



238 S. M. Harwood, P. I. Barton

exists nonempty ˜X = [̃vL , ṽU ] × [w̃L , w̃U ] sufficiently small so that w̃U − w̃L >

α(w̃U − w̃L)2 and ṽU − ṽL > α(̃vU − ṽL)2 which implies

(w̃U − w̃L) + (̃vU − ṽL) > α
(

(w̃U − w̃L)2 + (̃vU − ṽL)2
)

≥ αmax{(w̃U − w̃L)2, (̃vU − ṽL)2}
= α(max{(w̃U − w̃L), (̃vU − ṽL)})2 = α diam(˜X)2.

This establishes that the method is not, in general, second-order convergent. When the
solution is unconstrained, a convergence order of two or greater is required to avoid
the “cluster problem” when applying the branch and bound method; this refers to a
phenomenon that hinders the efficiency of the branch and bound method (see Du and
Kearfott (1994) and Wechsung et al. (2014)). A deeper understanding of these issues
might be wise if attempting to develop the method in this section further.

5.1.2 SIP restriction

Proposition 7 provides the inspiration for another restriction-based method; for
M ⊂ R

nh with nonempty intersection with the nonnegative orthant, SIP (12) is a
restriction of (GSIP) (this follows from weak duality). If this SIP restriction is feasi-
ble, subsequently solving it with a feasible-point method yields a feasible solution of
(GSIP).

In contrast, the other duality-based reformulations of (GSIP), such as those in
Propositions 6 and 10, do not provide restrictions if the assumption of convexity of the
LLPs is dropped. Furthermore, as mentioned in the discussion in Sect. 4.2.1, solving
these reformulations globally would require explicit expressions for the derivatives
of g. Since the overall goal of this section is to be able to handle robust design prob-
lems where g might be defined implicitly by the solution of systems of algebraic or
differential equations, such information can be difficult to obtain.

The discussion in Sect. 4.2.2 also demonstrates that the SIP reformulation can
take advantage of strong duality even in the cases that the specific hypotheses of
Proposition 8 fail. In other words, if strong duality happens to hold for the LLPs of
a specific problem, there is hope that the global solution of SIP (12) will also be the
global solution of the original problem (GSIP).

For simplicity assumem = 1 (so there is a single LLP) and drop the corresponding
index. Global solution of SIP (12) by the feasible-point method from Mitsos (2011)
(at a specific iteration of the method) requires the solution of the subproblems

sup
x,µ

vol(D(x)) (UBP)

s.t. g(y) − µTh(x, y) ≤ 0, ∀y ∈ YUBP ,

µ ≥ 0, µ ∈ M

x ∈ X,

123



How to solve a design centering problem 239

sup
x,µ

vol(D(x)) (LBP)

s.t. g(y) − µTh(x, y) ≤ −εg, ∀y ∈ Y LBP ,

µ ≥ 0, µ ∈ M,

x ∈ X,

and for given (x,µ),

q(x,µ) = sup{g(y) − µTh(x, y) : y ∈ Y }, (SIP LLP)

for finite subsets Y LBP ⊂ Y , YUBP ⊂ Y , and εg > 0. Note that each subproblem is
a finite NLP that is defined in terms of the original functions g and h, and not their
derivatives. As their names suggest, (UBP) and (LBP) aim to furnish upper and lower
bounds, respectively, on SIP (12) that converge as the algorithm iterates.

A source of numerical difficulty that can arise in applying this method follows. A
part of the algorithm is determining the feasibility (in SIP (12)) of the optimal solution
(x,µ) of either (UBP) or (LBP). This requires solving (SIP LLP) and checking that
q(x,µ) ≤ 0. One must either guarantee that q(x,µ) ≤ 0, or else find y ∈ Y such that
g(y) − µTh(x, y) > 0. In the latter case, y is added to the discretization set YUBP

(or Y LBP ). Typically global optimization methods find such guaranteed bounds and
feasible points, but in practice one can often have the situation on finite termination
that the approximate solution y of (SIP LLP) and its guaranteed upper bound UBllp

satisfy g(y) − µTh(x, y) ≤ 0 < UBllp. In this case, one cannot guarantee that the
point (x,µ) is feasible in SIP (12).Meanwhile, adding y to the discretization set YUBP

does not eliminate the previous optimal solution (x,µ), since g(y) − µTh(x, y) ≤
0. Consequently, it is highly likely that the numerical method used to solve (UBP)
produces the same solution in the next iteration, and the same ambiguity arises when
solving (SIP LLP). The cycle repeats, and the upper bound that the method provides
fails to improve. A similar effect can occur with the lower-bounding problem (LBP).

This effect can be overcome by redefining g by adding a constant tolerance to
its value. Consider that the pathological case g̃ = g(y) − µTh(x, y) ≤ 0 < UBllp

occurs, where y is the approximate solution found for (SIP LLP). Assume that the
relative and absolute optimality tolerances for the global optimization method used
are εr tol ≤ 1 and εatol , respectively. In this case UBllp − g̃ > εr tol |̃g|. So assuming
that the termination criterion of the global optimization procedure is UBllp − g̃ ≤
max{εatol , εr tol |̃g|}, it is easy to see that one must have UBllp − g̃ ≤ εatol and thus
UBllp ≤ g̃ + εatol .

To determine if (x,µ) is feasible, solve (SIP LLP) and let the solution be y. Then, if
g(y)+εatol−µTh(x, y) ≤ 0, by the preceding discussion one can guarantee that (x,µ)

is feasible in the SIP (12). However, if g(y)+ εatol −µTh(x, y) > 0, adding the point
y to the discretization set YUBP actually does restrict the upper-bounding problem
(UBP), where g is redefined as g ≡ g + εatol . In effect, the following restriction of
SIP (12)

123



240 S. M. Harwood, P. I. Barton

sup
x,µ

vol(D(x))

s.t. g(y) + εatol − µTh(x, y) ≤ 0, ∀y ∈ Y,

µ ≥ 0, µ ∈ M,

x ∈ X, (25)

is being solved with a method which does not quite guarantee feasibility (in (25)) of
the solutions found. However, the solutions found are feasible in the original SIP (12).

For concreteness, further aspects of this approach are discussed in the context of
the example considered in Sect. 5.2.1.

5.1.3 Generically valid solution

Methods for the general case of GSIP, and related problems such as bi-level programs,
with nonconvex lower-level programs have been presented in Mitsos et al. (2008),
Mitsos and Tsoukalas (2014) and Tsoukalas et al. (2009). We investigate the method
from Mitsos and Tsoukalas (2014) as another approach to solving a robust design
problem.

We assume the same setting as in Sect. 4.1.2 and the previous section: for x ∈ X ,
D(x) = {y ∈ Y : h(x, y) ≤ 0} for some mapping h : X × Y → R

nh . Then the work
in Mitsos and Tsoukalas (2014) is based on the reformulation of (GSIP) as

sup
x∈X

vol(D(x))

s.t. (gi (y) ≤ 0 ∨ ∃ j : h j (x, y) > 0), ∀y ∈ Y,∀i. (26)

This is a mathematical program with an infinite number of disjunctive constraints.
These constraints are encoding the same information as in (GSIP); a given x is feasible
if for each i , and for each y ∈ Y , either gi (y) ≤ 0 or y is infeasible in (LLP) (in this
case, if some constraint h j (x, y) ≤ 0 is violated). The presence of the strict inequality
makes numerical solution difficult, and so (26) is relaxed to

sup
x∈X

vol(D(x))

s.t. (gi (y) ≤ 0 ∨ ∃ j : h j (x, y) ≥ 0), ∀y ∈ Y,∀i. (27)

This problem is then equivalent to the following SIP with nonsmooth constraints

sup
x∈X

vol(D(x))

s.t. max
{

gi (y),max
j

{−h j (x, y)}
} ≤ 0, ∀y ∈ Y,∀i. (28)

The numerical solution method in Mitsos and Tsoukalas (2014) is based on applying
the SIP method from Mitsos (2011) (upon which the method of Sect. 5.1.2 is based)
to the SIP (28).

123



How to solve a design centering problem 241

Strictly, then, the numerical method is solving a relaxation of (GSIP), and there
may be some concern that an infeasible point is found. However, we can say that
the feasible set of (27) (or (28)) is “typically” the closure of the feasible set of
(GSIP). The technical term is that the property is generically valid; see Günzel
et al. (2007, 2008). Further, assuming that x �→ vol(D(x)) is continuous, max-
imizing it over the original feasible set or its closure yields the same optimal
objective value. Further, the method is still a feasible point method, and the feasibil-
ity of candidate solutions is validated by solving the original lower-level programs
(LLP i) of (GSIP) (and not, for instance, the lower-level program of the relax-
ation (28)). Thus, we refer to the method of this section as the “generically valid”
solution.

The method in Mitsos and Tsoukalas (2014) for the generically valid solution of
(GSIP) requires the solution of the subproblems at a specific iteration (again, assuming
m = 1 and dropping the subscripts)

sup
x∈X

vol(D(x)) (GSIP-UBP)

s.t. (g(y) ≤ 0 ∨ ∃ j : h j (x, y) ≥ 0), ∀y ∈ YUBP ,

sup
x∈X

vol(D(x)) (GSIP-LBP)

s.t. (g(y) ≤ −εg ∨ ∃ j : h j (x, y) ≥ εh), ∀y ∈ Y LBP ,

and for given x,

sup{g(y) : h(x, y) ≤ 0, y ∈ Y } (LLP)

and

inf
y∈Y max

j
{h j (x, y)} (LLP-AUX)

s.t. g(y) ≥ αg∗(x),

where α ∈ (0, 1) is a fixed parameter, and again, Y LBP and YUBP are finite
subsets of Y and εg and εh are positive parameters that may change from iteration
to iteration.

In practice, the disjunctive constraints (or equivalent nonsmooth constraints) in
(GSIP-UBP) and (GSIP-LBP) are reformulated by introducing binary variables as in
Mitsos and Tsoukalas (2014). We obtain

123



242 S. M. Harwood, P. I. Barton

sup
x,zg(y),z j (y)

vol(D(x)) (GSIP-UBP-B)

s.t. zg(y) ≤ 1 − g(y)
gmax , ∀y ∈ YUBP ,

z j (y) ≤ 1 + h j (x, y)

h̄max
, ∀ j,∀y ∈ YUBP ,

zg(y) +
∑

j

z j (y) ≥ 1, ∀y ∈ YUBP ,

x ∈ X,

zg(y) ∈ {0, 1}, z j (y) ∈ {0, 1},∀ j, ∀y ∈ YUBP ,

and

sup
x,zg(y),z j (y)

vol(D(x)) (GSIP-LBP-B)

s.t. zg(y) ≤ 1 − g(y) + εg

gmax + εg
, ∀y ∈ Y LBP ,

z j (y) ≤ 1 − −h j (x, y) + εh

h̄max
j + εh

, ∀ j,∀y ∈ Y LBP ,

zg(y) +
∑

j

z j (y) ≥ 1, ∀y ∈ Y LBP ,

x ∈ X,

zg(y) ∈ {0, 1}, z j (y) ∈ {0, 1},∀ j, ∀y ∈ Y LBP ,

where gmax ≥ sup{g(y) : y ∈ Y } and h̄max
j ≥ sup{−h j (x, y) : (x, y) ∈ X ×Y }. Since

YUBP is finite, for instance, the notation zg(y) merely means that we are indexing a
vector of binary variables zg by y ∈ YUBP . Note that this implies that the number
of variables in the upper and lower bounding problems grows as the discretized sets
YUBP and Y LBP grow (which they do from iteration to iteration).

5.2 Numerical examples

We look at two different examples in which the design constraints are implicitly
defined; in one, g is defined by a dynamic system, and in the another g is defined by the
solution of a system of algebraic equations. These numerical studies were performed
on a 64-bit Linux (Ubuntu 14.04) laptop with a 2.53GHz Intel Core2 Duo processor
(P9600) and 3.8 GB RAM. Any compiled code is compiled with GCC version 4.8.4
with the -O3 optimization flag. Some of the methods require GAMS; version 24.3.3
is used (GAMS Development Corporation 2014), which employs BARON version
14.0.3 (Tawarmalani and Sahinidis 2005; Sahinidis 2014).

123



How to solve a design centering problem 243

5.2.1 LLP defined by dynamic system

Consider the following robust design problem. In a batch chemical reactor, two
chemical species A and B react according to mass-action kinetics with an Arrhe-
nius dependence on temperature to form chemical species C. However, A and C also
react according to mass-action kinetics with a dependence on temperature to form
chemical species D. The initial concentrations of A and B vary from batch to batch,
although it can be assumed they are never outside the range [0.5, 2] (M). Although
temperature can be controlled by a cooling element, it too might vary from batch to
batch; it can be assumed it never leaves the range [300, 800] (K). What are the largest
acceptable ranges for the initial concentrations of A and B and the operating temper-
ature to ensure that the mole fraction of the undesired side product D is below 0.05 at
the end of any batch operation?

As a mathematical program this problem is written as (since there is one LLP the
subscript on g is dropped)

sup
yL ,yU

∑

j

ln(yUj − yLj )

s.t. g(y) = zD(t f , y)
1Tz(t f , y)

− 0.05 ≤ 0, ∀y ∈ [yL , yU ],

yU − yL ≥ (0.01)1,

yL , yU ∈ [0.5, 2] × [0.5, 2] × [3, 8], (29)

where z = (zA, zB, zC, zD) is a solution of the initial value problem in parametric
ordinary differential equations

żA(t, y) = −k1(100y3)zA(t, y)zB(t, y) − k2(100y3)zA(t, y)zC(t, y),

żB(t, y) = −k1(100y3)zA(t, y)zB(t, y),

żC(t, y) = k1(100y3)zA(t, y)zB(t, y) − k2(100y3)zA(t, y)zC(t, y),

żD(t, y) = k2(100y3)zA(t, y)zC(t, y),

on the time interval [t0, t f ], with initial conditions z(t0, y) = (y1, y2, 0, 0). See Table 3
for a summary of the parameter values used and the expressions for the kinetic parame-
ters k1 and k2. Note that the variables y1 and y2 correspond to the initial concentrations
of A and B, respectively, while y3 is a scaled temperature. This scaling helps over-
come some numerical issues. Further, note the use of the logarithm to “convexify”
the objective, which requires the constraint that any candidate design space have a
minimum size. The concave objective can help speed up some of the methods.

SIP restriction

First consider applying the SIP restriction method discussed in Sect. 5.1.2. Let

123



244 S. M. Harwood, P. I. Barton

Table 3 Parameter values for
problem (29)

Symbol Value/expression

[t0, t f ] [0, 0.1] (h)
A1 150 (M−1h)

A2 80 (M−1h)

E1 4 × 103 (J/mol)

E2 15 × 103 (J/mol)

R 8.3145 (J/Kmol)

k1 k1 : T �→ A1 exp(−E1/(RT ))

k2 k2 : T �→ A2 exp(−E2/(RT ))

Y = [0.5, 2] × [0.5, 2] × [3, 8],
X = {(yL , yU ) ∈ Y × Y : yU − yL ≥ (0.01)1},
M = [0, (10)1],

and

h : X × Y � (yL , yU , y) �→
[−I

I

]

y +
[

yL

−yU

]

.

Thus it is clear that X , Y , and M are compact, and that the objective and constraints
of the SIP restriction (12) are continuous; the latter (specifically, the continuity of g)
follows from standard parametric analysis of initial value problems from, for instance,
Chapter II ofMattheij andMolenaar (2002). The value ofM is somewhat arbitrary; the
SIP restriction is still valid for any M . If M is too large, there can be numerical issues
and solving the subproblems can be slow, but as M becomes smaller, the restriction
can become more conservative.

Consider the subproblems (LBP), (UBP), and (SIP LLP) that must be solved. The
lower-level program of the SIP restriction for this example is a global dynamic opti-
mization problem. This problem must be solved repeatedly in the course of the SIP
solution algorithm as a test for feasibility. Although this may seem daunting, the
computational time is reasonable. Here, the “direct method” approach of control
parameterization (sometimes called single-shooting) is taken; see §1.1 of Schaber
(2014). A C++ code implementing dynamic relaxations and branch-and-bound along
the lines of Schaber (2014, Ch. 2) Scott (2012, Ch. 10) is used to solve (SIP LLP) at
the required values of (x,µ).

Next consider (UBP) and (LBP). Although the function g appears in the constraints
of these problems, this does not make them dynamically-constrained problems for
this specific example. For this example, only the finite set of values {g(y) : y ∈
Y LBP ∪ YUBP } is required at any iteration. These values can be obtained without too
much extra effort in the course of solving the (SIP LLP) (since YUBP and Y LBP are
populated with the maximizers of the lower-level program). Meanwhile, h is a known,
explicit function of x and y, as are the objectives of (UBP) and (LBP), and overall

123



How to solve a design centering problem 245

their solution is no more arduous than in the cases considered in Sect. 4. The (UBP)
and (LBP) are solved in GAMS with BARON. The user-defined extrinsic function
capability of GAMS is used to communicate with the C++ code solving (SIP LLP).

Meanwhile, suppose that a ball-valued design spacewas being used in this example,
and contrast this with the situation of trying to solve the SIP reformulation from
Proposition 2. Since the SIP method from Mitsos (2011) holds for general SIP, one
could attempt to solve an exact SIP reformulation similar to the form (2). However,
the upper bounding problem for that reformulation would be

sup
yc,δ

δ

s.t. g(yc + δyd) ≤ 0, ∀yd ∈ ˜BUBP
1 ,

(yc, δ) ∈ X.

The complication here is that the upper-level variables (yc, δ) are required to evaluate
g; that is, in contrast to above, a finite set of values does not suffice, and in fact the upper
and lower bounding problems become dynamic optimization problems in addition to
the lower-level program. However, applying the solution method from Stuber and
Barton (2015) to the SIP reformulation from Proposition 2 might lead to a successful
method for design centering problems when g is defined by the solution of a system
of algebraic equations.

For the results in Sect. 5.2.1, the initial discretizations are Y LBP,0 = YUBP,0 =
∅, the initial right-hand side restriction parameter is εg,0 = 1, the right-hand side
restriction parameter reduction factor is r = 2, and the subproblems (UBP), (LBP),
and (SIP LLP) are solved with relative and absolute tolerances of 5× 10−4 and 10−4,
respectively. (thus εatol = 10−4 in (25) and the preceding discussion). We will not
use any overall relative or absolute optimality termination criteria, but rather look at
the best objective value for various solution times.

Generically valid solution

The same definitions as for the SIP restriction method are used for X , Y and h.
Note that, similarly to (LBP) and (UBP), the subproblem (GSIP-LBP) (or its equiv-

alent reformulation with binary variables (GSIP-LBP-B)) only depends on a finite list
of values {g(y) : y ∈ Y LBP }, and similarly for the upper bounding problem. Mean-
while, it is assumed we have the functional form of h, and so the subproblems are
mixed-integer nonlinear programs (MINLP), and they are solved to global optimality
in GAMS with BARON. (LLP) and (LLPAUX) are solved similarly to (SIP LLP),
with a C++ code employing branch-and-bound.

Note that since h is linear in x, the constraints of (GSIP-LBP-B) and (GSIP-UBP-B)
are linear. Combinedwith the concave objective, these subproblems aremixed-integer
convex programs and are fairly quick to solve, despite the fact that the number of
variables and constraints grows with each iteration. This actually makes this method
quite attractive for interval design centering.

123



246 S. M. Harwood, P. I. Barton

Since the algorithm for solving SIP from Mitsos (2011) is similar to the algorithm
for solvingGSIP fromMitsos and Tsoukalas (2014), similar parameters are used as for
the SIP restriction method; the initial discretizations are Y LBP,0 = YUBP,0 = ∅, the
initial right-hand side restriction parameter is εg,0 = 1, the right-hand side restriction
parameter reduction factor is r = 2, and the subproblems (GSIP-LBP), (GSIP-UBP),
(LLPAUX) and (LLP) are solved with relative and absolute tolerances of 5×10−4 and
10−4, respectively. Additionally, we have α = 0.5 in (LLPAUX), and in (GSIP-LBP-
B) and (GSIP-UBP-B) we use gmax = 11 and h̄max

j = 9 for each j . As above, we will
not use any overall relative or absolute optimality termination criteria, but rather look
at the best objective value for various solution times.

Interval restriction with branch and bound

To apply the interval restriction method from Sect. 5.1.1, Assumption 2 must be sat-
isfied. The main challenge is defining the upper bound function gU . In the robust
design problem (29), g is defined in terms of the solution of an initial value problem
in ordinary differential equations, and so the dynamic bounding method from Scott
and Barton (2013) is used. This method provides interval bounds on each compo-
nent of z(t f , ·), the solution of the embedded differential equations. Combined with
interval arithmetic, one obtains an inclusion monotonic interval extension (and thus
an inclusion function) of g. Subsequently, the upper bound of this inclusion function
(denote it gU ) satisfies the relevant parts of Assumption 2. A C++ implementation of
the dynamic bounding method from Scott and Barton (2013) is used in conjunction
with the interval arithmetic capabilities of MC++ (Chachuat 2015; Mitsos et al. 2009)
to calculate the value of gU .

The same C++ code implementing the branch-and-bound framework is used as
in the previous section for solving (SIP LLP). The bounding scheme discussed in
Sect. 5.1.1 is implemented with this branch-and-bound framework. The “convexified”
objective does not help much with this bounding scheme. Thus the objective used is
just

∏

j (y
U
j − yLj ). Again, we will not use any overall relative or absolute optimality

termination criteria, but rather look at the best objective value for various solution
times.

Careful inspection of the dynamic bounding method used to construct gU reveals
that the interval restriction method is in fact a restriction for the problem

sup
yL ,yU

∏

j

(yUj − yLj )

s.t.
zD(t f , y)
1Tz(t f , y)

− 0.05 ≤ 0, ∀(y1, y2, y3) ∈ [yL1 , yU1 ] × [yL2 , yU2 ] × U(yL3 , yU3 ),

yU − yL ≥ (0.01)1,

yL , yU ∈ [0.5, 2] × [0.5, 2] × [3, 8],
U(yL3 , yU3 ) = {

u ∈ L1([t0, t f ], R) : u(t) ∈ [yL3 , yU3 ], a.e. t ∈ [t0, t f ]
}

. (30)

123



How to solve a design centering problem 247

In words, one is looking for the largest acceptable ranges for the initial concentrations
of A andB and range for the temperature control profile to ensure that themole fraction
of D is below the threshold. This is due to the fact that the bounding method from Scott
and Barton (2013) indeed produces an interval [zL(yL , yU ), zU (yL , yU )] satisfying

z(t f , y) ∈ [zL(yL , yU ), zU (yL , yU )], ∀y ∈ [yL1 , yU1 ] × [yL2 , yU2 ] × U(yL3 , yU3 ).

Continuing the evaluation of g in interval arithmetic then guarantees that g(y) ≤
gU ([yL , yU ]) for all y ∈ [yL1 , yU1 ] × [yL2 , yU2 ] × U(yL3 , yU3 ). Thus the restriction (24)
still holds. Consequently, this restriction, when applied to dynamic problems, has ties
to robust dynamic optimization problems, such as those considered in Houska et al.
(2012).

Results and discussion

The results of the three methods applied to the robust design problem (29) are sum-
marized in Table 4 and Fig. 1. Table 4 lists the best solutions for each method for the
alotted solution time. In this case, each method was given approximately 10 min. But
since each method is a feasible point method, it is interesting to see how the objective
evolves over time, and in particular, with respect to a guaranteed upper bound which
would give the optimality gap. This is summarized in Fig. 1. Solutions are visualized
in Fig. 2.

From Fig. 1, it is clear that the generically valid method produces better feasible
points for any solution time; indeed, all of its feasible points have an objective value
greater than the upper bounds of the other methods. However, the best upper bound of
the generically validmethod is 3.5, and so there is a fair amount of gap left.Meanwhile,
the SIP restriction method converges in about 70 s, when the upper-bounding problem
(UBP) produces a feasible, and thus optimal (for the restriction) point.

Finally, the interval restriction method has an upper bound that is much lower than
the best objectives of the other methods. It does make a fair amount of progress to
closing the optimality gap in the 10min of solution time.However, one could argue that
problem (30) is a harder problem than (29); problem (30) has a lower-level variable
that takes values in a function space. If such a robust dynamic optimization problem is
of interest, the interval restriction method provides an approach to obtaining a feasible
point.

Table 4 Best solutions for various methods applied to (29)

Method Solution Objective value
yL yU

Interval restriction (Sect. 5.1.1) (0.51, 1.26, 3.04) (0.92, 1.99, 4.80) 0.52

SIP restriction (Sect. 5.1.2) (0.50, 0.50, 3.00) (2.0, 2.0, 3.74) 1.66

Generically valid solution (Sect. 5.1.3) (0.50, 0.50, 3.00) (1.75, 2.0, 4.25) 2.34

123



248 S. M. Harwood, P. I. Barton

Fig. 1 Best feasible objective value (
∏

j (y
U
j − yLj )) versus time for various methods applied to prob-

lem (29). The best upper bound for each method is plotted as a dotted line

 3

 4

 5

 6

 7

 8

 0.5  1  1.5  2

3

2
(a)

 3

 4

 5

 6

 7

 8

 0.5  1  1.5  2

3

2
(b)

 3

 4

 5

 6

 7

 8

 0.5  1  1.5  2

3

2
(c)

Fig. 2 Sampling of G = {y ∈ Y : g(y) ≤ 0} for various fixed values of y1 for problem (29); points in
G are marked with a circle. The various solutions from Table 4 are also plotted a y1 = 0.6 b y1 = 0.9
c y1 = 2

5.2.2 LLP defined by implicit function

We investigate the performance of the SIP restriction and the generically valid solution
approaches on a system in which the design constraints are given by an implicit
function solving a system of algebraic equations.

We consider steady-state operation of a continuously-stirred tank reactor with con-
stant heat capacity of its contents. Reactant A flows in at a fixed concentration. The
volume flow rate of this feed can be set in the range [0.05, 2] (Ls−1). In the reactor,
A isomerizes to form species B, which in turn can isomerize to form species C. Both
isomerization reactions are exothermic, so the reactor is jacketed and cooling water at
a fixed temperature can be used to cool the reactor. The volume flow rate of the cooling
water can be set in the range [0.4, 2] (Ls−1).What are the maximum acceptable ranges

123



How to solve a design centering problem 249

on the reactant feed flow rate and cooling water flow rate to ensure that the temperature
of the reactor does not exceed 350 (K)?

First, the state of the system is given by the value of the vector z; z1 is the con-
centration of A; z2 is the concentration of B; z3 is the concentration of C; z4 is the
temperature inside the reactor; z5 is the temperature of the cooling water flowing out
of the jacketing; and z6 is an artificial variable equalling the difference between z4
and z5. These variables satisfy the system of equations 0 = f(p, z), where p1 is the
volume flow of the feed and p2 is the volume flow of the cooling water, and

f1(p, z) = 20p1 − p1z1 − V z1r1(z4),

f2(p, z) = −p1z2 + V z1r1(z4) − V z2r2(z4),

f3(p, z) = −p1z3 + V z2r2(z4),

f4(p, z) = 300p1 − p1z4 − V H1z1r1(z4) − V H2z2r2(z4) − p2(z5 − 300),

f5(p, z) = p2(z5 − 300) − 0.35
(z5 − 300)

log ((z4 − 300)/z6)
,

f6(p, z) = z6 − (z4 − z5).

See Loeblein and Perkins (1998, § 3) for a similar system. Other parameters and
expressions are given in Table 5. We will assume that z takes values in the set Z =
[0, 20] × [0, 20] × [0, 20] × [302, 400] × [301, 399] × [1, 200].

The function g defining the design constraint that temperature remain below a
certain limit is then given by g : (p, z) �→ z4 − 350, where it is implied that the
domain of g is the set of (p, z) such that f(p, z) = 0. Consequently, define P =
[0.05, 2] × [0.4, 2] and

Y = {(p, z) ∈ P × Z : f(p, z) = 0}.

We note Y is compact, since f is continuous and Y is defined in terms of a preimage
of f .

Then, as a mathematical program, the robust design problem is formulated as

Table 5 Parameter values for
problem (31)

Symbol Value/expression

V 5 (L)

H1 −5 (LK(mol)−1)

H2 −5 (LK(mol)−1)

A1 2.7 × 108 (s−1)

A2 160 (s−1)

r1 r1 : T �→ A1 exp(−6000/T )

r2 r2 : T �→ A2 exp(−4500/T )

123



250 S. M. Harwood, P. I. Barton

sup
pL ,pU

∑

j

ln(pUj − pLj )

s.t. g(p, z) ≤ 0,∀(p, z) ∈ Y : p ∈ [pL ,pU ],
pU − pL ≥ (0.01)1,

(pL ,pU ) ∈ P × P. (31)

It might not be immediately apparent that this can be put into the same form as (GSIP);
however, take

x = (pL ,pU ),

X = {(pL ,pU ) ∈ P × P : pU − pL ≥ (0.01)1},
D : (pL ,pU ) �→ {(p, z) ∈ Y : p ∈ [pL ,pU ]}.

We note that the main difference is that only a subset of the lower-level variables
(namely, p) are considered in the design space.

The SIP restriction and generically valid methods discussed in Sects. 5.1.2 and
5.1.3 apply to the present problem. Define

h : (pL ,pU ,p) �→
[−I

I

]

p +
[

pL

−pU

]

.

Given the form of Y , (SIP LLP), for instance, becomes

sup
p,z

g(p, z) − µTh(pL ,pU ,p)

s.t. f(p, z) = 0,

(p, z) ∈ P × Z .

Since YUBP in subproblem (UBP) is populated with optimal solutions of (SIP LLP),
we must have YUBP ⊂ Y . Thus no changes are required of (LBP) and (UBP). Similar
reasoning holds for the subproblems (GSIP-UBP) and (GSIP-LBP) in the generically
valid method.

For both methods, all necessary subproblems are solved with BARON in GAMS.
For the SIP restriction, take M = [0, (100)1]. The algorithmic parameters in both
cases are similar to before; the initial discretizations are Y LBP,0 = YUBP,0 = ∅, the
initial right-hand side restriction parameter is εg,0 = 1, the right-hand side restriction
parameter reduction factor is r = 2, and the overall relative and absolute optimality
tolerances of 0.05 and 0.01, respectively, while the subproblems (UBP), (LBP), (SIP
LLP), (GSIP-UBP), (GSIP-LBP), (LLPAUX) and (LLP) are solved with relative and
absolute tolerances of 5×10−5 and 10−5, respectively. Additionally, we have α = 0.5
in (LLPAUX), and in (GSIP-LBP-B) and (GSIP-UBP-B) we use gmax = 1.393 and
h̄max
j = 4.55 for each j .

123



How to solve a design centering problem 251

The SIP restriction method requires 13 iterations, totalling 680 s, converging to the
solution [0.05, 0.23] × [0.4, 2.0] with objective 0.290. The generically valid method
requires 146 iterations, totalling 290 s, converging to the solution [0.05, 0.25] ×
[0.53, 2.0] with objective 0.295. Both methods perform comparably, although the
generically valid method is certainly better. It is interesting to note that the SIP restric-
tion method requires much fewer iterations, with a much more expensive lower-level
program (solution of (SIP LLP) requires over 400 s of the total solution time). Mean-
while, the generically valid method requires manymore iterations, but which aremuch
cheaper (for instance, the total solution time of (LLP) and (LLPAUX) is only 30 s).

6 Conclusions and future work

This work has discussed a number of approaches to solving design centering prob-
lems, motivated by the specific instance of robust design in engineering applications.
Reformulations to simpler problems were reviewed; many of these are inspired by
duality-based reformulations from the GSIP literature. Two approaches for determin-
ing a feasible solution of a design centering problem were discussed and applied to
an engineering application of robust design. The two methods are successful, with the
SIP restriction-based approach (Sect. 5.1.2) performing better for this example.

One aspect of the restriction-based approaches in Sect. 5 that was not considered
was the case ofmultiple infinite constraints (i.e.multipleLLPs). The interval restriction
(Sect. 5.1.1) can likely handle multiple constraints in practice without much numerical
difficulty. Meanwhile, Mitsos (2011) mentions a potential way to extend the basic SIP
algorithm; this simply depends on using separate discretization sets and restriction
parameters for each LLP. Unfortunately, numerical experiments show that such an
extension to the method performs poorly for design centering problems. The upper-
bounding problem (UBP) has trouble finding a feasible point, and so the algorithm is
slow to converge. Extending the SIPmethod fromMitsos (2011) and the GSIPmethod
(Mitsos and Tsoukalas 2014) merits further investigation.

Acknowledgements Funding was provided by Novartis Pharmaceuticals Corporation (IDOEJOAE572).

Appendix

Convergence of bounding method from Sect. 5.1.1

Let [vU ,wL ] ⊂ [vL ,wU ] ⊂ [ȳL , ȳU ] ⊂ R
ny . Let

Y v
j = [vL1 , wU

1 ] × · · · × [vLj−1, w
U
j−1] × [vLj , vUj ] × [vLj+1, w

U
j+1] × · · · × [vLny , wU

ny ],
Yw
j = [vL1 , wU

1 ] × · · · × [vLj−1, w
U
j−1] × [wL

j , wU
j ] × [vLj+1, w

U
j+1] × · · · × [vLny , wU

ny ],

for each j ∈ {1, . . . , ny}. Then it is easy to see that the “outer” interval [vL ,wU ] is a
subset of [vU ,wL ] ∪ (⋃

j (Y
v
j ∪ Yw

j )
)

; for any y ∈ [vL ,wU ], each component y j lies

in one of [vL
j , v

U
j ], [vUj , wL

j ], or [wL
j , w

U
j ], which is included in the definition of one

of Y v
j , [vU ,wL ], or Yw

j .

123



252 S. M. Harwood, P. I. Barton

Thus

vol([vL ,wU ]) ≤ vol([vU ,wL ]) +
∑

j

vol(Y v
j ) + vol(Yw

j )

= vol([vU ,wL ]) +
∑

j

((vUj − vL
j ) + (wU

j − wL
j ))

∏

k �= j

(wU
k − vL

k ).

Let α = diam([ȳL , ȳU ]). Then (wU
k − vL

k ) ≤ α for each k. If X ′ = [vL , vU ] ×
[wL ,wU ], then (vUj − vL

j ) + (wU
j − wL

j ) ≤ 2 diam(X ′) for each j . Putting all these
inequalities together one obtains

vol([vL ,wU ]) − vol([vU ,wL ]) ≤ 2nyα
ny−1 diam(X ′).

Thus assuming [yL , yU ] ⊂ [ȳL , ȳU ] for all (yL , yU ) ∈ X , this establishes that the
bounding method described in § 5.1.1 is at least first-order convergent.

References

Abdel-Malek HL, Hassan AKSO (1991) The ellipsoidal technique for design centering and region approx-
imation. IEEE Trans Comput Aided Des Integr Circuits Syst 10(8):1006–1014

Aubin J-P, Frankowska H (1990) Set-valued analysis. Birkhauser, Boston
Bank B, Guddat J, Klatte D, Kummer B, Tammer K (1983) Non-linear parametric optimization. Birkhauser,

Boston
BemporadA, Filippi C, Torrisi FD (2004) Inner and outer approximations of polytopes using boxes. Comput

Geom 27(2):151–178
Ben-Tal A, Nemirovski A (1998) Robust convex optimization. Math Oper Res 23(4):769–805
Ben-Tal A, Nemirovski A (1999) Robust solutions of uncertain linear programs. Oper Res Lett 25(1):1–13
Ben-Tal A, Nemirovski A (2001) Lectures on modern convex optimization: analysis, algorithms, and engi-

neering applications. SIAM, Philadelphia
Bertsekas DP (1999) Nonlinear programming, 2nd edn. Athena Scientific, Belmont
Bertsekas DP (2009) Convex optimization theory. Athena Scientific, Belmont
Bhattacharjee B, Green WH, Barton PI (2005) Interval methods for semi-infinite programs. Comput Optim

Appl 30(1):63–93
Bhattacharjee B, Lemonidis P, Green WH, Barton PI (2005) Global solution of semi-infinite programs.

Mathematical Programming, Series B 103:283–307
Boyd S, El Ghaoui L, Feron E, Balakrishnan V (1994) Linear matrix inequalities in system and control

theory. SIAM, Philadelphia
Boyd S, Vandenberghe L (2004) Convex optimization. Cambridge University Press, New York
Chachuat B (2015) MC++: A Versatile Library for McCormick Relaxations and Taylor Models. http://

www.imperial.ac.uk/people/b.chachuat/research.html
Diehl M, Houska B, Oliver Stein, Steuermann P (2013) A lifting method for generalized semi-infinite

programs based on lower level Wolfe duality. Comput Optim Appl 54(1):189–210
DuK,Kearfott RB (1994) The cluster problem inmultivariate global optimization. JGlobalOptim5(3):253–

265
FloudasCA,GümüşZH, IerapetritouMG(2001)Global optimization in design under uncertainty: feasibility

test and flexibility index problems. Ind Eng Chem Res 40:4267–4282
GAMS Development Corporation (2014) GAMS: General Algebraic Modeling System. http://www.gams.

com
Geoffrion AM (1971) Duality in nonlinear programming: a simplified applications-oriented development.

SIAM Rev 13(1):1–37

123

http://www.imperial.ac.uk/people/b.chachuat/research.html
http://www.imperial.ac.uk/people/b.chachuat/research.html
http://www.gams.com
http://www.gams.com


How to solve a design centering problem 253

Grant M, Boyd S (2008) Graph implementations for nonsmooth convex programs. In: Blondel V, Boyd
Stephen, Kimura H (eds) Recent advances in learning and control, lecture notes in control and infor-
mation sciences. Springer, Berlin, pp 95–110

Grant M, Boyd S (2014) CVX: Matlab software for disciplined convex programming, version 2.1. http://
cvxr.com/cvx

Günzel H, Jongen HTh, Stein O (2007) On the closure of the feasible set in generalized semi-infinite
programming. Central Eur J Oper Res 15(3):271–280

Günzel H, Jongen H Th, Stein O (2008) Generalized semi-infinite programming: on generic local minimiz-
ers. J Global Optim 42(3):413–421

Halemane KP, Grossmann IE (1983) Optimal process design under uncertainty. AIChE J 29(3):425–433
Harwood SM, Barton PI (2016) Lower level duality and the global solution of generalized semi-infinite

programs. Optimization 65(6):1129–1149
Hendrix EMT, Mecking CJ, Hendriks THB (1996) Finding robust solutions for product design problems.

Eur J Oper Res 92(1):28–36
Hettich R, Kortanek KO (1993) Semi-infinite programming: theory, methods, and applications. SIAM Rev

35(3):380–429
Houska B, Logist F, Van Impe J, Diehl M (2012) Robust optimization of nonlinear dynamic systems with

application to a jacketed tubular reactor. J Process Control 22(6):1152–1160
Kanzi N, Nobakhtian S (2010) Necessary optimality conditions for nonsmooth generalized semi-infinite

programming problems. Eur J Oper Res 205(2):253–261
Khachiyan LG, Todd MJ (1993) On the complexity of approximating the maximal inscribed ellipsoid for

a polytope. Math Programm 61(1–3):137–159
Klatte D, Kummer B (1985) Stability properties of infima and optimal solutions of parametric optimization

problems. Lect Notes Econ Math Syst 255:215–229
Loeblein C, Perkins JD (1998) Economic analysis of different structures of on-line process optimization

systems. Comput Chem Eng 22(9):1257–1269
Lofberg J (2004) YALMIP: A toolbox for modeling and optimization in MATLAB. In: 2004 IEEE interna-

tional conference on computer aided control systems design, pp 284–289
Mattheij R, Molenaar J (2002) Ordinary differential equations in theory and practice. SIAM, Philadelphia
Misener R, Floudas CA (2014) ANTIGONE: algorithms for coNTinuous/integer global optimization of

nonlinear equations. J Global Optim 59(2–3):503–526
Mitsos A, Lemonidis P, Barton PI (2008) Global solution of bilevel programs with a nonconvex inner

program. J Global Optim 42(4):475–513
Mitsos A, Chachuat B, Barton PI (2009) McCormick-based relaxations of algorithms. SIAM J Optim

20(2):573–601
Mitsos A (2011) Global optimization of semi-infinite programs via restriction of the right-hand side. Opti-

mization 60(10–11):1291–1308
Mitsos A, Tsoukalas A (2014) Global optimization of generalized semi-infinite programs via restriction of

the right hand side. J Global Optim 61(1):1–17
Moore RE, Kearfott RB, Cloud MJ (2009) Introduction to interval analysis, SIAM, Philadelphia
MOSEK (2015) http://www.mosek.com/
Nesterov Y, Nemirovski A (1994) Interior-point polynomial algorithms in convex programming. SIAM,

Philadelphia
Nguyen VH, Strodiot J-J (1992) Computing a global optimal solution to a design centering problem. Math

Programm 53(1–3):111–123
Parkinson A, Sorensen C, Pourhassan N (1993) A general approach for robust optimal design. J Mech Des

115(1):74–80
Polak E (1987) On the mathematical foundations of nondifferentiable optimization in engineering design.

SIAM Rev 29(1):21–89
Polik I, Terlaky T (2007) A Survey of the S-Lemma. SIAM Rev 49(3):371–418
Ralph D, Dempe S (1995) Directional derivatives of the solution of a parametric nonlinear program. Math

Programm 70:159–172
Rocco CM, Moreno J, Carrasquero N (2003) Robust design using a hybrid-cellular-evolutionary and

interval-arithmetic approach: a reliability application. Reliab Eng Syst Saf 79(2):149–159
Rückmann J-J, Shapiro A (1999) First-order optimality conditions in generalized semi-infinite program-

ming. J Optim Theory Appl 101(3):677–691

123

http://cvxr.com/cvx
http://cvxr.com/cvx
http://www.mosek.com/


254 S. M. Harwood, P. I. Barton

Sahinidis NV (2014) BARON 14.0.3: global optimization of mixed-integer nonlinear programs, user’s
manual. http://www.minlp.com/downloads/docs/baronmanual.pdf

Salazar DE, Rocco CM (2007) Solving advanced multi-objective robust designs by means of multiple
objective evolutionary algorithms (MOEA): A reliability application. Reliab Eng Syst Saf 92(6):697–
706

Schaber SD (2014)Tools for dynamicmodel development. PhD thesis,Massachusetts Institute ofTechnology
Scott JK (2012) Reachability analysis and deterministic global optimization of differential-algebraic sys-

tems. PhD thesis, Massachusetts Institute of Technology
Scott JK, Barton PI (2013) Bounds on the reachable sets of nonlinear control systems. Automatica 49(1):93–

100
SeDuMi (2015): Optimization over symmetric cones. http://sedumi.ie.lehigh.edu/
Seifi A, Ponnambalam K, Vlach J (1999) A unified approach to statistical design centering of integrated

circuits with correlated parameters. IEEE Trans Circuits Syst I Fundam Theory Appl 46(1):190–196
SteinO (2006)A semi-infinite approach to design centering. In:DempeS,KalashnikovV (eds)Optimization

with mulitvalued mappings, chapter 1. Springer, Berlin, pp 209–228
Stein O (2012) How to solve a semi-infinite optimization problem. Eur J Oper Res 223(2):312–320
Stein O, Still G (2003) Solving semi-infinite optimization problems with interior point techniques. SIAM

J Control Optim 42(3):769–788
Stein O, Winterfeld A (2010) Feasible method for generalized semi-infinite programming. J Optim Theory

Appl 146(2):419–443
Still G (1999) Generalized semi-infinite programming: theory and methods. Eur J Oper Res 119:301–313
Stuber MD, Barton PI (2011) Robust simulation and design using semi-infinite programs with implicit

functions. Int J Reliab Saf 5(3–4):378–397
Stuber MD, Barton PI (2015) Semi-infinite optimization with implicit functions. Ind Eng Chem Res

54(5):307–317
Sturm JF (1999) Using SeDuMi 1.02, A Matlab toolbox for optimization over symmetric cones. Optim

Methods Soft 11(1–4):625–653
Swaney RE, Grossmann IE (1985a) An index for operational flexibility in chemical process design–part I:

formulation and theory. AIChE J 31(4):621–630
Swaney RE, Grossmann IE (1985b) An index for operational flexibility in chemical process design–part II:

computational algorithms. AIChE J 31(4):631–641
Tawarmalani M, Sahinidis NV (2005) A polyhedral branch-and-cut approach to global optimization. Math

Programm 103(2):225–249
Tsoukalas A, Rustem B, Pistikopoulos EN (2009) A global optimization algorithm for generalized

semi-infinite, continuous minimax with coupled constraints and bi-level problems. J Global Optim
44(2):235–250

Wechsung A (2013) Global optimization in reduced space. PhD thesis, Massachusetts Institute of Technol-
ogy

Wechsung A, Schaber SD, Barton PI (2014) The cluster problem revisited. J Global Optim 58(3):429–438
Winterfeld A (2008) Application of general semi-infinite programming to lapidary cutting problems. Eur J

Oper Res 191(3):838–854
YALMIP (2015) http://users.isy.liu.se/johanl/yalmip/

123

http://www.minlp.com/downloads/docs/baronmanual.pdf
http://sedumi.ie.lehigh.edu/
http://users.isy.liu.se/johanl/yalmip/

	How to solve a design centering problem
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Notation
	2.2 Equivalence of (DC) and (GSIP)
	2.3 Related problems

	3 Affine constraints
	3.1 Ball-valued design space
	3.2 General ellipsoidal design space
	3.3 Interval-valued design space

	4 Convex LLP
	4.1 Reformulation
	4.1.1 KKT conditions
	4.1.2 Lagrangian dual
	4.1.3 Wolfe dual
	4.1.4 General quadratically constrained quadratic LLP
	4.1.5 Convex quadratic constraints

	4.2 Numerical examples
	4.2.1 Convex LLP with interval design space
	4.2.2 Nonconvex quadratic LLP


	5 Nonconvex LLP
	5.1 Methods
	5.1.1 Interval restriction with branch and bound 
	5.1.2 SIP restriction
	5.1.3 Generically valid solution

	5.2 Numerical examples
	5.2.1 LLP defined by dynamic system
	SIP restriction
	Generically valid solution
	Interval restriction with branch and bound
	Results and discussion
	5.2.2 LLP defined by implicit function


	6 Conclusions and future work
	Acknowledgements
	Appendix
	Convergence of bounding method from Sect. 5.1.1
	References




