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Abstract This paper shows that the optimal subgradient algorithm (OSGA)—which
uses first-order information to solve convex optimization problems with optimal
complexity—can be used to efficiently solve arbitrary bound-constrained convex opti-
mization problems. This is done by constructing an explicit method as well as an
inexact scheme for solving the bound-constrained rational subproblem required by
OSGA. This leads to an efficient implementation of OSGA on large-scale problems
in applications arising from signal and image processing, machine learning and statis-
tics. Numerical experiments demonstrate the promising performance of OSGA on
such problems. A software package implementing OSGA for bound-constrained con-
vex problems is available.

Keywords Bound-constrained convex optimization · Nonsmooth optimization ·
First-order black-box oracle · Subgradient methods · Optimal complexity ·
High-dimensional data
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1 Introduction

Let V be a finite-dimensional real vector space and V ∗ its dual space. In this paper we
consider the bound-constrained convex minimization problem
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min f (x)
s.t. x ∈ x,

(1)

where f : x → R is a—smooth or nonsmooth—convex function, and x = [x, x] is an
axis-parallel box in V in which x and x are the vectors of lower and upper bounds on
the components of x , respectively. Lower bounds are allowed to take the value −∞,
and upper bounds the value +∞.

Throughout the paper, 〈g, x〉 denotes the value of g ∈ V ∗ at x ∈ V . A subgradient
of the objective function f at x is a vector g(x) ∈ V ∗ satisfying

f (z) ≥ f (x) + 〈g(x), z − x〉
for all z ∈ V . It is assumed that the set of optimal solutions of (1) is nonempty and the
first-order information about the objective function (i.e., for any x ∈ x, the function
value f (x) and some subgradient g(x) at x) are available by a first-order black-box
oracle.

Motivation and history Bound-constrained optimization in general is an important
problem appearing in many fields of science and engineering, where the parameters
describing physical quantities are constrained to be in a given range. Furthermore, it
plays a prominent role in the development of general constrained optimizationmethods
since many methods reduce the solution of the general problem to the solution of a
sequence of bound-constrained problems.

There are many algorithms for solving bound-constrained optimization; here, we
mention only those related to our study. Lin and Moré (1999) and Kim et al. (2010)
proposedNewton and quasi-Newtonmethods for solving bound-constrained optimiza-
tion. In 1995,Byrd et al. (1995) proposed a limitedmemory algorithmcalledLBFGS-B
for general smooth nonlinear bound-constrained optimization. Branch et al. (1999)
proposed a trust-region method to solve this problem. Neumaier and Azmi (2016)
solved this problem by a limited memory algorithm. The smooth bound-constrained
optimization problem was also solved by Birgin et al. (2000) and Hager and Zhang
(2006, 2013) using nonmonotone spectral projected gradient methods, active set strat-
egy and affine scaling scheme, respectively. Some limited memory bundle methods
for solving bound-constrained nonsmooth problems were proposed by Karmitsa and
Mäkelä (2010a, b).

In recent years convex optimization has received much attention because it arises
in many applications and is suitable for solving problems involving high-dimensional
data. The particular case of bound-constrained convex optimization involving a smooth
or nonsmooth objective function also appears in a variety of applications, of which
we mention the following:

Example 1 (Bound-constrained linear inverse problems) Given A ∈ R
m×n , b ∈ R

m

and λ ∈ R, for m ≥ n, the bound-constrained regularized least-squares problem is
given by

min f (x) := 1

2
‖Ax − b‖22 + λϕ(x)

s.t. x ∈ x,
(2)

and the bound-constrained regularized l1 problem is given by
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min f (x) := ‖Ax − b‖1 + λϕ(x)
s.t. x ∈ x,

(3)

where x = [x, x] is a box and ϕ is a smooth or nonsmooth regularizer, often aweighted
power of a norm; see Sect. 4 for examples. The problems (2) and (3) are commonly
arising in the context of control and inverse problems, especially for some imaging
problems like denoising, deblurring and inpainting.Morini et al. (2010) formulated the
bound-constrained least-squares problem (2) as a nonlinear system of equations and
proposed an iterative method based on a reduced Newton’s method. Recently, Zhang
and Morini (2013) used alternating direction methods to solve these problems. More
recently, Chan et al. (2013), Boţ et al. (2013), and Boţ and Hendrich (2013) proposed
alternating directionmethods, primal-dual splittingmethods, and aDouglas–Rachford
primal-dual method, respectively, to solve both (2) and (3) for some applications.

Content In this paper, we show that the optimal subgradient algorithmOSGAproposed
by Neumaier (2016) can be used for solving bound-constrained problems of the form
(1). In order to run OSGA, one needs to solve a rational auxiliary subproblem.We here
investigate efficient schemes for solving this subproblem in the presence of bounds
on its variables. To this end, we show that the solution of the subproblem has a one-
dimensional piecewise linear representation and that it may be computed by solving a
sequence of one-dimensional piecewise rational optimization problems. We also give
an iterative scheme that can solve the OSGA subproblem approximately by solving
a one-dimensional nonlinear equation. We give numerical results demonstrating the
performance of OSGA on some problems from applications. More specifically, in
Sect. 2, we give a brief review of the main idea of OSGA. In Sect. 3, we investigate
properties of the solution of the subproblem (9) that lead to two algorithms for solving
it efficiently. In Sect. 4, we report numerical results of OSGA for an one-dimensional
signal recovery and a two-dimensional image deblurring problem. Finally, Sect. 5
delivers some conclusions.

2 A review of OSGA

In this section, we briefly review the main idea of the optimal subgradient algorithm
(see Algorithm 1) proposed by Neumaier (2016) for solving the convex constrained
minimization problem

min f (x)
s.t. x ∈ C,

(4)

where f : C → R is a proper and convex function defined on a nonempty, closed,
and convex subset C of a finite-dimensional vector space V , which we take without
loss of generality to be Rn , which is its own dual space.

OSGA is a subgradient algorithm for problem (4) that uses first-order information,
i.e., function values and subgradients, to construct a sequence of iterations {x j } ∈ C
whose sequence of function values { f (x j )} converge to the minimum ̂f = f (̂x) with
the optimal complexity. OSGA requires no information regarding global parameters
such as Lipschitz constants of function values and gradients. It uses a so-called prox
function which we take to be
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Q(x) := Q0 + 1

2
‖x − x0‖22 (5)

where Q0 > 0. Thus Q(x) ≥ Q0 > 0 for all x ∈ R
n , and

Q(z) ≥ Q(x) + 〈gQ(x), z − x〉 + 1

2
‖z − x‖22, (6)

where gQ(x) = x − x0 is the gradient of Q at x and ‖x‖2 is the Euclidean norm. At
each iteration, OSGA satisfies the bound

0 ≤ f (xb) − ̂f ≤ ηQ(u) (7)

on the currently best function value f (xb)with amonotonically decreasing error factor
η that is guaranteed to converge to zero by an appropriate steplength selection strategy
(see Procedure PUS ). Note that x̂ is not known a priori, thus the error bound is
not fully constructive. But it is sufficient to guarantee the convergence of f (xb) to
̂f with a predictable worst case complexity. To maintain (7), OSGA considers linear
relaxations of f at z,

f (z) ≥ γ + 〈h, z〉 for all z ∈ C, (8)

where γ ∈ R and h ∈ V ∗, updated using linear underestimators available from the
subgradients evaluated (see Algorithm 1). For each such linear relaxation, OSGA
solves a maximization problem of the form

E(γ, h) := max Eγ,h(x)
s.t. x ∈ C,

(9)

where

Eγ,h(x) := −γ + 〈h, x〉
Q(x)

. (10)

Let γb := γ − f (xb) and u := U (γb, h) ∈ C be the solution of (9). From (8) and
(10), we obtain

E(γb, h) ≥ −γ − f (xb) + 〈h, u〉
Q(u)

≥ f (xb) − ̂f

Q(u)
≥ 0. (11)

Setting η := E(γb, h) in (11) implies that (7) is valid. If xb is not optimal for (1),
then the right inequality in (11) is strict, and since Q(z) ≥ Q0 > 0, we conclude that
the maximum η is positive. In the remainder of the paper, we denote by gxb and fxb a
subgradient of f at xb and the function value f (xb), respectively.

In each step, OSGA uses the next scheme for updating the given parameters α, h,
γ , η, and u, see Neumaier (2016) for more details.
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Procedure PUS(parameters updating scheme)

Input: δ, αmax ∈ ]0, 1[, 0 < κ ′ ≤ κ , α, η, h̄, γ̄ , η̄, ū;
Output: α, h, γ , η, u;

1 begin
2 R = (η − η)/(δαη);
3 if R < 1 then
4 α = αe−κ ;
5 else
6 α = min(αeκ ′(R−1), αmax);
7 end
8 α = α;
9 if η < η then

10 h = h; γ = γ ; η = η; u = u;
11 end
12 end

Algorithm 1: OSGA (optimal subgradient algorithm)

Input: δ, αmax ∈ ]0, 1[, 0 < κ ′ ≤ κ; local parameters: x0, μ ≥ 0;
Output: xb, fxb ;

1 begin
2 xb = x0; h = gxb − μgQ(xb); γ = fxb − μQ(xb) − 〈h, xb〉;
3 γb = γ − fxb ; u = U (γb, h); η = E(γb, h) − μ; α ← αmax;
4 while stopping criteria do not hold do
5 x = xb + α(u − xb); g = gx − μgQ(x);
6 h = h + α(g − h); γ = γ + α( fx − μQ(x) − 〈g, x〉 − γ );
7 x ′

b = argminz∈{xb,x} f (z); fx ′
b

= min{ fxb , fx };
8 γ ′

b = γ − fx ′
b
; u′ = U (γ ′

b, h); x ′ = xb + α(u′ − xb);

9 choose xb in such a way that fxb ≤ min{ fx ′
b
, fx ′ };

10 γ b = γ − fxb ; u = U (γ b, h); η = E(γ b, h) − μ; xb = xb; fxb = fxb ;
11 update the parameters α, h, γ , η and u using PUS;
12 end
13 end

The original stopping criterion of OSGA is η ≤ ε; however, we will use a more
practical stopping criterion in Sect. 4. In Neumaier (2016), it is shown that the number
of iterations to achieve an ε-optimum is of the optimal order O (

ε−1/2
)

for a smooth
function f withLipschitz continuous gradients and of the orderO (

ε−2
)

for a Lipschitz
continuous nonsmooth function f , cf. Nemirovsky and Yudin (1983) and Nesterov
(2004, 2005). The algorithm has low memory requirements so that, if the subproblem
(9) can be solved efficiently, OSGA is appropriate for solving large-scale problems.
Numerical results reported by Ahookhosh (2016) for unconstrained problems, and by
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Ahookhosh and Neumaier (2016a, b, 2013) for simply constrained problems show the
good behavior of OSGA for solving practical problems.

In this paper, for the above choices of Q(x) and an arbitrary box x, we solve the
subproblem (9) for both medium- and large-scale problems. It follows that OSGA is
applicable to solve bound-constrained convex problems as well. Since the underlying
problem (1) is a special case of the problem considered in Neumaier (2016), the
complexity of OSGA remains valid for (1), which is summarized in the following
theorem.

Theorem 2 Suppose that f − μQ is convex and μ ≥ 0. Then we have

(i) (Nonsmooth complexity bound) If the points generated by Algorithm 1 stay
in a bounded region of the interior of x, or if f is Lipschitz continuous on x, the
total number of iterations needed to reach a point with f (x) ≤ f (u) + ε is at
mostO((ε2+με)−1). Thus the asymptotic worst case complexity isO(ε−2)when
μ = 0 and O(ε−1) when μ > 0.

(ii) (Smooth complexity bound) If f has Lipschitz continuous gradients with
Lipschitz constant L, the total number of iterations needed by Algorithm 1 to
reach a point with f (x) ≤ f (u) + ε is at most O(ε−1/2) if μ = 0, and at most
O(| log ε|√L/μ) if μ > 0.

Proof Since all assumptions of Theorems 4.1 and 4.2, Propositions 5.2 and 5.3, and
Theorem 5.1 in Neumaier (2016) are satisfied, the results remain valid. 
�

3 Solution of the bound-constrained subproblem (9)

We here emphasize that the function Eγ,h(·) is quasi-concave. Hence finding a solu-
tion of this subproblem is the bottleneck of OSGA, which is both theoretically and
practically interesting to be studied. Therefore, in this section we investigate the solu-
tion of the bound-constrained subproblem (9) and give two iterative schemes, where
the first one solves (9) exactly whereas the second one solves it approximately.

3.1 Global solution of the OSGA rational subproblem (9)

In this subsection, we describe an explicit solution of the bound-constrained subprob-
lem (9).

Without loss of generality, we here consider V = R
n . It is not hard to adapt the

results to V = R
m×n and other finite-dimensional spaces. Themethod is related to one

used in several earlier papers. In 1980,Helgason et al. (1980) characterized the solution
of a singly constrained quadratic problem with bound constraints. Later, Pardalos and
Kovoor (1990) developed an O(n) algorithm for this problem using binary search to
solve the associated Kuhn–Tucker system. This problem was also solved by Dai and
Fletcher (2006) using a projected gradient method. Zhang et al. (2011) solved the
linear support vector machine problem by a cutting plane method employing a similar
technique.

In the papers mentioned, the key is showing that the problem can be reduced to
a piecewise linear problem in a single dimension. To apply this idea to the present
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problem, we prove that (9) is equivalent to a one-dimensional minimization problem
and then develop a procedure to calculate its minimizer. We write

u(λ) := sup{x, inf{x0 − λh, x}} (12)

for the projection of x0 − λh to the box x.

Proposition 3 For h �= 0, themaximumof the subproblem (9) is attained at u := u(λ),
where λ > 0 or λ = +∞ is the inverse of the value of the maximum.

Proof The function Eγ,h : V → R defined by (10) is continuously differentiable and
η := E(γ, h) > 0. Since Q(x) = 1

2‖x−x0‖2, gQ(x) = x−x0. By differentiating both

sides of the equation Eγ,h(x)Q(x) = −γ −〈h, x〉, we obtain ∂Eγ,h
∂x Q(x)+η(x−x0) =

−h,, leading to
∂Eγ,h

∂x
Q(x) = −η(x − x0) − h.

At the maximizer u, we have ηQ(u) = −γ − 〈h, u〉. Now the first-order optimality
conditions imply that for i = 1, 2, . . . , n,

− η(ui − x0i ) − hi

⎧

⎨

⎩

≤ 0 if ui = xi ,≥ 0 if ui = xi ,
= 0 if xi < ui < xi .

(13)

Since η > 0, we may define λ := η−1 and find that, for i = 1, 2, . . . , n,

ui =
⎧

⎨

⎩

xi if xi ≥ x0i − λhi ,
xi if xi ≤ x0i − λhi ,
x0i − λhi if xi ≤ x0i − λhi ≤ xi .

(14)

This implies that u = u(λ). 
�
Proposition 3 gives the key feature of the solution of the subproblem (9) implying

that it is enough to consider points of the form (12) which depend on only one variable
λ. In the remainder of this section, we focus on deriving the optimal value for λ.

Example 4 Let us consider a very special case that x is the n-dimensional nonnegative
orthant, i.e., xi = 0 and xi = +∞, for i = 1, . . . , n. Nonnegativity as a constraint is
important in many applications, see Bardsley and Vogel (2003), Elfving et al. (2012),
Esser et al. (2013) and Kaufman and Neumaier (1996, 1997). For the prox function
(5) with x0 = 0, (12) becomes

u(λ) = sup{x, inf{−λh, x}} = λh−,

where z− := max{0,−z}. By Proposition 2.2 of Neumaier (2016), we have

1

λ

(

1

2
‖u(λ)‖22 + Q0

)

+ γ + 〈h, u(λ)〉 =
(

1

2
‖h−‖22 + 〈h, h−〉

)

λ2 + γ λ+Q0 = 0,

leading to
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β1λ
2 + β2λ + β3 = 0,

where β1 = 1
2‖h−‖22 + 〈h, h−〉, β2 = γ , and β3 = Q0. Since we search for the

maximum η, the solution is the largest root of this equation, i.e.,

λ =
−β2 +

√

β2
2 − 4β1β3

2β1
.

This shows that for the nonnegativity constraint the subproblem (9) can be solved in
a closed form.

However, for a general bound-constrained problem, solving (9) requires a much
more sophisticated scheme. To derive the optimal λ ≥ 0 in Proposition 3, we first
determine its permissible range provided by the three conditions considered in (14)
leading to the interval

λ ∈ [λi , λi ], (15)

for each component of x . In particular, if hi = 0, since x0 is a feasible point, ui =
x0i − λhi = x0i satisfies the third condition in (14). Thus there is no upper bound for
λ, leading to

λi = 0, λi = +∞ if ui = x0i , hi = 0. (16)

If hi �= 0, we consider the three cases (i) xi ≥ x0i − λhi , (ii) xi ≤ x0i − λhi , and
(iii) xi ≤ x0i − λhi ≤ xi of (14). In Case (i), if hi < 0, division by hi implies that
λ ≤ −(xi − x0i )/hi ≤ 0, which is not in the acceptable range for λ. In this case, if
hi > 0, then λ ≥ −(xi − x0i )/hi leading to

λi = − xi − x0i
hi

, λi = +∞ if ui = xi , hi > 0. (17)

In Case (ii), if hi < 0, then λ ≥ −(xi − x0i )/hi implying

λi = − xi − x0i
hi

, λi = +∞ if ui = xi , hi < 0. (18)

In Case (ii), if hi > 0, then λ ≤ −(xi − x0i )/hi ≤ 0, which is not in the acceptable
range of λ. In Case (iii), if hi < 0, division by hi implies

− xi − x0i
hi

≤ λ ≤ − xi − x0i
hi

.

The lower bound satisfies −(xi − x0i )/hi ≤ 0, so it is not acceptable, leading to

λi = 0, λi = − xi − x0i
hi

if ui = x0i − λhi ∈ [xi xi ], hi < 0. (19)
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In Case (iii), if hi > 0, then

− xi − x0i
hi

≤ λ ≤ − xi − x0i
hi

.

However, the lower bound −(xi − x0i )/hi ≤ 0 is not acceptable, i.e.,

λi = 0, λi = − xi − x0i
hi

if ui = x0i − λhi ∈ [xi xi ], hi > 0. (20)

As a result, the following proposition is valid.

Proposition 5 If u(λ) is solution of the problem (9), then

λ ∈ [λi , λi ] i = 1, . . . , n,

where λi and λi are computed by

λ j =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

− xi − x0i
hi

if ui = xi , hi > 0,

− xi − x0i
hi

if ui = xi , hi < 0,

0 if x̃i ∈ [xi xi ], hi < 0,
0 if x̃i ∈ [xi xi ], hi > 0,
0 if hi = 0,

λ j =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

+∞ if ui = xi , hi > 0,
+∞ if ui = xi , hi < 0,

− xi − x0i
hi

if x̃i ∈ [xi xi ], hi < 0,

− xi − x0i
hi

if x̃i ∈ [xi xi ], hi > 0,

+∞ if hi = 0,

(21)

in which x̃i = x0i − λhi for i = 1, . . . , n.

From Proposition 5, only one of the conditions (16)–(20) is satisfied for each com-
ponent of x . Thus, for each i = 1, . . . , n with hi �= 0, we have a single breakpoint

˜λi :=

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

− xi − x0i
hi

if hi < 0,

− xi − x0i
hi

if hi > 0,

+∞ if hi = 0.

(22)

Sorting the n bounds˜λi , i = 1, . . . , n, in increasing order, augmenting the resulting
list by 0 and +∞, and deleting possible duplicate points, we obtain a list of m + 1
different breakpoints (m + 1 ≤ n + 2), denoted by
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0 = λ1 < λ2 < · · · < λm < λm+1 = +∞. (23)

By construction, u(λ) is linear in each interval [λk, λk+1], for k = 1, . . . ,m. The next
proposition gives an explicit representation for u(λ).

Proposition 6 The solution u(λ) of the auxiliary problem (9) defined by (12) has the
form

u(λ) = pk + λqk for λ ∈ [λk, λk+1] (k = 1, 2, . . . ,m), (24)

where

pki =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

x0i if hi = 0,
x0i if λk+1 ≤˜λi ,

xi if λk ≥˜λi , hi > 0,
xi if λk ≥˜λi , hi < 0,

qki =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0 if hi = 0,
−hi if λk+1 ≤˜λi ,

0 if λk ≥˜λi , hi > 0,
0 if λk ≥˜λi , hi < 0.

(25)

Proof Since λ > 0, there exists k ∈ {1, . . . ,m} such that λ ∈ [λk, λk+1]. Let i ∈
{1, . . . , n}. If hi = 0, (16) implies ui = x0i . If hi �= 0, the way of construction of
λi for i = 1, . . . ,m implies that˜λi /∈ (λk, λk+1), so two cases are distinguished: (i)
λk+1 ≤ ˜λi ; (ii) λk ≥ ˜λi . In Case (i), Proposition 5 implies that˜λi = λi , while it is
not possible˜λi �= λi . Therefore, either (19) or (20) holds dependent on the sign of hi ,
implying x0i −λhi ∈ [xi , xi ], so that pki = x0i and q

k
i = −hi . In Case (ii), Proposition

5 implies that˜λi = λi , while it is not possible˜λi �= λi . Therefore, either (17) or (18)
holds. If hi < 0, then (18) holds, i.e., pki = xi and qki = 0. Otherwise, (17) holds,
implying pki = xi and q

k
i = 0. This proves the claim. 
�

Proposition 6 exhibits the solution u(λ) of the auxiliary problem (9) as a piece-
wise linear function of λ. In the next result, we show that solving the problem (9) is
equivalent to maximizing a one-dimensional piecewise rational function.

Proposition 7 The maximal value of the subproblem (9) is the maximum of the piece-
wise rational function η(λ) defined by

η(λ) := ak + bkλ

ck + dkλ + skλ2
if λ ∈ [λk, λk+1] (k = 1, 2, . . . ,m), (26)

where

ak := −γ − 〈h, pk〉, bk := −〈h, qk〉,
ck := Q0 + 1

2
‖pk − x0‖2, dk := 〈pk − x0, qk〉, sk := 1

2
‖qk‖2.

Moreover, ck > 0, sk > 0 and 4skck > d2k .

Proof By Proposition 3 and 6, the global minimizer of (9) has the form (24). We
substitute (24) into the function (10), and obtain from

γ + 〈h, xk(λ)〉 = γ + 〈h, pk + qkλ〉 = γ + 〈h, pk〉 + 〈h, qk〉λ = −ak − bkλ
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and

Q0 ≤ Q(xk(λ))

= Q(pk + qkλ)

= Q0 + 1

2
‖pk − x0‖2 + 〈pk − x0, qk〉λ + 1

2
‖qk‖2λ2 = ck + dkλ + skλ

2

the formula

Eγ,h(u(λ)) = −γ + 〈h, xk(λ)〉
Q(xk(λ))

= η(λ). (27)

Since Q0 > 0, the denominator of (26) is bounded away from zero; in particular
ck > 0. This implies 4skck > d2k . It is enough to verify sk > 0 For k = 1, 2, . . . ,m
and λ ∈ [λk, λk+1]. Now the definition of qk in (25) implies that hi �= 0 for i ∈ I =
{i : λk+1 ≤˜λi }, leading to qk �= 0, hence sk > 0. 
�

The next result leads to a systematic way to maximize the one-dimensional rational
problem (26).

Proposition 8 Let a, b, c, d, and s be real constants with c > 0, s > 0, and 4sc > d2.
Then

φ(λ) := a + bλ

c + dλ + sλ2
(28)

defines a function φ : R → R that has at least one stationary point. Moreover, the
global maximizer of φ is determined by the following cases:

(i) If b �= 0, then a2 − b(ad − bc)/s > 0 and the global maximum

φ(̂λ) = b

2ŝλ + d
(29)

is attained at

̂λ = −a + √

a2 − b(ad − bc)/s

b
. (30)

(ii) If b = 0 and a > 0, the global maximum is

φ(̂λ) = 4as

4cs − d2
, (31)

attained at
̂λ = − d

2s
. (32)

(iii) If b = 0 and a ≤ 0, the maximum is φ(̂λ) = 0, attained at̂λ = +∞ for a < 0
and at all λ ∈ R for a = 0.

Proof The denominator of (28) is positive for all λ ∈ R if and only if the stated
condition on the coefficients hold. By the differentiation of φ and using the first-order
optimality condition, we obtain
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φ′(λ) = b(c + dλ + sλ2) − (a + bλ)(d + 2sλ)

(c + dλ + sλ2)2
= −bsλ2 + 2asλ + ad − bc

(c + dλ + sλ2)2
.

For solving φ′(λ) = 0, we consider possible solutions of the quadratic equation
bsλ2 + 2asλ + ad − bc = 0. Using the assumption 4sc > d2, we obtain

(2as)2 − 4bs(ad − bc) = (2as)2 − (4abds − 4b2cs)

= (2as)2 − 4abds − b2(d2 − 4cs − d2)

= (2as)2 − 4abds + (bd)2 − b2(d2 − 4cs)

≥ (2as − bd)2 − b2(d2 − 4cs) ≥ 0,

leading to

a2 − b(ad − bc)

s
≥ 0,

implying that φ′(λ) = 0 has at least one solution.
(i) If b �= 0, then

a2 − b(ad − bc)

s
= a2 − bd

s
a − b2c

s
=

(

a − bd

2s

)2

+ b2

4s2
(4sc − d2) > 0,

implying there exist two solutions. Solving φ′(λ) = 0, the stationary points of the
function are found to be

λ = −a ± √

a2 − b(ad − bc)/s

b
. (33)

Therefore, a + bλ = ±w with

w :=
√

a2 − b(ad − bc)/s > 0,

and we have
φ(λ) = ±w

c + dλ + sλ2
. (34)

Since the denominator of this fraction is positive and w ≥ 0, the positive sign in
Eq. (33) gives the maximizer, implying that (30) is satisfied. Finally, substituting this
maximizer into (34) gives

φ(̂λ) = w

c + d̂λ + ŝλ2
= b2w

b2c + bd(w − a) + s(w − a)2

= b2w

a2s − b(ad − bc) + sw2 + (bd − 2as)w
= b2w

2sw2 + (bd − 2as)w

= b2w

w(2s(w − a) + bd)
= b

2ŝλ + d
,

hence (29) holds.
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(ii) If b = 0, we obtain

φ′(λ) = −a(d + 2sλ)

(c + dλ + sλ2)2
.

Hence the condition φ′(λ) = 0 implies that a = 0 or d + 2sλ = 0. The latter case
implies

̂λ = − d

2s
, φ(̂λ) = 4as

4cs − d2
,

whencêλ is a stationary point of φ. If a > 0, its maximizer iŝλ = − d
2s and (31) is

satisfied.
(iii) If b = 0 and a < 0, then

lim
λ→−∞ φ(λ) = lim

λ→+∞ φ(λ) = 0

implies φ(̂λ) = 0 at̂λ = ±∞. In case a = 0, φ(λ) = 0 for all λ ∈ R. 
�
We summarize the results of Propositions 3–8 into the following algorithm for

computing the global optimizer xb and the optimum ηb of (9).

Algorithm 2: BCSS (bound-constrained subproblem solver)

Input: Q0, x0, h, x, x ;
Output: ub = U (γ, h), ηb = η(xb);

1 begin
2 for i = 1, 2, . . . , n do
3 find˜λi by (22) using x and x ;
4 end
5 determine the breakpoints λk, k = 1, . . . ,m + 1, by (23); ηb = 0;
6 for k = 1, 2, . . . ,m do
7 compute pk and qk using (25); construct η(λ) using (26) for [λk, λk+1];
8 find the maximizer̂λ of η(λ) using Proposition 8;
9 if ̂λ ∈ [λk, λk+1] then

10 compute ηk = η(̂λ) using Proposition 8; ̂λk =̂λ;
11 else
12 ηk = max{η(λk), η(λk+1)}; ̂λk = argmaxi∈{k,k+1}{η(λi )};
13 end
14 E(k) = ηk , L AM(k) =̂λk ;
15 end
16 j = argmax{E(i) | i = 1, . . . ,m}; ηb = E( j), ̂λ = L AM( j), ub = x0−̂λh;
17 end

The first loop (lines 2–4) needs O(n) operations (including comparisons). Line
5 needs sorting and removing duplicates, requiring O(n log(n)) operations. The
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second loop (lines 6–15) needs O(m2) operations. Line 16 require O(m) compar-
isons. Therefore, the computational complexity of, the algorithm BCSS is given by

N (m, n) = O(n log(n) + m2). (35)

The the cost of BCSS is negligible for small-scale and medium-scale problems, where
m does not get too large.

3.2 Inexact solution of the OSGA rational subproblem (9)

In the BCSS algorithm, it is possible that the number m of different breakpoints is
O(n). If m is large solving the subproblem (9) with BCSS is costly in a Matlab
implementation, where branching is comparatively slow. If m has the same order
as n the second term in (35) dominates and we have N (m, n) = O(n2). For the
application to large-scale problemswe need a cheaper alternative.We therefore looked
for a theoretically less satisfactory (but in practice for large m superior) approximate
technique for solving (9). For simplicity, we consider the quadratic prox-function
(5) with x0 = 0; the general case can be easily reduced to this one by shifting x
appropriately.

In view of Proposition 3 and Theorem 3.1 in Ahookhosh and Neumaier (2017),
the solution of the subproblem (9) is given by u(λ) defined in (12), where λ can be
computed by solving the one-dimensional nonlinear equation

ϕ(λ) = 0,

in which

ϕ(λ) := 1

λ

(

1

2
‖u(λ)‖22 + Q0

)

+ γ + 〈h, u(λ)〉. (36)

The solution of the OSGA subproblem can be found by Algorithm 3 (OSS) in
Ahookhosh and Neumaier (2017). In Ahookhosh and Neumaier (2017), it is shown
that in many convex domains the nonlinear Eq. (36) can be solved explicitly, how-
ever, for the bound-constrained problems it can be only solved approximately. The
main advantages of the inexact approach is its simplicity and cheap cost for extremely
large-scale problems.

As discussed in Ahookhosh and Neumaier (2017), the one-dimensional nonlinear
equation can be solved by some zero-finder schemes such as the bisection method
and the secant bisection scheme described in Chapter 5 of Neumaier (2001). One can
also use the MATLAB fzero function combining the bisection scheme, the inverse
quadratic interpolation, and the secant method. In the next section we will use this
inexact solution of the OSGA rational subproblem (9) for solving large-scale imaging
problems, which turned out to be much faster.
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4 Numerical experiments and applications

In this section, we report numerical results for two inverse problems (one-dimensional
signal recovery and two-dimensional image deblurring) to show the performance of
OSGA compared with some state-of-the-art algorithms.

A software package implementing OSGA for solving unconstrained and bound-
constrained convex optimization problems is publicly available at

http://www.mat.univie.ac.at/~neum/software/OSGA/.

The package is written in MATLAB, where the parameters

δ = 0.9, αmax = 0.7, κ = κ ′ = 0.5,

are used. We use the prox-function (5) with Q0 = 1
2‖x0‖2 + ε, where ε > 0 is

the machine precision. The interface to each subprogram in the package is fully doc-
umented in the corresponding file. Some examples for each class of problems are
available to showhow the user can implement it. TheOSGAuser’smanual (Ahookhosh
2014) describes the design of the package and how the user can solve his/her own prob-
lems.

The algorithms considered in the comparison use the default parameter values
reported in the associated literature or packages. All implementations are executed on
a Dell Precision Tower 7000 Series 7810 (Dual Intel Xeon Processor E5-2620 v4 with
32 GB RAM).

4.1 One-dimensional signal recovery

In this section, we deal with the linear inverse problem

Ax = b, x ∈ x

that can be translated to a problem of the form (1) with the objective functions

f (x) = 1
2‖Ax − b‖22 + 1

2λ‖x‖22 (L22L22R),

f (x) = 1
2‖Ax − b‖22 + λ‖x‖1 (L22L1R),

f (x) = ‖Ax − b‖1 + 1
2λ‖x‖22 (L1L22R),

f (x) = ‖Ax − b‖1 + λ‖x‖1 (L1L1R),

(37)

where λ is a regularization parameter.
We solve all of the above-mentioned problems with the dimensions n = 1000 and

m = 500. The problem is generated by the same procedure given in the SpaRSA
(Wright et al. 2009) package available at

http://www.lx.it.pt/~mtf/SpaRSA/
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which is

n_spikes = floor(spike_rate ∗ n);
p = zeros(n,1); q = randperm(n);
p(q(1 : n_spikes)) = sign(randn(n_spikes,1));
B = randn(m,n); B = orth(B′)′;
bf = B ∗ p; rk = randn(m,1);
b = bf + sigma ∗ norm(bf)/norm(rk) ∗ rk;

with spike_rate = 0.1 and the levels of noise sigma = 0.4, 0.6, 0.8. The
lower and upper bounds on the variables are generated by

x = 0.05 ∗ ones(n), x = 0.95 ∗ ones(n),

respectively. Since among the problems given in (37) only L22L22R is differentiable,
we need some nonsmooth algorithms to be compared with OSGA. In our experiment,
we consider two versions of OSGA, i.e., one version uses BCSS for solving the sub-
problem (9) (OSGA-1) and another version uses the inexact solution described in Sect.
3.2 for solving the subproblem (9) (OSGA-2), compared with PSGA-1 (a projected
subgradient algorithm with nonsummable diminishing step-size), and PSGA-2 (a pro-
jected subgradient algorithm with nonsummable diminishing steplength), cf. Boyd
et al. (2003).

The results for L22L22R, L22L1R, L1L22R, and L1L1R are illustrated in Table 1
and Fig. 1.Wefirst runOSGA-2 and stop it after 100 iterations for each problemof (37)
and set the best founded function value as fb. Then we stop the other algorithms once
they achieve a function value less or equal than fb or after 2000 iterations. Figure 1
displays the relative error of function vales versus iterations

δk := fk − ̂f

f0 − ̂f
, (38)

where ̂f = fb − 0.01 fb denotes an approximation of the minimum and f0 shows
the function value on an initial point x0. In our experiments, PSGA-1 and PSGA-2
exploit the step-sizes α := 1/

√
k‖gk‖ and α := 0.1/

√
k, respectively, in which k is

the iteration counter and gk is a subgradient of f at xk .
In Table 1, Ni and T denote the total number of iterations and the running time,

respectively. From this table, we can see that for the problems L22L1R and L1L1R,
OSGA-1 and OSGA-2 outperform PSGA-1 and PSGA-2 significantly; however, for
L22L22R and L1L22R PSGA-2 attains a comparable or better results than OSGA-1.
In Fig. 1, we illustrate the relative error δk versus iterations for several levels of noise
and regularization parameters. It is clear that the considered algorithms have a good
behaviour by increasing the levels of noise. Subfigures (a)–(f) and (j)-(l) show that
OSGA-1 and OSGA-2 outperform PSGA-1 and PSGA-2 substantially with respect to
the relative error of function values δk (38); however, from subfigures (g)–(i), PSGA-2
attains the best results but rather comparablewithOSGA-1 andOSGA-2. These results
show that OSGA-1 and OSGA-2 are suitable for the sparse signal recovery with the
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Table 1 Result summary for solving L22L22R, L22L1R, L1L22R, and L1L1R, where Ni and T denote
the number of iterations and the running time, respectively

Problem sigma λ PSGA-1 PSGA-2 OSGA-1 OSGA-2

Ni T Ni T Ni T Ni T

L22L22 0.4 1.3 421 0.23 266 0.15 36 0.16 100 0.85

L22L22 0.4 1.4 430 0.29 222 0.20 52 0.23 100 0.79

L22L22 0.4 1.5 403 0.23 201 0.11 91 0.32 100 0.91

L22L22 0.6 1.3 438 0.24 253 0.14 77 0.26 100 0.82

L22L22 0.6 1.4 439 0.29 235 0.17 45 0.18 100 0.96

L22L22 0.6 1.5 417 0.30 191 0.16 54 0.22 100 1.03

L22L22 0.8 1.3 432 0.25 246 0.18 28 0.12 100 0.94

L22L22 0.8 1.4 436 0.28 229 0.15 37 0.19 100 0.85

L22L22 0.8 1.5 409 0.27 190 0.13 47 0.19 100 0.95

L22L1 0.4 0.3 2000 1.32 2000 1.15 12 0.07 100 0.90

L22L1 0.4 0.4 2000 1.26 1842 1.11 8 0.06 100 0.96

L22L1 0.4 0.5 2000 1.19 1545 0.93 9 0.07 100 0.87

L22L1 0.6 0.3 2000 1.07 2000 1.06 10 0.06 100 0.94

L22L1 0.6 0.4 2000 1.02 1865 1.05 9 0.09 100 0.83

L22L1 0.6 0.5 2000 1.14 1196 0.73 8 0.06 100 0.94

L22L1 0.8 0.3 2000 1.10 2000 1.06 8 0.06 100 0.93

L22L1 0.8 0.4 2000 1.16 2000 1.09 8 0.06 100 0.85

L22L1 0.8 0.5 2000 1.13 1363 1.11 9 0.05 100 0.98

L1L22 0.4 3.0 388 0.23 43 0.03 32 0.14 100 0.84

L1L22 0.4 3.1 381 0.31 37 0.05 43 0.17 100 0.74

L1L22 0.4 3.2 371 0.25 32 0.03 37 0.19 100 0.89

L1L22 0.6 3.0 395 0.28 37 0.03 38 0.18 100 0.79

L1L22 0.6 3.1 379 0.30 38 0.03 48 0.19 100 0.80

L1L22 0.6 3.2 371 0.25 33 0.05 43 0.19 100 0.79

L1L22 0.8 3.0 382 0.23 36 0.03 40 0.16 100 0.76

L1L22 0.8 3.1 375 0.26 32 0.04 47 0.22 100 0.84

L1L22 0.8 3.2 371 0.27 32 0.04 37 0.16 100 0.92

L1L1 0.4 0.8 2000 1.18 410 0.31 17 0.10 100 0.83

L1L1 0.4 0.9 2000 1.22 446 0.33 18 0.11 100 0.83

L1L1 0.4 1.0 2000 1.36 370 0.25 14 0.09 100 1.03

L1L1 0.6 0.8 2000 1.23 301 0.21 17 0.10 100 1.07

L1L1 0.6 0.9 2000 1.13 442 0.27 16 0.11 100 1.01

L1L1 0.6 1.0 2000 1.20 485 0.38 17 0.11 100 0.91

L1L1 0.8 0.8 2000 1.39 444 0.31 21 0.11 100 0.99

L1L1 0.8 0.9 2000 1.25 419 0.25 11 0.07 100 1.02

L1L1 0.8 1.0 2000 1.28 396 0.24 17 0.10 100 1.10
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Fig. 1 The relative error δk of function values versus iterations of PSGA-1, PSGA-2,OSGA-1, andOSGA-2
for the problems L22L22R, L22L1R, L22L22R, and L22L1Rwith several levels of noise and regularization
parameters. a L22L22R, σ = 0.4, λ = 1.3; b L22L22R, σ = 0.6, λ = 1.3; c L22L22R, σ = 0.8, λ = 1.3;
d L22L1R, σ = 0.4, λ = 0.3; e L22L1R, σ = 0.6, λ = 0.3; f L22L1R, σ = 0.8, λ = 0.3; g L1L22R,
σ = 0.4, λ = 3.0; h L1L22R, σ = 0.6, λ = 3.0; i L1L22R, σ = 0.8, λ = 3.0; j L1L1R, σ = 0.4, λ = 0.8;
k L1L1R, σ = 0.6, λ = 0.8; l L1L1R, σ = 0.8, λ = 0.8
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�1 regularizer. It can also be seen that OSGA-1 (using BCSS) performs much better
than OSGA-2 (using inexact scheme) for this medium-scale problem.

4.2 Two-dimensional image deblurring

Image deblurring is one of the fundamental tasks in the context of digital imaging
processing, aiming at recovering an image from a blurred/noisy observation. The
problem is typically modeled as linear inverse problem

y = Ax + ω, x ∈ V, (39)

where V is a finite-dimensional vector space, A is a blurring linear operator, x is a
clean image, y is an observation, and ω is either Gaussian or impulsive noise.

The system of Eq. (39) is usually underdetermined and ill-conditioned, and ω is
not commonly available, so it is not possible to solve it directly, see Neumaier (1998).
Hence the solution is generally approximated by an optimization problem of the form

min
x∈V

1

2
‖Ax − b‖22 + λϕ(x) (40)

where ϕ is a smooth or nonsmooth regularizer such as ϕ(x) = 1
2‖x‖22, ϕ(x) = ‖x‖1,

and ϕ(x) = ‖x‖I T V in which ITV stands for the isotropic total variation. Among
the various regularizers, the total variation is much more popular due to its strong
edge preserving feature, see, e.g., Chambolle et al. (2010). Isotropic total variation is
defined for x ∈ R

m×n by

‖x‖I T V =
∑m−1

i

∑n−1

j

√

(xi+1, j − xi, j )2 + (xi, j+1 − xi, j )2

+
∑m−1

i
|xi+1,n − xi,n| +

∑n−1

j
|xm, j+1 − xm, j |.

The common drawback of the unconstrained problem (40) is that it usually gives a
solution outside of the dynamic range of the image, which is either [0, 1] or [0, 255]
for 8-bit gray-scale images. Hence one has to project the unconstrained solution to
the dynamic range of the image. However, the quality of the projected images is not
always acceptable. As a result, it is worth to solve a bound-constrained problem of the
form (2) in place of the unconstrained problem (40), where the bounds are defined by
the dynamic range of the images, see Beck and Teboulle (2009), Chan et al. (2013)
and Woo and Yun (2013).

The comparison concerning the quality of the recovered image is made via the
so-called peak signal-to-noise ratio (PSNR) defined by

PSNR = 20 log10

( √
mn

‖x − xt‖F
)

(41)

and the improvement in signal-to-noise ratio (ISNR) defined by

123



142 M. Ahookhosh, A. Neumaier

ISNR = 20 log10

(‖y − xt‖F
‖x − xt‖F

)

, (42)

where ‖ · ‖F is the Frobenius norm, xt denotes them×n true image, y is the observed
image, and pixel values are in [0, 1].

We here consider the image restoration from a blurred/noisy observation using the
model (2) equipped with the isotropic total variation regularizer. We employ OSGA,
MFISTA (a monotone version of FISTA proposed by Beck and Teboulle (2009)),
ADMM (an alternating direction method proposed by Chan et al. (2013)), and a
projected subgradient algorithm PSGA (with nonsummable diminishing step-size, see
Boyd et al. (2003)). In our implementation, we use the original code of MFISTA and
ADMM provided by the authors, with minor adaptations about the stopping criterion.

We here restore the 512×512 blurred/noisy Barbara image. Let y be a blurred/noisy
version of this image generated by a 9 × 9 uniform blur and adding a Gaussian noise
with zero mean and the standard deviation set to σ = 0.02, 0.04, 0.06, 0.08. Our
implementation shows that the algorithms are sensitive to the regularization parameter
λ. Hence we consider three different regularization parameters λ = 1 × 10−2, λ =
7 × 10−3, and λ = 4 × 10−3. We run MFISTA for the deblurring problem, stop it
after 25 iterations, and set fb to the best function value found. Then we stop the other
algorithms as soon as a function value less or equal than fb is achieved or after 50
iterations. The results of our implementation are summarized in Table 2, Figs. 2, 3,
and 4.

The results of Table 2, Figs. 2 and 3 show that the PSNR, and ISNR produced
by the algorithms are sensitive to the regularization parameter λ; the function values
are somewhat less sensitive. From Table 2, it can be seen that the running time of
PSGA,ADMM, andOSGAare comparable andmuch better thanMFISTA, andOSGA

Table 2 Result summary for the l22 isotropic total variation, where PSNR and T denote the peak signal-
to-noise (41) and the running time, respectively

Noise level λ PSGA MFISTA ADMM OSGA

PSNR T PSNR T PSNR T PSNR T

0.2 4e−3 23.65 1.31 23.86 5.01 23.76 1.11 23.89 1.44

0.2 7e−3 23.58 1.52 23.79 5.24 23.70 1.27 23.83 1.63

0.2 1e−2 23.56 1.30 23.73 4.91 23.64 1.05 23.79 1.62

0.4 4e−3 23.07 1.39 23.59 4.73 23.48 1.09 23.64 1.83

0.4 7e−3 23.10 1.26 23.61 4.71 23.53 1.14 23.70 2.00

0.4 1e−2 23.08 1.37 23.61 5.36 23.53 1.27 23.71 2.03

0.6 4e−3 21.99 1.25 23.13 5.00 23.01 0.97 23.18 2.15

0.6 7e−3 22.06 1.23 23.39 5.03 23.30 1.13 23.47 2.69

0.6 1e−2 22.10 1.31 23.04 5.27 23.35 1.07 23.50 2.21

0.8 4e−3 20.66 1.22 22.37 4.80 22.25 0.72 22.39 2.32

0.8 7e−3 20.80 1.28 23.97 4.97 22.89 1.11 23.01 2.77

0.8 1e−2 20.85 1.26 23.19 5.07 23.12 1.14 23.26 2.47
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Fig. 2 The relative error δk of function values versus iterations of PSGA, MFISTA, ADMM, and OSGA
for deblurring the 512 × 512 Barbara image with the 9 × 9 uniform blur and the Gaussian noise with
deviation σ = 0.02, 0.04, 0.06, 0.08. a σ = 0.02, λ = 4×10−3; b σ = 0.02, λ = 7×10−3; c σ = 0.02,
λ = 1 × 10−2; d σ = 0.04, λ = 4 × 10−3; e σ = 0.04, λ = 7 × 10−3; f σ = 0.04, λ = 1 × 10−2; g
σ = 0.06, λ = 4×10−3; h σ = 0.06, λ = 7×10−2; i σ = 0.06, λ = 1×10−2; j σ = 0.08, λ = 4×10−3;
k σ = 0.08, λ = 7 × 10−3; l σ = 0.08, λ = 1 × 10−2
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Fig. 3 ISNRversus iterations of PSGA,MFISTA,ADMM, andOSGA for deblurring the 512×512Barbara
image with the 9 × 9 uniform blur and the Gaussian noise with deviations σ = 0.02, 0.04, 0.06, 0.08.
a σ = 0.02, λ = 4 × 10−3; b σ = 0.02, λ = 7 × 10−3; c σ = 0.02, λ = 1 × 10−2; d σ = 0.04,
λ = 4 × 10−3; e σ = 0.04, λ = 7 × 10−3; f σ = 0.04, λ = 1 × 10−2; g σ = 0.06, λ = 4 × 10−3; h
σ = 0.06, λ = 7×10−2; i σ = 0.06, λ = 1×10−2; j σ = 0.08, λ = 4×10−3; k σ = 0.08, λ = 7×10−3;
l σ = 0.08, λ = 1 × 10−2
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Fig. 4 A comparison among PSGA, MFISTA, ADMM, and OSGA for deblurring the 512 × 512 Barbara
image with the 9 × 9 uniform blur and the Gaussian noise with the deviation 0.04 and the regularization
parameterλ = 4×10−3.aOriginal image.bBlurred/noisy image. cPSGA:PSNR = 23.07 and T = 1.39.d
MFISTA: PSNR = 23.59 and T = 4.73. eADMM:PSNR = 23.48 and T = 1.09. fOSGA:PSNR = 23.64
and T = 1.83

attains the best PSNR. Figure 2 shows that MFISTA and then OSGA attains the better
function value; however, MFISTA needs much more time. Figure 3 shows that OSGA
outperforms the other methods with respect to ISNR. Figure 4 displays the original
Barbara image, the blurred/noisy image, and the recovered images byPSGA,MFISTA,
ADMM, and OSGA for the regularization parameter λ = 4 × 10−3.
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5 Concluding remarks

This paper discussed how to apply the optimal subgradient algorithm OSGA to the
task of solving bound-constrained convex optimization problems. It is shown that the
solution of the auxiliary OSGA subproblem needed in each iteration has a piecewise
linear form in a single variable.

We give two iterative schemes to solve this one-dimensional problem; one solves
the OSGA subproblem exactly in polynomial time, the other inexactly but for very
large problems significantly faster. The first scheme translates the subproblem into
a one-dimensional piecewise rational problem, which allows the global optimizer
of the subproblem to be found in O(n2) operations. The second scheme solves a
one-dimensional nonlinear equation with a standard zero finders and gives only an
approximate, local optimizer. The exact scheme BCSS is suitable for small- and
medium-scale problems, while the inexact version can be successfully applied even
to very large-scale problems.

Numerical results are reported showing the efficiency of OSGA compared with
some state-of-the-art algorithms.
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Boţ RI, Hendrich C (2013) A Douglas–Rachford type primal-dual method for solving inclusions with
mixtures of composite and parallel-sum type monotone operators. SIAM J Optim 23(4):2541–2565
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