
Math Meth Oper Res (2017) 86:71–102
DOI 10.1007/s00186-017-0583-3

ORIGINAL ARTICLE

Scheduling for a processor sharing system with linear
slowdown

Liron Ravner1 · Yoni Nazarathy2

Received: 21 July 2016 / Published online: 20 March 2017
© Springer-Verlag Berlin Heidelberg 2017

Abstract We consider the problem of scheduling arrivals to a congestion systemwith
a finite number of users having identical deterministic demand sizes. The congestion
is of the processor sharing type in the sense that all users in the system at any given
time are served simultaneously. However, in contrast to classical processor sharing
congestion models, the processing slowdown is proportional to the number of users
in the system at any time. That is, the rate of service experienced by all users is
linearly decreasing with the number of users. For each user there is an ideal departure
time (due date). A centralized scheduling goal is then to select arrival times so as to
minimize the total penalty due to deviations from ideal times weighted with sojourn
times. Each deviation penalty is assumed quadratic, or more generally convex. But
due to the dynamics of the system, the scheduling objective function is non-convex.
Specifically, the system objective function is a non-smooth piecewise convex function.
Nevertheless,we are able to leverage the structure of the problem to derive an algorithm
that finds the global optimum in a (large but) finite number of steps, each involving the
solution of a constrained convex program. Further, we put forward several heuristics.
The first is the traversal of neighbouring constrained convex programming problems,
that is guaranteed to reach a local minimum of the centralized problem. This is a form
of a “local search”, where we use the problem structure in a novel manner. The second
is a one-coordinate “global search”, used in coordinate pivot iteration. We then merge
these two heuristics into a unified “local–global” heuristic, and numerically illustrate
the effectiveness of this heuristic.

B Yoni Nazarathy
y.nazarathy@uq.edu.au

1 Department of Statistics and the Federmann Center for the Study of Rationality,
The Hebrew University of Jerusalem, Jerusalem, Israel

2 School of Mathematics and Physics, The University of Queensland, Brisbane, Australia

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00186-017-0583-3&domain=pdf

72 L. Ravner, Y. Nazarathy

Keywords Scheduling · Road traffic · Global optimization

1 Introduction

Users of shared resources are frequently faced with the decision of when to use the
resource with a view of trying to avoid rush hour effects. Broad examples include,
workers taking their lunch break and attending a cafeteria; people entering and vacating
sporting events; and commuters using transportation networks. In many such situa-
tions the so called rush-hour game is played by all users acting individually. On the
one hand, each user typically has an ideal arrival/departure time, while on the other
hand, users often wish to avoid rush hour so as to minimise congestion costs. These
general types of scenarios have received much attention through the transportation
community (Arnott et al. 1993), the queueing community (see Glazer and Hassin
1983 or p. 84 of Hassin 2016 for a review) and more specifically within the setting we
consider in this paper (Ravner et al. 2016).

While understanding social strategic (game) behaviour is important, a complemen-
tary analysis is with regards to the social optimum (centralised scheduling decisions).
These types of situations occur often in manufacturing, appointment scheduling, edu-
cation and service. Most of the research on scheduling methodology does not consider
processor sharing but rather focuses on the situation where resources are dedicated,
see Pinedo (2008). In this paper, we put forward a novel schedulingmodel, that offers a
simple abstraction of a common scenario: Jobs may be scheduled simultaneously, yet
slow each other down when sharing the resource. In this respect our model is related
to the study of scheduling problems with batch processing, see Potts and Kovalyov
(2000). However, from a mathematical perspective, our model, results and methods
do not involve the classical discrete approaches but rather rely on piecewise affine
dynamics with breakpoints. This type of behaviour resembles Separated Continuous
Linear Programs, as inWeiss (2008), and is often used to solve optimization problems
associated with fluid multi-class queueing networks (cf. Avram et al. 1995; Nazarathy
and Weiss 2009).

A standardwayofmodelling resource sharingphenomena, is the so-calledprocessor
sharing queue, see for example Harchol-Balter (2013). In such a model, given that at
time t there are q(t) users in the system, the total fixed service capacity, β > 0, is
allocated, such that each user receives an instantaneous service rate,

v
(
q(t)

) = β

q(t)
. (1.1)

Such amodel then captures the relationship of the arrival time of a user, a, the departure
time of a user, d and the service demand, � through

� =
∫ d

a
v
(
q(t)

)
dt.

The aggregate throughput with q users in the system is the product q v(q). For the
processor sharing model (1.1), this is obviously the constant β. However, in practice,

123

Scheduling for a processor sharing system with linear… 73

q
0 5 10 15 20

0

20

40

60

80

100

β − α(q − 1)

q
0 5 10 15 20

0
100
200
300
400
500

q(β − α(q − 1))

(a) (b)

Fig. 1 The service rate and aggregate throughput as a function of the number of users in the system.
Parameter values: β = 100 and α = 5. a Service rate, b aggregate throughput

the aggregate throughput is not necessarily constant with respect to q(t). In many
situations, most notably in traffic and transportation scenarios, users inter-play in
a complicated manner. In particular, in the classic Greenshield fluid model (see for
exampleHenderson 1974 orMahmassani andHerman 1984), the aggregate throughput
is not monotone in the number of users and even exhibits a traffic jam effect. The
simplest model, describing such a phenomenon is

v
(
q(t)

) = β − α
(
q(t) − 1

)
, (1.2)

which is a discrete variation of Greenshield’s model.1 With a single user in the system,
(1.2) yields the free flow rate β which coincides with (1.1). Then for each additional
user, there is a linear slowdown of α > 0 units in the rate. See Fig. 1 for a simple
illustration. Note that in road networks, much research has focused on the so-called
fundamental diagram for networks, such as in Daganzo (2007). Indeed Fig. 1b resem-
bles a fundamental diagram.

Our scheduling problem is to centrally choose arrival times a = (a1, . . . , aN)′ in
an effective manner, where N is the number of users. In this paper we assume that all
users share the same service demand, �. In our objective, user i incurs a cost of

(di − d∗
i)2 + γ (di − ai),

where di is his departure time and d∗
i is the ideal departure time (due date) and γ

captures tradeoff between meeting the due date and sojourn time costs. The total costs
incurred by all users is then the sum of individual user costs.

If there was no congestion (say due to d∗
i being well separated), an ideal choice is

ai = d∗
i − �/β. But in general, users interact, so the scheduling decision needs to take

this interaction into account. If, for example, γ = 0 and d∗
i = d∗ for all i , then the

problem is trivially solved with zero cost by setting

1 Note that in queueing theory, situations where v(·) is not as in (1.1) but is rather some other function
are sometimes referred to as generalized processor sharing. See for example Cohen (1979). Generalized
processor sharing has also taken other meanings over the years, so sometimes there is confusion about the
term.

123

74 L. Ravner, Y. Nazarathy

ai = d∗ − �

β − α(N − 1)
.

Here since sojourn time does not play a role, sending all users simultaneously will
imply they arrive simultaneously after being served together at the slowest possible
rate. Continuing with the case of γ = 0, if now users do not have the same d∗

i , then
attaining zero costs is still possible. In fact, we show in the sequel, that in this specific
case (γ = 0) the optimal schedule can be computed efficiently (in polynomial time).

At the other extreme consider the casewhereminimising sojourn times is prioritised
over minimisation of due dates (e.g. if fuel costs are extremely high). This corresponds
to γ ≈ ∞. While for any finite γ , it is possible that an optimal schedule allows
overlap of users, an approximation for the case of large γ is obtained by enforcing a
schedule with no overlap (q(t) ≤ 1 ∀t). This is because overlaps have a very large
sojourn time cost relative to the possible reduction in quadratic deviation from desired
departure times. Now with such a constraint, the problem resembles a single machine
scheduling problem with due date penalties. This problem has been heavily studied
(see for example Baker and Scudder 1990 or Sen and Gupta 1984). In our case, in
which users have identical demand, finding the optimal schedule is a convex quadratic
program and can thus be solved in polynomial time. We spell out the details in the
sequel.

Setting aside the extreme cases of γ = 0 or γ ≈ ∞, the problem is more com-
plicated. While we do not have an NP-hardness proof, we conjecture that finding the
optimal a is a computationally challenging problem. In the current paper we handle
this problem in several ways. First we show that departure times depend on arrival
times in a piecewise affinemanner.We find an efficient algorithm for calculating di (a).
We then show that the total cost is a piecewise convex quadratic function but generally
not convex, i.e. there is a large (but finite) number of polytopes in RN where within
each polytope, it is a convex quadratic function of a. This is a similar formulation to
that of the piecewise-linear programming problem presented in Vielma et al. (2010),
which is known to be NP-hard. The structure of the total cost yields an exhaustive
search scheduling algorithm which terminates in finite time.

We then put forward heuristics. The first heuristic, which we refer to as the local
search, operates by solving a sequence of neighbouring quadratic problems until find-
ing a local minimum with respect to the global optimization. The second heuristic
performs a global search over one coordinate (arrival time of a single user), keeping
other coordinates fixed. This is done in a provably efficient manner. In particular, we
bound the number of steps in each coordinate search by a polynomial. It then repeats
over other coordinates, cycling over all coordinates until no effective improvement in
the objective function is possible. In case of smooth objectives, it is known that such
coordinate pivot iterations (CPI) schemes converge to local minima (see for example
Bertsekas 1999, p. 272). Further, in certain special cases of non-smooth objectives, it is
also known that CPI schemes converge to local minima (see for example Tseng 2001).
But in our case, the non-separable piecewise structure of the objective often causes
our heuristic to halt at a point that is not a local minimum. Nevertheless, the global
search heuristic is fruitful when utilized in a combined local–global search heuristic.
This heuristic performs global searches with different initial points, each followed by

123

Scheduling for a processor sharing system with linear… 75

a local search. We present numerical evidence, illustrating that it performs extremely
well. Often finding the global optimum in very few steps.

The structure of the sequel is as follows. In Sect. 2 we present the model and basic
properties. In Sect. 3 we focus on arrival departure dynamics, showing a piecewise
affine relationship between the arrival and departures times. We give an efficient algo-
rithm for calculating the departure times given arrival times or vice-versa. This also
solves the scheduling problem for the special case γ = 0. In Sect. 4 we characterise the
constraints associatedwith quadratic programswhichmake up the piecewise quadratic
cost. These are then used in the exhaustive search algorithm.We then present the local
search algorithm and prove it always terminates at a local minimum (of the global
objective). In Sect. 5 we present our global search method based on CPI. We utilize
the structure of the problem to obtain an efficient single coordinate search within the
CPI. Then in Sect. 6, the local search and global searches are combined into a unified
heuristic. We further illustrate the power of our heuristic through numerical examples.
We conclude in Sect. 7. Some of the proofs are deferred to the “Appendix”.

Notation We denote x ∧ y and x ∨ y to be the minimum and maximum of x and y,
respectively. We define any summation with initial index larger than the final index to
equal zero (e.g.

∑1
i=2 ai = 0). Vectors are taken as columns and are denoted in bold.

1 ∈ RN denotes a vector of 1’s and ei ∈ RN denotes a vector of zeros in all but the
i’th coordinate, which equals 1. The indicator function is denoted by 1.

2 Model

Our model assumes that there is a fixed user set N = {1, . . . , N } where the service
requirement of each user, �, is the same and is set to 1 without loss of generality (this
can be accounted for by changing the units ofβ andα). Then the equations determining
the relationship between the arrival times vector a = (a1, . . . , aN)′ and the departure
times vector d = (d1, . . . , dN)′ are

1 =
∫ di

ai
v
(
q(t)

)
dt, where q(t) =

∑

j∈N
1{t ∈ [a j , d j]}. (2.1)

Using the linear slowdown rate function, (1.2), the equations are represented as,

1 =
∫ di

ai
β − α

⎛

⎝
∑

j∈N
1{t ∈ [a j , d j]} − 1

⎞

⎠ dt, i = 1, . . . , N . (2.2)

These N equations can be treated as equations for the unknowns d, given a or vice-
versa. We assume N < β/α + 1 so that it always holds that v

(
q(t)

)
> 0.

The cost incurred by user i is,

ci (ai , di) = (di − d∗
i)2 + γ (di − ai), (2.3)

123

76 L. Ravner, Y. Nazarathy

and the total cost function, which we seek to minimise, is

c(a) =
∑

i∈N
ci

(
ai , di (a)

)
. (2.4)

We assume (without loss of generality) that the ideal departure times, d∗ =
(d∗

1 , . . . , d∗
N)′ are ordered, i.e. d∗

1 ≤ · · · ≤ d∗
N .

Remark For clarity of the exposition we choose the cost, (2.3) to be as simplistic as
possible. Practical straightforward generalizations to the cost and to the associated
algorithms and heuristics are discussed in the conclusion of the paper. These include
other convex penalty functions, ideal arrival times and a potentially different penalty
for early and late departures. Our algorithms, can all be adapted for such cost functions.

We first have the following elementary lemmas:

Lemma 2.1 Assume that the arrivals, a, are ordered: a1 ≤ a2 ≤ · · · ≤ aN , then the
departures, d, follow the same order: d1 ≤ d2 ≤ · · · ≤ dN .

Lemma 2.2 For any a there is a unique d and vice-versa.

As a consequence of the assumed order of d∗ and of the above lemmawe assert that an
optimal schedule can only be attained with an ordered a whose individual coordinates
lie in a compact interval, as shown in the following lemma.

Lemma 2.3 An optimal arrival schedule satisfies a ≤ a1 ≤ · · · ≤ aN ≤ a, where

a = d∗
1 − N

β − α(N − 1)
, a = d∗

N + N

β − α(N − 1)
.

We may thus define the search region for the optimal schedule:

R =
{
a ∈ RN : a ≤ a1 ≤ · · · ≤ aN ≤ a

}
,

and take our scheduling problem to be mina∈R c(a).
No strict condition on the joint order of ai and di can be imposed except for the

requirement that ai < di for any i (the sojourn time of all users is strictly positive).
We are thus motivated to define the following for i ∈ N :

ki := max
{
k ∈ N : ak ≤ di

} = min
{
k ∈ N : ak+1 > di

}
, (2.5)

hi := min
{
h ∈ N : dh ≥ ai

} = max
{
h ∈ N : dh−1 < ai

}
. (2.6)

The variable ki specifies the interval [aki , aki+1) in which di resides. Similarly the
variable hi specifies that ai lies in the interval (dhi−1, dhi]. Note that we define
a0, d0 := −∞ and aN+1, dN+1 := ∞. The sequences ki and hi satisfy some basic
properties: (1) They are non-decreasing and are confined to the setN . (2) From the fact
that ai < di we have that i ≤ ki . (3) Since d is an ordered sequence and also ai < di

123

Scheduling for a processor sharing system with linear… 77

we have hi ≤ i . (4) We have h1 = 1 and kN = N . (5) Each sequence determines the
other:

ki = max
{
k ∈ N : hk ≤ i

}
, and hi = min

{
h ∈ N : kh ≥ i

}
.

Thus given either the sequence ki , i ∈ N or the sequence hi , i ∈ N or both, the
ordering of the 2N tuple (a1, . . . , aN , d1, . . . , dN) is fully specified as long as we
require that ai ’s and di ’s are ordered so as to be consistent with Lemmas 2.1 and 2.3.

We denote the set of possible k = (k1, . . . , kN)′ by

K :=
{
k ∈ N N : kN = N , ki ≤ k j ∀i ≤ j

}
. (2.7)

Similarly, we denote the set of possible h = (h1, . . . , hN)′ byH. We have that,

|K| = |H| =

(
2N
N

)

N + 1
.

This follows (for example) by observing that the elements of K correspond uniquely
to lattice paths in the N × N grid from bottom-left to top-right with up and right
movements without crossing the diagonal. The number of such elements is the N th
Catalan number, see for example p. 259 in Koshy (2009).

The following example illustrates the dynamics of the model (without optimiza-
tion) and shows the role of k, or alternatively h, in summarizing the piecewise affine
dynamics.

Example 2.1 Take β = 1/2, α = 1/6 and N = 3. This 3 user system exhibits rates
that are either 1/2, 1/3 or 1/6 depending on the number of users present. The free
flow sojourn time is 1/β = 2. Assume a1 = 0, a2 = 1 and a3 = 3. We now describe
the dynamics of the system. See also Fig. 2.

During the time interval [0, 1), q(t) = 1 and the first user is being served at rate
1/2. By time t = 1 the remaining service required by that user is 1/2. At time t = 1,
the number of users in the system, q(t), grows to 2 and the rate of service to each user
is reduced to 1/3. This means that without a further arrival causing further slowdown,
user 1 is due to leave at time t = 2.5. Since 2.5 < a3, this is indeed the case. At
t = 2.5, q(t) changes from 2 to 1. By that time, the remaining service required by user
2 is 1/2. Then during the time interval [2.5, 3) user 2 is served at rate 1/2 reducing the
remaining service of that user to 1/4. At time t = 3, user 3 joins, increasing q(t) back
to 2 and reducing the service rate again to 1/3. User 2 then leaves at time t = 3.75 and
as can be verified using the same types of simple calculations, user 3 finally leaves at
time t = 5.25.

Observe that for this example, the order of events is:

a1 ≤ a2 ≤ d1 ≤ a3 ≤ d2 ≤ d3.

123

78 L. Ravner, Y. Nazarathy

t

work
a1 = 0.00 (h1 = 1)

a2 = 1.00 (h2 = 1) a3 = 3.00 (h3 = 2)

d1 = 2.50 (k1 = 2)
d2 = 3.75 (k2 = 3)

d3 = 5.25 (k3 = 3)

Fig. 2 An illustration of the dynamics of a three user example. The shaded gray areas show the remaining
work for each individual user. Work is depleted at rate 1

2 when only one user is present and is depleted at

the slower rate of 1
3 when two users are present

This then implies that for this schedule,

k1 = 2, k2 = 3, k3 = 3, and h1 = 1, h2 = 1, h3 = 2.

3 Arrival departure dynamics

We now investigate the relationship between arrivals and departures, induced by the
linear slowdown dynamics.

Proposition 3.1 Equation (2.2) can be expressed as

(β − α(ki − i)) di − α

i−1∑

j=hi

d j − (β − α(i − hi)) ai + α

ki∑

j=i+1

a j = 1, i ∈ N ,

(3.1)
or alternatively,

D d − A a = 1, (3.2)

with the matrices A ∈ RN and D ∈ RN defined as follows:

Ai j :=
⎧
⎨

⎩

β − α(i − hi), i = j,
−α, i + 1 ≤ j ≤ ki ,
0, o.w.

Di j :=
⎧
⎨

⎩

β − α(ki − i), i = j,
−α, hi ≤ j ≤ i − 1,
0, o.w.

123

Scheduling for a processor sharing system with linear… 79

Proof We manipulate (2.2) to get,

1 = (β + α)(di − ai) − α

N∑

j=1

∫ di

ai
1{t ∈ [a j , d j]}dt

= (β + α)(di − ai) − α

N∑

j=1

(
di ∧ d j − ai ∨ a j

)+

= (β + α)(di − ai) − α

i−1∑

j=1

(
di ∧ d j − ai ∨ a j

)+ − α(di − ai)

− α

N∑

j=i+1

(
di ∧ d j − ai ∨ a j

)+
.

= β(di − ai) − α

i−1∑

j=1

(
di ∧ d j − ai ∨ a j

)+ − α

N∑

j=i+1

(
di ∧ d j − ai ∨ a j

)+
.

where in the third step we have used the fact that ai < di for the term corresponding
to j = i . We now use the fact that a and d are both ordered to get,

1 = β(di − ai) − α

i−1∑

j=1

(
d j − ai

)+ − α

N∑

j=i+1

(
di − a j

)+

= β(di − ai) − α

i−1∑

j=1

(d j − ai ∧ d j) − α

N∑

j=i+1

(di − a j ∧ di)

= −βai + (β − α(N − i))di − α

i−1∑

j=1

d j + α

i−1∑

j=1

(ai ∧ d j) + α

N∑

j=i+1

(a j ∧ di).

Now the summations
∑i−1

j=1(ai∧d j) and
∑N

j=i+1(a j∧di) can be broken up as follows:

i−1∑

j=1

(ai ∧ d j) =
i−1∑

j=1

1{d j < ai }d j +
i−1∑

j=1

1{d j ≥ ai }ai

=
hi−1∑

j=1

d j +
i−1∑

j=hi

ai =
hi−1∑

j=1

d j + (i − hi)ai ,

N∑

j=i+1

(a j ∧ di) =
N∑

j=i+1

1{a j > di }di +
N∑

j=i+1

1{a j ≤ di }a j

=
N∑

j=ki+1

di +
ki∑

j=i+1

a j = (N − ki)di +
ki∑

j=i+1

a j .

123

80 L. Ravner, Y. Nazarathy

Combining the above we obtain:

1 = −(β − α(i − hi))ai + (β − α(ki − i))di − α

⎛

⎝
i−1∑

j=1

d j −
hi−1∑

j=1

d j

⎞

⎠ + α

ki∑

j=i+1

a j

= −(β − α(i − hi))ai + (β − α(ki − i))di − α

⎛

⎝
i−1∑

j=hi

d j −
ki∑

j=i+1

a j

⎞

⎠ .

Rearranging we obtain (3.1). �
The following observations are a consequence of Proposition 3.1:

1. Consider some user i arriving at time ai to an empty system, and departing at time
di to leave an empty system. In this case there are no other users effecting his
sojourn time or rate. For such a user ki = hi = i . In this case (3.1) implies that
di = ai + 1/β as expected.

2. Thematrices A and D are lower and upper triangular, respectively, with a non-zero
diagonal, and are therefore both non-singular.

3. For the special cases i = 1 and i = N (using the fact h1 = 1 and kN = N):

(
β − α(k1 − 1)

)
d1 − β a1 + α

k1∑

j=2

a j = 1, and

β dN − α

N−1∑

j=hN

d j − (
β − α(N − hN)

)
aN = 1.

i.e.,

d1 = 1 + βa1 − α
∑k1

j=2 a j

β − α(k1 − 1)
, aN = βdN − α

∑N−1
j=hN

d j − 1

β − α(N − hN)
.

The above structure suggests iterative algorithms for either determining a based
on d or vice-versa. In both cases, k and h are found as bi-products. As an aid to
describing these algorithms, define for i, k, h ∈ N and for a given a (respectively d),
the functions d̃i,k,h(· | a), ãi,k,h(· |d):RN → R as follows,

d̃i,k,h
(
d̃

∣∣∣ a
)

:=
1 + (

β − α(i − h)
)
ai + α

(∑i−1
j=h d̃ j − ∑k

j=i+1 a j

)

β − α(k − i)
,

ãi,k,h
(
ã

∣
∣∣d

)
:=

(
β − α(k − i)

)
di − α

(∑i−1
j=h d j − ∑k

j=i+1 ã j

)
− 1

β − α(i − h)
.

Observe that in the evaluation of these functions, the arguments, d̃ or ã are only
utilized for the coordinates indexed h, . . . , i − 1 or i + 1, . . . , k respectively (if i = 1

123

Scheduling for a processor sharing system with linear… 81

or respectively i = N these index lists are empty). Further observe that stated in terms
of d̃(·) or ã(·) and given k ∈ K and h ∈ H, Eq. (3.1) can be represented as,

di = d̃i,ki ,hi

((
d1, . . . , dN

)′ | (a1, . . . , aN
)′)

, i ∈ N ,

or alternatively,

ai = ãi,ki ,hi

((
a1, . . . , aN

)′ | (d1, . . . , dN
)′)

, i ∈ N .

Given the above we have two (dual) algorithms for determining the network dynamics.
Algorithm 1a finds the departure times based on arrival times. Algorithm 1b finds the
arrival times given the departure times.

Proposition 3.2 Algorithm 1a finds the unique solution d to Eq. (2.2), given a. Simi-
larly Algorithm 1b finds a unique solution a to the equations, given d. Both algorithms
require at most 2N steps in each of which (3.1) is evaluated.

Algorithm 1a: Determination of network dynamics with given arrival times

Input: a ∈ R
N such that a1 ≤ a2 ≤ · · · ≤ aN

Output: d = (d1, ..., dN), k = (k1, ..., kN) and h = (h1, ..., hN)

init k = h = (1, 2, 3, . . . , N)

init d = ∅
for i = 1, . . . , N do

set k = i ∨ ki−1 (taking k0 := 1)
compute d̃i (k, hi ,d | a)
while d̃i (k, h, d | a) ≤ ak+1 do

increment k
compute d̃i (k, hi , d | a)

end while
set ki = k
set di = d̃i (k, hi ,d | a)
set hi+1 = max

{
h ∈ {1, . . . , i + 1} : kh ≥ i + 1

}

end for
return (d, k, h)

3.1 Optimizing for extreme cases of γ

As described in the introduction, optimizing (2.4) when γ = 0 or γ ≈ ∞ can be done
efficiently. For the case γ = 0, all that is needed is to schedule arrivals so that each
departure time, di is exactly at d∗

i . This achieves zero costs. Such a schedule is simply
obtained by running Algorithm 1b with input d = d∗. This immediately leads to the
following corollary of Proposition 3.2:

Corollary 3.3 For the special case γ = 0 there is an efficient polynomial time algo-
rithm that finds the unique optimal schedule, a0, achieving c(a0) = 0.

For the case of large γ it is sensible to consider a classic schedule where users do not
overlap:

123

82 L. Ravner, Y. Nazarathy

Algorithm 1b: Determination of network dynamics with given departure times

Input: d ∈ R
N such that d1 ≤ d2 ≤ · · · ≤ dN

Output: a = (a1, ..., aN), k = (k1, ..., kN) and h = (h1, ..., hN)

init k = h = (1, 2, 3, . . . , N)

init d = ∅
for i = N , . . . , 1 do

set h = i ∧ hi+1 (taking hN+1 := N)
compute ãi (ki , h, a |d)

while ãi (ki , h, a |d) ≥ dh−1 do
decrement h
compute ãi (ki , h, a |d)

end while
set hi = h
set ai = ãi (ki , h, a |d)

set ki−1 = min
{
k ∈ {i − 1, . . . , N } : hk ≤ i − 1

}

end for
return (a, k, h)

ai + 1

β
= di ≤ ai+1, i = 1, . . . , N − 1. (3.3)

This poses the problem as a classic single machine scheduling problem with due dates
(see for example Baker and Scudder 1990 or Sen and Gupta 1984). This implies that
the total costs due to sojourn times is at the minimal possible value γ N/β and the
costs due to deviations from ideal departure times is,

∑

i∈N
(ai + 1/β − d∗

i)2.

For any finite γ this does not necessarily minimize (2.4), but as γ → ∞ it is a sensible
approximation. I.e. for large γ the optimal schedule is approximated by the solution
of the following convex quadratic program:

min
(a1,...,aN)′∈RN

N∑

i=1

(ai + 1/β − d∗
i)2

s.t. ai − ai+1 ≤ − 1

β
, i = 1, . . . , N − 1.

(3.4)

The above quadratic program can be efficiently solved using any standard convex
quadratic programming method. Denote the optimizer by a∞.

3.2 A linear approximation

Having the schedules a0 and a∞ for the cases γ = 0 and γ = ∞ respectively, we
are motivated to suggest a set of potential (initial) guesses for the optimal schedule
for arbitrary γ . Let M ≥ 1 be some integer specifying the number of initial guesses.
Then the set of initial guesses lie on the segment interpolating a0 and a∞:

123

Scheduling for a processor sharing system with linear… 83

A =
{
a0

m

M − 1
+ a∞ (

1 − m

M − 1

)
:m = 0, . . . , M − 1

}
, (3.5)

when M ≥ 2 or equals {a0} if M = 1. We shall use the M points of A as initial
guess points for the optimization heuristics that we present in the sequel. This is a
sensible choice since every set of due dates d∗

1 , . . . , d∗
N exhibits some contour in R,

parametrized by γ , corresponding to the optimal schedules (for each γ). The end points
of this contour are a0 and a∞ which we can efficiently find. Thus for α ∈ [0, 1], the
points a0 α + a∞ (1 − α) constitute a linear approximation of this contour. In cases
where the contour is almost not curved we have that the optimal value lies very near
to the linear approximation. In other cases, this is simply a set of initial guesses, yet
possibly a sensible one. Note that the values of M do not need to be excessively large
because initial points that are close are likely to yield the same local solutions. The
numerical analysis of Sect. 6 reinforces this observation.

4 Piecewise quadratic formulation

Our key observation in this section is that the search regionR can be partitioned into
polytopes indexed by k ∈ K, where over each such polytope, the objective is of a
convex quadratic form. This yields |K| convex quadratic problems, each of which
(individually) can be solved efficiently. An immediate exhaustive-search algorithm is
then to solve all of the problems so as to find the minimising one. This yields a finite-
time exact solution and is a sensible choice for small N (e.g. N ≤ 15). But since,

|K| ∼ 4N

N 3/2
√

π
,

solving all convex problems is not a viable method for non-small N . We thus also
specify a local-search algorithm which searches elements of K by moving across
neighbouring polytopes until finding a local optimum.

The following proposition is key:

Proposition 4.1 The region R can be partitioned into polytopes indexed by k ∈ K,
and denoted

Pk := {
a ∈ R: aki ≤ [

�ka + ηk
]
i ≤ aki+1, i ∈ N }

,

where �k = D−1A and ηk = D−11 with A and D based on k are specified by
Proposition 3.1. Then for a ∈ Pk the objective function is convex and is given by,

ck(a) = a′Qka + bk a + b̃k,

with,

Qk = �′
k �k,

bk = 2
(
ηk − d∗)′�k + γ 1′(�k − I),

b̃k = (
ηk − d∗)′ (

ηk − d∗) + ηk.

123

84 L. Ravner, Y. Nazarathy

Proof The results of Proposition 3.1 show that every k ∈ K specifies matrices D and
A such that, d = D−1A a + D−11 = �ka + ηk. This holds with constant �k and
ηk for all a and d for which k as defined in (2.5) is fixed. The polytope Pk specifies
this exactly by describing the set of arrival points for which the specific ordering of
departures within arrivals is given by k.

Since for all a ∈ Pk the affine relationship between a and d holds with the same
�k and ηk the cost, (2.4), can be explicitly represented in terms of a:

c (a) =
∑

i∈N

(
di − d∗

i

)2 + γ (di − ai)

= (
d − d∗)′ (

d − d∗) + γ 1′ (d − a)

=
(
a′�′

k + (
ηk − d∗)′) (

�ka + ηk − d∗) + γ 1′ (
�ka + ηk − a

)

= a′�′
k�ka +

(
2

(
ηk − d∗)′

�k + γ 1′ (�k − I)
)
a

+ (
ηk − d∗)′ (

ηk − d∗) + γ 1′ηk.

This yields Qk, bk and the constant term, b̃k. Finally, since Qk is a Gram matrix, it is
positive semi-definite. Hence the objective is convex. �

4.1 Exhaustive search

We are now faced with a family of convex quadratic programs. For each k ∈ K, denote
ck(·) to be the cost associated with k then,

QP(k): min
a∈Pk

ck(a). (4.1)

Note thatwhile the constant term b̃k is not required for finding the solution ofQP(k),
it is needed for comparing the outcomes of the quadratic programs associated with
different elements ofK. Indeed themost basic use ofQP(k) is for an exhaustive search
algorithm which finds the global optimal schedule in finite time. This is summarised
in Algorithm 2.

The virtue of Algorithm 2 is that it finds the optimal schedule in finite time. But this
is done by solving an exponential (in N) number of convex QP(·) problems, so for
non-small N it is not a sensible algorithm. Hence we now introduce a search heuristic.

4.2 Neighbour search

In this section we introduce a heuristic search aimed at finding a local minimum by
searching on neighbouring regions. The search procedure solves the QP (4.1) over
neighbouring elements of K by changing a single coordinate of k at a time. We prove
that this procedure converges to a local minimum; yet this may possibly take an
exponential number of steps in the worst case.

123

Scheduling for a processor sharing system with linear… 85

Algorithm 2: Exhaustive search for global optimum
Input: Model parameters only (N , α, β, d∗ and γ)
Output: a∗ (global optimum)
init m∗ = ∞
for k ∈ K do

solve QP(k) with optimiser a and optimum m
if m < m∗ then

set a∗ = a
set m∗ = m

end if
end for
return (a∗, m∗)

Given a solution a of QP(k) we define the following two sets of indices:

I1(a, k) := {
j ∈ N : [

�ka + ηk
]
j = ak j+1

}
,

I2(a, k) := {
j ∈ N : ak j = [

�ka + ηk
]
j

}
.

Noting that di = [�ka + ηk]i , and recalling that ki is index of the maximal arrival
time that is less than or equal to di we have that if i ∈ I1(a, k) then the optimal
solution of QP(k) exhibits di = aki+1 as an active constraint. Hence a neighbouring
region to the constraint set Pk is Pk(i) where k(i) = k on all coordinates except for
i where it is equal to ki + 1. Similarly if i ∈ I2(a, k) then aki = di as an active
constraint. In this case, k(i) is set to equal k on all co-ordinates except for i where it
is set to equal ki − 1. Thus for every element of I1(a, k) and I2(a, k) we have a well
defined neighbouring region. Defining now the sets of neighbouring regions toPk by

K�

(I�(a, k)
) := {

k(i): i ∈ I�(a, k)
}
, � = 1, 2,

we have the following local search algorithm:

Algorithm 3: Neighbour search for local optimum (local search)
Input: k
Output: a∗ and m∗
solve QP(k) with optimiser a and optimum m
init m∗ = m
init a∗ = a
for i ∈ K1

(
I1(a, k)

)
do

solve QP(k(i)) with optimiser a and optimum m
if m < m∗ then restart algorithm with k = k(i)

end for
for i ∈ K2

(
I2(a,k)

)
do

solve QP(k(i)) with optimiser a and optimum m
if m < m∗ then restart algorithm with k = k(i)

end for
return (a∗, m∗)

123

86 L. Ravner, Y. Nazarathy

Proposition 4.2 Algorithm 3 converges to a local minimum for any initial vector k.

Proof Every step of the algorithm can only improve the objective function, since
m < m∗ is the condition for the change of k, hence the algorithm cannot go back to
a region which it has already visited. Furthermore, there is a finite number of regions
which means the algorithm terminates in a finite number of steps. If for some a which
is the solution ofQP(k) there are no improvements in any of the neighbouring regions
the algorithm stops at a local minimum. This can be either due to no active constraints
toQP(k) (an interior point) or due to the fact that the neighbouring quadratic programs
do not improve on the solution of QP(k). �

5 Global search over single coordinates

In this section we put forward Algorithms 4 and 5 that together form a coordinate pivot
iteration procedure. We first describe how the dynamics presented in Sects. 2 and 4
can be used to find a global minimum with respect to a single coordinate r ∈ N (user)
when all other coordinates are fixed. We call this procedure a global search over a
single coordinate r .

The computational complexity of such a procedure is shown to be at most O(N 5).
We then utilise this procedure to define a coordinate pivot iteration algorithm, that
performs optimization cycles on all of the coordinates until no improvement can be
made.

To understand themain idea consider Fig. 3a. This figure corresponds to an example
with N = 4, α = 1.5 and β = 5. Here the arrival times a2, a3, a4 are fixed at
(0.05, 0.15, 0.45) and the arrival time of user r = 1 (denoted also x) is allowed to
vary. The (horizontal) blue dotted lines denote the fixed arrival times a2, a3, a4. The
thin blue curves correspond to the departure times d2, d3, d4. The thick green dotted
and solid curves correspond to the arrival and departure time of user 1 respectively.
When x is small enough or large enough, it is seen that user 1 does not affect the other
users. But otherwise, user 1 interacts with the other users and potentially modifies
their departure times.

As is further evident from Fig. 3a, the dynamics of the departure times are piece-
wise affine with breakpoints as marked by the vertical lines in the figure. In between
these lines, the effect of changing x on other quantities is affine. In between these
breakpoints, the objective function is piecewise convex (quadratic). This property is
illustrated in Fig. 3b where the objective is plotted as a function of x . This property
allows us to optimise globally over a single coordinate, utilizing the problem struc-
ture. The desired departure times used for the cost function in (b) were d∗

i = 0.5 for
i = 1, . . . , 4.

The global search over a single coordinate works by varying x from a to a and in the
process searches for the one-coordinate optimum. This is done with a finite number of
steps because of the piecewise-affinedynamics.Our algorithm incrementally computes
the piecewise-affine coefficients within these steps. We call each step a “breakpoint”.
The following types of breakpoints may occur:

Type 1a The arrival of r overtakes the next arrival of any i (solid black line).

123

Scheduling for a processor sharing system with linear… 87

x = a1
0.50-0.5

0

1
a1

d1

a2

d2
a3

d3
a4

d4

(a)

x = a1
0.50-0.5

1

2

i∈N ci(a)

(b)

Fig. 3 a Arrival (horizontal dotted) and departure (horizontal solid) profiles obtained by changing the
arrival time of user 1, b cost function obtained by changing the arrival time of user 1. Break points are
marked in both a and b by vertical lines as follows: solid black lines mark Type 1a points (note there are
exactly N − 1 = 3 such breakpoints). Dotted black lines mark Type 1b breakpoints (note that there are
exactly N −1 = 3 such breakpoints as well). Type 2a breakpoints are marked by dashed red lines and Type
2b breakpoints are marked by brown dashed-dotted lines. (Color figure online)

Type 1b The departure of any i is overtaken by the arrival of r (dotted black line).
Type 2a The departure of any i overtakes any arrival (dashed red line).
Type 2b The departure of any i is overtaken by an arrival of j �= r (brown dashed-
dotted line).

Observe that in varying x , breakpoints of type 1a and 1b occur exactly N −1 times
each. Less trivially, we have a bound on the number of type 2a and 2b breakpoints:

Proposition 5.1 In executing the global search over a single coordinate r , the total
number of breakpoints is O(N 3).

Before presenting the proof, we present the details of the piecewise-affine dynamics
and the details of the global search over a single coordinate r algorithm.

5.1 Algorithm details

In carrying out the global search over a single coordinate r , we remove the restriction
that arrival times are ordered. That is, the search region is extended from R to a set
not requiring such order R̃ := [a, a]N . This allows us to carry out a full search for
the optimum with respect to a single user r without the restriction ar ∈ [ar−1, ar+1].
This broader search potentially enables bigger gains in the objective when integrating

123

88 L. Ravner, Y. Nazarathy

the algorithm within a search heuristic. Further, any point a ∈ R̃ can be mapped into
a unique pointO(a) ∈ R whereO(·) is an ordering operator. By Lemma 2.3 we have
that c

(O(a)
) ≤ c

(
a
)
.

Take ã ∈ R̃ as an initial arrival vector and suppose that we are optimising over user
r . Let x ∈ [a, a] be the immediate search value of ar (keeping the other arrival times
fixed). For any such x we define a corresponding permutation π (̃a, x) indicating the
current order of arrivals, as well as the ordered arrival vector

a(̃a, x) := O(
aπ1(x), . . . , aπr (x)−1, x, aπr (x)+1, . . . , aπN (x)

)
. (5.1)

This vector can serve as input to Algorithm 1a yielding a corresponding d(̃a, x),
k(̃a, x) and h(̃a, x). Furthermore, using (3.1) we have the local piecewise-affine
relationship,

di (̃a, x) = x θi |r,π (̃a, x),k(̃a, x) + ηi |r,π (̃a, x),k(̃a, x), i ∈ N , x ∈ [a, a].

That is, the coefficients of the departures between breakpoints depend on the permu-
tation of the users as well as on the current order of their arrivals and departures. For
brevity we omit the dependencies on x , ã, π and k. Manipulating (3.1) we obtain,

(θi , ηi)=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(

0,
1+ai (β−α(i−hi))−α

(∑ki
j=i+1 a j−∑i−1

j=hi
η j

)

β−(ki−i)α

)

, i < πr , ki < πr ,

(

− α
(
1−∑i−1

j=hi
θ j

)

β−α(ki−i) ,
1+ai (β−α(i−hi))−α

(∑ki
j=i+1 a j1{ j �=πr }−∑i−1

j=hi
η j

)

β−α(ki−i)

)

, i < πr , ki ≥ πr ,

(
β+α

∑i−1
j=hi

(θ j−1)

β−α(ki−i) ,
1−α

(∑ki
j=i+1 a j−∑i−1

j=hi
η j

)

β−α(ki−i)

)

, i = πr ,

(
α

∑i−1
j=hi

θ j

β−α(ki−i) ,
1+ai (β−α(i−hi))−α

(∑ki
j=i+1 a j−∑i−1

j=hi
η j

)

β−α(ki−i)

)

, i > πr .

(5.2)
On every interval, the departure times di are all affine and continuous w.r.t x with

the above coefficients, until a breakpoint (of type 1a, 1b, 2a or 2b) occurs. Computing
the time of the next breakpoint is easily done by considering the piecewise affine
dynamics. Potential breakpoints of types 1a and 1b are to occur at times t where
x + t = aπr+1 and t θi + di = ar + t , respectively. Potential breakpoints of types 2a
and 2b involving user i are to occur at times t θi + di = aki+1 and t θi + di = aki
respectively. Observing now that type 2a breakpoints may occur only when θi > 0
and type 2b breakpoints may occur only when θi < 0 we have that the next breakpoint
occurs at,

τ = min {t0, t1, . . . , tN , tN+1} , (5.3)

where t0 = aπr+1 − x (type 1a breakpoints), tN+1 = ā − x (termination) and for
1 ≤ i ≤ N :

123

Scheduling for a processor sharing system with linear… 89

ti =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

aki −θi x−ηi

θi
, θi < 0, ki �= r,

aki −θi x−ηi

θi−1 , θi < 0, ki = r,
aki+1−θi x−ηi

θi
, θi > 0,

∞, θi = 0.

Considering the time interval until the next breakpoints, [x, τ] we have that the total
cost as a function of the arrival time x̂ ∈ [x, τ] of user r is

c̃(x̂;π) :=
∑

j∈N

((
θπ j x̂ + ηπ j − d∗

j)
2 + γ (θπ j x̂ + ηπ j − aπ j

))
,

with derivative ∂ c̃(x̂;π) = ∑
j∈N θπ j

(
2(ηπ j − d∗

j) + γ
)

+ 2x̂
∑

j∈N θ2π j
, and with

the root x0 ≥ x , solving ∂ c̃(x0;π) = 0 (and often not lying within the interval [x, τ]):

x0 =
−∑

j∈N θπ j

(
2

(
ηπ j − d∗

j

)
+ γ

)

2
∑

j∈N θ2π j

.

Note that it is crucial to keep track of π at every step in order to associate the correct
ideal departure time to every user. In iterating over intervals we search for the minimal
c̃(x̂;π) (denotedm∗) as follows: if ∂ c̃(x̂;π) > 0 for all x̂ ∈ [x, τ], thenwe continue to
the next interval. Otherwise, if x0− x ≤ τ andm∗ > c̃(x0;π), then setm∗ = c̃(x0;π)

and
(
a∗)

r = x0, and if x0 − x > τ and m∗ > c̃(x + τ ;π), then set m∗ = c̃(x + τ ;π)

and
(
a∗)

r = x + τ .
In this way, x updates over intervals, of the form [x, τ]. Prior to moving to the

next interval we need to update the permutation variables π , k, and h. Denote the
minimizing set of (5.3) by T := argmin{t0, t1, . . . , tN } and sequentially for every i ∈
T :

• If i = 0, then we update π by changing the order between user r and the next user
j : π j = πr + 1, i.e. set πr = πr + 1 and π j = π j − 1. In this case, there is no
change in k or h (type 1a breakpoints).

• If i ∈ {1, . . . , N }, then the order π does not change, but we update k and h: If
θi < 0, then update hki = hki + 1, followed by ki = ki − 1. If θi > 0, then update
ki = ki + 1, followed by hki = hki − 1 (all other types of breakpoints).

• If i = N + 1, then the iteration is complete and no changes are required.

Remark For any convex and differentiable cost functions, the first order condition
yielding x0 can be solved. For some elaborate functions this may also require a numer-
ical procedure. If the late and early cost functions are not strictly convex (for example
affine), then computing x0 can be skipped. If the cost function is piecewise affine, then
only the sign of ∂ c̃ needs to be computed, and if it is negative check if the next point
x + τ is a new minimum point or not.

123

90 L. Ravner, Y. Nazarathy

Algorithm 4: Global search over a single coordinate
Input: ã ∈ R̃, r ∈ N , π
Output: a∗ and m∗
init x = ãr = a
init a = O(ã)
run Alg.1a(a) → (d, k, h)

init a∗ = ã
init m∗ = c̃(x; π)

set πr = 1
for i < r do

set πi = πi + 1
end for
while x ≤ a do

set a = O(ã)
compute: θ , η, τ , T , and ∂ c̃(x; π)

if ∂ c̃(x; π) < 0 then
compute x0 and c̃(x0;π)

if x0 < x + τ then
if c̃(x0; π) < m∗ then

set a∗
r = x0

set m∗ = c̃(x0; π)

end if
else if c̃(x + τ ; π) < m∗ then

set a∗
r = x + τ

set m∗ = c̃(x + τ ; π)

end if
end if
set x = x + τ

for i ∈ T do
if i = 0 then

set π j = π j − 1 where j satisfies π j = πr + 1
set πr = πr + 1

end if
if i ∈ {1, . . . , N } then

if θi < 0 then
set hki = hki + 1 and ki = ki − 1

else if θi > 0 then
set ki = ki + 1 and hki = hki − 1

end if
end if

end for
end while
return (a∗, m∗)

5.2 Computational complexity

In the following series of lemmata we analyse the complexity of Algorithm 4. In
particular,we proveProposition 5.1, establishing bounds for the number of breakpoints
of each type. Throughout the analysis we continue denoting the coordinate being
optimised by r and the respective value by x = ãr . Keep in mind that πi , θi , ki , and
hi are functions of x and the initial unordered vector ã for every i ∈ N . We treat a as
the ordered vector (5.1) as before.

123

Scheduling for a processor sharing system with linear… 91

Lemma 5.2 For any i ∈ N such that i �= r , the coefficient θi ≤ 0 and as a conse-
quence di (x) is monotone non-increasing for every x > ai .

Lemma 5.3 For any permutationπ at the start of the global search onr, the coefficient
θi of any i ∈ π changes sign from strictly positive to strictly negative or vice versa at
most i − 1 times during the search.

We now prove Proposition 5.1:

Proof For any 2 ≤ i ≤ N in the original permutation π , the type 2a and 2b
breakpoints occur at most N − i times for every change of sign. This is because their
departure time can only cross arrival times of later arrivals. According to Lemma 5.3,
the number of sign changes for any 2 ≤ i ≤ N is at most i −1. Thus, the total number
of breakpoints of type (2a or 2b) is at most

N∑

i=2

(N − i)(i − 1) = N (2 − 3N + N 2)

6
.

Thus, adding up all types of breakpoints, we get that the search domain [a, a] is broken
up to at most

(1
3N

3 − N 2 + 8
3N − 2

)
intervals. �

Furthermore, we have the following bound for the complexity of Algorithm 4.

Corollary 5.4 The computation complexity of Algorithm 4 is at most O(N 5).

Proof In every interval step of a global search on a single coordinate there is a need to
compute the coefficient vectors η and θ . This is equivalent to calculating the departure
times recursively usingAlgorithm1a. In Proposition 3.2 itwas shown that the recursion
requires at most 2N steps. On top of this, in every one of these steps the actual
computation requires summation of up to N variables. Now since the number of
breakpoints intervals is bounded by O(N 3) we conclude the result. �

5.3 Coordinate pivot iteration optimization

In this subsection we illustrate how Algorithm 4 can be applied to carry out standard
coordinate pivot iteration (CPI), see Bertsekas (1999, p. 272). In every iteration of the
CPI algorithm, the total cost function is minimized with respect to the arrival time
of one user, when all other arrival times are fixed. This is then repeated for all users;
we call the iteration over all N users a CPI cycle. The CPI algorithm stops when
the total improvement in a cycle is smaller than some specified tolerance parameter,
ε > 0. Note that in non-smooth CPI (such as our case), CPI often stops when the
total improvement is in-fact exactly 0. That is, ε is often not a significant parameter.
A further comment is that our CPI algorithm utilizes Algorithm 4 searching over the
broader space, R̃.We can thus improve the objective (see Lemma 2.3) by incorporating
the ordering operator, O, at the end of each CPI cycle.

We add the following notations for the optimization procedure: Let n = 0, 1, . . .
be the cycle number, c(n) the total cost at end of cycle n, m∗ the global minimal total
cost, and a∗ the global optimal arrival vector.

123

92 L. Ravner, Y. Nazarathy

Algorithm 5: Coordinate pivot iteration (global search)

Input: a(0) and ε

Output: a∗ and m∗
init n = 0
init = ε + 1
init a∗ = a(0)

init c(0) = c(a∗)

while > ε do
set n = n + 1
set ã = a∗
for r ∈ N do

run Alg. 4(r, ã) → ã,
end for
set a∗ = O

(
ã
)

set c(n) = c(a∗)

set = c(n−1) − c(n)

end while
set m∗ = c(n)

return (a∗, m∗)

Hinging upon the results of the previous section, we have:

Corollary 5.5 The computation complexity of a single CPI cycle, i.e. conducting a
line search on all coordinates, is at most O(N 6).

Proof In Proposition 5.4 we established that for a single coordinate the complexity is
at most O(N 5). It is therefore immediate that the complexity of running the algorithm
for every coordinate is at most O(N 6). �

Note that while we have a polynomial time CPI algorithm, there is no guarantee
that it converges to a local minimum since the objective function is not smooth. In fact,
numerical experimentation suggests that this is typically the case when the number of
users is not very small, i.e., N ≥ 4. Nevertheless, experimentation has shown that CPI
algorithm generally outputs an arrival vector that lies in the vicinity of the optimum.
This motivates combining it with the neighbour search, Algorithm 3 as discussed in
the next section.

6 A combined heuristic and numerical results

We now utilise the problem structure and aforementioned algorithms to produce a
combined heuristic. We use A as in (3.5) for initial points. For each of these M
initial points we run a CPI (global) search followed by neighbour (local) search. The
core principal is to use the CPI method in order to find a “good” initial polytope, or
equivalently an arrival-departure permutation, and then to seek a local minimum using
the neighbour search.

123

Scheduling for a processor sharing system with linear… 93

Algorithm 6: Combined global and local search heuristic
Input: Model parameters only (N , α, β, d∗ and γ)
Output: a∗ (local optimum)
init m∗ = ∞
for a ∈ A do

run Alg.5(a, . . .) → (â, m̂)

set k̂ = k(â)
run Alg.3(k̃, . . .) → (â, m̂)

if m̂ < m∗ then
set a∗ = â and m∗ = m̂

end if
end for
return (a∗, m∗)

We tested the combined heuristic Algorithm 6 on a variety of problem instances
and it appears to perform very well both in terms of running time and in finding what
we believe is a global optimum. Here we illustrate these results for one such problem
instance. We take β = 1 and α = 0.8/N (in this case the maximal slowdown is of the
order of 80% independently of N).We setd∗ as the N quantiles of a normal distribution
with mean 0 and standard deviation 1/2. That is, there is an ideal departure profile
centred around 0. It is expected that when using optimal schedules, more congestion
will occur as N increases and/or γ decreases.

Figure 4 illustrates the dynamics of the obtained schedules as generated by the
heuristic (using M = 3 and ε = 0.001). In these plots arrival times of individual
users are plotted on the top axis, marked by blue dots, shifted to the right by the
free flow time (1/β = 1). Departure times are plotted on the bottom axis. Users that
do not experience any delay are then represented by lines that are exactly vertical.
Further, the more slanted the line, the more slowdown that the user experiences. The
ideal departure times are marked by green stars. Hence ideally the stars are to align
with the red dots. This occurs exactly when γ = 0, and approximately occurs for
small γ , for instance γ = 0.1 as in (a) and (d). Then as γ is increased, the optimal
schedule is such that there is hardly any delay (almost perfectly vertical lines), but
in this case, users experience major deviations between departure times and the ideal
values.

For N = 15, as presented in (a)–(c), we were indeed able to verify optimality using
the exhaustive search Algorithm 2. For N = 50, as presented in (d)–(f) we are not
able to use the exhaustive search algorithm in any reasonable time. Nevertheless, in
this case, in addition to seeing qualitatively sensible results, experimentation showed
that increasing M does not modify the results. Hence we believe that the obtained
schedules are also optimal.

For N ≤ 15, we were not able to find a case where the heuristic did not find the
optimal schedule. This was tested on a wide range of parameter values by varying α

and γ and randomly generating multiple due date vectors. Further for large N (up to
500) we see insensitivity with respect to M (the number of initial points) as well as
to other randomized initial points. This result was also robust to changes in all of the
parameter values (α, β, γ , and d∗). This leads us to believe that our heuristic performs
very well.

123

94 L. Ravner, Y. Nazarathy

Ta
bl
e
1

R
un

ni
ng

tim
e
in

se
co
nd

s
an
d
co
m
pu

ta
tio

na
ls
te
ps

of
th
e
co
m
bi
ne
d
he
ur
is
tic

(A
lg
or
ith

m
6
w
ith

M
=

1)
an
d
th
e
ex
ha
us
tiv

e
se
ar
ch

(A
lg
or
ith

m
2)

N
3

5
10

11
12

14
15

20
30

50

C
om

bi
ne
d
he
ur
is
ti
c

C
PI

cy
cl
es

3
2

4
5

4
3

3
3

3
4

To
ta
lb

re
ak
po

in
ts

24
65

30
6

38
2

44
1

64
2

72
7

13
83

32
60

86
36

N
S
Q
Ps

so
lv
ed

2
2

9
6

8
14

10
29

34
29

R
un

ni
ng

tim
e
(s
)

0.
05

0.
15

1.
17

1.
67

1.
99

3.
09

3.
28

6.
38

18
.3
1

85
.3
3

G
lo
ba
lo

pt
.

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

N
A

N
A

N
A

E
xh
au
st
iv
e
se
ar
ch

|K
|Q

Ps
so
lv
ed

5
42

16
,7
96

58
,7
86

20
8,
01

2
2.
6

×
10

6
9.
7

×
10

6
6.
6

×
10

9
3.
8

×
10

15
2

×
10

27

R
un

ni
ng

tim
e
(s
)

0.
00

0.
05

25
.2
5

16
2.
41

50
9

82
06

39
,4
54

N
A

N
A

N
A

123

Scheduling for a processor sharing system with linear… 95

di = •
d∗
i =

ai = ••••••••• • • • • • • •

• • ••••••• • • • • • •

(a)

di = •
d∗
i =

ai = ••••• • • • • • • • • • • •

• • • • • • • • • • • • • • •

(b)

di = •
d∗
i =

ai = •• • • • • • • • • • • • • • •

• • • • • • • • • • • • • • •

(c)

di = •
d∗
i =

ai = ••••••••••••••••••••••••••••••••••••••• • • • ••• •••• • •

• •••

(d)

di = •
d∗
i =

ai = •• •

• •••

(e)

di = •
d∗
i =

ai = •

-3 -2 -1 0 1 2 3

-3 -2 -1 0 1 2 3

-3 -2 -1 0 1 2 3

-3 -2 -1 0 1 2 3

-3 -2 -1 0 1 2 3

-3 -2 -1 0 1 2 3

•• • • • • • • •• • •• • ••• • •• ••• •• ••• • •• ••• •• •• • •• •• •• • • • • •

• • • • • • • • •• • •• • ••• • •• ••• •• ••• • •• ••• •• •• • •• •• •• • • • • •

(f)

Fig. 4 Optimal arrival-departure diagram for α = 0.8/N , β = 1, and d∗ the N quantiles of a normal
distribution with mean 0 and standard deviation 1/2. a N = 15, γ = 0.1, b N = 15, γ = 1, c N =
15, γ = 20, d N = 50, γ = 0.1, e N = 50, γ = 1, f N = 50, γ = 20. (Color figure online)

Results, comparing running times are reported in Table 1 where we consider the
algorithmwith a single initial pointa0 (M = 1), and compare it to the exhaustive search
given byAlgorithm 2. For this table, we use the same problem data as described above,

123

96 L. Ravner, Y. Nazarathy

but scale the standard deviation by N to be 0.04N . For N ≤ 15 the combined heuristic
converged to the global optimum as verified by the exhaustive search with a negligible
number of computations. For example, for N = 15 the heuristic method made ∼737
core computations, i.e. solving a QP for a single CPI interval or NS polytope, in 3.28 s,
while the exhaustive search had to solve ∼107 quadratic programs and required about
11h.2 Clearly, for larger N it is not feasible to run the exhaustive search while the
combined heuristic is still very quick, as seen for up to N = 50 in Table 1.

To further investigate our combined heuristic, in Fig. 5 we illustrate the number
CPI cycles and breakpoints, along with the respective number of quadratic programs
solved by the neighbour search, until convergence of Algorithm 6. The problem data
was scaled as in the previous example. For every N the initial points given byA with
M = 5 distinct initial points. The figure displays the minimum and maximum values
out of the 5 initial points. Note that for every N the algorithm converged to the same
local minimum for all initial points in A.

We can see that the number of required CPI cycles was small and stabilized on
2 regardless of the number of users. However, we should take into account that the
number of coordinate iterations in every cycle is N , and that the complexity of each
iteration also grows with N . Specifically, Proposition 5.4 shows that the number of
breakpoints for every coordinate in the CPI is at most N 3, but in the example we see
the growth is in effect linear (∼3N). Furthermore, the number of required quadratic
programs solved in the neighbour search also grows linearly (∼ 1

3N). This hints that
the CPI does indeed find a point that is very “close” to a local minimum. The widening
gap between the minimum and maximum number of NS iterations suggests that some
of the initial points are better than others, and thus it is worthwhile trying several of
them. The last point is important when solving for even larger values of N as the
algorithm becomes more sensitive to “bad” initial points and may require setting a
maximum number of iterations parameter for every initial point. Roughly, when γ and
α are both small, starting closer to a0 is better and when they are both large, starting
closer to a∞ is better. However, for most combinations of parameters there seems to
be no a-priori indication of what is a “good” starting point. Thus it is still beneficial
to do the full search on A. Again we stress that the behaviour displayed in Fig. 5 was
robust with respect to changes in the model parameters.

7 Conclusion and outlook

We presented a model for a discrete-user deterministic processor sharing system,
and addressed the problem of scheduling arrivals to such a system with the goal of
minimizing congestion and tardiness costs. A full characterisation of the congestion
dynamics and an efficient method for computing them was provided. It was further
shown that the optimal arrival schedule can be computed in a finite, but exponentially
large, number of steps. Several heuristics were therefore developed with the goal of
an efficient computation of the optimal schedule. A combined global and local search

2 These computation times are using an AMD computer with 4 Phenom II 955 3.2GHz processors, with
our algorithms implemented in version 3.1.2 of the R software.

123

Scheduling for a processor sharing system with linear… 97

N
0 50 100 150 200 250 300

2

4

6

8

•
•

•
•

• • • • • • • • •
N

0 50 100 150 200 250 300
100
200
300
400
500
600
700
800
900

••
• • • • • • • • • • •

N
0 50 100 150 200 250 300

20
40
60
80
100
120

•

• •

•

• • •
• •

•
•

• •

Maximum
Minimum

(a) (b)

(c)

Fig. 5 Number of iterations in each component of Algorithm 6 as a function of N . a CPI cycles, b CPI
breakpoints, c NS iterations. (Color figure online)

heuristic was presented and numerically analysed. This method was shown to be
efficient in numerical examples for a large population of users.

The essential parts of our analysis and results applies for a much more general cost
formulation, as we shall next detail. Given that user i enters the system at time ai and
leaves at time di > ai , a plausible cost incurred by the user is the following:

ci (ai , di) = g(1)
i

(
(di − d∗

i)+
)

+ g(2)
i

(
(d∗

i − di)
+)

+ g(3)
i

(
(ai − a∗

i)
+)

+ g(4)
i

(
(a∗

i − ai)
+)

+ g(5)
i

(
di − ai

)
, (7.1)

where (x)+ := max(x, 0), and g(j)
i (·), j ∈ {1, . . . 5}, i ∈ N are some convex func-

tions.
The first and third terms of (7.1) capture the penalty for being late to the ideal

departure and arrival times d∗
i and a∗

i , respectively. The second and fourth terms are
the user’s cost for arriving and departing early. The fifth term is the user’s cost for
travel/usage of the system. Our algorithm and results in this paper hold with slight
technical modifications for arbitrary convex g(j)

i (·). For purpose of exposition, we

focused on, g(1)
i (x) = g(2)

i (x) = x2, g(3)
i (x) = g(4)

i (x) = 0 and g(5)
i (x) = γ x .

If adapted to the more general formulation, The exhaustive and neighbour search
algorithms of Sect. 4 will generally require solving a constrained convex program,
instead of convex quadratic, for every region. If g(1)

i (x) �= g(2)
i (x) and/or g(3)

i (x) �=

123

98 L. Ravner, Y. Nazarathy

g(4)
i (x), namely there are different penalties for arriving/departing later and early, then

the CPI algorithm of Sect. 5.3 will require some refinement of the definition of the
piecewise segments. The complexity will not change as for every single coordinate
there will be an addition of at most three segments, corresponding for these new points
of discontinuity. Moreover, the root of the first order condition in every continuous
segment will be given by the general form of the functions, instead of the quadratic
root.

An interesting generalization is considering a system with users who have hetero-
geneous service demand. If this is the case then the order of departures is no longer
identical to the order of arrivals. Thismeans that the characterisation of Proposition 3.1
is no longer valid.

A natural complementarymodel to thiswork is considering a decentralized decision
framework inwhich the users choose their own arrival time. Namely, a non cooperative
game with the individual arrival times are the actions of the players. This game is
formulated and analysed in Ravner et al. (2016).

Finally, there is the challenge of characterising the computational complexity of our
scheduling problem. We believe that finding the optimal k∗ ∈ K is an NP-complete
problem but we still do not have a proof for this. Our belief is motivated (but not
supported) by the fact that there are a number of related optimization problems which
are known to be NP hard. Our problem is equivalent to a special case of one of them,
namely non-linear integer programming.

As we have shown, our goal is to minimize a non-convex piecewise quadratic
objective function, subject to piecewise linear constraints. It is known that non-convex
quadratic programs and non-convex piecewise linear optimization are both NP hard
(see Keha et al. 2006; Murty and Kabadi 1987). In Vielma et al. (2010) it is shown
that piecewise linear optimization problems can be modelled as linear mixed inte-
ger programs, where the definition of a piecewise linear program relies on different
coefficients for different polytopes, in a similar manner to our piecewise quadratic
formulation in Sect. 4. It may be possible to apply similar methods with modifications
for the piecewise convex instead of linear objective. However, there is a more natural
construction for our case. Let ã(k) be the solution to QP(k), i.e., the solution to the
local convex QP of a polytope k ∈ K. But this can also be viewed as a function of
the integer vector k which we can compute in polynomial time. Hence, solving our
problem in polynomial time is equivalent to solving the non-linear integer program:

min
k∈K

ã(k)′Qkã(k) + bk ã(k) + b̃k.

Recall thatK = {
k ∈ N N : kN = N , ki ≤ k j ∀i ≤ j

}
defines a set of linear con-

straints on the integer decision variables. Clearly the objective is not linear with respect
to k, as ã(k) itself is already not necessarily linear. Such problems are known to be NP
hard. See for example, De Loera et al. (2006) and Pia et al. (2016). Although we could
not find a straightforward reduction of the problem to a known NP hard problem, we
have shown that our problem can be formulated as an (rather cumbersome) instance
of a polynomial integer program, and have no reason to believe that the specific model
comes with significant simplification of the general form.

123

Scheduling for a processor sharing system with linear… 99

As a closing notewemention that it is generally of interest to compare our heuristics
to potential integer programming methods. One may either discretize time and solve
integer programs, or alternatively seek related integer programming formulations. It
remains an open problem to compare our heuristics to such potential methods both in
terms of accuracy and computation time.

Acknowledgements We thank Hai Vu andMoshe Haviv for useful discussions and advice.We are grateful
to two anonymous reviewers for their helpful comments.We thank The Australia-Israel Scientific Exchange
Foundation (AISEF) for supporting Liron Ravner’s visit to The University of Queensland. Yoni Nazarathy’s
research is supported by ARC Grants DE130100291 and DP130100156.

Appendix: Proofs

Proof of Lemma 2.1 Consider two arrivals ai ≤ a j . During the time interval [ai , a j],
user i has received some service,

∫ a j

ai
v
(
q(t)

)
dt,

while user j has not. Then during the time interval [a j , di ∧ d j] both users receive the
same service,

∫ di∧d j
a j

v
(
q(t)

)
dt . Then if di > d j we have that

∫ di∧d j
a j

v
(
q(t)

)
dt = 1,

which in turn would imply that,

∫ di

ai
v
(
q(t)

)
dt =

∫ a j

ai
v
(
q(t)

)
dt +

∫ di∧d j

a j

v
(
q(t)

)
dt +

∫ di

di∧d j

v
(
q(t)

)
dt > 1,

a contradiction. Hence di ≤ d j . �
Proof of Lemma 2.2 Without loss of generality assume a1 ≤ · · · ≤ aN and hence by
the previous lemma, d is ordered. Assume now that there exists a d̃ �= d and define
i = min{i : d̃i �= di }. Without loss of generality, assume that di < d̃i . Using (2.1) it
holds that,

∫ di

ai
v
(
q(t)

)
dt = 1 =

∫ di

ai
v
(
q̃(t)

)
dt +

∫ d̃i

di
v
(
q̃(t)

)
dt.

Now since for all t ≤ di it holds that q(t) = q̃(t), then,

∫ d̃i

di
v
(
q̃(t)

)
dt = 0.

A contradiction.
Now there exists a full symmetry between a and d, hence going in the oppo-

site direction (for every d there exists a unique a) follows a similar argument to the
above. �

123

100 L. Ravner, Y. Nazarathy

Proof of Lemma 2.3 We first argue that an optimal arrival must be ordered (a1 ≤
· · · ≤ aN) by means of an interchange argument. Assume this is not the case, i.e. a is
an optimal arrival schedule such that ai > a j for some i < j (such that d∗

i < d∗
j). If

we switch between the arrival times of users i and j : ãi = a j and ã j = ai , while not
changing any other arrival time, then because all users have the same service demand
the departure times of all other users do not change. Consequently, the departure times
are also switched: d̃i = d j and d̃ j = di . Therefore, the only change in the total cost
function is the change in the cost incurred by i and j themselves. The change in the
cost incurred by user i is given by (2.3):

ci (ãi , d̃i) − ci (ai , di) = (
d̃i − d∗

i

)2 + γ
(
d̃i − ãi

) − (di − d∗
i)2 − γ (di − ai)

= (d j − d∗
i)2 + γ (d j − a j) − (di − d∗

i)2 − γ (di − ai),
(7.2)

and for user j :

c j (ã j , d̃ j) − c j (a j , d j) = (
d̃ j − d∗

j

)2 + γ
(
d̃ j − ã j

) − (d j − d∗
j)

2 − γ (d j − a j)

= (di − d∗
j)

2 + γ (di − ai) − (d j − d∗
j)

2 − γ (d j − a j).

(7.3)
Summing (7.2) and (7.3) we obtain that the total change in cost is

2
(
d∗
i − d∗

j

)(
di − d j

)
.

From Lemma 2.1 we know that if ai > a j then di > d j , and that by definition
d∗
j > d∗

i , hence the change in the total cost function is negative which contradicts the
assumption that the schedule is optimal. In conclusion, any unordered schedule can
be improved by a simple interchange of a pair of unordered coordinates, and therefore
an optimal schedule must be ordered.

The slowest service rate occurs when all N users are present in the system, and
therefore the longest possible sojourn time is 1

β−α(N−1) . The total time required to clear

all users from the system is then coarsely upper bounded by N
β−α(N−1) . A schedule

such that a1 < a is clearly not optimal, since a trivial improvement can always be
achieved by setting a1 = a and shifting to the right the arrival times of any user that
overlap due to the change in a1. We are guaranteed this is possible by the fact that
all users can arrive and leave the system in the interval [a, d∗

1], without any overlaps.
Clearly, the deviation from ideal times can only decrease when making this change,
while the sojourn times remain unchanged. The coarse upper bound a holds for the
same reasons. �
Proof of Proposition 3.2 The proof is for Algorithm 1a. The argument for Algo-
rithm 1b follows the same arguments. For every user i , iterating on all possible values
of ki ∈ N ensures that every possible departure interval [ak, ak+1) is checked. In a
sense, this is an exhaustive search on all solutions that satisfy the dynamics given by
Proposition 3.1. Therefore, the algorithm will always converge to the unique solution.

Given a vector of arrivals a ∈ RN , for every i ∈ N , the departure time di occurs
in one of the above defined partitions [ak, ak+1), k ∈ N . The total number of steps

123

Scheduling for a processor sharing system with linear… 101

will include the number of “correct” computations, that is for every i and ki = k the
resulting di will indeed be in the interval [ak, ak+1). In total there will be exactly N
correct computations. However, there will also be steps which will turn out to be false:
for a given k the departure time di will not be in the interval [ak, ak+1). If k j = k
for some j , then for every i > j : ki ≥ k. Therefore, if for some i and k ≥ i the
computation will yield di /∈ [ak, ak+1), then this interval will not be attempted by
any later arrival j > i in the following steps. As a result, every interval will yield
at most one false computation. Since there are exactly N intervals this completes the
proof. �

Proof of Lemma 5.2 Since x > ai it holds that i < πr , and thus using (5.2) if ki < πr

then θi = 0, and if ki ≥ πr then

θi = −
α

(
1 − ∑i−1

j=hi
θ j

)

β − α(ki − i)
.

Since N < β/α + 1, the denominator is always positive. We next show that the
numerator is non-negative by induction on hπr ≤ i < πr . Recall that hi = min{h :
kh ≥ i}, and so ki ≥ πr is equivalent to i ≥ hπr . Thus for j < hπr : θ j = 0 and
the denominator in the case i = hπr equals α(1 − 0) > 0. The induction step is then
immediate because the sum

∑i−1
j=hi

θ j is non-negative for all hπr < i < πr . �

Proof of Lemma 5.3 Without loss of generality assume that a+ 1
β

< ai < a− 1
β
, ∀i ∈

N . If this were not the case we could always extend the search range by 1
β
in both

directions. Hence, θi = 0 at x = a and at x = a for any i ∈ π . Furthermore, from
Lemma 5.2 we have that θi ≤ 0 for x > ai . Clearly, there is some x such that θi > 0
for the first time. So far we have established that θi starts at zero, is positive at some
point and negative at some back to zero, for every i ∈ π . We are left with finding
the number of possible sign changes prior to x = ai . For any x < ai it follows that
i > πr , and from (5.2) we have that:

θi = α
∑i−1

j=hi
θ j

β − α(ki − i)

Note that θi can only be negative when there is at least one j < i such that θ j < 0.
We use this to complete the proof by induction on the initial order π . We start the
induction at i = 2 because πr = 1 in the initial permutation and θπr ≥ 0 for all values
of x . For i = 2 and x < a2: θ2 = αθ11{h2=1}

β−α(k2−2) ≥ 0. Together with Lemma 5.2 we
have established that θ2 changes sign exactly once. Now let us assume that the claim
is correct for all j ≤ i − 1. From (5.2) we see that for x < ai , θ j can only change
sign when one of the previous j ∈ {hi , . . . , i − 1} changes sign. If θi−1 changed sign
exactly i − 2 times then θi can potentially change at all these times and additionally
when x = ai , and therefore there are indeed at most i − 1 changes of sign. �

123

102 L. Ravner, Y. Nazarathy

References

Arnott R, de Palma A, Lindsey R (1993) A structural model of peak-period congestion: a traffic bottleneck
with elastic demand. Am Econ Rev 83(1):161–79

Avram F, Bertsimas D, Ricard M (1995) Fluid models of sequencing problems in open queueing networks;
an optimal control approach. Inst Math Appl 71:199

Baker K, Scudder GD (1990) Sequencing with earliness and tardiness penalties: a review. Oper Res
38(1):22–36

Bertsekas DP (1999) Nonlinear programming, 2nd edn. Athena Scientific, Belmont
Cohen J (1979) Themultiple phase service network with generalized processor sharing. Acta Inf 12(3):245–

284
Daganzo CF (2007) Urban gridlock: macroscopic modeling and mitigation approaches. Transp Res Part B

Methodol 41(1):49–62
De Loera JA, Hemmecke R, Kppe M, Weismantel R (2006) Integer polynomial optimization in fixed

dimension. Math Oper Res 31(1):147–153
Glazer A, Hassin R (1983) ?/M/1: on the equilibrium distribution of customer arrivals. Eur J Oper Res

13(2):146–150
Harchol-BalterM (2013) Performancemodeling and design of computer systems: queueing theory in action.

Cambridge University Press, Cambridge
Hassin R (2016) Rational queueing. CRC Press, Boca Raton
Henderson J (1974) Road congestion. J Urban Econ 1(3):346–365
Keha AB, de Farias IR, Nemhauser GL (2006) A branch-and-cut algorithm without binary variables for

nonconvex piecewise linear optimization. Oper Res 54(5):847–858
Koshy T (2009) Catalan numbers with applications. Oxford University Press, New York
Mahmassani H, Herman R (1984) Dynamic user equilibrium departure time and route choice on idealized

traffic arterials. Transp Sci 18(4):362–384
Murty KG, Kabadi SN (1987) Some NP-complete problems in quadratic and nonlinear programming. Math

Program 39(2):117–129
Nazarathy Y, Weiss G (2009) Near optimal control of queueing networks over a finite time horizon. Ann

Oper Res 170(1):233–249
Pia AD, Dey SS, Molinaro M (2016) Mixed-integer quadratic programming is in NP. Math Program

162(1):225–240
Pinedo ML (2008) Scheduling: theory, algorithms, and systems. Springer, Berlin
Potts CN, Kovalyov MY (2000) Scheduling with batching: a review. Eur J Oper Res 120(2):228–249
Ravner L, Haviv M, Vu HL (2016) A strategic timing of arrivals to a linear slowdown processor sharing

system. Eur J Oper Res 255(2):496–504
Sen T, Gupta SK (1984) A state-of-art survey of static scheduling research involving due dates. Omega

12(1):63–76
Tseng P (2001) Convergence of a block coordinate descent method for nondifferentiable minimization. J

Optim Theory Appl 109(3):475–494
Vielma JP, Ahmed S, Nemhauser GL (2010) Mixed-integer models for nonseparable piecewise-linear opti-

mization: unifying framework and extensions. Oper Res 58(2):303–315
Weiss G (2008) A simplex based algorithm to solve separated continuous linear programs. Math Program

115:151–198

123

	Scheduling for a processor sharing system with linear slowdown
	Abstract
	1 Introduction
	2 Model
	3 Arrival departure dynamics
	3.1 Optimizing for extreme cases of γ
	3.2 A linear approximation

	4 Piecewise quadratic formulation
	4.1 Exhaustive search
	4.2 Neighbour search

	5 Global search over single coordinates
	5.1 Algorithm details
	5.2 Computational complexity
	5.3 Coordinate pivot iteration optimization

	6 A combined heuristic and numerical results
	7 Conclusion and outlook
	Acknowledgements
	Appendix: Proofs
	References

