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Abstract We define the concept of reproducible map and show that, whenever the
constraint map defining the quasivariational inequality (QVI) is reproducible then one
can characterize the whole solution set of the QVI as a union of solution sets of some
variational inequalities (VI). By exploiting this property, we give sufficient conditions
to compute any solution of a generalizedNash equilibriumproblem (GNEP) by solving
a suitable VI. Finally, we define the class of pseudo-Nash equilibrium problems, which
are (not necessarily convex) GNEPs whose solutions can be computed by solving
suitable Nash equilibrium problems.
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4 D. Aussel, S. Sagratella

1 Introduction and problem settlement

A Nash equilibrium problem (NEP) is a non cooperative game in which each player’s
objective function depends on the other players’ strategies.More precisely, assume that
there are p players and each player ν controls a vector of real variables xν ∈ R

nν . We
say that xν is the strategy of player ν. Let us denote by x the whole vector of strategies

x : = (x1, . . . , x p) and n := n1 + n2 + · · · + n p.

Denote by x−ν the vector formed by all players decision variables except those of
player ν. So we can also write x = (xν, x−ν) which is a shortcut [classically used
in many papers on the subject, see e.g. Facchinei et al. (2007), Pang and Fukushima
(2005)] to denote the vector x = (x1, . . . , xν−1, xν, xν+1, . . . , x p). The set of possible
strategies for player ν is a set Kν of Rnν and his aim is to minimize his cost function
θν :Rnν × R

n−nν → R which, as said above, depends on the decision variables of
the other players and describes the loss player ν suffers when the rival players have
chosen the strategy x−ν . Thus aim of any player ν, given strategies x−ν , is to choose
a strategy xν that solves the following optimization problem

min
xν

θν(x
ν, x−ν), subject to xν ∈ Kν .

This Nash game, as well as the solution set of this game, will be later on denoted by
NEP(θ, K ) where K := ∏p

ν=1 Kν .
Now if additionally, the strategy set Kν of some of the players also depends on the

strategies of the other players, then the game is called a generalized Nash equilibrium
problem (GNEP). In this case the strategy set of player ν is given by a set-valued
map Kν :Rn−nν ⇒ R

nν which describes, given the vector x−ν of strategies of the
other players, the set Kν(x−ν) of possible strategies of player ν. In such a GNEP each
player aims to solve the following parametrized minimization problem

min
xν

θν(x
ν, x−ν), subject to xν ∈ Kν(x

−ν).

This generalized Nash game, as well as the solution set of this game, will be later
on denoted by GNEP(θ, K ) where K is the set-valued map defined by K (x) :=∏p

ν=1 Kν(x−ν).
GNEPs are widely used modelling tools which have attracted much attention in

the last decades, see e.g. Facchinei and Kanzow (2007), Pang and Fukushima (2005).
Recently, numericalmethods havebeenproposed for their solutionDreves et al. (2011),
Dreves et al. (2012), Facchinei and Sagratella (2011).

It is well known that when the loss functions θν are convex and continuously
differentiable and the strategy sets Kν are closed and convex then theNash equilibrium
problem NEP(θ, K ) can be equivalently reformaluted as the variational inequality
VI(F, K ), see e.g. Facchinei and Pang (2003):

VI(F, K ) Find x̄ ∈ K such that 〈F(x̄), y − x̄〉 ≥ 0, ∀ y ∈ K ,

where F(x): = (∇xν θν(xν, x−ν)
)p
ν=1.
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Sufficient conditions to compute any solution of… 5

And, under similar assumptions, that is if for any ν, the above loss function θν is
differentiable and convex with regards to xν and map Kν is closed and convex valued,
then GNEP(θ, K ) can be equivalently reformulated as a quasivariational inequality
QV I (FK ) Find x̄ ∈ K (x̄) such that 〈F(x̄), y − x̄〉 ≥ 0, ∀y ∈ K (x̄), where of
course K stands, in this case, for the above defined set-valued strategy map K (x) :=∏p

ν=1 Kν(x−ν), see e.g. Facchinei et al. (2014), Pang and Fukushima (2005). This
has been extended in Aussel-Dutta Aussel and Dutta (2008), thanks to the concept of
normal operator, to the case where the cost functions θν are semistrictly quasiconvex
and possibly nonsmooth.

The main advantage of reformulating a NEP as a VI is to allow to use of the
machinery of theoretical and computational tools developed for variational inequali-
ties, including in particular many efficient algorithms. Nevertheless this advantage is
lost as soon as one consider quasivariational inequalities instead of variational inequal-
ities since this more general problem is known to be computationally harder to solve
(Facchinei et al. 2015, 2014; Latorre and Sagratella 2015, 2016).

An important subclass of these GNEPs are those for which the constraint set-valued
maps Kν are defined by the so-called “Rosen’s law”, see Rosen (1965): that is there
exists a nonempty subset X of Rn such that, for all ν, the set-valued map Kν is given
by

Kν(x
−ν) := {xν ∈ R

nν : (xν, x−ν) ∈ X}. (1)

If, moreover, the subset X is assumed to be closed and convex, then the corre-
sponding GNEP(θ, K ) is usually called a “jointly convex GNEP”. Then in this case
and again if, for any ν, the loss functions θν are differentiable and convex with
regards to xν , any solution of the variational inequality VI(F, X) is a solution of
GNEP(θ, K ). Such solutions are again called “variational solutions” of GNEP(θ, K )

and it is well known that, even in the jointly convex case, this set of variational solu-
tions is (generally strictly) included in the solution set of GNEP(θ, K ), see Facchinei
et al. (2007), Facchinei and Sagratella (2011). Indeed, as shown in Aussel and Dutta
(2014), there is no hope, in general, to obtain a full characterization of the solu-
tions of a GNEP as solutions of a VI. A counter-example is described in Aussel
and Dutta (2014) and this fact was already observed in Outrata et al. (1998). This
incomplete characterization occurs also with VIs when the GNEP has functions θν

that are (player) semistrictly quasiconvex, see Theorem 3.1 in Aussel and Dutta
(2008).

Our aim in this work is therefore to describe a subclass of generalized Nash equilib-
rium problems for which it is possible to obtain a full characterization of the solutions
of GNEP(θ, K ) as solutions of some variational inequalities. Such GNEP will be
called T -pseudo-variational, where, in practice, T stands for a set-valued map corre-
sponding to the generalized derivatives of the loss functions. Here and later on, FP(K )

stands for the set of fixed points of the set-valued map K :Rn ⇒ R
n , that is

FP(K ) := {
x ∈ R

n : x ∈ K (x)
}
.
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6 D. Aussel, S. Sagratella

Definition 1 Let T :Rn ⇒ R
n be any set-valued map. The generalized Nash equilib-

rium problem GNEP(θ, K ) is said to be T -pseudo-variational if and only if

GNEP(θ, K ) ≡ ∪z∈FP(K )V I (T, K (z)),

that is any solution of GNEP(θ, K ) is a solution of the variational inequality
VI(T, K (z)), for somefixed point z of themap K and any solution of suchVI(T, K (z))
is a solution of GNEP(θ, K ).

Note that the description of set-valued variational inequalities VI(T, K ) will be given
in the forthcoming Sect. 3.

The paper is organized as follows. First in Sect. 2, we define and study the concept
of reproducible set-valued maps. Based on this notion, we then investigate, in Sect. 3,
sufficient conditions to obtain a characterization of the solution set of a quasivariational
inequality in terms of the union of solution sets of some variational inequalities. In
Sect. 4, assuming that the strategymap K is reproducible and convex valued, we prove
some sufficient conditions for a GNEP(θ, K ) to be pseudo-variational. Both cases of
convex and quasiconvex loss functions θν are considered. Finally, in Sect. 5 we define
the concept of pseudo-NEP generalized Nash equilibrium problems and show that this
property can be reached even if the considered GNEP does not satisfy any convexity
assumptions.

2 Reproducible set-valued maps

All the developments of this paper are based on the concept of reproducible set-valued
maps. As shown in Sect. 2.1, this subclass includes different set-valued maps.

Definition 2 The set-valued map K :Rn ⇒ R
n is said to be reproducible on C ⊆ R

n

if, for any x ∈ C ∩ FP(K ) and any z ∈ K (x), it holds that K (x) ≡ K (z).

Let us first describe some immediate properties of reproducible set-valuedmaps. Some
general classes of reproducible set-valued maps will be then described in Sect. 2.1.

Proposition 1 The following statements hold.

(i) Let the map K :Rn ⇒ R
n be reproducible on C ⊆ R

n. Then, for any x ∈
C ∩ FP(K ), one has K (x) ⊆ FP(K ).

(ii) Let the maps K :Rn ⇒ R
n and K ′ : Rn ⇒ R

n be reproducible on C ⊆ R
n.

Then the map K ∩ K ′ : Rn ⇒ R
n defined by K ∩ K ′(x) := K (x) ∩ K ′(x) is

reproducible on C.
(iii) Let the maps K1 : Rn1 ⇒ R

n1 and K2 : Rn2 ⇒ R
n2 be reproducible respectively

on C1 ⊆ R
n1 and C2 ⊆ R

n2 . Then the map K :Rn1+n2 ⇒ R
n1+n2 defined by

K

(
x1

x2

)

:=
(
K1(x1)
K2(x2)

)

is reproducible on C1 × C2.
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Sufficient conditions to compute any solution of… 7

(iv) Let the map K :Rn ⇒ R
n be single-valued on C ⊆ R

n, then it is reproducible on
C.

Proof Cases (i), (i i) and (iv) follow from the definition of reproducible maps and
from the fact that FP(K ∩ K ′) = FP(K ) ∩ FP(K ′). Case (i i i) can be deduced easily.

��

2.1 Sufficient conditions of reproducibility of a set-valued map

Our aim in this subsection is to illustrate that the subclass of reproducible maps covers
different set-valued maps. Thus in the forthcoming propositions, we provide sufficient
conditions for a set-valued map to be reproducible on R

n .

Proposition 2 If the set-valued map K :Rn ⇒ R
n is defined by one of the following

expressions, then K is reproducible on R
n:

(i) suppose that

K (x) :=
{

y ∈ R
n : A(

γ (y)
) + B

(
γ (x)

) = c

}

, (2)

where γ : Rn → R
m and B : Rm → R

p are functions, A : Rm → R
p is an

injective function and c ∈ R
p;

(ii) let P be a partition of {1, . . . , n} and let

K (x) :=
{

y ∈ R
n : AI (yI ) +

∑

P�J �=I

AJ (xJ ) = b, ∀ I ∈ P
}

, (3)

where AI : R|I | → R
p is a function for all I ∈ P and b ∈ R

p.

Proof (i) Let x̂ ∈ K (x̂), that is

A
(
γ (x̂)

) = c − B
(
γ (x̂)

)
. (4)

Let x̄ ∈ R
n be any point such that x̄ ∈ K (x̂), that is

A
(
γ (x̄)

) = c − B
(
γ (x̂)

)
. (5)

By (4) and (5) we obtain A
(
γ (x̄)

) = A
(
γ (x̂)

)
, and A being an injective map, we

immediately have γ (x̄) = γ (x̂) and thus c − B
(
γ (x̄)

) = c − B
(
γ (x̂)

)
showing that

K (x̂) ≡ K (x̄).
(i i) Let x̂ ∈ K (x̂), that is

∑

J∈P
AJ (x̂ J ) = b. (6)
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8 D. Aussel, S. Sagratella

Let x̄ ∈ R
n be any point such that x̄ ∈ K (x̂), that is

AI (x̄ I ) = b −
∑

P�J �=I

AJ (x̂ J ) = AI (x̂ I ), ∀ I ∈ P, (7)

where the last equality is due to (6). By (7) we obtain

b −
∑

P�J �=I

AJ (x̂ J ) = b −
∑

P�J �=I

AJ (x̄ J ), ∀ I ∈ P,

therefore K (x̂) ≡ K (x̄). ��
The subclasses of reproducible set-valued maps defined by the expressions (2) and

(3) are somehow general. Let us thus give simple illustrative examples.

Example 1 The set-valued map K defined on R
n by

K (x) = {
y ∈ R

n : Ay + Bx + c = 0
}

is reproducible on R
n providing that matrix A is an element of GLn(R) while B ∈

Mn(R) and c ∈ R
n . Note nevertheless that the concept of reproducible map is not

restricted to linealy defined set-valued maps as can be seen on the following toy
examples:

– the set-valued map given by

K (x) =
⎧
⎨

⎩
y ∈ R

n : e(
∑n

i=1 yi)
2 − 5

(
n∑

i=1

xi

)4

= 10

⎫
⎬

⎭

satisfies definition (2);
– let P = {(1, 2), (3, 4), . . . , (n − 1, n)}, then the set-valued map

K (x) =
⎧
⎨

⎩
y ∈ R

n : ‖yI ‖22 +
∑

P�J �=I

‖xJ‖22 = 10, ∀ I ∈ P
⎫
⎬

⎭

is reproducible thanks to Proposition 2.

Let us now consider the case of set-valued maps defined by products.

Proposition 3 If the set-valued map K :Rn ⇒ R
n is defined by one of the following

equalities, then K is reproducible on R
n:

(i) suppose that

K (x) :=
{

y ∈ R
n : a(

γ (y)
)
b
(
γ (x)

) = c

}

, (8)
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Sufficient conditions to compute any solution of… 9

where γ : Rn → R
m and b : Rm → R are functions, a : Rm → R is an injective

function and 0 �= c ∈ R;
(ii) let P be a partition of {1, . . . , n} and let

K (x) :=
⎧
⎨

⎩
y ∈ R

n : aI (yI )
⎛

⎝
∏

P�J �=I

aJ (xJ )

⎞

⎠ = b, ∀ I ∈ P
⎫
⎬

⎭
, (9)

where aI : R|I | → R is a function for all I ∈ P and 0 �= b ∈ R.

Proof The proof of both cases can be easily deduced by adapting, to the case of product
based maps, the arguments used in the proof of Proposition 2. ��

The following set-valued maps correspond to simple examples of reproducible
maps defined by products and which satisfy assumptions of Proposition 3:

– K (x) =
⎧
⎨

⎩
y ∈ R

n : e(
∑n

i=1 yi)

(
n∑

i=1

xi

)2

= 10

⎫
⎬

⎭
;

– let P = {(1, 2), (3, 4), . . . , (n − 1, n)} and

K (x) =
⎧
⎨

⎩
y ∈ R

n : ‖yI ‖22
⎛

⎝
∏

P�J �=I

‖xJ‖22
⎞

⎠ = 10, ∀ I ∈ P
⎫
⎬

⎭
.

Finally, note that by combining items (i i) and (i i i) of Proposition 1with Propositions 2
and 3, we can obtain many different reproducible maps.

3 Reproducible set-valued maps and quasivariational inequalities

Quasivariational inequalities are known to be difficult problems for which few efficient
computational procedures exist in the literature. But for variational inequalities, a
full machinery of algorithms is available. Our aim in this section is to describe a
particular class of quasivariational inequalities for which the complete set of solutions
can be evaluated simply through the resolution of various variational inequalities. In the
forthcoming proposition we establish some strong interrelations between the solution
set of the considered quasivariational inequality and the solution set of associated
variational inequalities.

Let us first recall that, given two set-valued maps T :Rn ⇒ R
n and K :Rn ⇒ R

n

the quasivariational inequality defined by T and K consists of finding an element x̄
such that

x̄ ∈ K (x̄) and ∃ x̄∗ ∈ T (x̄) : 〈x̄∗, y − x̄〉 ≥ 0, ∀ y ∈ K (x̄).

This quasivariational inequality, as well as its solution set, will be denoted by
QVI(T, K ). When the map K is constant, with value K ⊂ R

n , then the above defini-
tion corresponds to a classical Stampacchia variational inequality that will be denoted,
again as well as its solution set, by VI(T, K ).
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10 D. Aussel, S. Sagratella

It is well known thatQVI(T, K ) = FP(S(T, K (·)))where FP(S(T, K (·))) denotes
the set of fixed points of the solution map x �→ S(T, K (x)) of the perturbed Stam-
pacchia variational inequality. The approach developed below is clearly different.

Proposition 4 Let T : Rn ⇒ R
n and K :Rn ⇒ R

n be two set-valued maps. Suppose
that K is reproducible on C ⊆ R

n.

(i) Let z ∈ C ∩ FP(K ). If x̄ is a solution of VI(T, K (z)), then x̄ is a solution of
QVI(T, K ).

(ii) If x̄ ∈ C is a solution of QVI(T, K ), then, for all z ∈ K (x̄), x̄ is a solution of
VI(T, K (z)).

Proof (i) Let x̄ ∈ K (z) and x̄∗ ∈ T (x̄) be such that 〈x̄∗, y− x̄〉 ≥ 0, for all y ∈ K (z).
Since K is reproducible on C and x̄ ∈ K (z), we obtain K (x̄) ≡ K (z). Therefore,
x̄ ∈ FP(K ) and 〈x̄∗, y − x̄〉 ≥ 0, for all y ∈ K (x̄).

(i i) It is a direct consequence of the definition of reproducible map since, for any
such x̄ , one has K (x̄) ≡ K (z), for any z ∈ K (x̄). ��

Note that assuming that K is reproducible provides only a sufficient, but not nec-
essary, condition in order to have these useful implications. However, if K is not
reproducible, it is easy to give examples for which both (i) and (i i) of Proposition 4
do not hold.

Example 2 Let us consider T (x) =
{
t ∈ R : x − 5

6 ≤ t ≤ x − 4
6

}
and K (x) = {y ∈

R : 0 ≤ y ≤ 1 − x}. Note that K is not reproducible on R and that FP(K ) ={
y ∈ R : 0 ≤ y ≤ 1

2

}
. Now we show that both (i) and (i i) of Proposition 4 do not

hold for QVI(T, K ).

(i) Let z = 0 ∈ FP(K ). It is easy to see that any x̄ ∈
{
y ∈ R : 4

6 ≤ y ≤ 5
6

}
is a

solution of VI(T, K (z)). However x̄ /∈ FP(K ) and then it cannot be a solution of
QVI(T, K ).

(ii) x̄ = 1
2 is the unique solution of QVI(T, K ). z = 0 ∈ K (x̄), but x̄ is not a solution

of VI(T, K (z)).

Definition 3 Let T :Rn ⇒ R
n and K :Rn ⇒ R

n be two set-valued maps. The quasi-
variational inequality QVI(T, K ) is said to be pseudo-variational if and only if

QVI(T, K ) ≡ ∪z∈FP(K )VI(T, K (z)),

that is any solution of QVI(T, K ) is a solution of the variational inequality
VI(T, K (z)), for somefixedpoint z of themap K , and any solutionof suchVI(T, K (z))
is a solution of QVI(T, K ).

Now if K is reproducible on R
n and combining Propositions 4 and 1, we

immediately obtain a sufficient condition for a quasivariational inequality to be pseudo-
variational.

Corollary 1 Let T :Rn ⇒ R
n and K :Rn ⇒ R

n be two set-valued maps. Suppose
that K is reproducible on FP(K ). Then quasivariational inequality QVI(T, K ) is
pseudo-variational.
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Sufficient conditions to compute any solution of… 11

We are now ready to define a simple procedure to compute a number of different
solutions of the quasivariational inequality QVI(T, K ), with the assumption that K is
reproducible on a certain set C .

Procedure 5 (Computing solutions of QVI(T, K ) via VIs)

Step 0: Set R := (C ∩ FP(K )) �= ∅, S := ∅ and k > 0.
Step 1: Pick a z ∈ R and compute a set S̄(z) of solutions of V I (T, K (z)).
Step 2: Set R := R \ K (z) and S := S ∪ S̄(z).
Step 3: If either R = ∅ or |S| ≥ k, then return S, else go to Step 1.

Let us observe that if K is reproducible on C , and supposing to have a procedure
to compute solutions of VIs, Procedure 5, with k finite, will stop in a finite number of
steps and, by Proposition 4, all points in S are solutions of QVI(T, K ). Moreover, we
clearly have that:

(i) if C ∩QVI(T, K ) �= ∅, then S �= ∅;
(ii) if |C ∩QVI(T, K )| ≥ k and, at any “Step 1”, |S̄(z)| ≥ min{|V I (T, K (z))|, k},

that is either S̄(z) = V I (T, K (z)) or |S̄(z)| ≥ k, then |S| ≥ k.

Therefore Procedure 5 can be efficiently used, in practice, to compute a number of dif-
ferent solutions by doing a wide-ranging pick at “Step 1”. Note that, if the assumption
of reproducibility does not hold, then the procedure is unuseful since S̄(z) computed
at “Step 1” can contain points that are not solutions of QVI(T, K ).

It is also important to notice that if the set C ∩ FP(K ) is included in the union
of a finite number of components K (zi ) and, at any “Step 1”, S̄(zi ) contains all the
solutions of V I (T, K (zi )), then Procedure 5, with k = ∞, will determine in a finite
number of steps all the solutions of QVI(T, K ) in C .

Let us end this section by a proposition describing some other sufficient conditions
ensuring that Procedure 5 can also stop after a finite number of steps.

Proposition 6 Let T : Rn ⇒ R
n and K :Rn ⇒ R

n be two set-valued maps. Assume
that K is reproducible on C ⊆ R

n and one of the following situations holds:

(i) the subset C ∩ FP(K ) is compact and for any z ∈ C ∩ FP(K ), the set K (z) is
open;

(ii) C ∩ FP(K ) is bounded and there exists c > 0 such that, for all z ∈ C ∩
FP(K ), K (z) ⊂ C and one can find z̄ ∈ K (z) for which the ball B(z̄, c) is
included in K (z).

Suppose that, in Procedure 5, k = ∞ and, at any “Step 1”, S̄(z) ⊇ C ∩V I (T, K (z)).
Then Procedure 5 returns S in a finite number of steps such that

S ⊇ C ∩ QVI(T, K ).

Proof It is sufficient to show thatC∩FP(K ) is included in the union of a finite number
of components K (zi ).

(i) The family {K (z) : z ∈ C ∩ FP(K )} is an open covering of the compact set
C ∩ FP(K ) from which one can extract a finite subcovering.

123



12 D. Aussel, S. Sagratella

(i i) Let {zi }i be the sequence of picked points at “Step 1” and let {z̄i }i be the sequence
of balls’ centers associated with {K (zi )}i . For all i we obtain B(z̄i , c) ⊆ K (zi ) ⊆
C ∩ FP(K ) by recalling that K (zi ) ⊆ C and by using item (i) of Proposition 1
since K is reproducible on C . Now suppose, for a contradiction, that

C ∩ FP(K ) ⊇ ∪∞
i=1B(z̄i , c). (10)

For any two different iterates i1 and i2, it holds that B(z̄i1 , c) ∩ B(z̄i2 , c) = ∅,
then (10) is not compatible with the boundedness of C ∩ FP(K ).

��

The above hypothesis (i) and (i i) are quite restrictive. Nevertheless let us observe
that the following “toy-example” satisfies all hypothesis (i i). LetC = [0, 1/2]×[0, 1]
and define the subsets C1 = {(x1, x2) ∈ R

2: x1 ∈ [0, 1/2], x2 ∈ [0, x1]} and C2 =
{(x1, x2) ∈ R

2: x1 ∈ [0, 1/2], x2 ∈]x1, 1]}. Now define the set-valued map K from
R
2 to R2 by

K (x) =
{
C1 if x1 ≥ x2
C2 if x1 < x2.

Clearly the map K is reproducible on C and one has C ∩ FP(K ) = C . It is thus
clear thatC is composed of two components,C1 andC2, and therefore hypothesis (i i)
holds. Moreover, by considering for example the (single-valued) map T to be defined
on R2 by T (x1, x2) = {(x1 − 1, x2 − 1)}, one clearly obtain that each of the iterations
of Procedure 5 consists in the solving of a variational inequality that has a unique
solution. Actually these solutions are (1/2, 1/2) and (1/2, 1), both in C .

4 Pseudo-variational generalized Nash equilibrium problems

As already explained in Sect. 1, it is very important, from the computational point of
view, to precise the existing links between a generalizedNash equilibriumproblem and
its associated variational inequalities. These links have been widely studied in the lit-
erature and it is nowwell known that, even if the strategy map K of a generalized Nash
equilibrium problem GNEP(θ, K ) is driven by a convex Rosen’s law (1), only some
particular solutions of GNEP(θ, K ), called variational solutions, will be obtained by
solving the associated variational inequality, see e.g. Facchinei et al. (2007), Facchinei
and Sagratella (2011). Our aim is here to observe that, under a reproducibility assump-
tion, the complete set of solutions of the generalized Nash equilibrium problem can
be obtained by solving variational inequalities.

Let us recall, see e.g. Pang and Fukushima (2005), that if the loss functions θν of the
GNEP(θ, K ) are continuously differentiable and convexwith respect to xν and the set-
valued map K is convex valued, then GNEP(θ, K ) can be equivalently reformulated
as the quasivariational inequality QVI(F, K ) where F(x) := (∇xν θν(xν, x−ν)

)p
ν=1.
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Sufficient conditions to compute any solution of… 13

Theorem 1 Let GNEP(θ, K ) be a generalized Nash equilibrium problem for which
the loss functions θν are continuously differentiable and convex with respect to xν and
the strategy set-valued map K is convex valued. If K is reproducible on FP(K ) then
GNEP(θ, K ) is F-pseudo-variational (see Definition 1).

Proof The proof follows fromCorollary 1 and the above recalled equivalence between
the solution set of GNEP(θ, K ) and that of QVI(F, K ). ��
Remark 1 It is important to note that even if the strategy map is given by the Rosen’s
law with a nonempty convex set X of Rn then the set-valued map is not necessarily
reproducible on FP(K ). This situation can be simply illustrated by the case of a two real
variables set-valued map following a Rosen’s law described by the unit ball B(0, 1)
of R2.

In the more general case of quasiconvex loss functions an analogous of the refor-
mulation result obtained for differentiable convex loss functions can be established.
The possible lack of differentiablity and convexity force us to use more elaborated
tools of nonsmooth analysis, namely the normal operator, see Aussel and Hadjisavvas
(2005), Aussel and Ye (2006), Aussel and Dutta (2008).

Let us first recall some definitions and related structures associated with quasi-
convex functions. Recall that a function f : Rn → R is said to be quasiconvex if,
for any x, y ∈ R

n and λ ∈ [0, 1], we have f (λx + (1 − λ)y) ≤ max{ f (x), f (y)}.
An equivalent and useful characterization of quasiconvexity is that the function f is
quasiconvex if and only if its sublevel set Sλ := {y ∈ R

n : f (y) ≤ λ} is convex for all
λ ∈ R. Obviously convex and differentiable pseudoconvex functions are quasiconvex.
The strict sublevel set of f will be denoted by S<

λ := {y ∈ R
n : f (y) < λ}. Finally,

we recall that a function f : R
n → R is said to be semistrictly quasiconvex if f

is quasiconvex and, for any x, y ∈ R
n with f (x) �= f (y) and λ ∈ (0, 1), one has

f (λx + (1−λ)y) < max{ f (x), f (y)}. Roughly speaking, a semistrictly quasiconvex
function is a quasiconvex function which does not admit “flat parts”, except possibly
argminRn f .

Let us now recall from Aussel and Hadjisavvas (2005) the fundamental concept of
adjusted sublevel set which provides, for quasiconvex functions, more informations
than the usual concept (large and strict) of sublevel sets. Given a quasiconvex function
f , the adjusted sublevel set is defined by

Saf (x) := S f (x)

⋂
B (S<

f (x), ρx ),

where ρx = dist(x, S<
f (x)), if x /∈ argminRn f and Saf (x) = S f (x) otherwise. Here

B (S<
f (x), ρx ) = S<

f (x) + ρx B(0, 1) denotes the ρx -neighbourhood of the set S<
f (x)

where B(0, 1) is the unit ball in R
n . The bar in the above expression denotes the

closure of a set.
Given a quasiconvex function f : Rn → R, the normal operator associated with f

is a set-valued map Na
f : Rn ⇒ R

n which is given as

Na
f (x) :=

{
v ∈ R

n : 〈v, y − x〉 ≤ 0, ∀y ∈ Saf (x)
}

,
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14 D. Aussel, S. Sagratella

that is, Na
f (x) is the polar cone to the adjusted sublevel set Saf (x). It is important to

observe that, in the case of a semistrictly quasiconvex function, Na
f (x) is simply the

polar cone to the classical sublevel set S f (x) or to the strict sublevel set S<
f (x), that is,

for any x /∈ argminRn f, Na
f (x) = (S f (x) − x)◦ = (S<

f (x) − x)◦.
To simplify the notations, we define, for any ν and any x ∈ R

n, Sν(x) and Aν(x−ν)

as subsets of Rnν such that

Sν(x) := Sa
θν(·,x−ν )

(xν) and Aν(x
−ν) := argmin

Rnν
θν(·, x−ν),

and we define normal operator Na
θ : Rn ⇒ R

n by

Na
θ (x) := F1(x) × . . . × Fp(x),

where

Fν(x) :=
{
Bν(0, 1) if xν ∈ Aν(x−ν)

conv(Na
θν

(xν) ∩ Sν(0, 1)) otherwise,

with Bν(0, 1) and Sν(0, 1) denoting the closed unit ball and the unit sphere of Rnν

and Na
θν

(xν) standing for the normal operator of the quasiconvex function θν(·, x−ν)

at xν , that is,

Na
θν

(xν) := {vν ∈ R
nν : 〈vν, uν − xν〉 ≤ 0, ∀ uν ∈ Sν(x)}.

According to Aussel and Hadjisavvas (2005, Proposition 3.4), normal operator Na
θ has

nonempty (convex) values. Moreover since, for any ν and any xν /∈ Aν(x−ν), Na
θν

(xν)

is a closed cone and Sν(0, 1) is a compact set then Fν(x) is a compact set as the convex
hull of a compact set [see e.g. Hiriart-Urruty and Lemaréchal (1993, Theorem 1.4.3)].
As a conclusion andusing classical calculus rules, the set-valuedmap Na

θ has nonempty
convex compact values. Based on the proofs stated in Aussel and Dutta (2008), one
can actually deduce the following generalization of Aussel and Dutta (2014, Theorem
1). We provide below an adapted sketch of proof for the sake of completeness.

Theorem 2 Let GNEP(θ, K ) be a generalized Nash equilibrium problem for which
loss functions θν are continuous and semistrictly quasiconvex with respect to xν and
the strategy set-valued map K is convex valued. Then x̄ is a solution of GNEP(θ, K )

if and only if x̄ is a solution of QVI(Na
θ , K ).

Proof Let x̄ be a solution of GNEP(θ, K ). For any ν, we can assume, wlog, that
x̄ν /∈ Aν(x̄−ν). Thus the subset Sν(x̄) is closed convex with a nonempty interior
int(Sν(x̄)) = {uν : θν(uν, x̄−ν) < θν(x̄ν, x̄−ν)}. According to a classical separation
theorem of the convex sets Kν(x̄−ν) and int(Sν(x̄)), 〈vν, xν − x̄ν〉 ≥ 0, for some
vν ∈ Fν(x̄) and any xν ∈ Kν(x̄−ν). Thus, x̄ is a solution of QVI(Na

θ , K ).
Now let x̄ ∈ QVI(Na

θ , K ) and let ν ∈ {1, . . . , p}. If x̄ν ∈ Aν(x̄−ν) then obviously
x̄ν is a solution for player’s problem given other players’ strategies x̄−ν . Otherwise,
according to Aussel and Dutta (2008, Lemma 3.1), there exist uν ∈ Na

θν
(x̄ν) \ {0}
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Sufficient conditions to compute any solution of… 15

such that 〈uν, yν − x̄ν〉 ≥ 0, for any yν ∈ Kν(x̄ν). This, together with Aussel and Ye
(2006, Proposition 3.2), imply that x̄ is a solution of GNEP(θ, K ). ��

Therefore, as an immediate consequence of Theorem 2 and Corollary 1, we obtain
a sufficient condition for a GNEP with nonconvex loss functions to be pseudo-
variational.

Theorem 3 Let GNEP(θ, K ) be a generalized Nash equilibrium problem for which
loss functions θν are continuous and semistrictly quasiconvexwith respect to xν and the
strategy set-valued map K is convex valued. Suppose that set-valued map K is repro-
ducible on FP(K ), then GNEP(θ, K ) is Na

θ -pseudo-variational (see Definition 1).

In the light of what said above, we can use Procedure 5, with T := Na
θ , to find all

solutions of a GNEP that satisfies all assumptions of Theorem 3.

5 Pseudo-NEP generalized Nash equilibrium problems

In this section we consider generalized Nash equilibrium problems for which the
loss functions are not necessarily differentiable and we do not assume any convexity
condition.

Definition 4 We say that GNEP(θ, K ) is a pseudo-Nash Equilibrium problem
(pseudo-NEP in short) if and only if

GNEP(θ, K ) ≡ ∪z∈FP(K )NEP(θ, K (z)),

that is any solution of GNEP(θ, K ) is a solution of Nash equilibrium prob-
lem NEP(θ, K (z)), for some fixed point z of map K , and any solution of such
NEP(θ, K (z)) is a solution of GNEP(θ, K ).

Here we do not assume any convexity of players’ loss functions since we do not use
variational issues. Let us define set-valued maps � : Rn ⇒ R

n and Y : Rn ⇒ R
n as

�(x) := �1(x
−1) × · · · × �p(x

−p),

Y (x) := Y1(x
−1) × · · · × Yp(x

−p),

where, for any ν = 1, . . . , p,�ν : R
n−ν ⇒ R

nν and Yν : R
n−ν ⇒ R

nν are set-
valued maps. Then we will further denote by GNEP(θ,�,Y ) the generalized Nash
equilibrium problem in which K (x) := �(x) ∩ Y (x) that is, for any ν ∈ {1, . . . , p},

Xν(x
−ν) := �ν(x

−ν) ∩ Yν(x
−ν).

Given a point x̄ ∈ R
n , we denote by GNEP(θ, K̄ (·, x̄)) the generalized Nash equilib-

rium problem whose loss functions of players are the same as the generalized Nash
equilibrium problem GNEP(θ,�,Y ), but in which for all ν the strategy set-valued
map K̄ is parametrized and, for all ν, denoted by

K̄ν(x
−ν, x̄−ν) := �ν(x

−ν) ∩ Yν(x̄
−ν).
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16 D. Aussel, S. Sagratella

The following theorem links solution set of GNEP(θ,�,Y ) with those of the family
GNEP(θ, K̄ (·, x̄)).
Theorem 4 Suppose that Y is reproducible on R

n.

(i) Let z ∈ K (z). If x̄ is a solution of GNEP(θ, K̄ (·, z)), then x̄ is a solution of
GNEP(θ,�,Y ).

(ii) If x̄ is a solution of GNEP(θ,�,Y ), then, for all z ∈ Y (x̄), x̄ is a solution of
GNEP(θ, K̄ (·, z)).

Proof (i). x̄ is feasible for GNEP(θ, K̄ (·, z)) then x̄ ∈ �(x̄) ∩ Y (z). Since Y is
reproducible on R

n and x̄ ∈ Y (z) then Y (z) ≡ Y (x̄). Therefore x̄ ∈ �(x̄) ∩ Y (x̄),
and we can conclude that x̄ is feasible for GNEP(θ,�,Y ).

For all ν, x̄ν is a solution of the optimization problem

θν(x̄
ν, x̄−ν) ≤ θν(x

ν, x̄−ν), ∀ xν ∈ �ν(x̄
−ν) ∩ Yν(z

−ν). (11)

Again due to the fact that Y (z) ≡ Y (x̄), it is a solution of

θν(x̄
ν, x̄−ν) ≤ θν(x

ν, x̄−ν), ∀ xν ∈ �ν(x̄
−ν) ∩ Yν(x̄

−ν), (12)

that is x̄ is a solution of GNEP(θ,�,Y ).
(ii). The point x̄ is feasible for GNEP(θ,�,Y ), that is x̄ ∈ K (x̄) = �(x̄) ∩ Y (x̄).

Since Y is reproducible on R
n and z ∈ Y (x̄) then Y (z) ≡ Y (x̄) and therefore x̄ is

feasible for GNEP(θ, K̄ (·, z)).
Moreover, x̄ν is solution of (12) for all ν and thus, using again that Y (z) ≡ Y (x̄),

we can conclude that, for all ν, x̄ν is also solution of (11), that is x̄ is a solution of
GNEP(θ, K̄ (·, z)). ��

The following corollary of Theorem 4 gives sufficient conditions for a generalized
Nash equilibrium problem to be a pseudo-NEP.

Corollary 2 Suppose that Y is reproducible on R
n and that �ν(x−ν) = �ν for all

ν ∈ {1, . . . , p}, then GNEP(θ, K ) is a pseudo-NEP.

Finally we propose two applications inspired from market models that involve
naturally reproducible set-valued maps and can thus be modeled as pseudo-NEPs.

Example 3 Let us consider the case in which the p players share a set of r common
resources. In this case all players have the following common constraints

p∑

μ=1

aμ
j (x

μ) ≤ b j , j = 1, . . . , r,

where aμ
j : Rnμ → R is the function measuring the consumption of resource j by

player μ (we assume that aμ
j is injective, e.g. it is linear), and b j > 0 is the amount of

resource j available in the system. Let us suppose that all players can store, without

123



Sufficient conditions to compute any solution of… 17

additional costs, the amounts of resources that they do not use. Then, for any player
μ and any resource j , we can introduce a surplus variable yμ

j ≥ 0 indicating how
much of such resource is stored by the player. In this case we can rewrite the common
constraints as equations:

p∑

μ=1

(
aμ
j (x

μ) + yμ
j

)
= b j , j = 1, . . . , r.

Assuming that any player ν have some private constraints Xν , then the optimization
problem that he must solve is

min
xν ,yν

1 ,...,yν
r

θν(x
ν, x−ν)

{∑p
μ=1

(
aμ
j (x

μ) + yμ
j

)
= b j , j = 1, . . . , r,

xν ∈ Xν, yν
j ≥ 0, j = 1, . . . , r.

Thus using Proposition 2 and Corollary 2 the associated generalized Nash equilibrium
problem is a pseudo-NEP.

Example 4 This example is taken from Facchinei et al. (2013). Consider a market
with p firms. Each firm owns l plants each one to generate electric energy for sale. We
denote as xν

j the energy produced by firm ν in the j-th plant. The unitary energy price
in the market depends on the total amount of energy produced by all the firms, then
with p(x1, . . . , x p) we indicate the inverse demand function of the market. Then the
profit of each firm ν depends on the generation level of the other firms in the market
and it is equal to

�ν(x
1, . . . , x p) = p(x1, . . . , x p)

⎛

⎝
l∑

j=1

xν
j

⎞

⎠ − cν(x
ν),

where cν is a cost function. In turn, each generation level is constrained by technologi-
cal limitations of the power plants (Xν). The coordination, or regulation, of the market
is done by the Independent System Operator (ISO), whose actions in the market are
considered as those of an additional player. Accordingly, letting the ISO be the player
number 0, the ISO tries to maximize the social welfare by encouraging all the firms
to satisfy the total market demand d > 0.

In this framework, the optimization problem solved by the ISO is

min
x0∈R

x0

{
x0 + ∑p

ν=1

∑l
j=1 x

ν
j = d

l ≤ x0 ≤ u,
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18 D. Aussel, S. Sagratella

with l ≤ u, and the optimization problem solved by each firm ν is

max
xν

�ν(x
1, . . . , x p)

{
x0 + ∑p

ν=1

∑l
j=1 x

ν
j = d

xν ∈ Xν .

Again according to Proposition 2 and Corollary 2 the simplified model for electricity
market is a pseudo-NEP.
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