
Math Meth Oper Res (2017) 85:207–221
DOI 10.1007/s00186-016-0562-0

Computing all solutions of linear generalized Nash
equilibrium problems

Axel Dreves1

Received: 11 April 2016 / Published online: 7 October 2016
© Springer-Verlag Berlin Heidelberg 2016

Abstract In this paper we consider linear generalized Nash equilibrium problems,
i.e., the cost and the constraint functions of all players in a game are assumed to be
linear. Exploiting duality theory, we design an algorithm that is able to compute the
entire solution set of these problems and that terminates after finite time. We present
numerical results on some academic examples as well as some economic market
models to show effectiveness of our algorithm in small dimensions.

Keywords Linear generalized Nash equilibrium problem · Entire solution set · Finite
termination

1 Introduction

Generalized Nash equilibrium problems (GNEPs) have been considered recently in
many papers, andwe refer to Facchinei andKanzow (2010), Facchinei andPang (2009)
and Fischer et al. (2014) for survey articles. Quite often GNEPs where all players
have the same constraints, which are then called shared constraints, are considered
in literature, since this problem class seems to have a larger number of applications.
GNEPs with shared constraints that have a common convex feasible set are also called
jointly convex GNEPs. For those one can define normalized solutions in the sense
of Rosen (1965), which are particular solutions. Meanwhile, there is a number of
algorithms available to compute solutions of GNEPs, see for example Dreves et al.
(2011, 2012), Facchinei andKanzow (2010), Facchinei et al. (2009), Han et al. (2012),

B Axel Dreves
axel.dreves@unibw.de

1 Department of Aerospace Engineering, Universität der Bundeswehr München,
Werner-Heisenberg-Weg 39, 85577 Neubiberg, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00186-016-0562-0&domain=pdf

208 A. Dreves

Izmailov and Solodov (2014), Krawczyk and Uryasev (2000) and Schiro et al. (2013)
to mention just a few. In particular there are methods available which are globally and
local quadratic convergent, namely the Newton method from Dreves et al. (2013) to
compute normalized solutions of jointly convex GNEPs, or the hybrid method from
Dreves et al. (2014) for the general case.

Nearly all existing algorithms are able to compute one solution of a GNEP, or if they
are started with different parameters a number of different solutions, as for example
Facchinei and Sagratella (2011), Nabetani et al. (2011). But since the total number of
solutions is typically infinite, see Dorsch et al. (2013) for a discussion on this topic,
they are not able to compute the entire solution set of the problem in finite time. An
exception are affine generalizedNash equilibriumproblems (AGNEPs), where the cost
functions of all players are quadratic functions and the common constraints are affine
linear. Here, following Nabetani et al. (2011), the entire solution set can be represented
as the finite union of polyhedral sets via KKT conditions. Then, in principal a vertex
enumeration algorithm could be used to obtain the entire solution set, by deciding
which of the polyhedral sets are empty. A second method for so called AGNEP1s
was presented in Dreves (2014). This algorithm is able to compute all solutions of
AGNEPs with shared constraints, where each player has exactly one variable, with
the help of sign conditions for the derivatives of the cost and constraint functions.

In this paper we consider linear generalized Nash equilibrium problems (LGNEPs)
with not necessarily shared constraints, i.e., problems of the form:

min
xν

〈cν, xν〉 s.t. Aννxν +
∑

μ�=ν

Aνμxμ ≤ bν

for all players ν = 1, . . . , N . We have the problem dimensions Aνμ ∈ R
mν×nμ,

cν ∈ R
nν , bν ∈ R

mν . Further the dimension of the considered LGNEPs is described by
n := n1+· · ·+nN andm := m1+· · ·+mN . LGNEPs were very recently considered
in Stein and Sudermann-Merx (2015) and a nonsmooth optimization reformulation
was given there. Further in Dreves and Sudermann-Merx (2016) different numerical
approaches to solve LGNEPs were introduced and in particular a potential reduction
algorithm and some subgradient method were recommended to find one generalized
Nash equilibrium. Let us concatenate the matrices and vectors to define

A :=
⎛

⎜⎝
A11 . . . A1N

...
...

AN1 . . . ANN

⎞

⎟⎠ ∈ R
m×n, b :=

⎛

⎜⎝
b1

...

bN

⎞

⎟⎠ ∈ R
m

and the feasible set

X := {
x ∈ R

n | Ax ≤ b
}
.

If one has the special case, where the constraints are shared by all players, one has
m1 = · · · = mN , A1μ = · · · = ANμ for all μ = 1, . . . , N and b1 = · · · = bN . Then
each linear constraint in X is repeated N times, and one can remove all the redundant

123

Computing all solutions of linear generalized Nash… 209

rows except one in the description of the common closed and convex feasible set X .
Hence the LGNEP with shared constraints has the equivalent form

min
xν

〈cν, xν〉 s.t. (xν, x−ν) ∈ X ∀ν = 1, . . . , N .

In the following we will design an algorithm that is able to compute all solutions of
LGNEPs, allowing more than one variable for each player, in contrast to the AGNEP1
approach in Dreves (2014). To know the entire solution set is important if one tries
to select one specific equilibrium out of the typically infinite number of solutions of
the LGNEP that maximizes some selection criteria, like the total social benefit. For
further selection criteria in the context of LGNEPs and transportation problems we
refer to Sudermann-Merx (2016).

Let us introduce some of our notations: With Rk+ we denote the orthant of nonneg-
ative vectors inRk . For an index set J ⊆ {1, . . . ,m}we will denote by |J | the number
of elements of J and by AJ• the matrix, where all rows with indices that are not in
J are dropped. Further vert(X) is the set of all vertices of the polyhedral set X and
conv(M) is the convex hull of a set M.

In the next section wewill present our algorithm and show that it terminates in finite
time with the entire solution set of an LGNEP. In Sect. 3 we present several examples
of academic problems and economy market models that can be solved. Finally we
conclude in Sect. 4.

2 The algorithm and its convergence

Inspecting the setting in Dreves (2014), where the Sign Bingo algorithm was designed
for AGNEP1, we see that the cost functions are assumed to be quadratic and can not
be linear. However, it is possible to show that a slight modification of the algorithm
also works for LGNEPs with one-dimensional strategy spaces and shared constraints.
But since we can exploit more structure in the linear setting, we will design here a new
algorithm that can also handle more than one-dimensional strategy spaces and also
non-shared constraints. An LGNEP is defined via the vectors b1, . . . , bN , c1, . . . , cN

and the matrices Aνμ, ν, μ ∈ {1, . . . , N } which are the input data for our algorithm.
Let us define the vectors

λ :=
⎛

⎜⎝
λ1

...

λN

⎞

⎟⎠ ∈ R
m1+...+mN and w :=

⎛

⎜⎝
w1

...

wN

⎞

⎟⎠ ∈ R
m1+...+mN .

From duality theory for linear programs we directly obtain necessary and sufficient
optimality conditions for the coupled linear programs in an LGNEP:

Lemma 1 x̄ ∈ R
n is a solution of the LGNEP if and only if there exist (λ,w) ∈

R
m1+···+mN × R

m1+···+mN such that

123

210 A. Dreves

(Aνν)	λν = −cν ∀ν = 1, . . . , N ,

A x̄ + w = b,

λ ≥ 0, w ≥ 0, λ	w = 0.

Remark 1 A simple approach to solve these conditions is to compute for all indexsets
J ⊆ {1, . . . ,m}, with the complement J̄ := {1, . . . ,m}\J , the vertices of the poly-
hedral sets defined by

(Aνν)	λν = −cν ∀ν = 1, . . . , N ,

A x̄ + w = b,

λ ≥ 0, w ≥ 0, λ J̄ = 0, wJ = 0,

and obtain the primal solutions as projections on the x-space. This simple procedure
requires 2m times the computation of all vertices of a polyhedron, which can be done
by a vertex enumeration algorithm. However, it is possible to exploit more structure in
order to split the full problem in smaller subproblems and to avoid the full computation
for all index sets. This is done in our new algorithm that we state next.

Algorithm 1 Computing all solutions of LGNEPs

(S.1) FOR ν = 1, . . . , N DO
Set Pν = ∅.

For all Jν ⊆ {1, . . . ,mν} with 1 ≤ |Jν | ≤ nν and where we have no
Ĵν ∈ Pν with Ĵν ⊂ Jν, solve the linear equation system

(Aνν
Jν•)	λν

Jν
= −cν .

If this system is solvable and λν
Jν

≥ 0, set

Pν := Pν ∪ {Jν}.

END.
(S.2) For all J = (J1, . . . , JN) ∈ P1 × . . . × PN compute the sets

V (J) :=
⎧
⎨

⎩v ∈ vert(X)

∣∣∣∣
⋃

ν=1,...,N

Jν ⊆ I (v)

⎫
⎬

⎭ ,

with

I (v) := {i ∈ {1, . . . ,m} | Ai• v = bi } ,

and define the set

M :=
⋃

J∈P1×...×PN

{V (J)}.

123

Computing all solutions of linear generalized Nash… 211

(S.3) The set M̃ is obtained by deleting duplicates and all sets {V (J)} ∈ M that are
contained in a larger set {V (J̃)} ∈ M, i.e., that satisfy V (J) ⊂ V (J̃). The
output set is

S :=
⋃

q∈M̃
conv(q).

Before stating theoretical results for Algorithm 1 we first discuss a simple example
in detail to better understand and illustrate the behavior of the algorithm.

Example 1 We consider a 2-player game with shared constraints that is defined by the
data

c1 =
(−1

−2

)
, c2 = −1, A =

⎛

⎜⎜⎜⎜⎝

1 2 −1
3 2 1

−1 0 0
0 −1 0
0 0 −1

⎞

⎟⎟⎟⎟⎠
, b =

⎛

⎜⎜⎜⎜⎝

14
30
0
0
0

⎞

⎟⎟⎟⎟⎠
.

Hence the LGNEP has the form

min
x11 ,x12

−x11 − 2x12 s.t. A x ≤ b,

min
x2

−x2 s.t. A x ≤ b.

The common feasible set is X = {
x ∈ R

3
∣∣Ax ≤ b

}
.

In (S.1) we start with ν = 1 and we have to solve for

J1 ∈ {{1}, {2}, {3}, {4}, {1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}}

the equation system

(AJ1,{1,2})	λ1J1 =
(
1
2

)
.

Now we see that for J1 = {1} we find λ1J1 = 1 ≥ 0, and hence we have {1} ∈ P1.

Now it is obvious that we do not have to compute solutions of equation systems
with sets Jν containing 1 and therefore we do not have to compute the solutions
for J1 ∈ {{1, 2}, {1, 3}, {1, 4}}. For J1 ∈ {{2}, {3}, {4}, {2, 4}, {3, 4}} we do not find
nonnegative solutions, but for J1 = {2, 3} we have

(
3 −1
2 0

) (
1
2

)
=

(
1
2

)
.

Thus we obtain

P1 = {{1}, {2, 3}}.

123

212 A. Dreves

Table 1 vertices computed in
(S.2)

vert(X) I (v)

(0, 11, 8) {1, 2, 3}
(8, 3, 0) {1, 2, 5}
(0, 0, 30) {2, 3, 4}

For ν = 2 we have to consider

J2 ∈ {{1}, {2}, {5}},

and it is easy to see that we obtain

P2 = {{2}}.

In (S.2) we now have to find all vertices whose active constraints include one of the
sets {1, 2}, {2, 3}. Therefore we search for feasible vertices with the active constraints
in

{{1, 2, 3}, {1, 2, 4}, {1, 2, 5}} or {{1, 2, 3}, {2, 3, 4}, {2, 3, 5}}.

Note that we get the index set {1, 2, 3} twice, but in our implementation we solve the
corresponding linear system of course only once.We find the vertices given in Table 1.
Therefore we get in (S.2)

V ({1, 2}, {2}) = {(0, 11, 8), (8, 3, 0)},
V ({2, 3}, {2}) = {(0, 11, 8), (0, 0, 30)},

and hence

M = {{(0, 11, 8), (8, 3, 0)}, {(0, 11, 8), (0, 0, 30)}}.

Finally, since we do not have to remove duplicates here, the solution set from (S.3) is
given by

S = conv{(0, 11, 8), (8, 3, 0)} ∪ conv{(0, 11, 8), (0, 0, 30)}.

We have seen in this example that the algorithm terminates after finite time. This holds
in general as we will show now. Since we describe the solution set as convex hull of
vertices, we will need boundedness of the feasible set X. For GNEPs with shared
constraints this implies that nν ≤ mν for all ν = 1, . . . , N . In the case of nonshared
constraints this is not necessarily true. Since we will state the next result in general
form we need the binomial coefficients

(mν

nν

)
. To get them well-defined, we can, by

the boundedness of X , formally introduce additional box constraints that are always
satisfied to obtain nν ≤ mν .

123

Computing all solutions of linear generalized Nash… 213

Proposition 1 Algorithm 1 is well-defined and terminates after finite time, if X is
bounded.

Proof (S.1) is the solution of a finite number of at most
∑N

ν=1
∑nν

i=1

(mν

i

)
linear equa-

tion systems. Since X is a bounded and polyhedral set, the computation of all vertices
corresponding to active constraints in P1 × . . . × PN is possible in finite time by
solving at most

(m
n

)
linear equation systems and checking feasibility of the solutions.

Hence (S.2) terminates after finite time. (S.3) is finitely often checking a set inclusion.
Hence we see that Algorithm 1 is well-defined and terminates after finite time. ��
For our main result we need the following lemma.

Lemma 2 Let A ∈ R
n×k, b ∈ R

n with k > n. Further let λ̃ ∈ R
k+ be a solution of

Aλ̃ = b with λ̃i > 0 for i = 1, . . . , k̃ and λ̃i = 0 for i = k̃ + 1, . . . , k. Then there
exists a λ ∈ R

k+ which has at most n nonzero elements and satisfies Aλ = b.

Proof If k̃ ≤ n there is nothing to show. Therefore assume k̃ > n. We have by
assumption

b =
k∑

i=1

λ̃i A•i =
k̃∑

i=1

λ̃i A•i and λ̃i > 0 ∀i = 1, . . . , k̃.

Since k̃ > n the columns of A must be linearly dependent and hence we can find
αi ∈ R such that

0 =
k̃∑

i=1

αi A•i .

Without loss of generality we can assume that at least for one i ∈ {1, . . . , k̃} we have
αi > 0, since otherwise we can multiply the equation by −1, or we have A = 0,
where the assertion of this lemma is trivially satisfied. Then we define

β := min
1≤i≤k̃

{
λ̃i

αi

∣∣∣∣αi > 0

}
=: λ̃i0

αi0
> 0,

and we obtain

b =
k̃∑

i=1

(λ̃i A•i − βαi A•i) =
k̃∑

i=1

(λ̃i − βαi)A•i =
k̃∑

i=1,i �=i0

(λ̃i − βαi)A•i .

Now we have λi0 = 0 and λi := λ̃i − βαi ≥ 0 for all i ∈ {1, . . . , k̃} \ {i0}, and with
λi = 0 for i = k̃ + 1, . . . , n we have reduced the number of nonzero elements from λ̃

to λ by at least one. Repeating this argument as long as the remaining columns of A
are linearly dependent, we can reduce the number of nonzero elements to at most n,

which completes the proof. ��

123

214 A. Dreves

Now let us show that the set S computed by Algorithm 1 is the entire solution set of
the LGNEP.

Theorem 1 Let X be bounded. Then the set S computed by Algorithm 1 coincides
with the solution set of the LGNEP.

Proof First, let x̄ be an element of S.Thenwehave x̄ ∈ conv(q) for someq ∈ M̃ ⊆ M.

This, in turn, means that we have some tuple of index sets J = (J1, . . . , JN) ∈
P1 × . . . × PN such that

q = V (J) =
⎧
⎨

⎩v ∈ vert(X)

∣∣∣∣
⋃

ν=1,...,N

Jν ⊂ I (v)

⎫
⎬

⎭ .

Now we get for every ν = 1, . . . , N by Jν ∈ Pν a λν
Jν

≥ 0 such that

(Aνν
Jν•)	λν

Jν = −cν .

Defining λν
i = 0 for all i /∈ Jν we therefore have λν ≥ 0 and

(Aνν)	λν = −cν (1)

for all ν = 1, . . . , N .

Since q = V (J) and the number of vertices of X is finite, we can find K vertices
v1, . . . , vK of X with q = {v1, . . . , vK }. Thus we have

⋃
ν=1,...,N

Jν ⊂ I (vk) for all

k = 1, . . . , K and the definition of I (vk) yields

Ai•vk = bi ∀i ∈
⋃

ν=1,...,N

Jν, ∀k = 1, . . . , K .

Now exploiting that x̄ ∈ conv(q) = conv(v1, . . . , vK) and setting wi = 0 for all
i ∈ ⋃

ν=1,...,N
Jν we get

Ai• x̄ + wi = bi ∀i ∈
⋃

ν=1,...,N

Jν .

Further, the feasibility vk ∈ X, implies

bi − Ai•vk ≥ 0 ∀i /∈
⋃

ν=1,...,N

Jν, ∀k = 1, . . . , K .

Again using x̄ ∈ conv(q) = conv(v1, . . . , vK) we get

wi := bi − Ai• x̄ ≥ 0 ∀i /∈
⋃

ν=1,...,N

Jν .

123

Computing all solutions of linear generalized Nash… 215

Therefore we defined a w ≥ 0 such that

Ax̄ + w = b. (2)

Further we have by construction

λ ≥ 0, w ≥ 0, λ	w = 0. (3)

Altogether, we have shown that x̄ together with (λ,w) satisfies the conditions (2), (1),
and (3), which are the necessary and sufficient optimality conditions of the LGNEP.
Hence x̄ is a solution of the LGNEP.

Now let x̄ be a solution of the LGNEP. Then there exists some (λ̃, w) such that
the optimality conditions (2), (1), and (3) are satisfied. Hence we can define for every
ν = 1, . . . , N the index set J̃ν ⊂ {1, . . . ,mν}with λ̃ν

J̃ν
> 0 andwν

J̃ν
= 0. If | J̃ν | > nν

we can use Lemma 2 to construct a Jν ⊂ J̃ν with |Jν | ≤ nν and λν
Jν

≥ 0, λν
i = 0 for

all i /∈ Jν and (Aνν)	λν = −cν . If we take the smallest possible subset Jν we have
Jν ∈ Pν in (S.1), and this can be done for all ν = 1, . . . , N . Further (x̄, λ,w) still
satisfies the optimality conditions.

Since x̄ ∈ X, we can find vertices {v1, . . . , vK } of the polyhedral set X such that

x̄ =
K∑

k=1

αkvk, αk > 0,
K∑

k=1

αk = 1.

Since all these vertices are feasible and αk > 0 we obtain from (2)

Aivk = bi ∀i ∈
⋃

ν=1,...,N

Jν, ∀k = 1, . . . , K .

This shows that
⋃

ν=1,...,N
Jν ⊂ I (vk) for all k = 1, . . . , K , implying that v1, . . . , vK ∈

V (J), with J := (J1, . . . , JN). Thus (S.2) and (S.3) yield that conv(v1, . . . , vK) is in
the set S, and thus also x̄ is contained in S. ��

Let us comment on the algorithm:

• In (S.1) in the worst case if none of the equation systems with |Jν | < nν was
solvable, one has to solve

∑nν

i=1

(mν

i

)
linear equation systemswith dimensions from

nν × 1 to nν × nν . This will become difficult in larger dimensions. However, note
that we have to solve linear equation systems in the smaller dimension nν and not
in the full dimension n here. Furthermore, one has to solve these equation systems
for all players ν = 1, . . . , N . Therefore the computational effort of (S.1) is, in
the worst case, the solution of

∑N
ν=1

∑nν

i=1

(mν

i

)
linear equation systems, which

however do not all have full dimension. If we use a standard linear equation solver
for a system of dimension nν × i the main computational effort is approximately

123

216 A. Dreves

i2
(
nν − 1

3 i
)
and therefore the computational effort of a worst case in (S.1) is

approximately

N∑

ν=1

nν∑

i=1

i2
(
nν − 1

3
i

) (
mν

i

)
.

Note that, since the calculations of different players are independent, (S.1) can be
easily parallelized. For some problems, as the economy market models introduced
in Dreves and Sudermann-Merx (2016), it is possible to compute the sets Pν

analytically, and then (S.1) is also possible for larger dimensional problems.
• In (S.2) one has to compute all tuples J = (J1, . . . , JN) ∈ P1×. . .×PN and each
of them contains the indices of constraints that have to be active at a component
of the solution set. If |J | is the number of active indices and |J | is smaller than n
one can choose n − |J | out of the m − |J | remaining indices to get n active ones
and in each case by solving a linear equation system and checking if the solution
is feasible, one can decide weather one has the index set of a vertex of X. To
avoid the solution of the same linear system several times we store all computed
vertices together with the active constraints in a list. Then we check if the current
set of active constraints is already in the list before solving the equation system.
Depending on the number of tuples and the size of |J | we have to solve a large
number of linear equation systems of dimension n × n. If we have all possible
tuples this results in the computation of all vertices of the set X. Hence, using a
linear equation solver with main effort 2

3n
3 the main computational effort of (S.2)

is in the worst case approximately

2

3
n3

(
m

n

)
.

In Example 2 we present such a worst case example, where all vertices are con-
tained in the solution set and therefore have to be computed in (S.2). However,
typically we observe much less than all possible tuples in P1 × . . .× PN and (S.2)
is faster than computing all vertices of X.

• Note that at the end of (S.2) we already have a representation of the solution set,
which however can be simplified. This is done in (S.3), where we delete duplicates
and those sets that are included in larger sets. This results in the comparison of list
elements, which is much faster than the computations in (S.2).

• Let us compare Algorithm 1 to the simple procedure suggested in Remark 1. Any
subset J = (J1, . . . , JN) ∈ P1 × . . . × PN that we have at (S.2) corresponds to
one of the subsets J ⊂ {1, . . . ,m} in the procedure of Remark 1. For J we have
computed in (S.1) the solution of the problems

(Aνν
Jν•)	λν

Jν = −cν, λν
Jν ≥ 0 ∀ν = 1, . . . , N

and in (S.2) we compute the vertices of

{x ∈ R
n | Ax ≤ b, AJ x = bJ }.

123

Computing all solutions of linear generalized Nash… 217

This is also computed in the vertex enumeration for the index set J in the procedure
of Remark 1, where it is done all at once and with the additional variables w in
larger dimensions. Therefore the computational effort of (S.1) and (S.2) is for the
index set J at least not larger than that of the simple procedure.
Note that, at least for GNEPs with nonshared constraints, where each player has
at least two constraints, we will not get all possible subsets of {1, . . . ,m} in P1 ×
. . . × PN , since by (S.1) if one set Jν is in Pν we do not have any of its subsets
in Pν .
Moreover for all index sets J ⊆ {1, . . . ,m} that are not in P1× . . .× PN , we have
at most solved the small linear equation systems in (S.1), which is much cheaper
than vertex enumeration of the full dimensional problem of the simple procedure
from Remark 1 for the index set J . Therefore the overall computational effort of
the simple procedure is higher than that of Algorithm 1.

3 Examples

We implemented Algorithm 1 in Wolfram Mathematica® 9, which can handle large
lists of points well. We then computed the entire solution sets of a few academic
problems, that we present now.

Example 2 For the 2-player game

max x1 s.t.

⎛

⎝
1 −3

−3 1
1 1

⎞

⎠ x ≤
⎛

⎝
2
2
1

⎞

⎠

max x2 s.t.

⎛

⎝
1 −3

−3 1
1 1

⎞

⎠ x ≤
⎛

⎝
2
2
1

⎞

⎠

we obtain the solution set

{(−1,−1)} ∪ conv

{(
5

4
,−1

4

)
,

(
−1

4
,
5

4

)}
.

Since the feasible set X is a triangle and all vertices are contained in the solution
set, we compute all vertices of X in (S.2). Further in this example we have to check
all possible 1-dimensional subsets Jν of {1, 2, 3} for both players in (S.1). Hence
this is as a worst case example for the computational effort of Algorithm 1. In our
implementation we have to solve 9 linear equation systems, 6 with dimension 1 × 1
(and check that the solution is non-negative) and 3 of dimension 2× 2 (and check that
the solution is feasible). Note that a naive implementation of the simple approach of
Remark 1 requires 26 times a vertex enumeration algorithm.

Example 3 Let us define

Â :=
⎛

⎝
4 −1 0 2 1 −3
1 2 3 1 −1 1
0 0 −2 0 1 −2

⎞

⎠ and b̂ :=
⎛

⎝
10
10
10

⎞

⎠ .

123

218 A. Dreves

Then we obtain for the 2-player game

min −x11 + 3x12 + x13 s.t. 0 ≤ x1 ≤ 10, Âx ≤ b̂,

min −2x21 + x22 + 2x23 s.t. 0 ≤ x2 ≤ 10, Âx ≤ b̂,

the solution set

conv {(0, 0, 0, 8, 0, 2), (0, 2, 0, 6, 0, 0)}
∪ conv

{
(0, 0, 0, 8, 0, 2),

(
40

7
, 0, 0, 0, 0,

30

7

)}

∪ conv {(0, 2, 0, 6, 0, 0), (0, 8, 0, 4, 10, 0)}
∪ conv

{(
40

7
, 0, 0, 0, 0,

30

7

)
, (8, 0, 0, 0, 8, 10)

}
.

Our implementation of Algorithm 1 requires the solution of 1302 linear equation
systems with a maximal dimension of 6 × 6 for this problem.

Example 4 With Â and b̂ from Example 3 we get for the 3-player game

min −x1 s.t. 0 ≤ x1 ≤ 10, Âx ≤ b̂,

min 3x21 + x22 s.t. 0 ≤ x2 ≤ 10, Âx ≤ b̂,

min −2x31 + x32 + 2x33 s.t. 0 ≤ x3 ≤ 10, Âx ≤ b̂,

the solution set

conv

{
(0, 0, 0, 8, 0, 2), (0, 2, 0, 6, 0, 0),

(
40

7
, 0, 0, 0, 0,

30

7

)
,

(
10

3
,
10

3
, 0, 0, 0, 0

)}

∪ conv

{
(0, 2, 0, 6, 0, 0), (0, 8, 0, 4, 10, 0),

(
10

3
,
10

3
, 0, 0, 0, 0

)
,

(
20

9
,
80

9
, 0, 0, 10, 0

)}

∪ conv

{(
40

7
, 0, 0, 0, 0,

30

7

)
, (8, 0, 0, 0, 8, 10),

(
10

3
,
10

3
, 0, 0, 0, 0

)
,

(
20

9
,
80

9
, 0, 0, 10, 0

)
,

(
70

9
,
10

9
, 0, 0, 10, 10

)}
.

Here we need to solve 961 linear equation systems with a maximal dimension of 6×6.

Example 5 With thematrix A and the vector b fromExample 1, we consider a 2-player
game with shared constraints which is by definition not an LGNEP:

min
x1

max
{|2x11 + x12 + x2 − 25|, |x11 + 2x12 + x2 − 38|} s.t. A

⎛

⎝
x11
x12
x2

⎞

⎠ ≤ b,

min
x2

|x11 + x12 + 2x2 − 25| s.t. A

⎛

⎝
x11
x12
x2

⎞

⎠ ≤ b.

123

Computing all solutions of linear generalized Nash… 219

Introducing two additional variables this can be equivalently reformulated as an
LGNEP with non-shared constraints:

min
y1

y13 s.t.

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 0 −1 0
3 2 0 1 0

−1 0 0 0 0
0 −1 0 0 0
2 1 −1 1 0

−2 −1 −1 −1 0
1 2 −1 1 0

−1 −2 −1 −1 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎝

y11
y12
y13
y21
y22

⎞

⎟⎟⎟⎟⎠
≤

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

14
30
0
0
25

−25
38

−38

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

min
y2

y22 s.t.

⎛

⎜⎜⎜⎜⎝

1 2 0 −1 0
3 2 0 1 0
0 0 0 −1 0
1 1 0 2 −1

−1 −1 0 −2 −1

⎞

⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎝

y11
y12
y13
y21
y22

⎞

⎟⎟⎟⎟⎠
≤

⎛

⎜⎜⎜⎜⎝

14
30
0
25

−25

⎞

⎟⎟⎟⎟⎠
.

The computed solution set for this LGNEP is

conv{(8, 3, 24, 0, 14), (1, 10, 10, 7, 0)}
∪ conv

{
(0, 11, 8, 8, 2), (1, 10, 10, 7, 0),

(
0,

53

5
,
48

5
,
36

5
, 0

)}
,

from which we obtain the solution set of the original problem by dropping the addi-
tionally introduced variables:

conv{(8, 3, 0), (1, 10, 7)} ∪ conv

{
(0, 11, 8), (1, 10, 7),

(
0,

53

5
,
36

5

)}
.

For the computation of this set we solved 192 linear equation systems with maximal
dimension 5 × 5.

Further we want to solve some instances of economy markets that can be modeled
as LGNEPs with shared constraints and were introduced in Dreves and Sudermann-
Merx (2016). In these LGNEPs we have N players and player ν has the optimization
problem

max
xν∈RK

〈pν, xν〉 s.t. xν ≥ 0,
K∑

k=1

xν
k ≤ Cν,

N∑

ν=1

xν
k ≤ Dk ∀k = 1, . . . , K .

As mentioned in Dreves and Sudermann-Merx (2016) the model can be used for
example if several travel agencies offer flight seats for the same flight, in different
price categories depending on the remaining time until departure. For these problems
it is possible to exploit the structure in order to compute (S.1) very efficiently. In detail:
by Dreves and Sudermann-Merx (2016, Lemma 5.3) one can explicitly get all vertices
(at most K + 1) of the sets

123

220 A. Dreves

Table 2 Problem data and results for economy market LGNEPs

N = 2, K = 3 N = 3, K = 3 N = 3, K = 4 N = 2, K = 6 N = 4, K = 3

p1 (37, 65, 98) (4, 14, 58) (4, 14, 17, 58) (5, 7, 18, 59, 66, 82) (2, 35, 67)

p2 (38, 62, 97) (7, 17, 61) (7, 17, 20, 61) (8, 10, 21, 62, 69, 85) (5, 38, 70)

p3 (3, 13, 57) (3, 13, 16, 57) (1, 34, 66)

p4 (8, 41, 73)

C1 178 165 157 146 232

C2 113 157 166 107 211

C3 178 166 157 149 234

C4 169 104

C5 150

C6 150

D 300 · (1, 1) 300 · (1, 1, 1) 400 · (1, 1, 1) 600 · (1, 1) 300 · (1, 1, 1, 1)

Sol 12 78 198 110 384

LES 49 526 2551 769 4561

{
λν ∈ R

mν | (Aνν)	λν = −cν, λν ≥ 0
}

and by taking the corresponding indices of positive components, one can directly get
the index sets Pν in (S.1) without solving linear equation systems. We solve some
instances of these problems, that were randomly generated by a procedure described
in Dreves and Sudermann-Merx (2016, Section 6.1), and we report details for some
small problems in Table 2. Each column contains one example with the dimensions
given in the first row, and the specifications of the constants pν,Cν and D below.
The solution set always consists of a convex combination of “Sol” elements and our
algorithm has to solve “LES” linear equation systems of a maximal dimension N · K ,
and these numbers are reported in the last two rows of Table 2.

4 Conclusions

We presented an algorithm that is able to compute the entire solution set of an LGNEP
infinite time. This algorithmexploits the linear structure via duality theory and requires
the solution of typically a large number of linear equation systems. Therefore its
application is limited to smaller dimensional problems. However, to the best of our
knowledge there is currently no other algorithmic realization available, that is able to
compute the entire solution set of an LGNEP.

Acknowledgements I would like to thank two anonymous referees for their helpful comments, and one
referee for suggesting to compare the new algorithm with the approach presented in Remark 1.

123

Computing all solutions of linear generalized Nash… 221

References

Dorsch D, Jongen HTh, Shikhman V (2013) On structure and computation of generalized Nash equilibria.
SIAM J Optim 23:452–474

DrevesA (2014)Finding all solutions of affinegeneralizedNash equilibriumproblemswith one-dimensional
strategy sets. Math Methods Oper Res 80:139–159

Dreves A, Facchinei F, Fischer A, Herrich M (2014) A new error bound result for generalized Nash equi-
librium problems and its algorithmic application. Comput Optim Appl 59:63–84

Dreves A, Facchinei F, KanzowC, Sagratella S (2011) On the solution of the KKT conditions of generalized
Nash equilibrium problems. SIAM J Optim 21:1082–1108

Dreves A, von Heusinger A, Kanzow C, Fukushima M (2013) A globalized Newton method for the com-
putation of normalized Nash equilibria. J Global Optim 56:327–340

Dreves A, Kanzow C, Stein O (2012) Nonsmooth optimization reformulations of player convex generalized
Nash equilibrium problems. J Global Optim 53:587–614

Dreves A, Sudermann-Merx N (2016) Solving linear generalized Nash equilibrium problems numerically.
Optim Methods Softw. doi:10.1080/10556788.2016.1165676

Facchinei F, Kanzow C (2010) Generalized Nash equilibrium problems. Ann Oper Res 1755:177–211
Facchinei F, Kanzow C (2010) Penalty methods for the solution of generalized Nash equilibrium problems.

SIAM J Optim 20:2228–2253
Facchinei F, Fischer A, Piccialli V (2009) Generalized Nash equilibrium problems and Newton methods.

Math Program 117:163–194
Facchinei F, Pang J-S (2009)Nash equilibria: The variational approach. In: Eldar Y, PalomarD (eds) Convex

optimization in signal processing and communications. Cambridge University Press, Cambridge, pp
443–493

Facchinei F, Sagratella S (2011) On the computation of all solutions of jointly convex generalized Nash
equilibrium problems. Optim Lett 5(3):531–547

Fischer A, Herrich M, Schönefeld K (2014) Generalized Nash equilibrium problems - recent advances and
challenges. Pesqui Oper 34:521–558

Han D, Zhang H, Qian G, Xu L (2012) An improved two-step method for solving generalized Nash
equilibrium problems. Eur J Oper Res 216:613–623

Izmailov AF, Solodov MV (2014) On error bounds and Newton-type methods for generalized Nash equi-
librium problems. Comput Optim Appl 59:201–218

Krawczyk JB, Uryasev S (2000) Relaxation algorithm to find Nash equilibria with economic applications.
Environ Model Assess 5:63–73

Nabetani K, Tseng P, Fukushima M (2011) Parametrized variational inequality approaches to generalized
Nash equilibrium problems with shared constraints. Comput Optim Appl 48(3):423–452

Rosen JB (1965) Existence and uniqueness of equilibrium points for concave N -person games. Economet-
rica 33:520–534

Schiro DA, Pang J-S, ShanbhagUV (2013) On the solution of affine generalized Nash equilibrium problems
with shared constraints by Lemke’s method. Math Program 142(1–2):1–46

Stein O, Sudermann-Merx N (2015) The cone condition and nonsmoothness in linear generalized Nash
games. J Optim Theory Appl. doi:10.1007/s10957-015-0779-8

Sudermann-MerxN (2016) Linear generalizedNash equilibrium problems. Dissertation, Karlsruhe Institute
of Technology

123

http://dx.doi.org/10.1080/10556788.2016.1165676
http://dx.doi.org/10.1007/s10957-015-0779-8

	Computing all solutions of linear generalized Nash equilibrium problems
	Abstract
	1 Introduction
	2 The algorithm and its convergence
	3 Examples
	4 Conclusions
	Acknowledgements
	References

