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Abstract Let a polyhedral convex set be given by a finite number of linear inequalities
and consider the problem to project this set onto a subspace. This problem, called
polyhedral projection problem, is shown to be equivalent to multiple objective linear
programming. The number of objectives of the multiple objective linear program is
by one higher than the dimension of the projected polyhedron. The result implies that
an arbitrary vector linear program (with arbitrary polyhedral ordering cone) can be
solved by solving a multiple objective linear program (i.e. a vector linear program
with the standard ordering cone) with one additional objective space dimension.

Keywords Vector linear programming · Linear vector optimization · Multi-objective
optimization · Irredundant solution · Representation of polyhedra
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1 Problem formulations and solution concepts

Let k, n, p be positive integers and let two matrices G ∈ R
k×n, H ∈ R

k×p and a
vector h ∈ R

k be given. We consider the problem of polyhedral projection, that is,

Compute Y = {y ∈ R
p| ∃x ∈ R

n : Gx + Hy ≥ h
}
. (PP)
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412 A. Löhne, B. Weißing

A point (x, y) ∈ R
n × R

p is said to be feasible for (PP) if it satisfies Gx + Hy ≥ h.
A direction (x, y) ∈ R

n × (Rp \ {0}) is said to be feasible for (PP) if it satisfies
Gx + Hy ≥ 0. A pair (Xpoi, Xdir) is said to be feasible for (PP) if Xpoi is a nonempty
set of feasible points and Xdir is a set of feasible directions.

We use proj: Rn+p → R
p to denote the projection of a set X ⊆ R

n+p onto its
last p components. For a nonempty set B ⊆ R

p, conv B is the convex hull, and
cone B := {λx | λ ≥ 0, x ∈ conv B} is the convex cone generated by this set. We set
cone ∅ := {0}.
Definition 1 A pair (Xpoi, Xdir) is called a solution to (PP) if it is feasible, Xpoi and
Xdir are finite sets, and

Y = conv projXpoi + cone projXdir. (1)

For positive integers n,m, q, r , let A ∈ R
m×n, P ∈ R

q×n, Z ∈ R
q×r and b ∈ R

m

be given. Consider the vector linear program

minimize Px s.t. Ax ≥ b, (VLP)

where minimization is understood with respect to the ordering cone

C :=
{
y ∈ R

q | ZT y ≥ 0
}
.

This means that we use the ordering

w ≤C y :⇔ y − w ∈ C ⇔ ZTw ≤ ZT y. (2)

We assume ker ZT := {
y ∈ R

q | ZT y = 0
} = {0}, which implies that the ordering

cone C is pointed. Thus, (2) defines a partial ordering. If Z is the q × q unit matrix,
(VLP) reduces to a multiple objective linear program. This special class of (VLP) is
denoted by (MOLP).

A point x ∈ R
n is called feasible for (VLP) if it satisfies the constraint Ax ≥ b.

A direction x ∈ R
n \{0} is called feasible for (VLP) if Ax ≥ 0. The feasible set of

(VLP) is denoted by

S := {x ∈ R
n| Ax ≥ b

}
.

A pair (Spoi, Sdir) is called feasible for (VLP) if Spoi is a nonempty set of feasible
points and Sdir is a set of feasible directions. The recession cone of S is the set
0+S = {x ∈ R

n| Ax ≥ 0}. This means that 0+S \{0} represents the set of feasible
directions. We refer to a homogeneous problem (associated to (VLP)) if the feasible
set S is replaced by 0+S.

For a set X ⊆ R
n , we write P[X ] := {Px | x ∈ X}. The set

P := P[S] + C =
{
y ∈ R

q |∃x ∈ R
n, ZT y ≥ ZT Px, Ax ≥ b

}

is called the upper image of (VLP).
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Definition 2 A point x ∈ S is said to be a minimizer for (VLP) if there is no v ∈ S
such that Pv ≤C Px, Pv 
= Px , that is,

x ∈ S, Px /∈ P[S] + C\{0}.

A direction x ∈ R
n \ {0} of S is called a minimizer for (VLP) if the point x is a

minimizer for the homogeneous problem. This can be expressed equivalently as

x ∈ (0+S)\{0}, Px /∈ P[0+S] + C\{0}.

If (Spoi, Sdir) is feasible for (VLP) and the sets Spoi, Sdir are finite; and if

conv P[Spoi] + cone P[Sdir] + C = P, (3)

then (Spoi, Sdir) is called a finite infimizer for (VLP).
A finite infimizer (Spoi, Sdir) is called a solution to (VLP) if its two components

consist of minimizers only.

This solution concept for (VLP) has been introduced in Löhne (2011). It can be moti-
vated theoretically by a combination ofminimality and infimumattainment established
in Heyde and Löhne (2011). Its relevance for applications has been already discussed
indirectly in earlier papers, see e.g. Dauer (1987), Dauer and Liu (1990), Benson
(1998), Ehrgott et al. (2012). The solver Bensolve (see Löhne and Weißing 2015,
2016) uses this concept.

2 Equivalence between (PP), (MOLP) and (VLP)

As a first result, we show that a solution of (PP) can be easily obtained from a solution
of the following multiple objective linear program

min

(
y

−eT y

)
s.t. Gx + Hy ≥ h, (4)

where e := (1, . . . , 1)T . Both problems (PP) and (4) have the same feasible set but
(4) has one additional objective space dimension.

Theorem 3 Let a polyhedral projection problem (PP) be given. If (PP) is feasible,
then a solution (Spoi, Sdir) (compare Definition 2) of the associated multiple objective
linear program (4) exists. Every solution (Spoi, Sdir) of (4) is also a solution of (PP)
(Definition 1).

Proof Since (PP) is feasible, the projected polyhedron Y is nonempty. Thus it has a
finite representation. This implies that a solution X = (Xpoi, Xdir) of (PP) exists. We
show that X is also a solution of the associated multiple objective linear program (4).
X is feasible for (4) and its two components are finite sets. By (1), we have

P[S] =
{(

y
−eT y

) ∣∣
∣
∣ y ∈ Y

}
= conv P[Xpoi] + cone P[Sdir]
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414 A. Löhne, B. Weißing

which implies (3) for C = R
p+1
+ , i.e., X is a finite infimizer. We have

P[S] ⊆
{
y ∈ R

p+1| eT y = 0
}
,

which implies that all points and directions of S are minimizers. Thus X consists of
minimizers only. We conclude that a solution of (4) exists.

Let S = (Spoi, Sdir) be an arbitrary solution of (4). By (3) we have

conv P[Spoi] + cone P[Sdir] + R
p+1
+ = P[S] + R

p+1
+ , (5)

where Rp+1
+ denotes the nonnegative orthant. We show that

conv P[Spoi] + cone P[Sdir] = P[S] (6)

holds. The inclusion ⊆ is obvious by feasibility. Let y ∈ P[S], then eT y = 0. By (5),
y ∈ B + R

p+1
+ for B := conv P[Spoi] + cone P[Sdir]. There is v ∈ B and c ∈ R

p+1
+

such that y = v + c. Assuming that c ∈ R
p+1
+ \{0} we obtain eT c > 0. But B ⊆ P[S]

and hence the contradiction 0 = eT y = eT v + eT c > 0. Thus (6) holds. Omitting the
last components of the vectors occurring in (6), we obtain (1), which completes the
proof. ��

Of course, (MOLP) is a special case of (VLP). In order to obtain equivalence
between (VLP), (MOLP) and (PP), it remains to show that a solution of (VLP) can be
obtained from a solution of (PP).We assign to a given (VLP) the polyhedral projection
problem

compute P =
{
y ∈ R

p| ∃x ∈ R
n : ZT y ≥ ZT Px, Ax ≥ b

}
. (7)

Obviously, (VLP) is feasible if and only if (7) is feasible. The next result states that a
solution of (VLP), whenever it exists, can be obtained from a solution of the associated
polyhedral projection problem (7). This result is prepared by the following proposition.
The main idea is that non-minimal points and directions can be omitted in a certain
representation of a nonempty closed convex set.

Proposition 4 Let a nonempty compact set V ⊆ R
q of points and a compact set

R ⊆ R
q \ {0} of directions be given and define P := conv V + cone R. Furthermore,

let C ⊆ R
q be a nonempty closed convex cone. If P + C ⊆ P and

L ∩ C = {0}, (8)

where L := 0+P ∩ −0+P is the lineality space of P , then

P = conv
(
V \ (P + C \ {0}))+ cone

(
R \ (0+P + C \ {0}))+ C.
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Equivalence between polyhedral projection, multiple… 415

Proof The inclusion ⊇ is obvious. To show the reverse inclusion, let U be a linear
subspace complementary to L . Since V and R are compact, and V 
= ∅, P is a
nonempty closed convex set. Then the set ext(P ∩ U ) of extreme points of P ∩ U is
nonempty, see e.g. Grünbaum (2003, Sect.2.4). An element v ∈ ext(P ∩ U ) admits
the representation

v =
∑

j∈J

λ jv
j +
∑

i∈I
μi r

i ,

with finite index sets J and I, v j ∈ V, λ j ≥ 0 for j ∈ J,
∑

j∈J λ j = 1, and

r i ∈ R, μi ≥ 0 for i ∈ I . Every v j and r i may be decomposed by means of
v j = v

j
U + v

j
L and r i = r iU + r iL with v

j
U , r iU ∈ U and v

j
L , r iL ∈ L . Therefore,

v =
∑

j∈J

λ jv
j
U +

∑

i∈I
μi r

i
U +

∑

j∈J

λ jv
j
L +

∑

i∈I
μi r

i
L

︸ ︷︷ ︸
∈L

.

Because v ∈ U , the last two sums vanish. In the resulting representation

v =
∑

j∈J

λ jv
j
U +

∑

i∈I
μi r

i
U

︸ ︷︷ ︸
=0

the second sum equals to zero because v is an extremal point. For the same reason,
v
j
U = v for every j with λ j > 0 follows. Hence, v j = v + v

j
L .

Assume that v j ∈ P + C \ {0}. There exist y ∈ P and c ∈ C \ {0} such that
v j = y + c. With decompositions y = yL + yU and c = cL + cU , where cU 
= 0
(because of condition (8) and c 
= 0), this leads to

v + v
j
L = v j = yU + yL + cU + cL ,

whence

v = yU + cU + yL + cL − v
j
L︸ ︷︷ ︸

=0

.

Again, the last part being zero results from v being an element of U . Let μ ∈ (0, 1)
be given. As a linear combination of elements of U, yU + 1

μ
cU belongs to U . On the

other hand,

yU + 1

μ
cU = y + 1

μ
c

︸ ︷︷ ︸
∈P

−yL − 1

μ
cL

︸ ︷︷ ︸
∈L

∈ P.
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416 A. Löhne, B. Weißing

Hence, yU + 1
μ
cU ∈ P ∩U . By adding a meaningful zero, a representation of v,

v = yU + cU

= μ

(
yU + 1

μ
cU

)
+ (1 − μ)yU ,

as a convex combination of different points of P ∩ U is found, which contradicts v

being an extremal point. Thus, v j /∈ P + C \ {0}; and altogether

ext(P ∩U ) ⊆ V \ (P + C \ {0}) + L . (9)

Now an extremal direction r ∈ 0+(P ∩U ) is considered. Since V and R are
compact, P = conv V + cone R implies 0+P = cone R (see e.g. Rockafellar (1972,
Corollary 9.1.1)). Thus, a representation

r =
∑

j∈J

μ j r
j
U +

∑

j∈J

μ j r
j
L

︸ ︷︷ ︸
=0

by r j = r j
U +r j

L ∈ R can be obtained. From extremality of r it follows that all r j
U 
= 0

with μ j > 0 coincide with r up to positive scaling. Such an j is taken and, without
loss of generality, one may assume μ j = 1, i.e.:

r j = r + r j
L .

We show that
r j ∈ (R \ (0+P + C \ {0})) ∪ (C + L). (10)

Indeed, let r j ∈ 0+P + C \ {0}, that is, r j = yh + c for yh ∈ 0+P and c ∈ C \ {0}.
We need to show that r j ∈ C + L follows. If yh ∈ L , this is obvious. Thus, let
yh /∈ L . Consider the decompositions yh = yhU + yhL and c = cU + cL with yhU , cU ∈
U, yhL , cL ∈ L , yhU 
= 0 and, by (8), cU 
= 0. We obtain

r + r j
L = r j = yhU + yhL + cU + cL .

Since r ∈ U ,

r = yhU + cU + yhL + cL − r j
L = yhU + cU .

From L ⊆ 0+P the inclusion 0+P + L ⊆ 0+P and subsequently yhU ∈ 0+P −{
yhL
} ⊆ 0+P is deduced. Moreover, cU ∈ C + L ⊆ C + 0+P ⊆ 0+P . Noted that

0+(P ∩U ) = 0+P ∩U , both directions yhu and cU are in 0+(P ∩U ). Therefore the
representation of r = yhU + cU as conic combination of elements of 0+(P ∩ U ), in
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Equivalence between polyhedral projection, multiple… 417

which r was supposed to be extremal, proves equality of r, yhU and cU up to positive
scaling. This implies r ∈ C + L and r j ∈ C + L .

From (10) we deduce

r j ∈ cone
(
R \ (0+P + C \ {0}))+ C + L

and hence
0+(P ∩U ) ⊆ cone

(
R \ (0+P + C \ {0}))+ C + L . (11)

Any lineality direction l ∈ L can be represented by a conic combination of elements
of R : l =∑ j∈J μ j l j . For any lk with μk > 0 this results in

lk = 1

μk

⎛

⎝l −
∑

j∈J\{k}
μ j l

j

⎞

⎠ ∈ −0+P

and therefore in lk ∈ L . If such an lk is an element of 0+P + C , then there exist
r ∈ 0+P and c ∈ C with lk = r + c. This implies

c = lk − r︸ ︷︷ ︸
∈−0+P

∈ L ,

and by (8), c = 0 follows. Therefore, lk ∈ R \ (0+P + C \ {0}), resulting in

L ⊆ cone
(
R \ (0+P + C \ {0})) . (12)

Combining the results (12) and (11) yields

L + 0+(P ∩U ) ⊆ L + cone
(
R \ (0+P + C \ {0}))+ C + L

⊆ cone
(
R \ (0+P + C \ {0}))+ C.

Using (9) and the decomposition P = L + [P ∩U ], we obtain

P = L + (P ∩U )

= L + (conv ext(P ∩U ) + 0+(P ∩U )
)

⊆ conv (V \ (P + C \ {0})) + cone
(
R \ (0+P + C \ {0}))+ C,

which proves the claim. ��

Theorem 5 Let a vector linear program (VLP) be given. If (VLP) is feasible, a
solution of the associated polyhedral projection problem (7) according to Definition
1 exists. Let X = (Xpoi, Xdir) be a solution of (7). Assume that (8) is satisfied and set
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418 A. Löhne, B. Weißing

Spoi : =
{
x ∈ R

n| (x, y) ∈ Xpoi, y /∈ P + C\{0}
}
,

Sdir : =
{
x ∈ R

n| (x, y) ∈ Xdir, y /∈ 0+P + C\{0}
}
.

Then (Spoi, Sdir) is a solution of (VLP) in the sense of Definition 2. Otherwise, if (8)
is violated, (VLP) has no solution.

Proof The existence of a solution of the polyhedral projection problem (7) is evident,
because a polyhedron has a finite representation. Consider a solution (Xpoi, Xdir) of
(7). From Proposition 4, we obtain

P = conv P[Spoi] + cone P[Sdir] + C.

Hence, (Spoi, Sdir) is a finite infimizer for (VLP). It is evident that Spoi and Sdir consist
of minimizers only.

Assume now that (8) is violated. Take y ∈ L ∩ C\{0}, then for any x ∈ S, Px =
Px − y + y, where Px − y ∈ P and y ∈ C\{0}. Thus, x is not a minimizer.

The following statement is an immediate consequence of Theorem 5.

Corollary 6 A solution for (VLP) exists if and only if (VLP) is feasible and (8) is
satisfied.

In the remainder of this paper we show how a solution of (VLP) can be obtained
from an irredundant solution of the associated projection problem (PP). A solution
(Xpoi, Xdir) of (PP) is called irredundant if there is no solution (V poi, V dir) of (PP)
satisfying

V poi ⊆ Xpoi, V dir ⊆ Xdir, (V poi, V dir) 
= (Xpoi, Xdir).

The computation of an irredundant solution of (PP) from an arbitrary solution of
(PP) does not depend on the dimension n. It can be realized, for instance, by vertex
enumeration in Rp.

Theorem 7 Let a vector linear program (VLP) be given. If (VLP) is feasible, an
irredundant solution of the associated polyhedral projection problem (7) exists. Let
X = (Xpoi, Xdir) be an irredundant solution of (7). Assume that (8) is satisfied and
set

Spoi : =
{
x ∈ R

n| (x, y) ∈ Xpoi
}
,

Sdir : =
{
x ∈ R

n| (x, y) ∈ Xdir, y /∈ L + C\{0}
}
.

Then (Spoi, Sdir) is a solution of (VLP). Otherwise, if (8) is violated, (VLP) has no
solution.
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Equivalence between polyhedral projection, multiple… 419

Proof By Theorem 5, it remains to show that (Spoi, Sdir) consists of minimizers only.
Assume that x for (x, y) ∈ Xpoi is not a minimizer. There exists z ∈ P and c ∈ C\{0}
such that y = z + c. Let us denote the elements of Xpoi as

Xpoi =
{
(x1, y1), . . . , (xα−1, yα−1), (x, y)

}
.

The point z can be represented by Xpoi and d ∈ 0+P , which yields

y − c = z =
α−1∑

i=1

λi y
i + λy + d, λ1, . . . , λα−1, λ ≥ 0,

α−1∑

i=1

λi + λ = 1.

We set v := ∑α−1
i=1 λi yi ∈ P and consider two cases: (i) For λ = 1, we have v = 0

and hence c = −d, a contradiction to (8). (ii) For λ < 1, we obtain

y =
α−1∑

i=1

λi

1 − λ
yi + 1

1 − λ
(c + d) ∈ conv

{
y1, . . . , yα−1

}
+ cone projXdir

= conv
(
(projXpoi) \ {y}

)
+ cone projXdir.

This contradicts the assumption that the solution (Xpoi, Xdir) is irredundant.
Assume now that (x, y) ∈ Xdir with y /∈ L+C\{0} is not a minimizer. There exists

z ∈ 0+P and c ∈ C\{0} such that y = z + c. Let us denote the elements of Xdir by

Xdir =
{
(x1, y1), . . . , (xβ−1, yβ−1), (x, y)

}
.

The direction z can be represented by Xdir, which yields

y − c = z =
β−1∑

i=1

λi y
i + λy, λ1, . . . , λβ−1, λ ≥ 0.

We set v := ∑β−1
i=1 λi yi ∈ 0+P and distinguish two cases: (i) Let λ ≥ 1. Then

(1 − λ)y − v ∈ −0+P ∩ C\{0}. This contradicts (8) since C ⊆ 0+P . (ii) Let λ < 1.
Then

y = w + d for γi := λi

1 − λ
≥ 0, w :=

β−1∑

i=1

γi y
i and d := 1

1 − λ
c ∈ C\{0}.

We have w /∈ −0+P since otherwise y ∈ L + C \{0} would follow. For d there is a
representation

d =
β−1∑

i=1

μi y
i + μy μ1, . . . , μβ−1, μ ≥ 0.
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420 A. Löhne, B. Weißing

The condition μ ≥ 1 would imply w = (1− μ)y − d ∈ −0+P . Thus we have μ < 1
and hence

y =
β−1∑

i=1

γi + μi

1 − μ
yi ∈ cone

{
y1, . . . , yβ−1

}
= cone

(
(projXdir) \ {y}

)
.

This contradicts the assumption that the solution (Xpoi, Xdir) is irredundant. ��

3 Examples and remarks

It is well known that (VLP) can be solved by considering the multiple objective linear
program

minimize ZT Px s.t. Ax ≥ b, (13)

compare, c.f., Sawaragi et al. (1985). The r columns of the matrix Z ∈ R
q×r cor-

respond to the defining inequalities of C (or equivalently, to the generating vectors
of the dual cone). The objective space dimension r of (13) can be much larger than
the objective space dimension q of the initial vector linear program, see e.g. Roux
and Zastawniak (2015) for a sample application and Löhne and Rudloff (2015) for
the number of inequalities required to describe the ordering cone there. In contrast to
(13), with our approach, the objective space dimension is increased only by one.

In the following toy-example with q = 2 we illustrate the procedure.

Example 8 Let us consider the following instance of (VLP):

minimize

(
1 −1
1 1

)
x s.t. x ∈ S, (14)

where the feasible set S is defined by

S :=
⎧
⎨

⎩
x ∈ R

n
∣
∣
∣
∣

⎛

⎝
1 0
1 −1
1 1

⎞

⎠ x ≥
⎛

⎝
0

−1
−1

⎞

⎠

⎫
⎬

⎭
. (15)

Minimization is understood with respect to the partial ordering generated by the order-
ing cone

C :=
{
y ∈ R

q
∣
∣
∣
∣

(−1 2
2 1

)

︸ ︷︷ ︸
=:ZT

y � 0

}
.

The solution concept for the vector linear program (14) demands the computation of a
representation of the upper imageP = P[S]+C , which is depicted in Fig. 1. First, we
expressP as an instance of (PP). This step pushes the ordering cone into the constraint
set, compare (7):

Compute P =
{
y ∈ R

q | ∃ x ∈ S, ZT y ≤ ZT Px
}
, (16)
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Equivalence between polyhedral projection, multiple… 421

Fig. 1 The feasible set S and the upper image P[S] +C of Example 8. A solution is given by the feasible
points x1, x2 and the feasible direction x3. Their respective image-vectors y1, y2 and y3 generate the upper
image. It can be seen that x4 is not part of a solution, as the image-vector y4 belongs to the ordering cone
C and is therefore not a minimal direction

Now we formulate the corresponding instance of (MOLP), with one additional image
space dimension, compare (4):

minimize

⎛

⎝
0 0 1 0
0 0 0 1
0 0 −1 −1

⎞

⎠

︸ ︷︷ ︸
=:P̂

(
x
y

)
s.t.

(
x
y

)
∈ Ŝ, (17)

where the feasible set Ŝ is the same as in (16), i.e.

Ŝ :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(
x
y

)
∈ R

n+q
∣
∣
∣
∣

⎛

⎜
⎜
⎜
⎜
⎝

1 0
1 −1
1 1

−1 −3
−3 1

⎞

⎟
⎟
⎟
⎟
⎠
x +

⎛

⎜
⎜
⎜
⎜
⎝

0 0
0 0
0 0

−1 2
2 1

⎞

⎟
⎟
⎟
⎟
⎠

y �

⎛

⎜
⎜
⎜
⎜
⎝

0
−1
−1
0
0

⎞

⎟
⎟
⎟
⎟
⎠

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

.

Now we consider a solution (Ŝpoi, Ŝdir) to (17), which consists of Ŝpoi := {
ŷ1, ŷ2

}

with feasible points

ŷ1 =
(
x1

y1

)
=

⎛

⎜
⎜
⎝

0
1

−1
1

⎞

⎟
⎟
⎠ , ŷ2 =

(
x2

y2

)
=

⎛

⎜
⎜
⎝

0
−1
1

−1

⎞

⎟
⎟
⎠ ;

and Ŝdir := {ŷ3, ŷ4} with the feasible directions

ŷ3 =
(
x3

y3

)
=

⎛

⎜
⎜
⎝

1
−1
2
0

⎞

⎟
⎟
⎠ , ŷ4 =

(
x4

y4

)
=

⎛

⎜
⎜
⎝

0
0

−1
2

⎞

⎟
⎟
⎠ .
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This means ŷi is R3+-minimal for i = 1, . . . , 4 and

P̂[Ŝ] + R
3+ = conv P̂[Ŝpoi] + cone P̂[Ŝdir] + R

3+.

From Theorem 3 we deduce that (Ŝpoi, Ŝdir) is also a solution for the polyhedral
projection problem (16). This solution is irredundant, so the x-components of the
points ŷ1, ŷ2, that is x1 and x2, are the points of a solution to the original vector
linear program (14) by Theorem 7. It remains to sort out those directions whose y-part
belongs to the ordering coneC (compare Theorem 7): This is the case for the direction
ŷ4, as ZT y4 = (5, 0)T � 0. Thus the solution for (14) consists of the feasible points
x1, x2 and the feasible direction x3 (also compare Fig. 1):

Spoi =
{(

0
1

)
,

(
0

−1

)}
Sdir =

{(
1

−1

)}
.

It generates the upper image of (14) (Fig. 1) by means of

P = conv P[Spoi] + cone P[Sdir] + C.

Finally, let us demonstrate how P can be obtained directly from P̂ . We start with an
irredundant representation

P̂ = conv
{
ȳ1, ȳ2

}
+ cone

{
ȳ3, ȳ4, ȳ5

}
,

where

ȳ1 =
⎛

⎝
−1
1
0

⎞

⎠, ȳ2 =
⎛

⎝
1

−1
0

⎞

⎠, ȳ3 =
⎛

⎝
2
0

−2

⎞

⎠, ȳ4 =
⎛

⎝
−1
2

−1

⎞

⎠, ȳ5 =
⎛

⎝
0
0
1

⎞

⎠.

We rule out those ȳi where the condition eT ȳi = 0 is violated, whence ȳ5 is cancelled.
Then we delete the last component of each vector and obtain

P = conv
{
y1, y2

}
+ cone

{
y3, y4

}

with

y1 =
(−1

1

)
, y2 =

(
1

−1

)
, y3 =

(
2
0

)
, y4 =

(−1
2

)
.

In the preceeding example one needs one additional objective, whereas the “clas-
sical” approach (13) does not require any additional objective. Note that every step of
the procedure presented here is independent of the actual values of q � 2 and r � q.
In the following example we consider the case r > q + 1. This leads to an advantage
in comparison to the classical method (13). The cone C ⊆ R

3 of the vector linear

123



Equivalence between polyhedral projection, multiple… 423

program (18) has 6 extreme directions and a solution is obtained from a solution of
a corresponding multiple objective linear program (19) with only 4 objectives. Note
that in the classical approach, see (13), 6 objectives are required.

Example 9 Consider the vector linear program

minimize Px s.t. Bx ≥ a, x ≥ 0 (18)

with ordering cone C = {y ∈ R
3| ZT y ≥ 0

}
and data

P =
⎛

⎝
1 0 −1
1 1 0
0 1 1

⎞

⎠, B =

⎛

⎜
⎜
⎝

1 1 1
1 2 2
2 2 1
2 1 2

⎞

⎟
⎟
⎠, a =

⎛

⎜
⎜
⎝

3
4
4
4

⎞

⎟
⎟
⎠, Z =

⎛

⎝
4 2 4 1 0 0
2 4 0 0 1 4
2 2 2 2 2 2

⎞

⎠.

We assign to (18) the multiple objective linear program

min P̂

(
x
y

)
s.t. B̂

(
x
y

)
≥ â, x ≥ 0 (19)

with objective function

P̂

(
x
y

)
=
(

y
−eT y

)

and constraints Bx ≥ a, ZT y ≥ ZT Px, x ≥ 0. Thus, the data of (19) are

P̂ =

⎛

⎜
⎜
⎝

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 −1 −1 −1

⎞

⎟
⎟
⎠, B̂ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 1 1 0 0 0
1 2 2 0 0 0
2 2 1 0 0 0
2 1 2 0 0 0

−6 −4 2 4 2 2
−6 −6 0 2 4 2
−4 −2 2 4 0 2
−1 −2 −1 1 0 2
−1 −3 −2 0 1 2
−4 −6 −2 0 4 2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, â =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

3
4
4
4
0
0
0
0
0
0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

A solution to (19) consists of Ŝpoi = {ŷ1, ŷ2, ŷ3} with

ŷ1 =
(
x1

y1

)
=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

2
0
1
1
2
1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, ŷ2 =
(
x2

y2

)
=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
0
2

−1
1
2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, ŷ3 =
(
x3

y3

)
=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
0
4

−4
0
4

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠
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and Ŝdir = {ŷ4, . . . , ŷ8}, (again ŷi = (xi , yi )T ) with

ŷ4 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
0
0
0

−1
2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, ŷ5 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
0
0
2
2

−1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, ŷ6 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
0
1

−1
0
1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, ŷ7 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
0
0
1
0
0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, ŷ8 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
0
0
0
1
0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

One can easily check that y4, y5, y7, y8 ∈ C and y6 /∈ C . Thus, a solution to the VLP
(18) consists of Spoi = {x1, x2, x3} and Sdir = {x6}, that is,

Spoi =
⎧
⎨

⎩

⎛

⎝
2
0
1

⎞

⎠

⎛

⎝
0
0
4

⎞

⎠

⎛

⎝
1
0
2

⎞

⎠

⎫
⎬

⎭
, Sdir =

⎧
⎨

⎩

⎛

⎝
0
0
1

⎞

⎠

⎫
⎬

⎭

The upper image P̂ of the MOLP (19) is given by its vertices

ȳ1 =

⎛

⎜
⎜
⎝

1
2
1

−4

⎞

⎟
⎟
⎠, ȳ2 =

⎛

⎜
⎜
⎝

−1
1
2

−2

⎞

⎟
⎟
⎠, ȳ3 =

⎛

⎜
⎜
⎝

−4
0
4
0

⎞

⎟
⎟
⎠

and its extreme directions

ȳ4 =

⎛

⎜
⎜
⎝

0
−1
2

−1

⎞

⎟
⎟
⎠, ȳ5 =

⎛

⎜
⎜
⎝

2
2

−1
−3

⎞

⎟
⎟
⎠, ȳ6 =

⎛

⎜
⎜
⎝

−1
0
1
0

⎞

⎟
⎟
⎠ ,

ȳ7 =

⎛

⎜
⎜
⎝

1
0
0

−1

⎞

⎟
⎟
⎠, ȳ8 =

⎛

⎜
⎜
⎝

0
1
0

−1

⎞

⎟
⎟
⎠, ȳ9 =

⎛

⎜
⎜
⎝

0
0
0
1

⎞

⎟
⎟
⎠ .

We sort out ȳ9, as eT ȳ9 
= 0, and we delete the last component of each vector
ȳ1, . . . , ȳ8. As a result we obtain the vertices

y1 =
⎛

⎝
1
2
1

⎞

⎠, y2 =
⎛

⎝
−1
1
2

⎞

⎠, y3 =
⎛

⎝
−4
0
4

⎞

⎠

and the extreme directions

y4 =
⎛

⎝
0

−1
2

⎞

⎠, y5 =
⎛

⎝
2
2

−1

⎞

⎠, y6 =
⎛

⎝
−1
0
1

⎞

⎠, y7 =
⎛

⎝
1
0
0

⎞

⎠, y8 =
⎛

⎝
0
1
0

⎞

⎠

of the upper image P of the VLP (18).
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Fig. 2 The polytope P[W ] of Example 10 computed by Bensolve (see Löhne and Weißing 2015, 2016)
via MOLP reformulation. The resulting polytope has 43,680 vertices and 26,186 facets. The upper image
P ⊆ R

4 of the corresponding MOLP has 43,680 vertices and 26,187 facets. The displayed polytope is one
of these facets, the only one that is bounded

In the next examplewehave used theVLP solverbensolve (seeLöhne andWeißing
2015, 2016) in order to compute the image of a linear map over a polytope, which
can be expressed as a polyhedral projection problem. The solver is not able to handle
ordering cones C = {0}. Therefore a transformation into (MOLP) with one additional
objective space dimension is required.

Example 10 Let W be the 729-dimensional unit hypercube and let P be the 3 ×
729 matrix whose columns are the 93 = 729 different ordered arrangements of 3
numbers out of the set {−4,−3,−2,−1, 0, 1, 2, 3, 4}. The aim is to compute the
polytope P[W ] := {Pw| w ∈ W }. To this end, we consider the multiple objective
linear program

minimize

(
Px

−eT Px

)
s.t. x ∈ W,

having 4 objectives, 729 variables, and 729 double-sided constraints. The upper image
intersected with the hyperplane

{
y ∈ R

4| eT y = 0
}
is the set P[W ], see Fig. 2.

We close this article by enumerating some related results which can be found in
the literature. It is known Jones et al. (2008) that the parametric linear program

min cT x s.t. Gx + Hy ≥ b (PLP(y))

123



426 A. Löhne, B. Weißing

is equivalent to the problem to project a polyhedral convex set onto a subspace. For
every parameter vector y we can consider the dual parametric linear program

max(b − Hy)T u s.t. GT u = c, u ≥ 0, (DPLP(y))

which is closely related to an equivalent characterization of a vector linear program (or
multiple objective linear program) by the family of all weighted sum scalarizations,
see e.g. Focke (1973).

Fülöp’s seminal paper Fülöp (1993) has to be mentioned because a problem sim-
ilar to (4) was used there to show that linear bilevel programming is equivalent to
optimizing a linear objective function over the solution of a multiple objective linear
program.

The book Lotov et al. (2004) provides interesting links between multiple objective
linear programming and computation of convex polyhedra.
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