
Math Meth Oper Res (2016) 84:461–487
DOI 10.1007/s00186-016-0550-4

ORIGINAL ARTICLE

Continuous-time Markov decision processes with
risk-sensitive finite-horizon cost criterion

Qingda Wei1

Received: 23 October 2015 / Published online: 11 June 2016
© Springer-Verlag Berlin Heidelberg 2016

Abstract This paper studies continuous-timeMarkov decision processes with a denu-
merable state space, a Borel action space, bounded cost rates and possibly unbounded
transition rates under the risk-sensitive finite-horizon cost criterion. We give the suit-
able optimality conditions and establish the Feynman–Kac formula, via which the
existence and uniqueness of the solution to the optimality equation and the existence
of an optimal deterministic Markov policy are obtained. Moreover, employing a tech-
nique of the finite approximation and the optimality equation, we present an iteration
method to compute approximately the optimal value and an optimal policy, and also
give the corresponding error estimations. Finally, a controlled birth and death system
is used to illustrate the main results.

Keywords Continuous-time Markov decision processes · Risk-sensitive finite-
horizon cost criterion · Unbounded transition rates · Feynman–Kac formula ·
Finite approximation

Mathematics Subject Classification 93E20 · 90C40

1 Introduction

Continuous-time Markov decision processes (CTMDPs) have been widely studied
since they have wide applications, such as the controlled queueing system, the control
of the epidemic, and telecommunication; see, for instance, Puterman (1994), Kitaev
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and Rykov (1995), Guo and Hernández-Lerma (2009), Prieto-Rumeau and Lorenzo
(2010), Prieto-Rumeau and Hernández-Lerma (2012), Guo and Zhang (2014) and
Guo et al. (2015). The time interval in real life is always finite, so the finite-horizon
optimality criterion is a commonly used criterion. The existence of optimal policies
under the finite-horizon expected total cost criterion has been discussed under the
different sets of optimality conditions; see, for instance, Miller (1968), Wei and Chen
(2014) and Guo et al. (2015). However, the finite-horizon expected total cost criterion
is risk-neutral and cannot reflect the attitude of a decision-maker to the risk. In the
real-world applications, a decision-maker is usually risk-sensitive, that is, he/she is
either risk-seeking or risk-averse. Thus, it is necessary for us to take the risk-sensitivity
of a decision-maker into consideration in the definition of the optimality criterion. The
risk-sensitive optimality criteria employ the exponential utility function to character-
ize the risk-sensitivity of a decision-maker. When the risk-sensitivity coefficient of
the exponential utility function takes positive (negative) values, the decision-maker
is risk-averse (risk-seeking). For discrete-time MDPs, the risk-sensitive optimality
criteria have been widely studied; see, for instance, Di Masi and Stettner (2007),
Jaśkiewicz (2007), Cavazos-Cadena and Hernández-Hernández (2011) and the refer-
ences therein. But there exist few works on the risk-sensitive optimality criteria for
CTMDPs. Ghosh and Saha (2014) studied the risk-sensitive finite-horizon cost crite-
rion and the risk-sensitive infinite-horizon discounted cost and average cost criteria
for CTMDPs. More precisely, Ghosh and Saha (2014) also used the exponential utility
function to characterize the risk-sensitivity of a decision-maker, dealt with the case
of a denumerable state space, a positive risk-sensitivity coefficient, the nonnegative
and bounded cost rates and the bounded transition rates, and obtained the existence of
optimal policies. The positive risk-sensitivity coefficient indicates that the decision-
maker is risk-averse in Ghosh and Saha (2014). However, the decision-maker may
be risk-seeking in real life. Moreover, the transition rates in the controlled queueing
system and the control of epidemic are usually unbounded; see, for instance, Guo and
Hernández-Lerma (2009), Prieto-Rumeau and Lorenzo (2010), Prieto-Rumeau and
Hernández-Lerma (2012), Guo and Zhang (2014) and Guo et al. (2015). Therefore,
it is desirable for us to investigate the risk-sensitive optimality criteria for CTMDPs
in which the risk-sensitivity coefficient can take positive and negative values and the
transition rates are allowed to be unbounded.

In this paper we further study the risk-sensitive finite-horizon cost criterion for
CTMDPs in Ghosh and Saha (2014). The state space is denumerable and the action
space is a Borel space. The cost rates and the risk-sensitivity coefficient can take
positive and negative values. The transition rates are allowed to be unbounded. Under
the drift condition on the transition rates and the boundedness condition on the cost
rates, we obtain the Feynman–Kac formula for CTMDPs which plays a crucial role in
the proof of the existence of optimal policies (see Theorem 3.1). Besides the conditions
for the Feynman–Kac formula, the standard continuity and compactness conditions are
required for the existence of optimal policies. Under these mild conditions, we show
the existence and uniqueness of the solution to the optimality equation via constructing
an approximating sequence of bounded transition rates and using the Feynman–Kac
formula, and then obtain the existence of an optimal deterministicMarkov policy from
the optimality equation (see Theorem 4.1).
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On the other hand, we cannot obtain the precise forms of the optimal value and
an optimal policy in general. Thus, it is of great importance for us to study the
numerical methods. There are a few works dealing with the approximate compu-
tations of the risk-neutral optimality criteria for CTMDPs with the denumerable states
and unbounded transition rates. van Dijk (1988, 1989) gave an approximate method
for the finite-horizon expected total cost criterion via a technique of time discretiza-
tion. Prieto-Rumeau and Lorenzo (2010) and Prieto-Rumeau and Hernández-Lerma
(2012) studying the expected average reward criterion and the expected discounted
reward criterion, respectively, proposed the numerical approximations by employing
the finite truncation approach. Guo and Zhang (2014) discussed the finite approxima-
tion for the discounted CTMDPs with constraints by using a technique of occupation
measures and the finite truncation method. In this paper we focus on the approximate
computations of the optimal value and an optimal policy for the risk-sensitive finite-
horizon cost criterion, which are not involved in Ghosh and Saha (2014). Since the
state space is a denumerable set and the set of all admissible actions may be uncount-
able in the original control model M, we construct a sequence of the control models
{Mn, n ≥ 1} with finite states and finite admissible actions to design a tractable
numerical method. More specifically, applying the technique of the finite truncation
in Prieto-Rumeau and Lorenzo (2010), Prieto-Rumeau and Hernández-Lerma (2012)
and Guo and Zhang (2014) to the state space and the transition rates of the modelM,
we give the corresponding elements of the modelMn . Moreover, by choosing the set
of all admissible actions of the modelMn satisfying a certain condition, we show that
the optimal value of the model Mn converges to that of the model M and obtain the
corresponding error estimation under the conditions which are stronger than those for
the existence of optimal policies (see Theorem 5.1). Basing on this convergence and
employing the optimality equation, we present an iterationmethod for the approximate
computations of the optimal value and an optimal policy of the modelM and give the
corresponding error estimations (see Theorem 5.2). It should be mentioned that all the
results on the numerical method for the risk-sensitive finite-horizon cost criterion are
new. Finally, a controlled birth and death system which satisfies all the conditions in
this paper is used to illustrate the applications of the risk-sensitive finite-horizon cost
criterion and the numerical method.

The rest of this paper is organized as follows. In Sect. 2, we introduce the con-
trol model and the risk-sensitive finite-horizon cost criterion. In Sect. 3, we give the
optimality conditions and establish the Feynman–Kac formula. In Sect. 4, we prove
the existence of optimal policies via the optimality equation approach. In Sect. 5, we
present an iteration method for the approximate computations of the optimal value and
an optimal policy. In Sect. 6, we use a controlled birth and death system to illustrate
the main results. In Sect. 7, we conclude with some remarks.

2 The control model

The control model under consideration is a five-tuple

M := {S, A, (A(i), i ∈ S), q( j |i, a), c(i, a)}.
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• The state space S is the set of all nonnegative integers.
• The action space A is a Borel space with the Borel σ -algebra B(A).
• A(i) ∈ B(A) denotes the set of all admissible actions in state i ∈ S. Let K :=

{(i, a)|i ∈ S, a ∈ A(i)}.
• The transition rate q( j |i, a) is measurable in a ∈ A(i) for each fixed i, j ∈ S.
It satisfies q( j |i, a) ≥ 0 for all (i, a) ∈ K and j �= i . Moreover, we assume
that the transition rate is conservative and stable, i.e.,

∑
j∈S q( j |i, a) = 0 for all

(i, a) ∈ K , and q∗(i) := supa∈A(i) |q(i |i, a)| < ∞ for all i ∈ S.
• The real-valued cost rate function c(i, a) is measurable in a ∈ A(i) for each i ∈ S.

Set S∞ := S ∪ {i∞} with an isolated point i∞ /∈ S,R+ := (0,+∞), �0 := (S ×
R+)∞ and � := �0 ∪ {(i0, θ1, i1, . . . , θm−1, im−1,∞, i∞,∞, i∞, . . .)|i0 ∈ S, il ∈
S, θl ∈ R+ for each 1 ≤ l ≤ m − 1, m ≥ 2}. Thus, we obtain a measurable space
(�,F) in which F denotes the Borel σ -algebra of �. For each ω = (i0, θ1, i1, . . .) ∈
�, define X0(ω) := i0, T0(ω) := 0, Xm(ω) := im , Tm(ω) := θ1 + θ2 + · · · + θm for
m ≥ 1, T∞(ω) := limm→∞ Tm(ω), and the state process

ξt (ω) :=
∑

m≥0

I{Tm≤t<Tm+1}im + I{T∞≤t}i∞ for t ≥ 0,

where ID represents the indicator function of a set D. The process after T∞ is regarded
to be absorbed in the state i∞. Hence, we write q(i∞|i∞, a∞) = 0, c(i∞, a∞) = 0,
A(i∞) := {a∞}, A∞ := A∪{a∞}, where a∞ is an isolated point. LetFt := σ({Tm ≤
s, Xm = i} : i ∈ S, s ≤ t,m ≥ 0) for t ≥ 0, Fs− := ∨

0≤t<s Ft , and P :=
σ({D×{0}, D ∈ F0}∪ {D× (s,∞), D ∈ Fs−, s > 0}) which denotes the σ -algebra
of predictable sets on � × [0,∞) related to {Ft }t≥0.

In order to define the optimality criterion, we introduce the definition of a policy
below.

Definition 2.1 A P-measurable transition probability π(·|ω, t) on (A∞,B(A∞)),
concentrated on A(ξt−(ω)) is called a randomized Markov policy if there exists a
kernel ϕ on A∞ given S∞ ×[0,∞) such that π(·|ω, t) = ϕ(·|ξt−(ω), t). A policy π is
said to be deterministicMarkov if there exists ameasurable function f on [0,∞)×S∞
satisfying f (t, i) ∈ A(i) for all (t, i) ∈ [0,∞) × S∞ and π(·|ω, t) = δ f (t,ξt−(ω))(·),
where δx (·) is the Dirac measure concentrated at the point x .

The class of all randomized Markov policies and the class of all deterministic
Markov policies are denoted by 
 and 
D , respectively.

For each π ∈ 
, we define the random measure

νπ (ω, dt, j) :=
∫

A
q( j |ξt−(ω), a)π(da|ξt−(ω), t)I{ j �=ξt−(ω)}dt

for all j ∈ S, which is predictable and satisfies νπ (ω, {t} × S) = νπ (ω, [T∞,∞) ×
S) = 0. Hence, for any π ∈ 
 and any initial state i ∈ S, employing Theorem 4.27
in Kitaev and Rykov (1995), we obtain the existence of a unique probability measure
Pπ
i on (�,F). Moreover, with respect to Pπ

i , νπ is the dual predictable projection of
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Continuous-time Markov decision processes 465

the random measure on R+ × S

μ(ω, dt, j) =
∑

m≥1

I{Tm<∞} I{Xm= j}δTm (dt)

for all j ∈ S. Let Eπ
i be the expectation operator with respect to Pπ

i .
For each λ �= 0, the exponential utility function Uλ on R := (−∞,∞) is given by

Uλ(x) = sgn(λ)eλx for all x ∈ R, where sgn(λ) is the sign function, i.e., if λ > 0,
sgn(λ) = 1; if λ < 0, sgn(λ) = −1. The constant λ is called the risk-sensitivity
coefficient. If λ > 0 (λ < 0), the decision-maker is risk-averse (risk-seeking); see the
detailed discussions in Cavazos-Cadena and Hernández-Hernández (2011).

Fix an arbitrary risk-sensitivity coefficient λ �= 0 and the length of the horizon
T > 0 throughout the paper. Following the ideas for the definitions of the discrete-
time risk-sensitive optimality criteria in Cavazos-Cadena and Hernández-Hernández
(2011), for any π ∈ 
, i, j ∈ S and t ∈ [0, T ], the risk-sensitive (T − t)-horizon cost
criterion V π (t, i) with respect to the utility function Uλ is defined by

V π (t, i) := 1

λ
ln Eπ

j

[

exp

(

λ

∫ T

t

∫

A
c(ξs, a)π(da|ξs, s)ds

) ∣
∣
∣
∣ξt = i

]

. (2.1)

The corresponding optimal value function is given by

V ∗(t, i) := inf
π∈


V π (t, i) for all (t, i) ∈ [0, T ] × S.

Note that for each π ∈ 
, {ξt , t ≥ 0} is a Markov jump process. Hence, V π (t, i)
does not depend on the state j ∈ S. Moreover, since the risk-sensitivity coefficient λ

in (2.1) can take any nonzero value, the risk-sensitive finite-horizon cost criterion in
this paper takes the risk-averse and risk-seeking cases into consideration. Thus, (2.1)
is a generalization of the risk-sensitive finite-horizon cost criterion in Ghosh and Saha
(2014) which only deals with the positive risk-sensitivity coefficient.

Definition 2.2 A policy π∗ ∈ 
 is said to be optimal if V π∗
(0, i) = V ∗(0, i) for all

i ∈ S.

There are three main goals in this paper: (1) Give the optimality conditions and
establish the optimality equation and the existence of optimal policies for CTMDPs
with the unbounded transition rates. (2) Present a tractable numerical method for the
approximate computations of an optimal policy and the optimal value. (3) Analyze
the accuracy of the numerical method and obtain the corresponding error estimations.

3 Preliminaries

In this section, we give the optimality conditions for the existence of the optimal
policies and obtain the Feynman–Kac formula which is very useful in proving the
main results.
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To avoid the explosion of the state process {ξt , t ≥ 0} and ensure the finiteness of
the value function V ∗, we introduce the following assumption consisting of the drift
condition on the transition rates and the boundedness condition on the cost rates; see,
for instance, Guo and Hernández-Lerma (2009), Prieto-Rumeau and Lorenzo (2010),
Prieto-Rumeau and Hernández-Lerma (2012), Wei and Chen (2014), Guo and Zhang
(2014) and Guo et al. (2015).

Assumption 3.1 There exist a function w ≥ 1 on S and constants ρ1 > 0, d1 ≥
0, R > 0 and M > 0 such that

(i)
∑

j∈S w( j)q( j |i, a) ≤ ρ1w(i) + d1 for all (i, a) ∈ K ;
(ii) q∗(i) ≤ Rw(i) for all i ∈ S;
(iii) |c(i, a)| ≤ M for all (i, a) ∈ K .

To ensure the existence of the optimal policies, we also need the following assump-
tion, which is called the standard continuity and compactness conditions; see, for
instance, Puterman (1994), Kitaev and Rykov (1995), Guo and Hernández-Lerma
(2009), Prieto-Rumeau and Lorenzo (2010), Prieto-Rumeau and Hernández-Lerma
(2012), Wei and Chen (2014), Ghosh and Saha (2014), Guo and Zhang (2014) and
Guo et al. (2015).

Assumption 3.2 (i) For each i ∈ S, the set A(i) is compact.
(ii) For each i, j ∈ S, the functions c(i, a) and q( j |i, a) are continuous in a ∈ A(i).

Let w be as in Assumption 3.1. A real-valued function u on [0, T ] × S is called
w-bounded if it satisfies the norm ‖u‖w := sup(t,i)∈[0,T ]×S

|u(t,i)|
w(i) < ∞. Denote by

Bw([0, T ] × S) the set of all w-bounded measurable functions on [0, T ] × S and by
B([0, T ]×S) the set of all boundedmeasurable functions u on [0, T ]×Swith the norm
‖u‖ := sup(t,i)∈[0,T ]×S |u(t, i)| < ∞. Let L([0, T ] × S) := {u ∈ B([0, T ] × S) :
for each i ∈ S, u(·, i) is differentiable on [0, T ] and ∂u

∂t ∈ Bw([0, T ] × S)}, where
∂u
∂t denotes the derivative of u with respect to the variable t .
Below we give the Feynman–Kac formula for CTMDPs with the unbounded tran-

sition rates, which plays a crucial role in proving the existence of optimal policies.

Theorem 3.1 Suppose that Assumption 3.1 is satisfied. Then for each u ∈ L([0, T ]
× S), i, j ∈ S, π ∈ 
 and 0 ≤ s ≤ t ≤ T , we have

Eπ
j

[

exp

(

λ

∫ t

s

∫

A
c(ξv, a)π(da|ξv, v)dv

)

u(t, ξt )

∣
∣
∣
∣ξs = i

]

− u(s, i)

= Eπ
j

[ ∫ t

s
exp

(

λ

∫ r

s

∫

A
c(ξv, a)π(da|ξv, v)dv

)(

λ

∫

A
c(ξr , a)π(da|ξr , r)u(r, ξr )

+ ∂u

∂r
(r, ξr ) +

∑

k∈S
u(r, k)

∫

A
q(k|ξr , a)π(da|ξr , r)

)

dr

∣
∣
∣
∣ξs = i

]

.
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Continuous-time Markov decision processes 467

Proof Fix any i, j ∈ S, π ∈ 
 and 0 ≤ s ≤ t ≤ T . Let L :=
sup(v,k)∈[0,T ]×S |u(v, k)|. Then by Assumption 3.1 and Lemma 6.3 in Guo and
Hernández-Lerma (2009), we obtain

Eπ
j

[

exp

(

λ

∫ t

s

∫

A
c(ξv, a)π(da|ξv, v)dv

)

|u(t, ξt )|
∣
∣
∣
∣ξs = i

]

≤ Le|λ|MT and

Eπ
j

[ ∫ t

s
exp

(

λ

∫ r

s

∫

A
c(ξv, a)π(da|ξv, v)dv

)(∣
∣
∣
∣λ

∫

A
c(ξr , a)π(da|ξr , r)u(r, ξr )

∣
∣
∣
∣

+
∣
∣
∣
∣
∂u

∂r
(r, ξr )

∣
∣
∣
∣ +

∑

k∈S
|u(r, k)|

∫

A
|q(k|ξr , a)|π(da|ξr , r)

)

dr

∣
∣
∣
∣ξs = i

]

≤ e|λ|MT
[

|λ|ML +
∥
∥
∥
∥
∂u

∂t

∥
∥
∥
∥

w

+ 2LR

]

Eπ
j

[∫ t

s
w(ξr )dr

∣
∣
∣
∣ξs = i

]

≤ e|λ|MT
[

|λ|ML +
∥
∥
∥
∥
∂u

∂t

∥
∥
∥
∥

w

+ 2LR

] ∫ t

s

[

eρ1(r−s)w(i) + d1
ρ1

(
eρ1(r−s) − 1

)]

dr

≤ T e|λ|MT
[

|λ|ML +
∥
∥
∥
∥
∂u

∂t

∥
∥
∥
∥

w

+ 2LR

](

w(i) + d1
ρ1

)

eρ1T < ∞.

Since u belongs to L([0, T ] × S), the differential mean value theorem yields that for
any 0 ≤ t1 < t2 ≤ T , there exists a constant t̃ ∈ (t1, t2) such that

|u(t2, i) − u(t1, i)| = (t2 − t1)

∣
∣
∣
∣
∂u

∂t
(̃t, i)

∣
∣
∣
∣ ≤ (t2 − t1)

∥
∥
∥
∥
∂u

∂t

∥
∥
∥
∥

w

w(i). (3.1)

Similarly, for any 0 ≤ t2 < t1 ≤ T , we can get

|u(t2, i) − u(t1, i)| ≤ (t1 − t2)

∥
∥
∥
∥
∂u

∂t

∥
∥
∥
∥

w

w(i). (3.2)

Thus, combining (3.1) and (3.2), we obtain

|u(t1, i) − u(t2, i)| ≤
∥
∥
∥
∥
∂u

∂t

∥
∥
∥
∥

w

w(i)|t1 − t2|

for all t1, t2 ∈ [0, T ], i.e., u(·, i) is Lipschitz continuous on [0, T ]. Hence, it follows
from the result in Royden (1988, p. 112) that u(·, i) is absolutely continuous on [0, T ].
Moreover, we have

Eπ
j

[ ∫ T

s

∑

k∈S
|u(r, k) − u(r, ξr−)| μ(dr, k)

∣
∣
∣
∣ξs = i

]

≤ 2LEπ
j [μ((s, T ] × S)|ξs = i]

= 2LEπ
j [νπ ((s, T ] × S)|ξs = i]

= 2LEπ
j

[ ∫ T

s

∫

A
|q(ξr |ξr , a)|π(da|ξr , r)dr

∣
∣
∣
∣ξs = i

]
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≤ 2LREπ
j

[ ∫ T

s
w(ξr )dr

∣
∣
∣
∣ξs = i

]

≤ 2LRT

(

w(i) + d1
ρ1

)

eρ1T ,

where the first equality is due to the fact that νπ is the dual predictable projection ofμ,
and the last inequality follows from Lemma 6.3 in Guo and Hernández-Lerma (2009).
Thus, direct calculations give

Eπ
j

[ ∫ t

s
λ exp

(

λ

∫ r

s

∫

A
c(ξv, a)π(da|ξv, v)dv

)

∫

A
c(ξr , a)π(da|ξr , r)u(r, ξr )dr

∣
∣
∣
∣ξs = i

]

= Eπ
j

[

exp

(

λ

∫ t

s

∫

A
c(ξv, a)π(da|ξv, v)dv

)

u(t, ξt )

∣
∣
∣
∣ξs = i

]

− u(s, i)

− Eπ
j

[ ∫ t

s
exp

(

λ

∫ r

s

∫

A
c(ξv, a)π(da|ξv, v)dv

)

du(r, ξr )

∣
∣
∣
∣ξs = i

]

= Eπ
j

[

exp

(

λ

∫ t

s

∫

A
c(ξv, a)π(da|ξv, v)dv

)

u(t, ξt )

∣
∣
∣
∣ξs = i

]

− u(s, i)

− Eπ
j

[ ∫ t

s
exp

(

λ

∫ r

s

∫

A
c(ξv, a)π(da|ξv, v)dv

)

×
(

∂u

∂r
(r, ξr ) +

∑

k∈S
u(r, k)

∫

A
q(k|ξr , a)π(da|ξr , r)

)

dr

∣
∣
∣
∣ξs = i

]

− Eπ
j

[ ∫ t

s
exp

(

λ

∫ r

s

∫

A
c(ξv, a)π(da|ξv, v)dv

)

×
∑

k∈S

(
u(r, k) − u(r, ξr−)

)(
μ(dr, k) − νπ (dr, k)

)
∣
∣
∣
∣ξs = i

]

= Eπ
j

[

exp

(

λ

∫ t

s

∫

A
c(ξv, a)π(da|ξv, v)dv

)

u(t, ξt )

∣
∣
∣
∣ξs = i

]

− u(s, i)

− Eπ
j

[ ∫ t

s
exp

(

λ

∫ r

s

∫

A
c(ξv, a)π(da|ξv, v)dv

)

×
(

∂u

∂r
(r, ξr ) +

∑

k∈S
u(r, k)

∫

A
q(k|ξr , a)π(da|ξr , r)

)

dr

∣
∣
∣
∣ξs = i

]

, (3.3)

where the first equality is due to the integration by parts, the second one follows from
the equation (2.9) in Confortola and Fuhrman (2014), and the third one is due to the
fact that νπ is the dual predictable projection ofμ. Hence, the desired assertion follows
from (3.3). ��
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Continuous-time Markov decision processes 469

4 The existence of optimal policies

In this section, we establish the optimality equation and the existence of optimal
policies for the risk-sensitivefinite-horizon cost criterionwith theunbounded transition
rates.

Theorem 4.1 Under Assumptions 3.1 and 3.2, the following statements hold.

(a) |V π (t, i)| ≤ MT and |V ∗(t, i)| ≤ MT for all π ∈ 
 and (t, i) ∈ [0, T ] × S.
(b) There exists a unique solution in L([0, T ] × S) to the following equation:

{
− ∂u

∂t (t, i) = sgn(λ) infa∈A(i) sgn(λ)
{
λc(i, a)u(t, i) + ∑

j∈S u(t, j)q( j |i, a)
}

,

u(T, i) = 1,

(4.1)

for all (t, i) ∈ [0, T ] × S. Moreover, we have u(t, i) = eλV ∗(t,i) for all (t, i) ∈
[0, T ] × S.

(c) There exists f ∗ ∈ 
D satisfying

λeλV ∗(t,i) ∂V
∗

∂t
(t, i) + λc(i, f ∗(t, i))eλV ∗(t,i) +

∑

j∈S
eλV ∗(t, j)q( j |i, f ∗(t, i)) = 0

(4.2)

for all (t, i) ∈ [0, T ] × S and f ∗ is an optimal deterministic Markov policy.

Proof (a) By Assumption 3.1(iii), we have

e−|λ|MT ≤ Eπ
j

[

exp

(

λ

∫ T

t

∫

A
c(ξs, a)π(da|ξs, s)ds

) ∣
∣
∣
∣ξt = i

]

≤ e|λ|MT

for all i, j ∈ S, π ∈ 
 and t ∈ [0, T ], which gives the desired assertion.
(b) We only prove the case λ < 0 because the arguments for the case λ > 0 are

similar. For each integer m ≥ 1, let Sm := {k ∈ S : w(k) ≤ m} and we have Sm ↑ S.
For each (i, a) ∈ K , define

q(m)( j |i, a) :=
{
q( j |i, a), if i ∈ Sm,

0, if i /∈ Sm,
(4.3)

and an operator �m on B([0, T ] × S) as follows:

�mg(t, i) := eαt + eαt
∫ T

t
e−αs sup

a∈A(i)

⎧
⎨

⎩
λc(i, a)g(s, i) +

∑

j∈S
g(s, j)q(m)( j |i, a)

⎫
⎬

⎭
ds

for all g ∈ B([0, T ] × S), where α is an arbitrary positive constant. Then using
Assumption 3.1, we obtain

|�mg(t, i)| ≤ eαT + T eαT (|λ|M + 2Rm)‖g‖
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for all (t, i) ∈ [0, T ] × S, which implies that �m is a map from B([0, T ] × S) into
itself. On the other hand, for any g1, g2 ∈ B([0, T ] × S), we have

|�mg1(t, i) − �mg2(t, i)|

≤ eαt
∫ T

t
e−αs sup

a∈A(i)

∣
∣
∣
∣λc(i, a)

(
g1(s, i) − g2(s, i)

)

+
∑

j∈S

(
g1(s, j) − g2(s, j)

)
q(m)( j |i, a)

∣
∣
∣
∣ds

≤ (|λ|M + 2Rm)

α
‖g1 − g2‖

for all (t, i) ∈ [0, T ] × S. Thus, taking α = |λ|M + 2Rm + 1, we see that �m is a
contraction operator on B([0, T ] × S). Hence, it follows from the Banach fixed point
theorem that there exists g(m) ∈ B([0, T ] × S) satisfying

g(m)(t, i)=eαt +eαt
∫ T

t
e−αs sup

a∈A(i)

⎧
⎨

⎩
λc(i, a)g(m)(s, i)+

∑

j∈S
g(m)(s, j)q(m)( j |i, a)

⎫
⎬

⎭
ds

for all (t, i) ∈ [0, T ] × S and α = |λ|M + 2Rm + 1. Let u(m)(t, i) :=
e−(|λ|M+2Rm+1)t g(m)(t, i). The last equality can be rewritten as

u(m)(t, i) = 1 +
∫ T

t
sup

a∈A(i)

⎧
⎨

⎩
λc(i, a)u(m)(s, i) +

∑

j∈S
u(m)(s, j)q(m)( j |i, a)

⎫
⎬

⎭
ds.

(4.4)

Note that for each i ∈ S, u(m)(·, i) is absolutely continuous on [0, T ] and u(m)(T, i)=1.
Moreover, it follows from Assumption 3.2 that for each i ∈ S,

sup
a∈A(i)

⎧
⎨

⎩
λc(i, a)u(m)(s, i) +

∑

j∈S
u(m)(s, j)q(m)( j |i, a)

⎫
⎬

⎭

is continuous in s ∈ [0, T ]. Thus, the equality (4.4) gives

−∂u(m)

∂t
(t, i) = sup

a∈A(i)

⎧
⎨

⎩
λc(i, a)u(m)(t, i) +

∑

j∈S
u(m)(t, j)q(m)( j |i, a)

⎫
⎬

⎭
(4.5)

and
∣
∣
∣ ∂u(m)

∂t (t, i)
∣
∣
∣ ≤ (|λ|M + 2R)‖g(m)‖w(i) for all (t, i) ∈ [0, T ] × S. Hence, we

have u(m) ∈ L([0, T ] × S) for all m ≥ 1. For each i ∈ S, π ∈ 
 and m ≥ 1,
denote by Pπ,m

i the probability measure corresponding to q(m)( j |i, a) and by Eπ,m
i

the expectation operator with respect to Pπ,m
i . On one hand, Assumption 3.2 and the
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measurable selection theorem in Hernández-Lerma and Lasserre (1999, p. 50) give
the existence of a measurable function fm on [0, T ] × S satisfying

−∂u(m)

∂t
(t, i) = λc(i, fm(t, i))u(m)(t, i) +

∑

j∈S
u(m)(t, j)q(m)( j |i, fm(t, i))

for all (t, i) ∈ [0, T ] × S. Then using the last equality, we obtain

− E fm ,m
j

[∫ T

t
exp

(

λ

∫ s

t
c(ξv, fm(v, ξv))dv

)
∂u(m)

∂s
(s, ξs)ds

∣
∣
∣
∣ξt = i

]

= E fm ,m
j

[ ∫ T

t
exp

(

λ

∫ s

t
c(ξv, fm(v, ξv))dv

)(

λc(ξs, fm(s, ξs))u
(m)(s, ξs)

+
∑

k∈S
u(m)(s, k)q(m)(k|ξs, fm(s, ξs))

)

ds

∣
∣
∣
∣ξt = i

]

,

which together with Theorem 3.1 and u(m)(T, i) = 1 yields

u(m)(t, i) = E fm ,m
j

[

exp

(

λ

∫ T

t
c
(
ξs, fm(s, ξs)

)
ds

) ∣
∣
∣
∣ξt = i

]

(4.6)

for all i, j ∈ S and t ∈ [0, T ]. On the other hand, for any π ∈ 
, by (4.5) we have

−∂u(m)

∂s
(s, ξs) ≥ λ

∫

A
c(ξs, a)π(da|ξs, s)u(m)(s, ξs)

+
∑

j∈S
u(m)(s, j)

∫

A
q(m)( j |ξs, a)π(da|ξs, s)

for all s ∈ [0, T ]. Then employing the last inequality and following the similar argu-
ments of (4.6), we obtain

u(m)(t, i) ≥ Eπ,m
j

[

exp

(

λ

∫ T

t

∫

A
c(ξs, a)π(da|ξs, s)ds

) ∣
∣
∣
∣ξt = i

]

(4.7)

for all i, j ∈ S, t ∈ [0, T ] and π ∈ 
. Thus, combining (4.6) and (4.7), we get

u(m)(t, i) = sup
π∈


Eπ,m
j

[

exp

(

λ

∫ T

t

∫

A
c(ξs, a)π(da|ξs, s)ds

) ∣
∣
∣
∣ξt = i

]

,

which implies

0 < u(m)(t, i) ≤ e|λ|MT (4.8)
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for all i, j ∈ S and t ∈ [0, T ]. Moreover, observe that Assumption 3.1(i) and (ii) still
hold with q(m)( j |i, a) in lieu of q( j |i, a). By Assumption 3.1 and (4.8), we have
∣
∣
∣
∣
∣
∣
sup

a∈A(i)

⎧
⎨

⎩
λc(i, a)u(m)(t, i) +

∑

j∈S
u(m)(t, j)q(m)( j |i, a)

⎫
⎬

⎭

∣
∣
∣
∣
∣
∣
≤(|λ|M + 2Rw(i))e|λ|MT

(4.9)

for all (t, i) ∈ [0, T ] × S. Let Mi := (|λ|M + 2Rw(i))e|λ|MT . Then for each i ∈ S
and any ε > 0, there exists η := ε

Mi
> 0 such that

|u(m)(t1, i) − u(m)(t2, i)|

≤
∫ max{t1,t2}

min{t1,t2}

∣
∣
∣
∣
∣
∣
sup

a∈A(i)

⎧
⎨

⎩
λc(i, a)u(m)(s, i) +

∑

j∈S
u(m)(s, j)q(m)( j |i, a)

⎫
⎬

⎭

∣
∣
∣
∣
∣
∣
ds

≤ Mi |t1 − t2| ≤ ε

for all m ≥ 1, t1, t2 ∈ [0, T ] and |t1 − t2| ≤ η, where the first and second inequalities
follow from (4.4) and (4.9), respectively. Thus, for each i ∈ S, {u(m)(·, i),m ≥ 1} is
uniformly bounded and equicontinuous.Hence, employing theAscoli–Arzela theorem
in Royden (1988, p. 169) and the denumerability of S, we obtain the existence of a
subsequence of {m} (still denoted by {m}) such that limm→∞ u(m)(t, i) =: u(t, i),
‖u‖ ≤ e|λ|MT and u(T, i) = 1 for all (t, i) ∈ [0, T ] × S. Below we will show that for
each (t, i) ∈ [0, T ] × S,

lim
m→∞ sup

a∈A(i)

⎧
⎨

⎩
λc(i, a)u(m)(t, i) +

∑

j∈S
u(m)(t, j)q(m)( j |i, a)

⎫
⎬

⎭

= sup
a∈A(i)

⎧
⎨

⎩
λc(i, a)u(t, i) +

∑

j∈S
u(t, j)q( j |i, a)

⎫
⎬

⎭
. (4.10)

For each (t, i) ∈ [0, T ] × S and m ≥ 1, Assumption 3.2 implies that there exists
at,im ∈ A(i) satisfying

sup
a∈A(i)

∣
∣
∣
∣
∣
∣
λc(i, a)u(m)(t, i) +

∑

j∈S
u(m)(t, j)q(m)( j |i, a) − λc(i, a)u(t, i)

−
∑

j∈S
u(t, j)q( j |i, a)

∣
∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣
∣
λc(i, at,im )u(m)(t, i) +

∑

j∈S
u(m)(t, j)q(m)( j |i, at,im )

− λc(i, at,im )u(t, i) −
∑

j∈S
u(t, j)q( j |i, at,im )

∣
∣
∣
∣
∣
∣
. (4.11)
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Then we have

∣
∣
∣
∣λc(i, a

t,i
m )u(m)(t, i) +

∑

j∈S
u(m)(t, j)q(m)( j |i, at,im ) − λc(i, at,im )u(t, i)

−
∑

j∈S
u(t, j)q( j |i, at,im )

∣
∣
∣
∣ → 0 (4.12)

asm → ∞. In fact, if (4.12) does not hold, there exist ε0 > 0 and a subsequence {ml}
of {m} such that

∣
∣
∣
∣λc(i, a

t,i
ml

)u(ml )(t, i) +
∑

j∈S
u(ml )(t, j)q(ml )( j |i, at,iml

) − λc(i, at,iml
)u(t, i)

−
∑

j∈S
u(t, j)q( j |i, at,iml

)

∣
∣
∣
∣ ≥ ε0. (4.13)

The compactness of A(i) gives the existence of a subsequence of {ml} (still denoted by
{ml}) such that at,iml converges to some at,i ∈ A(i). Thus, it follows from Assumption
3.2(ii) and (4.3) that

∣
∣
∣
∣λc(i, a

t,i
ml

)u(ml )(t, i) +
∑

j∈S
u(ml )(t, j)q(ml )( j |i, at,iml

) − λc(i, at,iml
)u(t, i)

−
∑

j∈S
u(t, j)q( j |i, at,iml

)

∣
∣
∣
∣ → 0

as l → ∞, which yields a contradiction to (4.13). Hence, (4.12) is true. Therefore,
(4.11), (4.12) and the inequality

∣
∣
∣
∣ sup
a∈A(i)

{

λc(i, a)u(m)(t, i) +
∑

j∈S
u(m)(t, j)q(m)( j |i, a)

}

− sup
a∈A(i)

{

λc(i, a)u(t, i) +
∑

j∈S
u(t, j)q( j |i, a)

}∣
∣
∣
∣

≤ sup
a∈A(i)

∣
∣
∣
∣
∣
∣
λc(i, a)u(m)(t, i) +

∑

j∈S
u(m)(t, j)q(m)( j |i, a) − λc(i, a)u(t, i)

−
∑

j∈S
u(t, j)q( j |i, a)

∣
∣
∣
∣
∣
∣
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for all (t, i) ∈ [0, T ] × S, imply (4.10). Moreover, employing (4.4), (4.9), (4.10) and
the dominated convergence theorem, we get

u(t, i) = 1 +
∫ T

t
sup

a∈A(i)

⎧
⎨

⎩
λc(i, a)u(s, i) +

∑

j∈S
u(s, j)q( j |i, a)

⎫
⎬

⎭
ds,

which together with Assumption 3.2 yields that the derivative of u(t, i) with respect
to the variable t exists for all (t, i) ∈ [0, T ] × S. Thus, (4.1) follows from the last
equality. Note that Assumption 3.1, ‖u‖ ≤ e|λ|MT and (4.1) imply

∣
∣
∣
∣
∂u

∂t
(t, i)

∣
∣
∣
∣ ≤ (|λ|M + 2R)e|λ|MTw(i)

for all (t, i) ∈ [0, T ] × S. Hence, we obtain u ∈ L([0, T ] × S). Using (4.1) and
following the similar arguments of (4.6) and (4.7), there exists f ∗ ∈ 
D satisfying

∂u

∂t
(t, i) + λc(i, f ∗(t, i))u(t, i) +

∑

j∈S
u(t, j)q( j |i, f ∗(t, i)) = 0 (4.14)

and

u(t, i) = eλV f ∗ (t,i) ≥ Eπ
j

[

exp

(

λ

∫ T

t

∫

A
c(ξs, a)π(da|ξs, s)ds

) ∣
∣
∣
∣ξt = i

]

(4.15)

for all i, j ∈ S, t ∈ [0, T ] and π ∈ 
. Thus, it follows from (4.14) and (4.15) that

u(t, i) = eλV ∗(t,i) = eλV f ∗ (t,i) for all (t, i) ∈ [0, T ] × S, and f ∗ is optimal and
satisfies (4.2). Finally, the uniqueness of the solution to (4.1) follows from the similar
arguments of (4.6) and (4.7).

(c) The assertion follows directly from the proof of part (b). ��
Remark 4.1 The optimality equation of the risk-sensitive finite-horizon cost criterion
has been established inGhosh and Saha (2014) for the case of a positive risk-sensitivity
coefficient, nonnegative and bounded cost rates and bounded transition rates. Theorem
4.1 extends the results inGhosh andSaha (2014) to the case inwhich the risk-sensitivity
coefficient and the cost rates can take positive and negative values, and the transition
rates are allowed to be unbounded.

5 Finite approximation

In this section, we use the optimality equation established in Theorem 4.1 to give a
finite approximation method for the approximate computations of an optimal policy
and the optimal value. In order to obtain the error estimations of the approximate
computations, we introduce the following conditions which are stronger than those in
Sect. 3.

123



Continuous-time Markov decision processes 475

Assumption 5.1 (i) The functionw in Assumption 3.1 is nondecreasing and satisfies
limi→∞ w(i) = ∞.

(ii) There exist constants ρ2 > 0 and d2 ≥ 0 such that

∑

j∈S
w2( j)q( j |i, a) ≤ ρ2w

2(i) + d2 for all (i, a) ∈ K .

(iii) For any i, j ∈ S, there exist constants Li > 0 and Li j > 0 such that

|c(i, a) − c(i, b)| ≤ LidA(a, b) and |q( j |i, a) − q( j |i, b)| ≤ Li j dA(a, b)

for all a, b ∈ A(i), where dA represents the metric of the space A.

For each integer n ≥ 1, we define the control model

Mn := {Sn, A, (An(i), i ∈ Sn), qn( j |i, a), c(i, a)}.

• The state space is givenby Sn := {0, 1, . . . , jn} and the increasing sequence { jn, n ≥
1} satisfies limn→∞ jn = ∞.

• The action space is given by A as in the model M.
• The set of all admissible actions in the state i ∈ Sn is given by an arbitrary finite

set An(i).
• For each (i, a) ∈ Kn := {(i, a)|i ∈ Sn, a ∈ An(i)} and j ∈ Sn , the transition rate
qn( j |i, a) is given by

qn( j |i, a) :=
{
q( j |i, a), if j �= jn,∑

k≥ jn

q(k|i, a), if j = jn . (5.1)

• The cost rate function is given by the restriction of c in the model M to Kn .

Let 
n and 
D
n be the set of all randomized Markov policies and the set of all

deterministic Markov policies for Mn , respectively. For each i ∈ Sn and π ∈ 
n ,
Theorem 4.27 in Kitaev and Rykov (1995) gives the existence of a probability measure
Pi,π
n associated with the modelMn . Let E

i,π
n be the expectation operator with respect

to Pi,π
n . Moreover, replacing Eπ

i and 
 by Ei,π
n and 
n in the definitions of V π and

V ∗, we can define the functions V π
n and V ∗

n on [0, T ] × Sn . Denote by C the set of all
closed subsets of A. Recall that the Hausdorff metric on C is defined by

dH (B1, B2) := max

{

sup
a∈B1

inf
b∈B2

dA(a, b), sup
b∈B2

inf
a∈B1

dA(a, b)

}

for all B1, B2 ∈ C.
Then we have the following statement about the error estimation between V ∗ and

V ∗
n .
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Theorem 5.1 Suppose that Assumptions 3.1, 3.2(i) and 5.1 are satisfied. If there exists
a constant M̃ > 0 such that for each n ≥ 1 and i ∈ Sn,

dH (A(i), An(i)) ≤ M̃w2(i)

e|λ|MT
(
|λ|Li + 2

∑ jn−1
j=0 Li j

)
w( jn)

, (5.2)

then we have

|V ∗
n (t, i) − V ∗(t, i)| ≤ R1w

2(i)

w( jn)

for all t ∈ [0, T ], where R1= T e2|λ|MT

|λ|
[
M̃ + e|λ|MT (ρ1 + d1 + R)

]×
[
eρ2T + d2

ρ2
eρ2T

]
.

Proof Fix any n ≥ 1, i ∈ Sn and t ∈ [0, T ]. Then it follows from Theorem 4.1 that
there exists f ∗ ∈ 
D satisfying

−λeλV ∗(t,i) ∂V
∗

∂t
(t, i) = λc(i, f ∗(t, i))eλV ∗(t,i) +

∑

j∈S
eλV ∗(t, j)q( j |i, f ∗(t, i))

= λc(i, f ∗(t, i))eλV ∗(t,i)

+
jn−1∑

j=0

(
eλV ∗(t, j) − eλV ∗(t, jn)

)
q( j |i, f ∗(t, i))

+
∑

j> jn

(
eλV ∗(t, j) − eλV ∗(t, jn)

)
q( j |i, f ∗(t, i)). (5.3)

By Theorem 4.1, the monotonicity of w and Assumption 3.1, we obtain

∑

j> jn

(
eλV ∗(t, j) − eλV ∗(t, jn)

)
q( j |i, f ∗(t, i))

≥ −e|λ|MT
∑

j> jn

q( j |i, f ∗(t, i))

≥ −e|λ|MT

w( jn)

∑

j> jn

w( j)q( j |i, f ∗(t, i))

≥ −e|λ|MT

w( jn)

⎡

⎣
∑

j∈S
w( j)q( j |i, f ∗(t, i)) − w(i)q(i |i, f ∗(t, i))

⎤

⎦

≥ −e|λ|MT (ρ1 + d1 + R)
w2(i)

w( jn)
. (5.4)

Moreover, for each s ∈ [0, T ], there exists f̃ (s, i) ∈ An(i) such that

dA( f ∗(s, i), f̃ (s, i)) = min
a∈An(i)

dA( f ∗(s, i), a) ≤ dH (A(i), An(i)).
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Thus, employing the last inequality, Assumption 5.1 and Theorem 4.1, we have

λc(i, f ∗(t, i))eλV ∗(t,i) − λc(i, f̃ (t, i))eλV ∗(t,i) ≥ − |λ|e|λ|MT LidA( f ∗(t, i), f̃ (t, i))

≥ − |λ|e|λ|MT LidH (A(i), An(i))

and

jn−1∑

j=0

(
eλV ∗(t, j) − eλV ∗(t, jn)

) (
q( j |i, f ∗(t, i)) − q( j |i, f̃ (t, i))

)

≥ −2e|λ|MT
jn−1∑

j=0

∣
∣q( j |i, f ∗(t, i)) − q( j |i, f̃ (t, i))

∣
∣

≥ −2e|λ|MT dA( f ∗(t, i), f̃ (t, i))
jn−1∑

j=0

Li j

≥ −2e|λ|MT dH (A(i), An(i))
jn−1∑

j=0

Li j ,

which together with (5.1)–(5.4) give

− λeλV ∗(t,i) ∂V
∗

∂t
(t, i)

≥ λc(i, f̃ (t, i))eλV ∗(t,i) +
jn−1∑

j=0

(
eλV ∗(t, j) − eλV ∗(t, jn)

)
q( j |i, f̃ (t, i))

− e|λ|MT dH (A(i), An(i))

⎛

⎝|λ|Li + 2
jn−1∑

j=0

Li j

⎞

⎠ − e|λ|MT (ρ1 + d1 + R)
w2(i)

w( jn)

≥ λc(i, f̃ (t, i))eλV ∗(t,i) +
∑

j∈Sn
eλV ∗(t, j)qn( j |i, f̃ (t, i))

−
[
M̃ + e|λ|MT (ρ1 + d1 + R)

] w2(i)

w( jn)
. (5.5)

Observe that (5.1), Assumptions 3.1 and 5.1 yield

∑

j∈Sn
wl( j)qn( j |i, a) ≤ ρlw

l(i) + dl and q∗
n (i) := sup

a∈An(i)
|qn(i |i, a)| ≤ Rw(i)

(5.6)
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for all a ∈ An(i) and l = 1, 2. By (5.5), Theorems 3.1 and 4.1(b), we get

E j, f̃
n

[

exp

(

λ

∫ T

t
c(ξs, f̃ (s, ξs))ds

) ∣
∣
∣
∣ξt = i

]

− eλV ∗(t,i)

≤ M̃ + e|λ|MT (ρ1 + d1 + R)

w( jn)

× E j, f̃
n

[∫ T

t
exp

(

λ

∫ r

t
c(ξv, f̃ (v, ξv))dv

)

w2(ξr )dr

∣
∣
∣
∣ξt = i

]

for all j ∈ Sn . Then it follows from (5.6), Lemma 6.3 in Guo and Hernández-Lerma
(2009), Assumption 3.1(iii) and the last inequality that

eλV
f̃
n (t,i) − eλV

∗(t,i) ≤
[
M̃ + e|λ|MT (ρ1 + d1 + R)

]
e|λ|MT

w( jn)

∫ T

t
E j, f̃
n

[

w2(ξr )

∣
∣
∣
∣ξt = i

]

dr

≤
[
M̃ + e|λ|MT (ρ1 + d1 + R)

]
e|λ|MT

w( jn)

∫ T

t

[
eρ2(r−t)w2(i)

+ d2
ρ2

eρ2(r−t)
]

dr

≤
[
M̃ + e|λ|MT (ρ1 + d1 + R)

]
T e|λ|MT

w( jn)

[

eρ2T + d2
ρ2

eρ2T
]

w2(i).

Hence, letting R̃ := T e|λ|MT
[
M̃ + e|λ|MT (ρ1 + d1 + R)

] ×
[
eρ2T + d2

ρ2
eρ2T

]
, we

have

eλV ∗
n (t,i) − eλV ∗(t,i) ≤ R̃w2(i)

w( jn)
for λ > 0. (5.7)

Following the similar arguments of (5.7), we can obtain

∣
∣
∣eλV ∗

n (t,i) − eλV ∗(t,i)
∣
∣
∣ ≤ R̃w2(i)

w( jn)
for λ �= 0. (5.8)

Moreover, employing the differential mean value theorem and Theorem 4.1(a), we get

∣
∣
∣eλV ∗

n (t,i) − eλV ∗(t,i)
∣
∣
∣ ≥ |λ|e−|λ|MT |V ∗

n (t, i) − V ∗(t, i)|,

which together with (5.8) implies the assertion. ��
For each integer m ≥ 1, we divide the interval [0, T ] into m equal parts with the

following discrete points: t0 := T and tl := t0 − T
m l for all l = 1, . . . ,m. For each

integer n ≥ 1, define the iteration to compute approximately the optimal value as
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follows:

Wm(tl , i) := Wm(tl−1, i) + sgn(λ)
T

m
min

a∈An(i)
sgn(λ)

{

λc(i, a)Wm(tl−1, i)

+
∑

j∈Sn
Wm(tl−1, j)qn( j |i, a)

}

(5.9)

withWm(t0, i) = 1 for all i ∈ Sn and l = 1, . . . ,m. For each n ≥ 1,m ≥ 1, i ∈ Sn and
l ∈ {1, . . . ,m}, denote byDn,l(i) the set of all the minimizers attaining the minimum
of (5.9), and by On,m the set of all the policies with the following form:

fn,m(t, i) :=
⎧
⎨

⎩

hn,m(i), if t ∈ [0, tm−1],
hn,l(i), if t ∈ (tl , tl−1](l = 1, . . . ,m − 1),
a∗, if t > T,

(5.10)

where hn,l(i) belongs to Dn,l(i) and a∗ ∈ An(i) is arbitrarily fixed.
Belowwegive the error estimations on the approximate computations of the optimal

value and an optimal policy via employing the iteration defined by (5.9).

Theorem 5.2 Let R1 be as in Theorem 5.1. Under the conditions in Theorem 5.1, the
following statements hold.

(a)
∣
∣
∣eλV ∗

n (tl ,i) − Wm(tl , i)
∣
∣
∣ ≤ T R2

m w( jn)
(
eT (|λ|M+2R)w( jn) − 1

)
for all n ≥ 1, i ∈

Sn, m ≥ 1 and l = 0, 1, . . . ,m, where R2 = (|λ|M + 2R)e|λ|MT .
(b) For any n ≥ 1 and τ ∈ (0, 1), there exists a positive integer mτ such that

(1 − τ)e−|λ|MT ≤ Wm(0, i) ≤ (1 + τ)e|λ|MT and
∣
∣
∣
∣V

∗(0, i) − 1

λ
lnWm(0, i)

∣
∣
∣
∣ ≤ R1w

2(i)

w( jn)

+ T R2e|λ|MT

m|λ|(1 − τ)
w( jn)

(
eT (|λ|M+2R)w( jn) − 1

)

for all i ∈ Sn and m ≥ mτ .
(c) For any n ≥ 1, m ≥ mτ and fn,m ∈ On,m, we have

∣
∣
∣V ∗(0, i) − V

fn,m
n (0, i)

∣
∣
∣ ≤ R1w

2(i)

w( jn)

+2T R2e|λ|MT

m|λ|(1 − τ)
w( jn)

(
eT (|λ|M+2R)w( jn) − 1

)

for all i ∈ Sn.

Proof (a) Fix any n ≥ 1, i ∈ Sn , m ≥ 1 and l ∈ {1, . . . ,m}. It follows from (5.1) and
(5.6) that the conditions in Theorem 4.1 are satisfied for the control modelMn . Then
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by Theorem 4.1 we have V ∗
n (T, i) = 0 and

− λeλV ∗
n (t,i) ∂V

∗
n

∂t
(t, i)

= sgn(λ) min
a∈An(i)

sgn(λ)

⎧
⎨

⎩
λc(i, a)eλV ∗

n (t,i) +
∑

j∈Sn
eλV ∗

n (t, j)qn( j |i, a)

⎫
⎬

⎭
(5.11)

for all t ∈ [0, T ]. Thus, employing (5.6) and (5.11) we obtain

∣
∣
∣eλV ∗

n (t,i) − eλV ∗
n (s,i)

∣
∣
∣

=
∣
∣
∣
∣
∣
∣

∫ s

t
sgn(λ) min

a∈An(i)
sgn(λ)

⎧
⎨

⎩
λc(i, a)eλV ∗

n (r,i) +
∑

j∈Sn
eλV ∗

n (r, j)qn( j |i, a)

⎫
⎬

⎭
dr

∣
∣
∣
∣
∣
∣

≤ (|λ|M + 2R)e|λ|MTw(i)|t − s| (5.12)

for all s, t ∈ [0, T ]. Moreover, we have

∣
∣
∣eλV ∗

n (tl ,i) − Wm(tl , i)
∣
∣
∣

=
∣
∣
∣
∣e

λV ∗
n (tl−1,i) +

∫ tl−1

tl
sgn(λ) min

a∈An(i)
sgn(λ)

{

λc(i, a)eλV ∗
n (t,i)

+
∑

j∈Sn
eλV ∗

n (t, j)qn( j |i, a)

}

dt

− Wm(tl−1, i) − sgn(λ)
T

m
min

a∈An(i)
sgn(λ)

{

λc(i, a)Wm(tl−1, i)

+
∑

j∈Sn
Wm(tl−1, j)qn( j |i, a)

}∣
∣
∣
∣

≤
∣
∣
∣eλV ∗

n (tl−1,i)−Wm(tl−1, i)
∣
∣
∣+

∫ tl−1

tl
max

a∈An(i)

∣
∣
∣λc(i, a)

(
eλV ∗

n (t,i)−Wm(tl−1, i)
)∣
∣
∣ dt

+
∫ tl−1

tl
max

a∈An(i)

∣
∣
∣
∣
∣
∣

∑

j∈Sn

(
eλV ∗

n (t, j)−Wm(tl−1, j)
)
qn( j |i, a)

∣
∣
∣
∣
∣
∣
dt

≤
∣
∣
∣eλV ∗

n (tl−1,i)−Wm(tl−1, i)
∣
∣
∣+|λ|M

∫ tl−1

tl

∣
∣
∣eλV ∗

n (t,i)−eλV ∗
n (tl−1,i)

∣
∣
∣ dt

+ T

m
|λ|M

∣
∣
∣eλV ∗

n (tl−1,i) − Wm(tl−1, i)
∣
∣
∣ +

∫ tl−1

tl
max

a∈An(i)

∣
∣
∣
∣
∣
∣

∑

j∈Sn

(
eλV ∗

n (t, j)
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−eλV ∗
n (tl−1, j)

)
qn( j |i, a)

∣
∣
∣ dt

+ T

m
max

a∈An(i)

∣
∣
∣
∣
∣
∣

∑

j∈Sn

(
eλV ∗

n (tl−1, j) − Wm(tl−1, j)
)
qn( j |i, a)

∣
∣
∣
∣
∣
∣

≤
∣
∣
∣eλV ∗

n (tl−1,i) − Wm(tl−1, i)
∣
∣
∣ +

(
T

m

)2

(|λ|M + 2R)2e|λ|MTw2( jn)

+ T

m
(|λ|M + 2R)w(i)max

j∈Sn

∣
∣
∣eλV ∗

n (tl−1, j) − Wm(tl−1, j)
∣
∣
∣ ,

where the last inequality follows from (5.6) and (5.12). Hence, we obtain

max
j∈Sn

∣
∣
∣eλV ∗

n (tl , j) − Wm(tl , j)
∣
∣
∣

≤
[

1 + T

m
(|λ|M + 2R)w( jn)

]

max
j∈Sn

∣
∣
∣eλV ∗

n (tl−1, j) − Wm(tl−1, j)
∣
∣
∣

+
(
T

m

)2

(|λ|M + 2R)2e|λ|MTw2( jn)

=
[

1 + T

m
(|λ|M + 2R)w( jn)

]

×
[

max
j∈Sn

∣
∣
∣eλV ∗

n (tl−1, j) − Wm(tl−1, j)
∣
∣
∣

+ T

m
(|λ|M + 2R)e|λ|MTw( jn)

]

− T

m
(|λ|M + 2R)e|λ|MTw( jn).

Employing the last inequality and the induction, we get

max
j∈Sn

∣
∣
∣eλV ∗

n (tl , j) − Wm(tl , j)
∣
∣
∣ ≤ T

m
(|λ|M + 2R)e|λ|MTw( jn)

(
e

T
m l(|λ|M+2R)w( jn) − 1

)

≤ T

m
(|λ|M + 2R)e|λ|MTw( jn) ×

(
eT (|λ|M+2R)w( jn) − 1

)
.

Therefore, the assertion holds.
(b) Fix any n ≥ 1 and i ∈ Sn . By part (a), we have limm→∞ Wm(0, i) = eλV ∗

n (0,i),
which implies that for any τ ∈ (0, 1), there exists a positive integer mτ satisfying

eλV ∗
n (0,i) − τe−|λ|MT ≤ Wm(0, i) ≤ eλV ∗

n (0,i) + τe−|λ|MT

for all m ≥ mτ . Thus, employing the last inequalities we obtain

(1 − τ)e−|λ|MT ≤ Wm(0, i) ≤ (1 + τ)e|λ|MT for all m ≥ mτ . (5.13)

Below we discuss the cases λ > 0 and λ < 0 separately. Note that

1

λ
ln(1 + τ) ≤ 1

λ
ln

1

1 − τ
for λ > 0 and

1

λ
ln(1 + τ) ≥ 1

λ
ln

1

1 − τ
for λ < 0.

(5.14)
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Case 1: λ > 0. For each m ≥ mτ , by (5.13) and (5.14) we get

−MT + 1

λ
ln(1 − τ) ≤ 1

λ
lnWm(0, i) ≤ MT + 1

λ
ln(1 + τ) ≤ MT − 1

λ
ln(1 − τ).

Case 2: λ < 0. For each m ≥ mτ , employing (5.13) and (5.14) we have

−MT − 1

λ
ln(1−τ) ≤ −MT+1

λ
ln(1+τ) ≤ 1

λ
lnWm(0, i) ≤ MT + 1

λ
ln(1 − τ).

Hence, we obtain

−MT + 1

|λ| ln(1 − τ) ≤ 1

λ
lnWm(0, i) ≤ MT − 1

|λ| ln(1 − τ) (5.15)

for all m ≥ mτ and λ �= 0. Moreover, it follows from the differential mean value
theorem and (5.15) that

∣
∣
∣eλV ∗

n (0,i) − Wm(0, i)
∣
∣
∣ ≥ |λ|(1 − τ)e−|λ|MT

∣
∣
∣
∣V

∗
n (0, i) − 1

λ
lnWm(0, i)

∣
∣
∣
∣ ,

which together with part (a) implies

∣
∣
∣
∣V

∗
n (0, i) − 1

λ
lnWm(0, i)

∣
∣
∣
∣ ≤ T

m|λ|(1 − τ)

× (|λ|M + 2R) e2|λ|MTw( jn)
(
eT (|λ|M+2R)w( jn) − 1

)

for all m ≥ mτ . Therefore, the desired result follows from the last inequality, The-
orem 5.1 and the inequality

∣
∣V ∗(0, i) − 1

λ
lnWm(0, i)

∣
∣ ≤ ∣

∣V ∗(0, i) − V ∗
n (0, i)

∣
∣ +

∣
∣V ∗

n (0, i) − 1
λ
lnWm(0, i)

∣
∣ .

(c) Fix anyn ≥ 1,m ≥ mτ and fn,m ∈ On,m . Define anoperator �̃ on B([0, T ]×Sn)
as follows:

�̃g(t, i) : = eαt + eαt
∫ T

t
e−αs

(

λc(i, fn,m(s, i))g(s, i)

+
∑

j∈Sn
g(s, j)qn( j |i, fn,m(s, i))

)

ds

for all g ∈ B([0, T ] × Sn), where α is an arbitrary positive constant. Then by (5.6)
and Assumption 5.1(i) we have |�̃g(t, i)| ≤ eαT + T eαT (|λ|M + 2Rw( jn))‖g‖ for
all (t, i) ∈ [0, T ] × Sn , which yields that �̃ is a map from B([0, T ] × Sn) into itself.
Moreover, for any g1, g2 ∈ B([0, T ] × Sn), direct calculations give

|�̃g1(t, i) − �̃g2(t, i)| ≤ |λ|M + 2Rw( jn)

α
‖g1 − g2‖
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for all (t, i) ∈ [0, T ]× Sn . Hence, letting α = |λ|M + 2Rw( jn)+ 1, we obtain that �̃
is a contraction operator on B([0, T ]× Sn). Therefore, the Banach fixed point theorem
implies the existence of a function g̃ ∈ B([0, T ] × Sn) satisfying

g̃(t, i) = eαt + eαt
∫ T

t
e−αs

(

λc(i, fn,m(s, i))g̃(s, i)

+
∑

j∈Sn
g̃(s, j)qn( j |i, fn,m(s, i))

)

ds (5.16)

for all (t, i) ∈ [0, T ] × Sn and α = |λ|M + 2Rw( jn) + 1. Set ũ(t, i) :=
e−(|λ|M+2Rw( jn)+1)t g̃(t, i). Then by (5.16) we have

ũ(t, i) = 1 +
∫ T

t

(

λc(i, fn,m(s, i))̃u(s, i) +
∑

j∈Sn
ũ(s, j)qn( j |i, fn,m(s, i))

)

ds

(5.17)

for all (t, i) ∈ [0, T ] × Sn . Thus, the last equality yields that for each i ∈ Sn , ũ(·, i)
is absolutely continuous on [0, T ] and

−∂ ũ

∂t
(t, i) = λc(i, fn,m(t, i))̃u(t, i) +

∑

j∈Sn
ũ(t, j)qn( j |i, fn,m(t, i)) (5.18)

for a.e. t ∈ [0, T ]. Moreover, from the proof of Theorem 3.1, we conclude that the
Feynman–Kac formula is also applicable to the function ũ. Hence, employing (5.18)

and following the similar arguments of (4.6), we have ũ(t, i) = eλV
fn,m
n (t,i) for all

(t, i) ∈ [0, T ] × Sn . Therefore, by (5.17) we get

eλV
fn,m
n (t,i) = 1 +

∫ T

t

(

λc(i, fn,m(s, i))eλV
fn,m
n (s,i)

+
∑

j∈Sn
eλV

fn,m
n (s, j)qn( j |i, fn,m(s, i))

)

ds

for all (t, i) ∈ [0, T ] × Sn . Then using the last equality and following the same
techniques in the proofs of parts (a) and (b), we obtain

∣
∣
∣
∣V

fn,m
n (0, i) − 1

λ
lnWm(0, i)

∣
∣
∣
∣ ≤ T R2e|λ|MT

m|λ|(1 − τ)
w( jn)

(
eT (|λ|M+2R)w( jn) − 1

)

for all i ∈ Sn , which together with part (b) gives the assertion. ��
Remark 5.1 (a) Theorems 5.1 and 5.2 are new for the risk-sensitive finite-horizon
cost criterion. The iteration defined by (5.9) provides a numerical method to compute
approximately the optimal value and an optimal policy of the model M.
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(b) For the control model M with finite states and finite actions, there exists a
positive constant R̂ such that q∗(i) ≤ R̂ for all i ∈ S. Moreover, we do not need to
construct a sequence of the control models {Mn, n ≥ 1}. Thus, employing the same
technique used in the proof of Theorem 5.2, we obtain that for any τ ∈ (0, 1), there
exists a positive integer mτ such that

∣
∣
∣
∣V

∗(0, i) − 1

λ
lnWm(0, i)

∣
∣
∣
∣ ≤ T

m|λ|(1 − τ)
(|λ|M

+ 2R̂)e2|λ|MT
(
eT (|λ|M+2R̂) − 1

)
and

∣
∣
∣V ∗(0, i) − V fm (0, i)

∣
∣
∣ ≤ 2T

m|λ|(1 − τ)
(|λ|M

+ 2R̂)e2|λ|MT
(
eT (|λ|M+2R̂) − 1

)

for all i ∈ S and m ≥ mτ , where the policy fm is as in (5.10). Hence, the last two
inequalities yield that the accuracy of the approximation given by (5.9) and (5.10) is
of order m−1.

6 An example

In this section, we illustrate the application of our main results with a controlled birth
and death system and use the iteration in Sect. 5 to compute approximately the optimal
value.

Example 6.1 [A controlled birth and death system in Guo and Hernández-Lerma
(2009)] Consider a controlled birth and death system in which the state variable repre-
sents the population size. Let the positive constantsβ and γ denote the natural birth and
death rates, respectively. Suppose that the immigration parameter denoted by a1 and
the emigration parameter denoted by a2 can be controlled by a decision-maker. When
the population size of the system is not less than one, the decision-maker chooses an
immigration parameter from a given set [0, κ] (κ > 0) and an emigration parameter
from a given set [ζ1, ζ2] (ζ2 > ζ1 > 0) to control the population size. When the
population size equals zero, the decision-maker only needs to choose an immigration
parameter from the set [0, κ] and it is natural to take a2 ≡ 0. Moreover, we assume
that there exists a positive integer i∗ such that the cost of regulating the system is too
high when the population size exceeds the integer i∗. Thus, we suppose that the cost
takes a large enough positive value Q when the population size is greater than i∗. If
the population size is i ∈ {0, 1, 2, . . . , i∗}, we suppose that this state and the action
(a1, a2) incur a cost (|a1 − η1| + |a2 − η2|)i , where η1 and η2 are given positive
constants.

Now we formulate the above controlled birth and death system as a CTMDP with
the state space given by S = {0, 1, 2 . . .}, the sets of all admissible actions given by
A(0) = [0, κ]× {0} and A(i) = [0, κ]× [ζ1, ζ2] for all i ≥ 1, the transition rate given
by q(1|0, (a1, 0)) = −q(0|0, (a1, 0)) = a1 for all a1 ∈ [0, κ] and
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q( j |i, a) =

⎧
⎪⎪⎨

⎪⎪⎩

βi + a1, if j = i + 1,
−(β + γ )i − a1 − a2, if j = i,
γ i + a2, if j = i − 1,
0, otherwise,

for all i ≥ 1 and a = (a1, a2) ∈ A(i), and the cost given by

c(i, a) =
{

(|a1 − η1| + |a2 − η2|)i, if 0 ≤ i ≤ i∗,
Q, if i > i∗,

for all a = (a1, a2) ∈ A(i).
Then we have the following statement.

Proposition 6.1 The controlled birth and death system in Example 6.1 satisfies
Assumptions 3.1, 3.2 and 5.1. Hence, (by Theorem 4.1), there exists an optimal deter-
ministic Markov policy.

Proof Take w(i) = i + 1 for all i ∈ S. Then Assumption 5.1(i) holds. Moreover, by
the description of the model, we obtain

q∗(i) ≤ (β + γ )i + κ + ζ2 ≤ max{β + γ, κ + ζ2}w(i),
∑

j∈S
w( j)q( j |i, a) = (β − γ )i + a1 − a2 ≤ βw(i) + κ,

∑

j∈S
w2( j)q( j |i, a) = 2(β − γ )i2 + (3β − γ + 2a1 − 2a2)i + 3a1 − a2

≤ (5β + 2κ)w2(i) + 3κ

for all i ≥ 1 and a = (a1, a2) ∈ A(i), and

q∗(0) ≤ κw(0) ≤ max{β + γ, κ + ζ2}w(0),
∑

j∈S
w( j)q( j |0, a) = a1 ≤ βw(0) + κ,

∑

j∈S
w2( j)q( j |0, a) = 3a1 ≤ (5β + 2κ)w2(0) + 3κ

for all a = (a1, a2) ∈ A(0). Hence, Assumptions 3.1(i), (ii), 5.1(ii) are satisfied with
ρ1 = β, d1 = κ , ρ2 = 5β + 2κ , d2 = 3κ and R = max{β + γ, κ + ζ2}. Moreover,
we have |c(i, a)| ≤ max{(κ + ζ2 + η1 + η2)i∗, Q}. Thus, Assumption 3.1(iii) holds
with M = max{(κ + ζ2 + η1 + η2)i∗, Q}. Furthermore, direct calculations give
|c(i, a) − c(i, b)| ≤ (|a1 − b1| + |a2 − b2|)i for all 0 ≤ i ≤ i∗, |c(i, a) − c(i, b)| ≤
|a1 − b1| + |a2 − b2| for all i > i∗ and |q( j |i, a) − q( j |i, b)| ≤ |a1 − b1| + |a2 − b2|
for all i, j ∈ S and a = (a1, a2), b = (b1, b2) ∈ A(i), which together with the
description of the model imply that Assumptions 3.2 and 5.1(iii) are satisfied with
Li = i for 0 ≤ i ≤ i∗, Li = 1 for i > i∗ and Li j = 1. Therefore, we complete the
proof of the proposition. ��
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n=100

Fig. 1 Value lnW 10
m (0, 3) of the model Mn for n = 50, 75, 100 and m = 10,000, . . . , 80,000

For each n ≥ 1, the control model Mn is given by Sn = {0, 1, . . . , n}, An(0) =
{ κl
n2

: l = 0, 1, . . . , n2} × {0}, An(i) = { κl
n2

: l = 0, 1, . . . , n2} × {ζ1 + (ζ2−ζ1)l
n2

:
l = 0, 1, . . . , n2} for all i = 1, 2, . . . , n. Then for each n ≥ 1 and i ∈ Sn , direct
calculations give

dH (A(i), An(i)) ≤ κ + ζ2 − ζ1

n2
≤ 2e|λ|MT (|λ|i∗ + 2)(κ + ζ2 − ζ1)w

2(i)

e|λ|MT
(
|λ|Li + 2

∑n−1
j=0 Li j

)
w(n)

.

Hence, (5.2) in Theorem 5.1 holds with M̃ = 2e|λ|MT (|λ|i∗ + 2)(κ + ζ2 − ζ1).
For a numerical experimentation of Example 6.1, we take the following values

of the parameters: T = 5, λ = 0.1, β = 0.9, γ = 1, κ = 1, ζ1 = 0.4, ζ2 = 1,
η1 = 1.1, η2 = 1.2, i∗ = 10,000, Q = 1,000,000. For n = 50, 75, 100 and
m = 10,000, . . . , 80,000, via the iteration defined by (5.9), we obtain the values of
lnW 10

m (0, 3) as displayed in Fig. 1. Empirically, the convergence is faster than that
given in Theorem 5.2. This is due to the fact that the bounds used to obtain the error
estimations in Theorem 5.2 are very conservative. Moreover, as can be seen in Fig. 1,
the value of V ∗(0, 3) approximately equals 4.62277.

7 Concluding remarks

In this paper we have studied the risk-sensitive finite-horizon cost criterion for
CTMDPs with the denumerable states, bounded cost rates and possibly unbounded
transition rates. The risk-sensitivity coefficient can take any nonzero value. Under the
suitable conditions, we have established the existence and uniqueness of the solu-
tion to the optimality equation and shown the existence of an optimal deterministic
Markov policy. Moreover, we have proposed a tractable numerical method for the
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approximate computations of an optimal policy and the optimal value, and obtained
the corresponding error estimations. It should be mentioned that the Feynman–Kac
formula plays a crucial role in the study of the risk-sensitive finite-horizon cost crite-
rion. The Feynman–Kac formula in Theorem 3.1 is only applicable to the case of the
bounded cost rates and bounded optimal value function. For the case of the unbounded
cost rates, the corresponding optimal value function is also unbounded. Hence, in order
to study the risk-sensitive finite-horizon cost criterion with the unbounded cost rates,
we need to extend the Feynman–Kac formula in Theorem 3.1 to the case which is
applicable to the unbounded cost rates and unbounded optimal value function. How
to extend the Feynman–Kac formula remains an open problem.
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by National Natural Science Foundation of China (Grant No. 11526092).
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