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Abstract In this paper, we study the optimal reinsurance-investment problems in a
financial market with jump-diffusion risky asset, where the insurance risk model is
modulated by a compound Poisson process, and the two jump number processes are
correlated by a common shock.Moreover, we remove the assumption of nonnegativity
on the expected value of the jump size in the stock market, which is more economic
reasonable since the jump sizes are always negative in the real financial market. Under
the criterion of mean–variance, based on the stochastic linear–quadratic control the-
ory, we derive the explicit expressions of the optimal strategies and value function
which is a viscosity solution of the corresponding Hamilton–Jacobi–Bellman equa-
tion. Furthermore, we extend the results in the linear–quadratic setting to the original
mean–variance problem, and obtain the solutions of efficient strategy and efficient
frontier explicitly. Some numerical examples are given to show the impact of model
parameters on the efficient frontier.
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1 Introduction

In the past decade, optimal reinsurance and optimal investment problems for various
risk models have gained a lot of interest in the actuarial literature, and the technique of
stochastic control theory and the corresponding Hamilton–Jacobi–Bellman equation
are frequently used to cope with these problems. See, for example, Schmidli (2001),
Irgens and Paulsen (2004), Promislow andYoung (2005), Liang et al. (2011) and Liang
and Bayraktar (2014). The main popular criteria include maximizing the expected
utility of the terminal wealth, minimizing the ruin probability of the insurer, and so
on.

Mean–variance criterion, as another one of the popular criteria proposed by
Markowitz (1952), has become one of the milestone in mathematical finance. In
Markowitz (1952), the author was to seek a best allocation among a number of (risky)
assets in order to achieve the optimal trade-off between the expected return and its
risk (say, variance) over a fixed time horizon. From then on, mean–variance criterion
becomes a rather popular criterion to measure the risk in finance theory. By now there
exist numerous papers on the mean–variance problem and its extension in finance.
See for example, Li and Ng (2000) developed an embedding technique to change
the originally mean–variance problem into a stochastic linear–quadratic (LQ) con-
trol problem in a discrete-time setting. This technique was extended in Zhou and Li
(2000), along with an indefinite stochastic LQ control approach, to the continuous
time case. Before 2005, all the applications with mean–variance criterion focus on
classical financial portfolio allocation problems. Bäuerle (2005) first pointed out that
mean–variance criterion could also be of interest in insurance application, and then he
studied the optimal reinsurance strategy problem for the classical compound Poisson
insurance risk model. Under the mean–variance framework, by using the stochastic
LQ control theory, the explicit solutions of the efficient strategy and efficient fron-
tier are given. Further extensions and improvements in insurance applications were
carried out. See for example, Bi and Guo (2013) considered the optimal reinsurance
and optimal investment with a jump-diffusion risky asset for the compound Poisson
risk model, by the technique of viscosity solution, the efficient frontier and efficient
strategy were obtained; Ming and Liang (2016) studied the optimal reinsurance for
the compound Poisson risk model with common shock dependence, and the optimal
results were also derived.

Most of the literature about investment optimization is based on the assumption
that the price of the stock follows a diffusion-type process, in particular a geometric
Brownian motion. But in the real financial market, information often comes as a
surprise, this usually leads to a jump in the price of stock. Therefore, in a jump-diffusion
model the stock’s price may jump to a new level and then follow a geometric Brownian
motion. Besides, the published papers with jump-diffusion risky asset always have
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some constraints on the jump sizes. See, for example, Alvarez et al. (2014) only
considered the negative shocks, i.e., download jumps to study the optimal stopping
problems; while Bi and Guo (2013) assumed that the expected value of the jump
size in the stock market is nonnegative. In this paper, we remove all these constraints
mentioned above, and allow the expected value of jump sizes to be negative as well
as positive, which is more economic reasonable in the real financial market, and thus
we have to discuss the optimization problem within five different cases. Moreover,
we assume that the aggregate claim and the stock price are correlated by a common
shock. This kind ofmodel assumes that there exists a common shock affecting the stock
market as well as the insurance market. In reality, a common component can depict
the effect of a natural disaster which causes various kinds of risk including the one in
financial market. It generalizes the model of Bi and Guo (2013) from the independent
financial market to the case where aggregate claim process and risky asset process
are correlated by a common shock. Under the mean–variance criterion, based on the
framework of stochastic LQ control theory and the corresponding Hamilton–Jacobi–
Bellman (HJB) equation, we derive the explicit expressions of the optimal strategies
and value function, which is the viscosity solution of the HJB equation. Furthermore,
we extend the results in the LQ-setting to the original mean–variance problem, and
obtain the explicit solutions of the efficient strategy and efficient frontier.

The rest of the paper is organized as follows. In Sect. 2, the model and the mean–
variance problem are presented. The main results and the explicit expressions for the
optimal values are derived in Sect. 3. In Sect. 4, we extend the optimal results in the
LQ-setting to the original mean–variance problem, and obtain the solutions of the
efficient strategy and efficient frontier explicitly. Some numerical examples are shown
to illustrate the impact of some model parameters on the efficient frontier in Sect. 5,
and Sect. 6 concludes the paper.

2 Model and problem formulation

Let (�,F , P) be a probability space with filtration {Ft } containing all objects defined
in the following.

We consider the financial market where the assets are traded continuously on a
finite time horizon [0, T ]. There are a risk-free asset (bond) and a risky asset (stock)
in the financial market. The price of the bond is given by

{
dB(t) = r(t)B(t)dt, t ∈ [0, T ],
B(0) = 1,

where r(t)(> 0) is the interest rate of the bond.
The price of the stock is modeled by the following jump-diffusion process

⎧⎪⎨
⎪⎩
dS(t) = S(t−)

[
b(t)dt + σ(t)dW(t) + d

∑K2(t)

i=1
Yi

]
, t ∈ [0, T ],

S(0) = S0,

(1)
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where S0 is the deterministic initial price, b(t)(>r(t)) is the appreciation rate and
σ(t) > 0 is the volatility coefficient. We denote a(t) := b(t) − r(t) > 0. {W (t)}t≥0
is a standard {Ft }t≥0-adapted Brownian motion. We assume that r(t), b(t) and σ(t)
are deterministic, Borel-measurable and bounded on [0, T ]. {K2(t)}t≥0 is a Poisson
process with intensity parameter λ2 + λ > 0. The jump sizes {Yi , i ≥ 1} are assumed
to be an i.i.d. sequence with values in (−1,+∞), the assumption that Yi > −1 leads
always to positive values of the stock prices. Y is a generic random variable which
has the same distribution as Yi , i ≥ 1. Let FY (·) denote the cumulative distribution
function of Y . We assume that E[Y ] = μ21 and E[Y 2] = μ22. {W (t)}t≥0, {K2(t)}t≥0
and {Yi , i ≥ 1} are mutually independent.

The diffusion component in Eq. (1) characterizes the normal fluctuation in the
stock’s price, due to gradual changes in economic conditions or the arrival of new
information which causes marginal changes in the stock’s price. The jump component
describes the sudden changes in the stock’s price due to the arrival of important new
information which has a large effect on the stock’s price. By Protter (2004, Chapter
V), a unique solution exists for stochastic differential equation (SDE) (1).

The risk process {U (t)}t≥0 of the insurer is modeled by

dU(t) = cdt − d
K1(t)∑
i=1

Xi , U (0) = U0, (2)

where U0 is the deterministic initial reserve of the insurer and the constant c is the
premium rate. {K1(t)}t≥0 is a Poisson process with intensity λ1 + λ > 0 which
represents the number of claims occurring in time interval [0, t]. Xi is the size of the
i th claim and {Xi , i ≥ 1} are assumed to be an i.i.d. sequence and independent of
{K1(t)}t≥0. Thus the compound Poisson process

∑K1(t)
i=1 Xi represents the cumulative

amount of claims in time interval [0, t]. X is a generic random variable which has
the same distribution as Xi , i ≥ 1. Let FX (·) denote the cumulative distribution
function of X . The expectation of X is E[X ] = μ11 > 0 and the second moment
of X is E[X2] = μ12 > 0. Throughout this paper, we assume that the premium is
calculated according to the expected value principle. That is, c = (1 + θ̃1)a1 with
a1 = (λ1 + λ)μ11, where θ̃1(> 0) is the safety loading for insurer. The risk process
defined in Eq. (2), from the perspective of the insurer, is really a pay-off process
associated with the (insurance) contracts he (or she) has entered. The two number
processes {K1(t)}t≥0 and {K2(t)}t≥0 are correlated in the way that

K1(t) = N1(t) + N (t) and K2(t) = N2(t) + N (t),

with N1(t), N2(t), and N (t) being three independent Poisson processes with parame-
ters λ1, λ2, and λ, respectively. It is obvious that the dependence between the financial
risky asset and the aggregate claim processes is due to a common shock governed by
the counting process N (t). Moreover, {W (t)}t≥0, {N1(t)}t≥0, {Xi , i ≥ 1}, {N2(t)}t≥0,
{Yi , i ≥ 1} and {N (t)}t≥0 are mutually independent.

We assume that, at time t , the insurer is allowed to invest all of his (or her) wealth
R(t) into the financial market. Let ξ(t) and η(t) denote the total market value of
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the agent’s wealth in the bond and stock, respectively, and ξ(t) + η(t) = R(t). An
important restriction we will consider in this paper is the prohibition of short-selling
of the stock, i.e., η(t) ≥ 0. But ξ(t) is not constrained. We assume that the insurer can
purchase newbusiness in addition to investment. Let q(t)(≥ 0) represents the retention
level of new business acquired at time t . It means that the insurer pays q(t)X of a claim
occurring at time t and the new businessman pays (1− q(t))X . For this business, the
premium has to be paid at rate δ(q(t)) = (1 + θ)(1 − q(t))a1, where θ is the safety
loading for the new business. Without loss of generality, we assume that θ ≥ θ̃1. Note
that for the insurance company, q(t) ∈ [0, 1] corresponds to a reinsurance cover and
q(t) > 1wouldmean that the company can take an extra insurance business fromother
companies (i.e., act as a reinsurer for other cedents). A strategy π(t) = (η(t), q(t))
is said to be admissible if η(t) and q(t) are Ft -predictable processes, and satisfy
η(t) ≥ 0, q(t) ≥ 0, E[∫ t

0 (η(s))2ds] < ∞ and E[∫ t
0 (q(s))2ds] < ∞ for all t ≥ 0.

We denote the set of all admissible strategies by 
. Then the resulting surplus process
R(t) is given by

⎧⎪⎪⎨
⎪⎪⎩
dR(t) = [r(t)R(t−) + a(t)η(t) + c − δ(q(t))] dt + η(t)σ (t)dW(t)

+ η(t)d
∑K2(t)

i=1
Yi − q(t)d

∑K1(t)

i=1
Xi

R(0) = R0.

(3)

Corresponding to an admissible trading strategy π(·) and a deterministic initial capital
R0, there exists a unique R(·) satisfying (3).

Let Rπ (T ) denote the terminal wealth when the strategy π(·) is applied. Then the
mean–variance problem is to maximize the expected terminal wealth E[Rπ (T )] and,
in the meantime, to minimize the variance of the terminal wealth Var[Rπ (T )] over
π(·) ∈ 
. This is a multi-objective optimization problemwith two conflicting criteria,
which can be formulated as follows:

min (J1(π(·)), J2(π(·))) := (Var[Rπ (T )],−E[Rπ (T )])

subject to

{
π ∈ 


(R(·), π(·)) satisfy (3).

(4)

Definition 2.1 For the multi-objective optimization problem (4), an admissible strat-
egy π∗(·) is called an efficient strategy if there exists no admissible portfolio π(·) ∈ 


such that

J1(π(·)) ≤ J1(π
∗(·)), J2(π(·)) ≤ J2(π

∗(·))

with at least oneof the inequalities holding strictly. In this case, (J1(π∗(·)),−J2(π∗(·)))
∈ R

2 is called an efficient point. The set of all efficient points is called the efficient
frontier.

We firstly consider the problem of finding an admissible strategy such that the
expected terminal wealth satisfies E[Rπ (T )] = k, where k is a constant, while the
risk measured by the variance of the terminal wealth
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Var[Rπ (T )] = E
[
Rπ (T ) − E[Rπ (T )]]2 = E

[
(Rπ (T ) − k)2

]

is minimized. This variance minimizing problem can be formulated as the following
optimization problem

min Var[Rπ (T )] = E[Rπ (T ) − k]2

subject to

⎧⎪⎨
⎪⎩

E[Rπ (T )] = k

π ∈ 


(R(·), π(·)) satisfy (3).

(5)

Definition 2.2 For the variance minimizing problem (5), the optimal strategy π∗(·)
(corresponding to a fixed k) is called a variance minimizing strategy, and the set
of all points (Var[Rπ∗

(T )], k), where Var[Rπ∗
(T )] denotes the optimal value of (5)

corresponding to a fixed k, is called the variance minimizing frontier.

An efficient strategy is one for which there does not exist another strategy that has
higher mean and no higher variance, and/or has lower variance and no lower mean at
the terminal time T . In other words, an efficient strategy is one that is Pareto optimal.
ByDefinitions 2.1 and 2.2, we know that the efficient frontier is a subset of the variance
minimizing frontier. In the following context, we will discuss the variance minimizing
problem firstly.

Since (5) is a convex optimization problem, the constraint ERπ (T ) = k can be
dealt with by introducing a Lagrange multiplier β ∈ R. In this way, problem (5) can
be solved via the following optimal stochastic control problem (for every fixed β)

min E
[
(Rπ (T ) − k)2 + 2β(E[Rπ (T )] − k)

]
,

subject to

{
π ∈ 


(R(·), π(·)) satisfy (3),

(6)

where the factor 2 in the front of β is introduced in the objective function just for con-
venience. After solving problem (6), to obtain the optimal value and optimal strategy
for problem (5), we need to maximize the optimal value in (6) over β ∈ R according
to Lagrange duality theorem (see Luenberger 1968). Clearly, problem (6) is equivalent
to

min E
[
(Rπ (T ) − (k − β))2

]
,

subject to

{
π ∈ 


(R(·), π(·)) satisfy (3),

(7)

in the sense that the two problems have exactly the same optimal control for fixed β.
For simplicity, we omit the superscript π of Rπ (·) from now on.
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3 The HJB equation and optimal results

We firstly solve an auxiliary LQ problem. Consider the following controlled linear
stochastic differential equation⎧⎪⎪⎪⎨

⎪⎪⎪⎩
d R̂(t) = [r(t)R̂(t−) + a(t)η(t) + c(t) − δ(q(t))]dt + η(t)σ (t)dW(t)

+ η(t)d
∑K2(t)

i=1
Yi − q(t)d

∑K1(t)

i=1
Xi

R̂(0) = R̂0,

(8)

and the problem

min E

[
1

2
(R̂(T ))2

]
,

subject to

{
π ∈ 


(R̂(·), π(·)) satisfy (8),

(9)

where r(t), a(t), c(t) and σ(t) are deterministic, Borel-measurable functions and
bounded on [0, T ]. Note that if we set R̂(t) = R(t) − (k − β), then R(t) = R̂(t) +
(k − β), R(0) = R̂(0) + (k − β), and c(t) = c + (k − β)r(t) in (8), we can get (3)
from (8). So we solve the auxiliary LQ problem (8)–(9) firstly.

We define the associated value function by

J (t, x) := inf
π∈


E

[
1

2
(R̂(T ))2

∣∣R̂(t) = x

]
.

This is a stochastic LQ problem, in which the two controls are constrained to take
nonnegative values. In the following, we will solve this problem with the help of the
HJB equation.

According to Fleming and Soner (1993), the corresponding HJB equation of prob-
lem (8)–(9) is the following partial differential equation

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

inf
π

{
Vt (t, x) + [r(t)x + a(t)η + c(t) − δ(q)]Vx (t, x) + 1

2
σ(t)2η2Vxx (t, x)

+ λ2E[V (t, x + ηY ) − V (t, x)] + λ1E[V (t, x − qX) − V (t, x)]
+ λE[V (t, x + ηY − qX) − V (t, x)]

}
= 0

V (T, x) = 1

2
x2.

(10)
Here Vt (t, x), Vx (t, x) mean the partial derivatives of V (t, x). For function f (t, x),
let C1,2([0, T ] ×R) denote the space of f (t, x) such that f and its partial derivatives
ft , fx , fxx are continuous on [0, T ] × R. If the optimal value function J (·, ·) ∈
C1,2([0, T ] × R), it will satisfy Eq. (10). But in most of the examples this is not the
case, so we study the viscosity solutions of Eq. (10). Next we will give the definition
of viscosity solution according to Fleming and Soner (1993).
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Definition 3.1 Let V ∈ C([0, T ] × R), which consists of functions continuous on
[0, T ] × R.

(1) We say V is a viscosity subsolution of (10) in (t, x) ∈ [0, T ] × R, if for each
ϕ ∈ C1,2([0, T ] × R),

inf
η≥0,q≥0

{
ϕt (t̄, x̄) + ϕx (t̄, x̄)[r(t̄)x̄ + (b(t̄) − r(t̄))η + c(t) − δ(q)]

+ 1

2
ϕxx (t̄, x̄)σ (t̄)2η2 + λ2E[ϕ(t̄, x̄ + ηY ) − ϕ(t̄, x̄)]

+ λ1E[ϕ(t̄, x̄ − qX) − ϕ(t̄, x̄)]
+ λE[ϕ(t̄, x̄ + ηY − qX) − ϕ(t̄, x̄)]

}
≥ 0

at every (t̄, x̄) ∈ [0, T ] × R which is a maximizer of V − ϕ on [0, T ] × R with
V (t̄, x̄) = ϕ(t̄, x̄).

(2) We say V is a viscosity supersolution of (10) in (t, x) ∈ [0, T ] × R, if for each
ϕ ∈ C1,2([0, T ] × R),

inf
η≥0,q≥0

{
ϕt (t̄, x̄) + ϕx (t̄, x̄)[r(t̄)x̄ + (b(t̄) − r(t̄))η + c(t) − δ(q)]

+ 1

2
ϕxx (t̄, x̄)σ (t̄)2η2 + λ2E[ϕ(t̄, x̄ + ηY ) − ϕ(t̄, x̄)]

+ λ1E[ϕ(t̄, x̄ − qX) − ϕ(t̄, x̄)]
+ λE[ϕ(t̄, x̄ + ηY − qX) − ϕ(t̄, x̄)]

}
≤ 0

at every (t̄, x̄) ∈ [0, T ] × R which is a minimizer of V − ϕ on [0, T ] × R with
V (t̄, x̄) = ϕ(t̄, x̄).

(3) We say V is a viscosity solution of (10) in (t, x) ∈ [0, T ] × R, if it is both a
viscosity subsolution and a viscosity supersolution of (10) in (t, x) ∈ [0, T ]×R.

In the following context, we will give a detailed analysis for the continuously
differentiable viscosity solution to the HJB Eq. (10).

Suppose that the HJB Eq. (10) has a solution which has the following form

V (t, x) = 1

2
P(t)x2 + Q(t)x + L(t). (11)

The boundary condition in (10) implies that P(T ) = 1, Q(T ) = 0, and L(T ) = 0.
Inserting the ansatz (11) into (10) and rearranging yields
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inf
π

{
(ηa(t) + (1 + θ)a1q)(P(t)x + Q(t)) + 1

2
P(t)σ (t)2η2

+ λ1

[
−(P(t)x + Q(t))qμ11 + 1

2
P(t)q2μ12

]

+ λ2

[
(P(t)x + Q(t))ημ21 + 1

2
P(t)η2μ22

]

+ λ(P(t)x + Q(t))(ημ21 − qμ11) + 1

2
P(t)λ(η2μ22 − 2ηqμ11μ21 + q2μ12)

}

+ 1

2
Pt (t)x

2 + Qt (t)x + Lt (t) + (r(t)x + c(t) − (1 + θ)a1)(P(t)x + Q(t)) = 0.

(12)
Let

f (η, q) = [ηa(t) + (1 + θ)a1q] (P(t)x + Q(t)) + 1

2
P(t)σ (t)2η2

+ λ1

[
−(P(t)x + Q(t))qμ11 + 1

2
P(t)q2μ12

]

+ λ2

[
(P(t)x + Q(t))ημ21 + 1

2
P(t)η2μ22

]

+ λ(P(t)x+Q(t))(ημ21−qμ11)+ 1

2
P(t)λ(η2μ22−2ηqμ11μ21+q2μ12).

We have

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ f
∂η

= [(
σ 2(t)+(λ2+λ)μ22

)
η−λμ11μ21q

]
P(t)+(P(t)x+Q(t))(a(t)+(λ2+λ)μ21),

∂ f
∂q = [(λ1 + λ)μ12q − λμ11μ21η)] P(t) + (P(t)x + Q(t))θa1,

∂2 f
∂η2

= [
σ 2(t) + (λ2 + λ)μ22

]
P(t),

∂2 f
∂q2

= (λ1 + λ)P(t)μ12,

∂2 f
∂η∂q = ∂2 f

∂q∂η
= −λP(t)μ11μ21.

Let

A =
(

P(t)
(
σ 2(t) + λ2μ22

)
0

0 P(t)λ1μ12

)
, B =

(
P(t)μ22 −P(t)μ11μ21

−P(t)μ11μ21 P(t)μ12

)
.

Then, the Hessian matrix of f (η, q) can be decomposed as

⎛
⎝ ∂2 f (η,q)

∂η2
∂2 f (η,q)

∂η∂q
∂2 f (η,q)

∂q∂η
∂2 f (η,q)

∂q2

⎞
⎠ = A + λ · B.

It is easy to see that A is a positive definite matrix. Furthermore, by the
Cauchy−Schwarz inequality, it is not difficult to prove that B is a nonnegative defi-
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nite matrix, and thus, the Hessian matrix is a positive definite matrix. Therefore, the
minimizer (η, q) of f (η, q) satisfies the following equations

⎧⎨
⎩

[(
σ 2(t) + (λ2 + λ)μ22

)
η − λμ11μ21q

]
P(t) + (P(t)x + Q(t))

[a(t) + (λ2 + λ)μ21] = 0,
[(λ1 + λ)μ12q − λμ11μ21η] P(t) + (P(t)x + Q(t))θa1 = 0.

(13)

Solving the equations (13) gives

⎧⎨
⎩

η̌ = �1(t)
(
x + Q(t)

P(t)

)
,

q̌ = �2(t)
(
x + Q(t)

P(t)

)
,

(14)

where ⎧⎪⎨
⎪⎩

�1(t) = − (a(t)+(λ2+λ)μ21)(λ1+λ)μ12+θa1λμ11μ21

(σ 2(t)+(λ2+λ)μ22)(λ1+λ)μ12−λ2μ2
11μ

2
21

,

�2(t) = − (a(t)+(λ2+λ)μ21)λμ11μ21+θa1
(
σ 2(t)+(λ2+λ)μ22

)
(σ 2(t)+(λ2+λ)μ22)(λ1+λ)μ12−λ2μ2

11μ
2
21

.
(15)

Let

θ1(t) = − (a(t)+(λ2+λ)μ21)(λ1+λ)μ12
a1λμ11μ21

,

θ2(t) = − (a(t)+(λ2+λ)μ21)λμ11μ21
a1(σ 2(t)+(λ2+λ)μ22)

.

Before we discuss the optimal strategies based on the constraints of (η, q), we first
give the following lemma which plays a key role in this paper.

Lemma 3.1 For any 0 ≤ t ≤ T , when − a(t)
λ2+λ

< μ21 < 0, we have 0 < θ2(t) <

θ1(t); when −1 < μ21 < − a(t)
λ2+λ

or μ21 > 0, we have θ1(t) < θ2(t) < 0.

Proof By the Cauchy−Schwarz inequality, it is not difficult to see that

(
σ 2(t) + (λ2 + λ)μ22

)
(λ1 + λ)μ12 > λ2μ2

11μ
2
21.

When − a(t)
λ2+λ

< μ21 < 0, we have a(t) + (λ2 + λ)μ21 > 0, and thus

(
σ 2(t) + (λ2 + λ)μ22

)
(λ1 + λ)μ12 > λ2μ2

11μ
2
21⇔ (

σ 2(t) + (λ2 + λ)μ22
)
(λ1 + λ)μ12(a(t) + (λ2 + λ)μ21)

> λ2μ2
11μ

2
21(a(t) + (λ2 + λ)μ21)

⇔ (a(t)+(λ2+λ)μ21)(λ1+λ)μ12
a1λμ11μ21

<
(a(t)+(λ2+λ)μ21)λμ11μ21
a1(σ 2(t)+(λ2+λ)μ22)

⇔ − (a(t)+(λ2+λ)μ21)(λ1+λ)μ12
a1λμ11μ21

> − (a(t)+(λ2+λ)μ21)λμ11μ21
a1(σ 2(t)+(λ2+λ)μ22)

,

which proves that θ2(t) < θ1(t).
Along the same lines, we can prove the results for the cases of−1 < μ21 < − a(t)

λ2+λ
and μ21 > 0. �	
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From (15), it is easy to see that �1(t) > 0 and �2(t) < 0 for μ21 = − a(t)
λ2+λ

;
�1(t) < 0 and �2(t) < 0 for μ21 = 0. Therefore, based on the results of Lemma 3.1,
we will discuss the optimal results from the following five cases:

Case 1: − a(t)
λ2+λ

< μ21 < 0, 0 < θ ≤ θ2(t) < θ1(t) (i.e., �1(t) < 0, �2(t) ≥ 0),

Case 2: − a(t)
λ2+λ

< μ21 < 0, 0 < θ2(t) < θ ≤ θ1(t) (i.e., �1(t) ≤ 0, �2(t) < 0),

Case 3: − a(t)
λ2+λ

< μ21 < 0, 0 < θ2(t) < θ1(t) < θ (i.e., �1(t) > 0, �2(t) < 0),

Case 4: −1 < μ21 ≤ − a(t)
λ2+λ

, θ > 0 (i.e., �1(t) > 0, �2(t) < 0),
Case 5: μ21 ≥ 0, θ > 0 (i.e., �1(t) < 0, �2(t) < 0).

Remark 3.1 When − a(t)
λ2+λ

< −1, inequality − a(t)
λ2+λ

< μ21 always holds for any
t ∈ [0, T ], then we only need to discuss Cases 1, 2, 3 and 5.

Case 1 − a(t)
λ2+λ

< μ21 < 0 and 0 < θ ≤ θ2(t) < θ1(t).

In this case, �1(t) < 0 and �2(t) ≥ 0. If x + Q(t)
P(t) ≤ 0, then η̌ ≥ 0 and q̌ ≤ 0.

Because of the restriction of π∗ ∈ 
, we have to choose q∗ = 0. Inserting q∗ into
(12) with ∂ f (η,0)

∂η
= 0, we obtain

η̃ = − a(t) + (λ2 + λ)μ21

σ 2(t) + (λ2 + λ)μ22

(
x + Q(t)

P(t)

)
≥ 0,

then we get η∗ = η̃. Thus, the minimizer of the f (η, q) is π∗ = (η∗, q∗) = (η̃, 0).
Plugging π∗ = (η̃, 0) back into (12) and separating the variables with and without x
lead to the following systems of ODEs:

⎧⎪⎨
⎪⎩

1
2 Pt + M1(t)P(t) + r(t)P(t) = 0,
Qt + 2M1(t)Q(t) + r(t)Q(t) + (c(t) − (1 + θ)a1)P(t) = 0,

Lt + (c(t) − (1 + θ)a1)Q(t) + M1(t)
Q2(t)
P(t) = 0,

with the boundary conditions P(T ) = 1, Q(T ) = 0, L(T ) = 0, where

M1(t) = −1

2
· (a(t) + (λ2 + λ)μ21)

2

σ 2(t) + (λ2 + λ)μ22
.

Then we have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P(t) = e
∫ T
t 2(M1(s)+r(s))ds,

Q(t) = e
∫ T
t (2M1(s) + r(s))ds ×

∫ T

t
(c(s) − (1 + θ)a1)e

∫ T
s r(z)dzds,

L(t) =
∫ T

t
(c(s)−(1+θ)a1)e

∫ T
s (2M1(v)+r(v))dv

∫ T

s
(c(z)−(1+θ)a1)e

∫ T
z r(v)dvdzds

+
∫ T

t
M1(s)e

∫ T
s M1(v)dv

[∫ T

s
(c(z) − (1 + θ)a1)e

∫ T
z r(v)dvdz

]2
ds.
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Note that

x + Q(t)

P(t)
= x + e− ∫ T

t r(s)ds
∫ T

t
(c(s) − (1 + θ)a1)e

∫ T
s r(z)dzds,

then we have

{
η∗(t, x) = − a(t)+(λ2+λ)μ21

σ 2(t)+(λ2+λ)μ22
·
[
x + e− ∫ T

t r(s)ds
∫ T
t (c(s) − (1 + θ)a1)e

∫ T
s r(z)dzds

]
,

q∗(t, x) = 0.

Substituting the solutions into (11), and rearranging, we obtain

V (t, x) = 1

2
e
∫ T
t 2M1(s)ds

{
xe

∫ T
t r(s)ds +

∫ T

t
(c(s) − (1 + θ)a1)e

∫ T
s r(z)dzds

}2

.

If x + Q(t)
P(t) > 0, then η̌ < 0 and q̌ ≥ 0. For the restriction of π∗ ∈ 
, we choose

η∗ = 0, by the same manner as above, we get

q̃ = − θa1
(λ1 + λ)μ12

(
x + Q(t)

P(t)

)
< 0.

Therefore, the minimizer of f (η, q) is π∗ = (η∗, q∗) = (0, 0), and thus we get

V (t, x) = 1

2

{
xe

∫ T
t r(s)ds +

∫ T

t
(c(s) − (1 + θ)a1)e

∫ T
s r(z)dzds

}2

.

Along the same lines, we can derive the minimizers and solutions of Eq. (11) for the
other four cases as follows:

Case 2 − a(t)
λ2+λ

< μ21 < 0 and 0 < θ2(t) < θ ≤ θ1(t).
The minimum of the left-hand side of the Eq. (10) is attained at

π∗(t) =
{

(η̄(t, x), q̄(t, x)), if x+e− ∫ T
t r(s)ds

∫ T
t (c(s)−(1+θ)a1)e

∫ T
s r(z)dzds≤0,

(0, 0), if x+e− ∫ T
t r(s)ds

∫ T
t (c(s)−(1+θ)a1)e

∫ T
s r(z)dzds>0,

and the solution of Eq. (10) is

V (t, x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1
2e

∫ T
t 2M2(s)ds

{
xe

∫ T
t r(s)ds + ∫ T

t (c(s) − (1 + θ)a1)e
∫ T
s r(z)dzds

}2
,

if x + e− ∫ T
t r(s)ds

∫ T
t (c(s) − (1 + θ)a1)e

∫ T
s r(z)dzds ≤ 0,

1
2

{
xe

∫ T
t r(s)ds + ∫ T

t (c(s) − (1 + θ)a1)e
∫ T
s r(z)dzds

}2
,

if x + e− ∫ T
t r(s)ds

∫ T
t (c(s) − (1 + θ)a1)e

∫ T
s r(z)dzds > 0,
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where

⎧⎨
⎩

η̄(t, x) = �1(t)
{
x + e− ∫ T

t r(s)ds
∫ T
t (c(s) − (1 + θ)a1)e

∫ T
s r(z)dzds

}
,

q̄(t, x) = �2(t)
{
x + e− ∫ T

t r(s)ds
∫ T
t (c(s) − (1 + θ)a1)e

∫ T
s r(z)dzds

}
,

(16)

and

M2(t) = −1

2
· m

2(λ1 + λ)μ12 + 2mθa1λμ11μ21 + θ2a21
(
σ 2(t) + (λ2 + λ)μ22

)
(
σ 2(t) + (λ2 + λ)μ22

)
(λ1 + λ)μ12 − λ2μ2

11μ
2
21

,

withm = a(t)+(λ2+λ)μ21. It is not difficult to see that M2(t) < 0 for any t ∈ [0, T ]
when − a(t)

λ2+λ
< μ21 < 0 and 0 < θ2(t) < θ ≤ θ1(t).

Case 3 − a(t)
λ2+λ

< μ21 < 0, 0 < θ2(t) < θ1(t) < θ .
The minimum of the left-hand side of the Eq. (10) is attained at

π∗(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
0, − θa1

(λ1+λ)μ12

{
x + e− ∫ T

t r(s)ds
∫ T
t (c(s) − (1 + θ)a1)e

∫ T
s r(z)dzds

})
,

if x + e− ∫ T
t r(s)ds

∫ T
t (c(s) − (1 + θ)a1)e

∫ T
s r(z)dzds ≤ 0,

(0, 0), if x + e− ∫ T
t r(s)ds

∫ T
t (c(s) − (1 + θ)a1)e

∫ T
s r(z)dzds > 0,

and the solution of Eq. (10) is

V (t, x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1
2e

∫ T
t 2M3(s)ds

{
xe

∫ T
t r(s)ds + ∫ T

t (c(s) − (1 + θ)a1)e
∫ T
s r(z)dzds

}2
,

if x + e− ∫ T
t r(s)ds

∫ T
t (c(s) − (1 + θ)a1)e

∫ T
s r(z)dzds ≤ 0,

1
2

{
xe

∫ T
t r(s)ds + ∫ T

t (c(s) − (1 + θ)a1)e
∫ T
s r(z)dzds

}2
,

if x + e− ∫ T
t r(s)ds

∫ T
t (c(s) − (1 + θ)a1)e

∫ T
s r(z)dzds > 0,

where M3(t) = − 1
2

θ2a21
(λ1+λ)μ12

.

Case 4 −1 < μ21 ≤ − a(t)
λ2+λ

, θ > 0.

The minimum of the left-hand side of the Eq. (10) is attained at

π∗(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(
0, − θa1

(λ1+λ)μ12

{
x + e− ∫ T

t r(s)ds
∫ T
t (c(s) − (1 + θ)a1)e

∫ T
s r(z)dzds

})
,

if x + e− ∫ T
t r(s)ds

∫ T
t (c(s) − (1 + θ)a1)e

∫ T
s r(z)dzds ≤ 0,(

− a(t)+(λ2+λ)μ21
σ 2(t)+(λ2+λ)μ22

·
{
x+e− ∫ T

t r(s)ds
∫ T
t (c(s)−(1+θ)a1)e

∫ T
s r(z)dzds

}
, 0

)
,

if x + e− ∫ T
t r(s)ds

∫ T
t (c(s) − (1 + θ)a1)e

∫ T
s r(z)dzds > 0,
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and the solution of Eq. (10) is

V (t, x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1
2e

∫ T
t 2M3(s)ds

{
xe

∫ T
t r(s)ds + ∫ T

t (c(s) − (1 + θ)a1)e
∫ T
s r(z)dzds

}2
,

if x + e− ∫ T
t r(s)ds

∫ T
t (c(s) − (1 + θ)a1)e

∫ T
s r(z)dzds ≤ 0,

1
2e

∫ T
t 2M1(s)ds

{
xe

∫ T
t r(s)ds + ∫ T

t (c(s) − (1 + θ)a1)e
∫ T
s r(z)dzds

}2
,

if x + e− ∫ T
t r(s)ds

∫ T
t (c(s) − (1 + θ)a1)e

∫ T
s r(z)dzds > 0.

Case 5 μ21 ≥ 0, θ > 0.
The results in this case is exactly the same as in Case 2.

To summarize, we have

Theorem 3.1 Let �1(t) and �2(t) be given as in (15), η̄(t, x) and q̄(t, x) be given
as in (16). For any t ∈ [0, T ], we have
(i) when −1 < μ21 ≤ − a(t)

λ2+λ
, the minimizer of the left-hand side of the Eq. (12) is

attained at

π∗(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(
0, − θa1

(λ1+λ)μ12

{
x + e− ∫ T

t r(s)ds
∫ T
t (c(s) − (1 + θ)a1)e

∫ T
s r(z)dzds

})
,

if x + e− ∫ T
t r(s)ds

∫ T
t (c(s) − (1 + θ)a1)e

∫ T
s r(z)dzds ≤ 0,(

− a(t)+(λ2+λ)μ21
σ 2(t)+(λ2+λ)μ22

{
x + e− ∫ T

t r(s)ds
∫ T
t (c(s) − (1 + θ)a1)e

∫ T
s r(z)dzds

}
, 0

)
,

if x + e− ∫ T
t r(s)ds

∫ T
t (c(s) − (1 + θ)a1)e

∫ T
s r(z)dzds > 0,

(17)
and the solution of the HJB-Eq. (10) is given by

V (t, x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1
2e

∫ T
t 2M3(s)ds

{
xe

∫ T
t r(s)ds + ∫ T

t (c(s) − (1 + θ)a1)e
∫ T
s r(z)dzds

}2
,

if x + e− ∫ T
t r(s)ds

∫ T
t (c(s) − (1 + θ)a1)e

∫ T
s r(z)dzds ≤ 0,

1
2e

∫ T
t 2M1(s)ds

{
xe

∫ T
t r(s)ds + ∫ T

t (c(s) − (1 + θ)a1)e
∫ T
s r(z)dzds

}2
,

if x + e− ∫ T
t r(s)ds

∫ T
t (c(s) − (1 + θ)a1)e

∫ T
s r(z)dzds > 0;

(18)
(ii) when − a(t)

λ2+λ
< μ21 < 0, the minimizer of the left-hand side of the Eq. (12) is

attained at

π∗(t) =
⎧⎨
⎩(η∗

1, q
∗
1 ), x + e− ∫ T

t r(s)ds
∫ T
t (c(s) − (1 + θ)a1)e

∫ T
s r(z)dzds ≤ 0,

(0, 0), x + e− ∫ T
t r(s)ds

∫ T
t (c(s) − (1 + θ)a1)e

∫ T
s r(z)dzds > 0,

(19)
where

(η∗
1 , q∗

1 )=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
− a(t)+(λ2+λ)μ21

σ2(t)+(λ2+λ)μ22
·
{
x+e−

∫ T
t r(s)ds∫ T

t (c(s)−(1+θ)a1)e
∫ T
s r(z)dzds

}
, 0

)
, 0<θ ≤θ2(t)<θ1(t),

(η̄(t, x), q̄(t, x)), 0<θ2(t)<θ ≤θ1(t),(
0, − θa1

(λ1+λ)μ12

{
x+e−

∫ T
t r(s)ds ∫ T

t (c(s)−(1+θ)a1)e
∫ T
s r(z)dzds

})
, 0<θ2(t)<θ1(t)<θ.
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Moreover, the solution of the HJB-Eq. (10) is given by

V (t, x) =
{
V1(t, x), x + e− ∫ T

t r(s)ds
∫ T
t (c(s) − (1 + θ)a1)e

∫ T
s r(z)dzds ≤ 0,

V2(t, x), x + e− ∫ T
t r(s)ds

∫ T
t (c(s) − (1 + θ)a1)e

∫ T
s r(z)dzds > 0,

(20)
where

V1(t, x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
2 e

∫ T
t 2M1(s)ds

{
xe

∫ T
t r(s)ds + ∫ T

t (c(s) − (1 + θ)a1)e
∫ T
s r(z)dzds

}2
, 0 < θ ≤ θ2(t) < θ1(t),

1
2 e

∫ T
t 2M2(s)ds

{
xe

∫ T
t r(s)ds + ∫ T

t (c(s) − (1 + θ)a1)e
∫ T
s r(z)dzds

}2
, 0 < θ2(t) < θ ≤ θ1(t),

1
2 e

∫ T
t 2M3(s)ds

{
xe

∫ T
t r(s)ds + ∫ T

t (c(s) − (1 + θ)a1)e
∫ T
s r(z)dzds

}2
, 0 < θ2(t) < θ1(t) < θ,

and

V2(t, x) = 1

2

{
xe

∫ T
t r(s)ds +

∫ T

t
(c(s) − (1 + θ)a1)e

∫ T
s r(z)dzds

}2

;

(iii) When μ21 ≥ 0, the minimizer of the left-hand side of the Eq. (12) is attained at

π∗(t) =
{

(η̄(t, x), q̄(t, x)), x + e− ∫ T
t r(s)ds

∫ T
t (c(s) − (1 + θ)a1)e

∫ T
s r(z)dzds ≤ 0,

(0, 0), x + e− ∫ T
t r(s)ds

∫ T
t (c(s) − (1 + θ)a1)e

∫ T
s r(z)dzds > 0,

(21)
and the solution of the HJB-Eq. (10) is given by

V (t, x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1
2e

∫ T
t 2M2(s)ds

{
xe

∫ T
t r(s)ds + ∫ T

t (c(s) − (1 + θ)a1)e
∫ T
s r(z)dzds

}2
,

if x + e− ∫ T
t r(s)ds

∫ T
t (c(s) − (1 + θ)a1)e

∫ T
s r(z)dzds ≤ 0,

1
2

{
xe

∫ T
t r(s)ds + ∫ T

t (c(s) − (1 + θ)a1)e
∫ T
s r(z)dzds

}2
,

if x + e− ∫ T
t r(s)ds

∫ T
t (c(s) − (1 + θ)a1)e

∫ T
s r(z)dzds > 0.

(22)

Now we define regions �1, �2, and �3 in the (t, x) plane as

�1 :=
{
(t, x) ∈ [0, T ] × R

∣∣x + e− ∫ T
t r(s)ds

∫ T
t (c(s) − (1 + θ)a1)e

∫ T
s r(z)dzds < 0

}
,

�2 :=
{
(t, x) ∈ [0, T ] × R

∣∣x + e− ∫ T
t r(s)ds

∫ T
t (c(s) − (1 + θ)a1)e

∫ T
s r(z)dzds > 0

}
,

�3 :=
{
(t, x) ∈ [0, T ] × R

∣∣x + e− ∫ T
t r(s)ds

∫ T
t (c(s)−(1+θ)a1)e

∫ T
s r(z)dzds = 0

}
.

Some simple calculations show that in �1 and �2, V (t, x) is sufficiently smooth for
the derivatives in (10). The non-smoothness of V (t, x) occurs in the switching curve
�3.
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Explicitly, in �1 and �2, V (t, x) = 1
2 P(t)x2 +Q(t)x + L(t) is sufficiently smooth

for the terms in (10) with

Vt (t, x) = 1

2
Pt (t)x

2 + Qt (t)x + Lt (t),

Vx (t, x) = P(t)x + Q(t),

Vxx (t, x) = P(t).

While the switching curve �3 is where the non-smoothness of V (t, x) occurs. On
�3,

V (t, x) = 1

2
P(t)x2 + Q(t)x + L(t) = 0,

so V (t, x) is continuous at points on �3. In addition, we also easily obtain

⎧⎨
⎩ Vt (t, x) = 1

2
Pt (t)x

2 + Qt (t)x + Lt (t) = 0,

Vx (t, x) = P(t)x + Q(t) = 0.

That is, V (t, x) is also continuously differentiable at the point on �3. However,
Vxx (t, x) does not exist on �3, since the values of P(t) in �1 and �2 are different
(it is not difficult to see from the results in Theorem 3.1). This means that V (t, x) does
not possess the necessary smoothness properties to qualify as a classical solution of
the HJB Eq. (10). For this reason, we are required to work within the framework of
viscosity solutions.

By Definition 3.1, it is not difficult to prove that V (t, x) given in Theorem 3.1 is
a viscosity solution of the HJB Eq. (10). Then the verification theorem within the
framework of the viscosity solution is given as follows:

Theorem 3.2 Let�1(t) and�2(t) be given as in (16), R̂∗(s) := R̂π∗
(s) and c1(s) :=

c(s) − (1 + θ)a1.
If the initial reserve x satisfies

x + e− ∫ T
t r(s)ds

∫ T

t
c1(s)e

∫ T
s r(z)dzds > 0

for the initial time t, the optimal investment and reinsurance strategy of problem (9)
at any s ∈ [t, T ] is given by

(i) When −1 < μ21 ≤ − a(t)
λ2+λ

,

π∗(s) =

⎧⎪⎨
⎪⎩

(
− a(s)+(λ2+λ)μ21

σ 2(s)+(λ2+λ)μ22

{
R̂∗(s−) + e− ∫ T

s r(z)dz
∫ T
s c1(v)e

∫ T
v r(z)dzdv

}
, 0

)
, t ≤ s < T ∧ τ1,(

0, − θa1
(λ1+λ)μ12

{
R̂∗(s−) + e− ∫ T

s r(z)dz
∫ T
s c1(v)e

∫ T
v r(z)dzdv

})
, T ∧ τ1 ≤ s < T ∧ τ2,
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where

τ1 := inf

{
s > t : R̂∗(s) + e− ∫ T

s r(z)dz
∫ T

s
c1(v)e

∫ T
v r(z)dzdv ≤ 0

}
,

and

τ2 := inf

{
s > τ1 : R̂∗(s) + e− ∫ T

s r(z)dz
∫ T

s
c1(v)e

∫ T
v r(z)dzdv > 0

}
.

For the optimal strategy at s ∈ [T∧τ2, T ], we give the explanation in the following
Remark 3.2;

(ii) When − a(t)
λ2+λ

< μ21 < 0 or μ21 ≥ 0,

π∗(s) = (η∗(s, R̂∗(s)), q∗(s, R̂∗(s))) = (0, 0).

If the initial reserve x satisfies

x + e− ∫ T
t r(s)ds

∫ T

t
c1(s)e

∫ T
s r(z)dzds ≤ 0,

for the initial time t, the optimal investment and reinsurance strategy of problem (9)
at any s ∈ [t, T ] is given as follows.

(i) When −1 < μ21 ≤ − a(t)
λ2+λ

,

π∗(s) =

⎧⎪⎨
⎪⎩

(
0, − θa1

(λ1+λ)μ12

{
R̂∗(s−) + e− ∫ T

s r(z)dz
∫ T
s c1(v)e

∫ T
v r(z)dzdv

})
, t ≤ s < T ∧ τ3,(

− a(s)+(λ2+λ)μ21
σ 2(s)+(λ2+λ)μ22

{
R̂∗(s−) + e− ∫ T

s r(z)dz
∫ T
s c1(v)e

∫ T
v r(z)dzdv

}
, 0

)
, T ∧ τ3 ≤ s < T ∧ τ4;

where

τ3 := inf

{
s > t : R̂∗(s) + e− ∫ T

s r(z)dz
∫ T

s
c1(v)e

∫ T
v r(z)dzdv > 0

}
,

and

τ4 := inf

{
s > τ3 : R̂∗(s) + e− ∫ T

s r(z)dz
∫ T

s
c1(v)e

∫ T
v r(z)dzdv ≤ 0

}
.

Again, for the optimal strategy at s ∈ [T ∧ τ4, T ], please see the explanation in
the following Remark 3.2;

(ii) When − a(t)
λ2+λ

< μ21 < 0,

π∗(s) = (η∗(s, R̂∗(s)), q∗(s, R̂∗(s))),
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where

η∗(s, R̂∗(s))=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

− a(s)+(λ2+λ)μ21
σ 2(s)+(λ2+λ)μ22

·
{
R̂∗(s−)+e− ∫ T

s r(z)dz
∫ T
s c1(v)e

∫ T
v r(z)dzdv

}
, 0 < θ ≤ θ2(t) < θ1(t),

�1(s)
{
R̂∗(s−) + e− ∫ T

s r(z)dz
∫ T
s c1(v)e

∫ T
v r(z)dzdv

}
, 0 < θ2(t) < θ ≤ θ1(t),

0, 0 < θ2(t) < θ1(t) < θ,

and

q∗(s, R̂∗(s)) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, 0 < θ ≤ θ2(t) < θ1(t),

�2(s)
{
R̂∗(s−) + e− ∫ T

s r(z)dz
∫ T
s c1(v)e

∫ T
v r(z)dzdv

}
, 0 < θ2(t) < θ ≤ θ1(t),

− θa1
(λ1+λ)μ12

{
R̂∗(s−) + e− ∫ T

s r(z)dz
∫ T
s c1(v)e

∫ T
v r(z)dzdv

}
, 0 < θ2(t) < θ1(t) < θ

for any t ≤ s < T ∧ τ3, and

π∗(s) = (η∗(s, R̂∗(s)), q∗(s, R̂∗(s))) = (0, 0)

for any T ∧ τ3 ≤ s < T ;
(iii) When μ21 ≥ 0 ,

π∗(s) = (η∗(s, R̂∗(s)), q∗(s, R̂∗(s))),

where

η∗(s, R̂∗(s)) =
{

�1(s)
{
R̂∗(s−) + e− ∫ T

s r(z)dz
∫ T
s c1(v)e

∫ T
v r(z)dzdv

}
, t ≤ s < T ∧ τ3,

0, T ∧ τ3 ≤ s < T,

and

q∗(s, R̂∗(s)) =
{

�2(s)
{
R̂∗(s−) + e− ∫ T

s r(z)dz
∫ T
s c1(v)e

∫ T
v r(z)dzdv

}
, t ≤ s < T ∧ τ3,

0, T ∧ τ3 ≤ s < T .

Furthermore, the value function J (t, x) satisfies J (t, x) = V (t, x), where V (t, x)
is the same as shown in Theorem 3.1.

Along the same lines as in Section 4 of Bi and Guo (2013), we can prove the
verification theorem. Therefore, we omit it here.

Remark 3.2 For the optimal strategies in the case of −1 < μ21 ≤ − a(t)
λ2+λ

, we only
give two parts for the period of [t, T ]. Actually, there are possibly more than two parts
in this case. For example, during the period of [τ2 ∧ T, T ], the value of

R̂∗(s−) + e− ∫ T
s r(z)dz

∫ T

s
c1(v)e

∫ T
v r(z)dzdv
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maybe reach to the negative value, then return back to the positive value, and then
back to negative value again, and so on. Therefore, we have to make the choice of
optimal strategies based on the value of

R̂∗(s−) + e− ∫ T
s r(z)dz

∫ T

s
c1(v)e

∫ T
v r(z)dzdv.

That is, when

R̂∗(s−) + e− ∫ T
s r(z)dz

∫ T

s
c1(v)e

∫ T
v r(z)dzdv ≤ 0,

the optimal strategies are

π∗(s) =
(
0, − θa1

(λ1 + λ)μ12

{
R̂∗(s−) + e− ∫ T

s r(z)dz
∫ T

s
c1(v)e

∫ T
v r(z)dzdv

})
;

when

R̂∗(s−) + e− ∫ T
s r(z)dz

∫ T

s
c1(v)e

∫ T
v r(z)dzdv > 0,

the optimal strategies are

π∗(s) =
(

− a(s)+(λ2+λ)μ21

σ 2(s)+(λ2+λ)μ22

{
R̂∗(s−)+e− ∫ T

s r(z)dz
∫ T

s
c1(v)e

∫ T
v r(z)dzdv

}
, 0

)
.

4 The efficient strategy and efficient frontier

In this section, we apply the results in Sect. 3 to solve the mean–variance problem,
and derive the efficient strategy and efficient frontier of problem (4). Here we only
give the detailed analysis for the case of − a(t)

λ2+λ
< μ21 < 0.

Since we have set R̂(t) = R(t) − (k − β), then R(t) = R̂(t) + (k − β) and
R(0) = R̂(0) + (k − β). Besides, c(t) = c + (k − β)r(t) in (8). We can get

E

[
1

2
(R̂(T )))2

]
= 1

2
E[(R(T ) − k)2 + 2β(E[R(T )] − k) + β2].
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Therefore, for every fixed β, we have

min
π∈


E[(R(T ) − k)2 + 2β(E[R(T )] − k)]

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

{
R0e

∫ T
0 r(s)ds + (c − (1 + θ)a1)

∫ T
0 e

∫ T
s r(z)dzds − (k − β)

}2 − β2,

if R0 − (k − β)e− ∫ T
0 r(s)ds + (c − (1 + θ)a1)

∫ T
0 e

∫ T
s r(z)dzds > 0,

2V1(0, R0) − β2,

if R0 − (k − β)e− ∫ T
0 r(s)ds + (c − (1 + θ)a1)

∫ T
0 e

∫ T
s r(z)dzds ≤ 0,

(23)
where

2V1(0, R0) − β2

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

e
∫ T
0 2M1(s)ds

{
R0e

∫ T
0 r(s)ds+(c−(1+θ)a1)

∫ T
0 e

∫ T
s r(z)dzds−(k−β)

}2−β2, 0 < θ ≤ θ2(t) < θ1(t),

e
∫ T
0 2M2(s)ds

{
R0e

∫ T
0 r(s)ds+(c−(1+θ)a1)

∫ T
0 e

∫ T
s r(z)dzds−(k−β)

}2 − β2, 0 < θ2(t) < θ ≤ θ1(t),

e
∫ T
0 2M3(s)ds

{
R0e

∫ T
0 r(s)ds+(c−(1+θ)a1)

∫ T
0 e

∫ T
s r(z)dzds−(k−β)

}2 − β2, 0 < θ2(t) < θ1(t) < θ.

Note that the above value still depends on the Lagrange multiplier β, we denote it
by W (β). To obtain the minimum Var[R(T )] and the optimal strategy for the original
control problem (4), it is sufficient to maximize the value in (23) over β ∈ R by the
Lagrange duality theorem. Some calculations show that W (β) attains its maximum
value

W (β∗) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
R0e

∫ T
0 r(s)ds+(c−(1+θ)a1)

∫ T
0 e

∫ T
v r(s)dsdv−k

]2
e− ∫ T

0 2M1(s)ds−1
, 0 < θ ≤ θ2(t) < θ1(t),[

R0e
∫ T
0 r(s)ds+(c−(1+θ)a1)

∫ T
0 e

∫ T
v r(s)dsdv−k

]2
e− ∫ T

0 2M2(s)ds−1
, 0 < θ2(t) < θ ≤ θ1(t),[

R0e
∫ T
0 r(s)ds+(c−(1+θ)a1)

∫ T
0 e

∫ T
v r(s)dsdv−k

]2
e− ∫ T

0 2M3(s)ds−1
, 0 < θ2(t) < θ1(t) < θ,

at

β∗ =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

R0e
∫ T
0 r(s)ds+(c−(1+θ)a1)

∫ T
0 e

∫ T
v r(s)dsdv−k

e− ∫ T
0 2M1(s)ds−1

, 0 < θ ≤ θ2(t) < θ1(t),

R0e
∫ T
0 r(s)ds+(c−(1+θ)a1)

∫ T
0 e

∫ T
v r(s)dsdv−k

e− ∫ T
0 2M2(s)ds−1

, 0 < θ2(t) < θ ≤ θ1(t),

R0e
∫ T
0 r(s)ds+(c−(1+θ)a1)

∫ T
0 e

∫ T
v r(s)dsdv−k

e− ∫ T
0 2M3(s)ds−1

, 0 < θ2(t) < θ1(t) < θ,

which leads to the following theorem.

Theorem 4.1 When − a(t)
λ2+λ

< μ21 < 0, the efficient frontier for problem (4) with
expected terminal wealth E[R(T )] = k is determined by
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Var[R(T )] =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
R0e

∫ T
0 r(s)ds+(c−(1+θ)a1)

∫ T
0 e

∫ T
v r(s)dsdv−E[R(T )]

]2
e− ∫ T

0 2M1(s)ds−1
, 0<θ ≤θ2(t)<θ1(t),[

R0e
∫ T
0 r(s)ds+(c−(1+θ)a1)

∫ T
0 e

∫ T
v r(s)dsdv−E[R(T )]

]2
e− ∫ T

0 2M2(s)ds−1
, 0<θ2(t)<θ ≤θ1(t),[

R0e
∫ T
0 r(s)ds+(c−(1+θ)a1)

∫ T
0 e

∫ T
v r(s)dsdv−E[R(T )]

]2
e− ∫ T

0 2M3(s)ds−1
, 0<θ2(t)<θ1(t)<θ,

where

E[R(T )] ≥ R0e
∫ T
0 r(s)ds + (c − (1 + θ)a1)

∫ T

0
e
∫ T
s r(z)dzds.

Moreover, the efficient strategy is given by

π∗(t, R(t)) = (η∗(t, R(t)), q∗(t, R(t))) =

⎧⎪⎨
⎪⎩

(η̃∗(t, R(t)), 0), 0 < θ ≤ θ2(t) < θ1(t),

(η̂∗(t, R(t)), q̂∗(t, R(t))), 0 < θ2(t) < θ ≤ θ1(t),

(0, q̃∗(t, R(t))), 0 < θ2(t) < θ1(t) < θ,

for any 0 ≤ t < T ∧ τ̂π∗ ; and

π∗(t, R(t)) = (η∗(t, R(t)), q∗(t, R(t))) = (0, 0)

for any T ∧ τ̂π∗ ≤ t < T . Where

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

η̃∗(t, R(t)) = − a(t)+(λ2+λ)μ21
σ 2(t)+(λ2+λ)μ22

· R(t−)−ke− ∫ T
t r(s)ds+∫ T

t (c−(1+θ)a1)e
− ∫ v

t r(z)dzdv

1−e− ∫ T
t 2M1(s)ds

,

q̃∗(t, R(t)) = − θa1
(λ1+λ)μ12

R(t−)−ke− ∫ T
t r(s)ds+∫ T

t (c−(1+θ)a1)e
− ∫ v

t r(z)dzdv

1−e− ∫ T
t 2M3(s)ds

,

η̂∗(t, R(t)) = �1(t)
R(t−)−ke− ∫ T

t r(s)ds+∫ T
t (c−(1+θ)a1)e

− ∫ v
t r(z)dzdv

1−e− ∫ T
t 2M2(s)ds

,

q̂∗(t, R(t)) = �2(t)
R(t−)−ke− ∫ T

t r(s)ds+∫ T
t (c−(1+θ)a1)e

− ∫ v
t r(z)dzdv

1−e− ∫ T
t 2M2(s)ds

,

(24)
and

τ̂π∗ := inf

{
s > t : R∗(s) − ke− ∫ T

s r(z)dz +
∫ T

s
(c − (1 + θ)a1)e

− ∫ v
s r(z)dzdv < 0

}
.

Along the same lines, we can directly get the efficient frontier and efficient strategy
for the other two cases as follows:

Theorem 4.2 (i) When −1 < μ21 ≤ − a(t)
λ2+λ

, for any θ > 0, the efficient frontier for
problem (4) with expected terminal wealth E[R(T )] = k is given by
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Var[R(T )] =
[
R0e

∫ T
0 r(s)ds + (c − (1 + θ)a1)

∫ T
0 e

∫ T
v r(s)dsdv − E[R(T )]

]2
e− ∫ T

0 2M3(s)ds − 1
,

where

E[R(T )] ≥ R0e
∫ T
0 r(s)ds + (c − (1 + θ)a1)

∫ T

0
e
∫ T
s r(z)dzds.

Moreover, the efficient strategy is

π∗(t, R(t)) =
{

(0, q̃∗(t, R(t))) , 0 ≤ t < T ∧ τ̂π∗ ,
(η̃∗(t, R(t)), 0) , T ∧ τ̂π∗ ≤ t < T ∧ τ̃π∗ ,

where

τ̃π∗ := inf

{
s>τ̂π∗ : R∗(s)−ke− ∫ T

s r(z)dz+
∫ T

s
(c−(1+θ)a1)e

− ∫ v
s r(z)dzdv≥0

}
.

For the efficient strategy in interval [T ∧ τ̃π∗ , T ], we can have the same analysis
as mentioned in Remark 3.2.

(ii) When μ21 ≥ 0, for any θ > 0, the efficient frontier for problem (4) with expected
terminal wealth E[R(T )] = k is given by

Var[R(T )] =
[
R0e

∫ T
0 r(s)ds + (c − (1 + θ)a1)

∫ T
0 e

∫ T
v r(s)dsdv − E[R(T )]

]2
e− ∫ T

0 2M2(s)ds − 1
,

where

E[R(T )] ≥ R0e
∫ T
0 r(s)ds + (c − (1 + θ)a1)

∫ T

0
e
∫ T
s r(z)dzds.

Moreover, the efficient strategy is

π∗(t, R(t)) = (η̂∗(t, R(t)), q̂∗(t, R(t))),

where (η̂∗(t, R(t)) are given in (24).

Remark 4.1 Note that the inequality

R0 − (k − β∗)e− ∫ T
0 r(s)ds + (c − (1 + θ)a1)

∫ T

0
e
∫ T
s r(z)dzds ≤ 0

is equivalent to

R0 − ke− ∫ T
0 r(s)ds + (c − (1 + θ)a1)

∫ T

0
e
∫ T
s r(z)dzds ≤ 0,
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Fig. 1 Efficient-frontier of problem (4) for different λ

which can be rewritten as

k ≥ R0e
∫ T
0 r(s)ds + (c − (1 + θ)a1)

∫ T

0
e
∫ T
s r(z)dzds.

This is the natural consequence which means that the investor expects higher terminal
wealth k by investing in the stock market than the terminal wealth

R0e
∫ T
0 r(s)ds + (c − (1 + θ)a1)

∫ T

0
e
∫ T
v r(s)dsdv

by only investing in the bond market and q(t) = 0. It also implies that the investor
has to take risk to meet his/her investment target.

Remark 4.2 In this paper, when we assume that the two jump number processes
{K1(t)}t≥0 and {K2(t)}t≥0 are independent, i.e., the parameter λ = 0, and when
we assume that μ21 are always nonnegative, we can get the same results as in Bi and
Guo (2013).

5 Numerical examples

In this section, we give some numerical examples to illustrate our results.

Example 5.1 In this example, we set R0 = 10, T = 1, r(t) ≡ 0.04, a(t) ≡ 0.01,
σ(t) ≡ 0.03, θ̃1 = 0.2, θ = 0.8, μ11 = 0.01, μ12 = 0.002, μ21 = 0.005, μ22 =
0.0015. The results are shown in Figs. 1 and 2.

From Fig. 1 with λ = 0, 8, 15, λ1 = 3, and λ2 = 1, we can see that if Var[R(T )] is
small enough, the smallerλ the larger E[R(T )]with the sameVar[R(T )]. If Var[R(T )]
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Fig. 2 Efficient-frontier of problem (4) for different λ1

is larger than some value, the reverse is true. This same property is shown in Fig. 2
with λ = 5, λ1 = 1, 5, 10, and λ2 = 1. This is the natural consequence since μ21 > 0
means that the expected value of the jump size for the risky asset is positive, and thus
the larger frequency (say, λi (i = 1, 2) and λ) of this kind of jump, the larger expected
return.

Example 5.2 In this example, we set R0 = 10, T = 1, r(t) ≡ 0.04, a(t) ≡ 0.01,
σ(t) ≡ 0.03, θ̃1 = 0.2, θ = 0.8, μ11 = 0.01, μ12 = 0.002, μ21 = 0.02. The results
are shown in Fig. 3a–d.

Figure 3 further investigates the influence of the common shock dependence, i.e.,
the parameter λ on efficient frontier when the values of λ1 + λ and λ2 + λ are fixed.
In Fig. 3a, b, the values of λ1 + λ and λ2 + λ are fixed by 16 and 20, respectively; In
Fig. 3c, d, the values of λ1 + λ and λ2 + λ are fixed by 8 and 5, respectively. From
Fig. 3b, d with μ22 = 0.0025, we can see that the larger λ the larger E[R(T )] with
the same Var[R(T )]. Whereas, when μ22 is large enough, say, μ22 = 0.025, we find
from Fig. 3a, c that the value of λ almost has no impact on the efficient frontier. This
suggests that the efficient frontier is less sensitive to the common shock dependence
whenλ1+λ andλ2+λ are fixed,which is also the natural consequence of Theorems 4.1
and 4.2.

Example 5.3 In this example, we set R0 = 10, T = 1, r(t) ≡ 0.04, a(t) ≡ 0.01,
σ(t) ≡ 0.03, θ̃1 = 0.2, μ11 = 0.01, μ12 = 0.002, μ22 = 0.0015, λ2 = 1, λ1 = 3,
λ = 5. The results are shown in Figs. 4 and 5.

FromFig. 4 withμ21 = 0.005 and θ = 0.2, 0.5, 0.8, we can see that if Var[R(T )] is
small enough, the smaller θ the larger E[R(T )]with the sameVar[R(T )]. If Var[R(T )]
is larger than some value, the reverse is true. From Fig. 5 with θ = 0.8 and μ21 =
0.005, 0.01, 0.015, we conclude that the biggerμ21 the bigger E[R(T )]with the same
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Fig. 3 Efficient-frontier of problem (4) for different λ
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Fig. 4 Efficient-frontier of problem (4) for different θ

Var[R(T )], and this phenomenon is not obviouswhenVar[R(T )] is small enough. This
is the natural consequence since μ21 > 0 means that the expected value of the jump
size for the risky asset is positive, and thus the larger μ21 the larger expected return.
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6 Conclusions

We first recap the main results of the paper. We consider mean–variance optimal
problem for an insurer with investment and reinsurance in a jump-diffusion financial
market where the aggregate claim process and the risky asset process are correlated
by a common shock. Furthermore, we assume that the expected value of the jump
size in the risky asset is not necessary nonnegative, therefore, we have to discuss
the optimization problem on the five different cases because of the constraints on
the investment and reinsurance control variables. Under the mean–variance criterion,
using the technique of stochastic control theory and the corresponding Hamilton–
Jacobi–Bellman equation, within a framework of viscosity solution, we derive the
explicit expressions of the optimal strategies and the value function. Besides, we
extend the optimal results to the original mean–variance optimization problem, and
obtain the solutions of efficient frontier and efficient strategies explicitly.

For the future research, there are several interesting problems that deserve investi-
gation. Firstly, we can extend the financial asset model to the one with Markov regime
switching, such as the interest rate r(t), the appreciation rate b(t) and the volatility
coefficient σ(t) of the stock in our model can be changed from deterministic functions
to a general stochastic processes with Markov regime switching; Secondly, we can
consider portfolio problem with some constraints, such as the value of the dynamic
wealth would be no less than a pre-given level c, or with no-bankruptcy constraint;
Thirdly, transaction costs can also be considered in this optimization problem. Even
though these kind of problems are challenging problems, they are meaningful and
more realistic to be discussed, and they are also our future research work directions.
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