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Abstract We present a unified approach for partial information optimal investment
and consumption problems in a non-Markovian Itô process market. The stochastic
local mean rate of return and the Wiener process cannot be observed by the agent,
whereas the path-dependent volatility, the path-dependent interest rate and the asset
prices can be observed. The main assumption is that the asset price volatility is a
nonanticipative functional of the asset price trajectory. The utility functions are general
and satisfy standard conditions. First, we show that the corresponding full information
market is complete and in this setting we solve the problem using standard methods.
Second,we transform theoriginal partial informationproblem into a corresponding full
information problem using filtering theory, and show that it follows that the market
is observationally complete in the sense that any contingent claim adapted to the
observable filtration is replicable. Using the solutions of the full information problem
we then easily derive solutions to the original partial information problem.
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88 K. Lindensjö

1 Introduction

The optimal investment and consumption problem is a fundamental object of study in
financial mathematics. In this paper we consider a financial market living on a stochas-
tic basis

(
�,F , P,F)

carrying an n-dimensional asset price process S modeled as a
non-Markovian Itô process. The (augmented) filtration generated by the asset prices
F S formalizes the information set of an agent. The local mean rate of return process
α and the driving Wiener process W are not assumed to be adapted to F S and the
agent can therefore generally not observe these processes and the information is thus
partial. The asset price volatility is, however, without loss of generality adapted toF S .
The market also carries an observable interest rate process r adapted to F S . The main
assumption is that the volatility of S, denoted by σ(S), is a regular nonanticipative
functional of the asset price trajectory. Themarket is shown to be observationally com-
plete1 in the sense that any contingent claim adapted to the observable filtration F S is
replicable, and for this we need the assumption that σ(S) is a regular nonanticipative
functional.

For a fixed time interval and fixed initial wealth the agent faces the problem of
optimizing expected utility of a continuous consumption stream and terminal wealth.
The utility functions are general and satisfy standard conditions. This is a stochastic
optimal control problem under partial information and the purpose of this paper is to
characterize the agent’s optimal consumption and optimal portfolio weights processes,
as well as the resulting optimal wealth process. We also study logarithmic and power
utility in two examples. We tackle the problem in two steps.

First, we solve the corresponding full information problem, which we obtain by
assuming that the large filtration F coincides with the observable filtration F S . Opti-
mal investment and consumption problems with full information are typically studied
using the dynamic programming approach or themartingale approach. In the dynamic
programming approach solutions are typically presented in the form of non-linear
infinite-dimensional partial differential equations called Hamilton–Jacobi–Bellman
equations. This approach typically relies on the assumption that processes areMarkov-
ian. In the martingale approach optimization is performed ω by ω. Solutions are
typically presented in the form of characterizations of the process dynamics of opti-
mal wealth, optimal consumption and the optimal portfolio. This approach typically
relies on market completeness. Under the assumption of full information we show
that our market is complete, and since it is also non-Markovian we use the martin-
gale approach. The optimal investment and consumption problem was first studied
in Merton (1969, 1971), where the dynamic programming approach was used. The
martingale approach was developed in Pliska (1986) and Karatzas et al. (1987). The
literature on the optimal investment and consumption problem is considerable, see
Chapter 3 in Karatzas and Shreve (1998) for an excellent survey.

Second, we transform the original partial information problem into a corresponding
full information problem using the filtering theory separation principle, also known
as the principle of separation of estimation and control. We express the originally

1 The term complete with respect to F S is also used, see e.g. Hahn et al. (2007).
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only partially observable dynamics of the asset prices in terms of fully observable
dynamics of the same type as in the full information problem using a filter estimate
of the unobservable process α and the innovations process, and show that it follows
that the market is observationally complete. Using the solutions of the full information
problem we then easily derive solutions to the original partial information problem.

Using the filtering theory separation principle in this type of two step approach
is a well-known technique in the literature of optimal investment and consumption
under partial information, see e.g. Lakner (1995), Putschögl and Sass (2008), Sass
and Wunderlich (2010) and Björk et al. (2010).

One strand of the literature on partial information optimal investment and consump-
tion focuses on the problem from a general perspective, i.e. with the aim of studying a
financial market which is as general as possible while still obtaining interesting results.
The present paper belongs to this strand. Much of the general theory of optimal invest-
ment and consumption under partial informationwas developed inLakner (1995). That
is where the notions of full and partial information were introduced. Using filtering
theory and martingale methods the paper studies partial information optimal invest-
ment and partial information optimal consumption separately. Asset prices follow an
Itô process with unobservable stochastic local mean rate of return and volatility of a
similar type as in the present paper. The risk free interest rate is assumed to be zero.
An explicit expression for the optimal consumption process is derived and the optimal
portfolio process is implicitly characterized. Moreover, explicit solutions for logarith-
mic and power utility are obtained under more restrictive assumptions on the asset
price dynamics. Putschögl and Sass (2008) study partial information optimal invest-
ment and consumption using Malliavin calculus and present explicit expressions for
the optimal consumption process as well as the optimal portfolio process involving
Malliavin derivatives. Asset prices follow an Itô process with unobservable stochastic
local mean rate of return and constant volatility. The interest rate is constant. The
special case of power utility is studied in an example. The use of Malliavin calculus
and in particular the Clark–Ocone theorem in order to obtain explicit expressions for
optimal quantities, such as the optimal portfolio, which generally can otherwise only
be implicitly characterized, is also seen in Lakner (1998), where optimal investment
for a similar asset price model is studied. Björk et al. (2010) study optimal investment
in a setting similar to the one in the present paper. The Markovian special case and
power and logarithmic utility are also studied in detail.

The other, much larger, strand of the literature studies optimal investment and
consumption under partial information in more specific financial models. It should
be noted that many of these papers also add to the general theory. There are two
main types of partial information asset price models for which reasonably explicit
expressions for the optimal quantities may be found using filtering theory. In the first
one, the unobservable local mean rate of return is modeled as the solution of a linear
SDE and the Kalman filter is used. In the second one, which is known as the hidden
Markov model (HMM), the unobservable local mean rate of return is modeled as a
function of the current state of a continuous-time Markov chain with a finite number
of states. The corresponding filter is known as the Wonham filter or the HMM filter.
In both of these models it is necessary to impose a restrictive structure on the asset
price volatility in order to obtain explicit solutions.
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90 K. Lindensjö

TheKalmanfilter is used to study optimal investment and consumption under partial
information in Dothan and Feldman (1986), Lakner (1998) and Putschögl and Sass
(2008). The HMM filter is used in Elliott and Rishel (1994), Honda (2003), Sass and
Haussmann (2004), Bäuerle and Rieder (2005) and Hahn et al. (2007).

Sass (2007) studies the problem under convex constraints on the portfolio strategy
in an Itô process model where the volatility depends on the current state of the asset
price return process. Sass and Wunderlich (2010) study a similar model under joint
budget constraints and shortfall risk constraints.

Callegaro et al. (2006), Bäuerle and Rieder (2007) and Frey et al. (2012) study the
problem in jump process models.

The main contribution of the present paper is a unified approach for partial infor-
mation optimal investment and consumption problems in observationally complete
non-Markovian Itô process markets with stochastic unobservable local mean rates
of return, path-dependent volatility and path-dependent interest rates. We extend the
general results of Björk et al. (2010) by giving the agent the possibility of continuous
consumption. However, more important, we show that our market is (observation-
ally) complete and we also clarify the fact that one must make restrictive assumptions
regarding the asset price volatility for this to be the case. We extend the general results
of Lakner (1995) in that our interest rate is path-dependent rather than zero. This
extension is not trivial. In Lakner (1995) the filtration generated by the asset prices
coincides with the filtration generated by the Wiener process under the risk-neutral
measure. This is because asset prices have no drift under the risk-neutral measure,
since the interest rate is zero. This implies that the standard martingale representa-
tion theorem can be directly used to prove that the market is complete. We extend
the general results (not related to Malliavin calculus) of Putschögl and Sass (2008),
mainly due to their assumption of constant volatility and constant interest rate. This
extension is not trivial for reasons similar to the ones mentioned in relation to Lakner
(1995).

For the corresponding full information problem we shed some light on the solu-
tions for the special case of power utility. Specifically, we note that the price
process of a certain financial derivative turns up as an ingredient in the solution for
power utility. We also generalize the probability measure Q0 studied in Björk et al.
(2010).

The rest of this paper is structured as follows. In Sect. 2 we present general results
which form the mathematical foundation of the paper. In Sect. 3 we introduce the
financial market and formulate the problem which we study in the paper. In Sect. 4
we solve the problem in the special case of full information. By solving the problem
we mean that we characterize the agent’s optimal consumption and optimal portfo-
lio weights processes, as well as the resulting optimal wealth process. The problem
is solved for general utility functions satisfying standard conditions. We also study
logarithmic and power utility as examples. In Sect. 5 we transform the original par-
tial information problem into a corresponding full information problem. Using the
solutions of the full information problem we derive solutions to the original partial
information problem.
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Optimal investment and consumption... 91

2 Two martingale representation results

In order to show that the financial market in this paper is observationally complete
we need two martingale representation results. The results are not fundamentally new
but they are usually not presented in this way. Much of the general theory directly
related to these results was developed in the seminal paper of Fujisaki et al. (1972)
and the references therein, and can be found in e.g. Kallianpur (1980) and Liptser and
Shiryayev (2001). This section is to be considered an independent part of the paper.

Consider a stochastic basis
(
�,F , P,F)

satisfying the usual conditions, where
F = {Ft }0≤t≤T for some fixed terminal time T . The basis carries an n-dimensional
Wiener process denotedbyW . For anyprocess ξ weuse thenotation that the augmented
filtration generated by ξ is denoted by F ξ . First we need two results from the theory
of stochastic differential equations (Proposition 2.3).

Definition 2.1 Let (CT ,BT ) be the measurable space of continuous functions x on
[0, T ] where, for all t ∈ [0, T ],Bt is the σ -algebra σ(x : xs, 0 ≤ s ≤ t). The t-
indexed n × n-dimensional functional βt :CT → Rn,n is said to be nonanticipative if
it is Bt -measurable for all t ∈ [0, T ].
Definition 2.2 Let ηt (x) be a nonanticipative functional. ηt (x) is said to be regular if
it satisfies the following Lipschitz and growth conditions, where ||η||2 = ∑

η2i j ,

||ηt (x) − ηt (y)||2 ≤ L1

∫ t

0
||xs − ys ||2dKs + L2||xt − yt ||2,

||ηt (x)||2 ≤ L1

∫ t

0

(
1 + ||xs ||2

)
dKs + L2

(
1 + ||xt ||2

)

for all t ∈ [0, T ] and continuous functions x and y on [0, T ], where L1 and L2 are
constants and Kt is a nondecreasing right-continuous function with Kt ∈ [0, 1].
Proposition 2.3 Let ηt (x) and βt (x) be regular nonanticipative functionals. Then the
SDE

dξt = ηt (ξ)dt + βt (ξ)dWt , ξ0 ∈ Rn (1)

has a unique strong solution ξ . Moreover, if βt (x) is invertible (for all t and x) then
F ξ = FW .

Proofs of the two results in Proposition 2.3 can be found in e.g. Kallianpur (1980) and
Liptser and Shiryayev (2001).2

2 The proof of the first part of the proposition is found inKallianpur (1980, Theorem5.1.2) and inLiptser and
Shiryayev (2001, Theorem 4.6). The proof of the second part is easiest found in Kallianpur (1980, Section
5.2) but the reasoning can also be found in the proof of Theorem 5.16 and Theorem 5.17 in Liptser and
Shiryayev (2001). Regarding Definition 2.2: several different Lipschitz and growth conditions guaranteeing
the existence of a unique strong solution are used in the literature (see e.g. Kallianpur 1980 or Liptser and
Shiryayev 2001, or, for less general stochastic differential equations, Karatzas and Shreve 1991 or Øksendal
2003). Similar remarks apply to Definition 2.1.
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92 K. Lindensjö

In the rest of this section we will study an equation of the type

dξt = γt dt + βt (ξ)dWt , ξ0 ∈ Rn

where βt (x) is an invertible (for all t and x) regular nonanticipative functional and γ

is an F-progressively measurable process. We need the following regularity.

Assumption 2.4
∫ T
0 ||β−1

t (ξ)γt ||2dt < ∞ a.s. and the local martingale L̃ t ≡
e− ∫ t

0 (β(ξ)−1
s γs )

′dWs− 1
2

∫ t
0 ||β(ξ)−1

s γs ||2ds is a martingale.3

We are now ready to present the first main result of this section.

Proposition 2.5 Let the process ξ satisfy the equation

dξt = γt dt + βt (ξ)dWt , ξ0 ∈ Rn (2)

where βt (x) is an invertible (for all t and x) regular nonanticipative functional and γ

is anF ξ -progressively measurable process.4 Let Y be anyF ξ -martingale. Then there
exists an F ξ -progressively measurable process at such that

Yt = Y0 +
∫ t

0
asdWs a.s.

for all t , where
∫ T
0 ||as ||2ds< ∞ a.s.

Proof The proof is for the one-dimensional case and the extension is trivial. The
Girsanov theorem implies that if we change the probability measure, on F , using the
likelihood process L̃ , and denote the resulting equivalent measure by P̃ , then

dW̃t = βt (ξ)−1γt dt + dWt (3)

is F-Wiener under P̃ (the second part of Assumption 2.4 implies that we can use the
Girsanov theorem). This implies that

dξt = βt (ξ)dW̃t . (4)

From Proposition 2.3 and (4) it follows that F ξ = F W̃ and we can therefore use the
standard martingale representation theorem (see e.g. Chapter 1 of Karatzas and Shreve
1998) to prove that any F ξ -martingale under P̃ , denote it by Ỹ , can be written as

Ỹt = Y0 +
∫ t

0
ãsdW̃s

3 Here ′ denotes transposition. However, ′ will sometimes denote the derivative. What is meant should be
clear from the context.
4 Note that we in this proposition restrict the process γ to beFξ -progressively measurable, rather than just
F -progressively measurable.
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P̃-a.s., for some F W̃ -progressively measurable process ã (satisfying
∫ T
0 ||ãs ||2ds <

∞P̃-a.s.) and hence by (3)

Ỹt = Y0 +
∫ t

0
ãsβs(ξ)−1γsds +

∫ t

0
ãsdWs (5)

P̃-a.s. Now let Y be anF ξ -martingale under P . Abstract Bayes’ theorem then implies
that Ỹ ≡ Y

L̃
is anF ξ -martingale under P̃ and by (5) it follows that (use Itô’s formula)

dYt = d
[
L̃ t Ỹ

]

t

=
(
L̃ t ãt − L̃ t Ỹt

(
βt (ξ)−1 γt

))
dWt

=
(
L̃ t ãt − Yt

(
βt (ξ)−1 γt

))
dWt .

Hence Y is of the claimed form, with at = L̃ t ãt − Yt (βt (ξ)−1γt ) (recall that P and P̃
are equivalent).

Moreover,
∫ T
0 ||as ||2ds = ∫ T

0 ||L̃s ãs − Ys(βs(ξ)−1γs)||2ds < ∞ a.s. follows from
∫ T
0 ||ãs ||2ds < ∞ P̃-a.s., continuity of the trajectories of Y and L̃ and the first part of
Assumption 2.4. �	

In order to present the second main result of this section, Corollary 2.11, we need
the following definition and result from filtering theory. The additional regularity of
Assumption 2.7 is also needed.5

Definition 2.6 Denote the filter estimate process, with respect to the filtration F ξ ,
for any process Y by Ŷ , where Y is assumed to be a measurable process satisfying∫ T
0 E

[||Yt ||2
]
dt < ∞. Define the process Ŷ as the F ξ -progressively measurable

modification of EF ξ
t
[Yt ] ,∀t ∈ [0, T ].

Assumption 2.7
∫ T
0 E

[
||β−1

t (ξ)γt ||2
]
dt < ∞.

Lemma 2.8 Let the process ξ satisfy the equation

dξt = γt dt + βt (ξ)dWt , ξ0 ∈ Rn (6)

where βt (x) is an invertible (for all t and x) regular nonanticipative functional and γ

is an F-progressively measurable process. The process W̄ defined by

5 See e.g. Fujisaki et al. (1972), Kallianpur (1980, Chapter 8) or Liptser and Shiryayev (2001, Chapter 8)
for similar results and definitions, and also justifications of the definitions. Recall (for a given filtration)
that a progressively measurable process is adapted and measurable, that a process which is measurable and
adapted has a progressively measurable modification, and that an adapted process with every sample path
right-continuous or left-continuous is progressively measurable, see Karatzas and Shreve (1991, Chapter
1).
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94 K. Lindensjö

dW̄t = β−1
t (ξ)

(
dξt − γ̂t dt

)
, W̄0 = 0 (7)

is then F ξ -Wiener.

Remark 2.9 W̄ is referred to as an innovations process.

Lemma 2.8 is a slight modification of a well-known result in filtering theory. To see
this note that if we rewrite (6) as

βt (ξ)−1dξt = βt (ξ)−1γt dt + dWt

then we are effectively in the setting of Fujisaki et al. (1972), where we find the result
that the process W̄ defined by

dW̄t = βt (ξ)−1dξt − ̂βt (ξ)−1γt dt, W̄0 = 0

is F ξ -Wiener (here we rely on Assumption 2.7). βt (ξ)−1 is adapted to F ξ and
Lemma 2.8 follows directly. Now rewrite (7) as

dξt = γ̂t dt + βt (ξ)dW̄t (8)

and note that ξ in (8) is exactly the same process as ξ in (6). The only difference is that
(8) is the F ξ -semimartingale representation of ξ while (6) is the F-semimartingale
representation of ξ . Using this, the following result follows directly from Proposi-
tion 2.5. First, however, we need regularity for (8) corresponding to Assumption 2.4.

Assumption 2.10 The local martingale (with respect to F ξ )

e− ∫ t
0 (β(ξ)−1

s γ̂s )
′dW̄s− 1

2

∫ t
0 ||β(ξ)−1

s γ̂s ||2ds is an F ξ -martingale.

Regularity corresponding to the other part of Assumption 2.4 can be shown to follow
from Assumption 2.7.

Corollary 2.11 Let the process ξ satisfy the equation

dξt = γt dt + βt (ξ)dWt , ξ0 ∈ Rn

where βt (x) is an invertible (for all t and x) regular nonanticipative functional and γ

is an F-progressively measurable process. Let Y be any F ξ -martingale. Then there
exists an F ξ -progressively measurable process at such that

Yt = Y0 +
∫ t

0
asdW̄s a.s.

for all t , where W̄ given by (7) is F ξ -Wiener and
∫ T
0 ||as ||2ds < ∞ a.s.
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3 The financial market and problem formulation

Consider an arbitrage free continuous time financial market living on a stochastic basis(
�,F , P,F)

satisfying the usual conditions, where P is the objective probability
measure and F = {Ft }0≤t≤T for some fixed terminal time T which we interpret as
the investment horizon of the agent. The market has the following components.

• n asset price processes Si , for i = 1, . . . , n, with dynamics given by

dSit = αi
t S

i
t dt + σ i

t (S)Sit dW
i
t , Si0 ∈ R++

which we describe in the more convenient vector form

dSt = D(St )αt dt + D(St )σt (S)dWt (9)

where
– α is an F-progressively measurable n-dimensional process satisfying∫ T

0 ||αt ||dt < ∞ a.s.
– W is an n-dimensional F-Wiener process
– D(St ) is the n × n diagonal matrix with the vector St as main diagonal
– σt (·) is an n × n-dimensional nonanticipative functional such that D(x)σt (x)
is regular and invertible (for all t and x) and

∫ T
0 ||σt (S)||2dt < ∞ a.s.

• A bank account process B which for the F S-progressively measurable process r
(interpreted as the instantaneous short rate), satisfying

∫ T
0 |rt |dt < ∞ a.s., evolves

according to dBt = rt Btdt, B0 = 1.

We will now describe the setup of the optimal investment and consumption problem
in more detail. This setup and also the optimization procedure of the full information
version of our problem (inSect. 4) is verymuch inspired from the one largely developed
in Karatzas et al. (1987) and described in Karatzas and Shreve (1998), where the
important difference is that we have adjusted their (full information) setup to our
partial information setup.6

The market inhabits an agent with initial wealth x0 ≥ 0, a time-dependent con-
sumption utility function U1(t, ·), and a (bequest) utility function U2(·) for terminal
wealth. The utility functions satisfy the standard conditions ofAssumption 4.10. Based
on the information generated by the asset prices, formalized as the filtration F S , the
agent makes decisions about consumption and investments.

Definition 3.1 A consumption process is an F S-progressively measurable nonnega-
tive process ct satisfying

∫ T
0 ctdt < ∞ a.s.

Definition 3.2 Let the amount of capital invested in each risky asset be given by
the n-dimensional process πt and in the bank account by the process π0

t , which are

6 Karatzas and Shreve (1998) also have a slightly different setup in other respects. For example, they analyze
the portfolio process πt rather than our portfolio weights process ut , see Definition 3.2. The filtration of
their market is moreover generated by the Wiener process driving the asset prices. The proofs of Karatzas
and Shreve (1998) can easily be modified to our setup and are not included.
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96 K. Lindensjö

both F S-progressively measurable such that
∫ T
0 |π0

t + πt1||rt |dt < ∞,
∫ T
0 |πt (αt −

rt1)|dt < ∞ and
∫ T
0 ||πtσt (S)||2dt < ∞ a.s.7 For a given ct the corresponding wealth

process is

Xt ≡ x0 +
∫ t

0

(
π0
s + 1πs

)
rsds +

∫ t

0
πs (αs − rs1) ds

+
∫ t

0
πsσs (S) dWs −

∫ t

0
csds

with x0 ≥ 0.The corresponding portfolioweights process isut ≡ πt/Xt . The portfolio
weights process is said to be self-financing if8 Xt = π0

t +πt1 ∀t ∈ [0, T ] and tame if
the discounted wealth process Xt B

−1
t is bounded from below by a real constant that

does not depend on t (but possibly on the process πt ) a.s. Moreover, we denote the
wealth process corresponding to any ct and ut by Xu,c

t .

The interpretation of a self-financing portfolio weights process is that the wealth of
an agent with this portfolio weights process is equal to the cumulative gains earned
from investment minus cumulative consumption plus initial wealth. The concept of a
tame portfolio is introduced as these do not allow doubling strategies, see Karatzas
and Shreve (1998, Chapter 1).

Definition 3.3 We call the pair (ut , ct ) a consumption and portfolio weights process.
For a fixed x0 ≥ 0, (ut , ct ) is said to be admissible if ut is self-financing and tame
(given ct ) and if the corresponding wealth process satisfies X

u,c
t ≥ 0 for all t ∈ [0, T ]

a.s.

In the following all portfolio weights processes are assumed to be admissible. In
the rest of the paper we will mainly study the optimal investment and consumption
problem under partial information presented in Problem 1. The information is partial
because the agent needs her consumption and portfolio weights process (ut , ct ) to be
adapted to F S , while the local mean rate of return process α and the Wiener process
W are not generally adapted to F S .

Problem 1 Given initial wealth x0 ≥ 0 and utility functions U1(t, ·) and U2(·) an
agent wants to maximize the functional

E

[∫ T

0
U1 (t, ct ) dt +U2

(
Xu,c
T

)]

over the set of admissible consumption and portfolio weights processes (ut , ct ) (which
need to be adapted toF S).Our task is to characterize the optimal consumption process,
denoted by c̄∗

t , the optimal portfolio weights process, denoted by ū∗
t , and the optimal

wealth process, denoted by X̄∗
t .

7 1 is an n-dimensional vector with each element equal to 1.
8 Thus (1 − ut1) represents the weight in the bank account Bt .
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4 The full information problem

In this section, we will study Problem 1 under the assumption that the agent has
full information and we therefore let the large filtration coincide with the observable
filtration, see Assumption 4.1. In Sect. 5 we will study the partial information problem
we set out to study and consequently we will in that section drop Assumption 4.1 and
show that the original partial information problem can be transformed into a full
information problem of the type studied in this section.

Assumption 4.1 F = F S .9

Remark 4.2 We use the notation that a bar over a quantity indicates that this is a
quantity in the original partial information setting, i.e.withoutAssumption4.1, and that
the same quantity without the bar is with this assumption. For example, c̄∗

t denotes the
optimal consumption process under partial information, i.e. without Assumption 4.1,
whereas c∗

t denotes the optimal consumption process under full information, i.e. with
Assumption 4.1.

In the rest of this section we will write F and not F S even though they by assumption
coincide. The reason is that we in Sect. 5 will study the filtrationF S (without assuming
that F = F S) and we must make the distinction clear.

Consider the market price of risk process ϑt , which is an F-progressively measur-
able modification such that ϑt = σ−1

t (S)(αt − rt1) a.s.

Assumption 4.3 The local martingales Lt ≡ e− ∫ t
0 ϑ ′

sdWs− 1
2

∫ t
0 ||ϑs ||2ds and

L̃ t ≡ e− ∫ t
0 (σ−1

s (S)αs )
′dWs− 1

2

∫ t
0 ||σ−1

s (S)αs ||2ds are martingales.
∫ T
0 ||ϑt ||2dt < ∞ a.s. and

∫ T
0 ||σ−1

t (S)αt ||2dt < ∞ a.s.

We will now show that the full information market is complete and that a unique
risk-neutral probability measure exits.

Definition 4.4 The market is said to be complete if every FT -measurable and inte-
grable contingent claim ζ , with ζ B−1

T a.s. bounded from below, can be replicated
by an admissible portfolio strategy. A contingent claim is said to be integrable if
E[ζ B−1

T LT ] < ∞.10

Proposition 4.5

• There exists a unique equivalent risk-neutral probabilitymeasure Q,which is given
by dQ

dP = LT on FT for

dLt = −ϑ ′
t LtdWt , L0 = 1. (10)

• The process W Q defined by dWQ
t = ϑt dt + dWt is F-Wiener under Q.

9 As noted in Björk et al. (2010), it is not necessarily the case that F S and FW coincide, see Tsirelson’s
counterexample in e.g. Rogers and Williams (1987).
10 For further details see e.g. Karatzas and Shreve (1998).
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• The process W̃ defined by dW̃t = σ−1
t (S)αt dt + dWt is F-Wiener under the

equivalent probability measure Q̃, given by d Q̃
dP = L̃T on FT . Moreover, S has no

drift under Q̃ and F = F W̃ .
• The market is complete.

Proof The second result and first part of the third result follow directly from the
Girsanov theorem since Lt and L̃ t are a likelihood processes (see Assumption 4.3).
We can therefore write the process S given by (9) as

dSt = D(St )αt dt + D(St )σt (S)
(
−ϑt dt + dWQ

t

)
(11)

which implies that ϑt = σ−1
t (S)(αt − rt1) gives us a risk-neutral measure. For any

probability measure equivalent to P the corresponding likelihood process is an F-
martingale under P and by Proposition 2.5 (regularity is given in Assumption 4.3)
we therefore know that any such likelihood process could be written on the same
form as (10) giving another expression of the same type as (11). This implies that
ϑt determines the risk-neutral measure uniquely, which is the first result. Simple
calculations show that S has no drift under Q̃, and the last part of the third result
follows from Proposition 2.3. The last part of the third result implies that we can
use standard results about Wiener driven markets and the fourth result follows, see
e.g. Karatzas and Shreve (1998, Chapter 1) (a slight modification of the proofs of
these results is needed: instead of referring to the standard martingale representation
theorem one must refer to a more general result such as Proposition 2.5). �	
Remark 4.6 The quadratic variation of S is without loss of generality adapted to F S

and it therefore follows that the asset price volatility would be a functional of the
trajectory of S even if we did not assume this. Generally, however, this volatility
functional would not be regular or even nonanticipative, see e.g. Liptser and Shiryayev
(2001, Chapter 4). If the volatility functional would not be nonanticipative and regular
we would not be able to prove that the market is complete, as Propositions 2.3 and 2.5
rely on this.

Themarket has been shown to be complete under the assumption of full information
and we can therefore use the standard approach for solving the optimization problem.
We followKaratzas and Shreve (1998), where proofs of results analogous to the results
in the rest of this section can be found.

The next result, Lemma 4.9, can be interpreted as saying roughly the following: for
any contingent claim maturing at T there is an admissible consumption and portfolio
weights process such that the corresponding wealth will coincide with the contingent
claim at T , assuming that the initial wealth is large enough. The following definition
and regularity condition are needed.

Definition 4.7 The stochastic discount factor M is defined by Mt = B−1
t Lt for all

t ∈ [0, T ].
Assumption 4.8 E

[∫ T
0 Mtdt + MT

]
< ∞.
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Lemma 4.9 Let initial wealth x0 ≥ 0 be given, let ct be a consumption process and
let ζ be some nonnegative FT -measurable random variable such that

E

[∫ T

0
Mtctdt + MT ζ

]
= x0.

Then there exists an admissible consumption and portfolio weights process (ut , ct )
such that final wealth Xu,c

T = ζ .11

Proposition 4.12will reveal that optimal investment and consumption is directly related
to the inverse of marginal utility and wemust therefore introduce (generalized) inverse
functions of the derivatives of the utility functions. This will be done in Assump-
tion 4.10, where we will also specify the standard conditions that the utility functions
satisfy.

Assumption 4.10 U2 :R → [−∞,∞) and U1 : [0, T ] × R → [−∞,∞).
U2 is concave, nondecreasing and upper semicontinuous and the half-line

dom(U2) ≡ {x ∈ R;U2(x) > −∞} is a nonempty subset of [0,∞). The deriva-
tive U ′

2 is continuous, positive and strictly decreasing on the interior of dom(U2) and
U ′
2(∞) = 0 (we use the notation U ′

2(∞) = limx→∞ U ′
2(x)). U1 satisfies the same

conditions for each t .
ct ≡ inf {c ∈ R;U1(t, c) > −∞} is a continuous function of t with values in

[0,∞).
U1 and U ′

1 (the derivative is taken with respect to consumption) are continuous on{
(t, c) ∈ [0, T ] × (0,∞); c > ct

}
.

For fixed t ∈ [0, T ], the function I1(t, ·) : (0,∞] onto→ [ct ,∞) defined by

U ′
1(t, I1(t, y)) =

{
y, y ∈ (

0, limc↘ct U
′
1(t, c)

)

limc↘ct U
′
1(t, c), y ∈ [

limc↘ct U
′
1(t, c),∞

]

is strictly decreasing on (0, limc↘ct U
′
1(t, c)), equal to ct on [limc↘ct U

′
1(t, c),∞]

and continuous on (0,∞].
For x ≡ inf {x ∈ R;U2(x) > −∞}, the function I2 : (0,∞] → [x,∞) defined

by

U ′
2(I2(y)) =

{
y, y ∈ (

0, limx↘x U ′
2(x)

)

limx↘x U ′
2(x), y ∈ [

limx↘x U ′
2(x),∞

]

satisfies the analogous conditions.

The following regularity condition is needed.

Assumption 4.11 X (y)≡E
[∫ T

0 Mt I1(t, yMt )dt+MT I2(yMT )
]
<∞,∀y ∈ (0,∞).

11 A slight modification is needed in the proof of Lemma 4.9 compared to the analogous result in Karatzas
and Shreve (1998). Instead of referring to the standard martingale representation theorem one must refer to
a more general result, such as Proposition 2.5.
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The full information solution to Problem 1 for the general utility functions of Assump-
tion 4.10 is presented in the following proposition.

Proposition 4.12 (Optimal investment and consumption under full information) Let
x0 ∈ (X (∞),∞). The optimal wealth process

X∗
t = EFt

[∫ T

t

Ms

Mt
I1 (s, λMs) ds + MT

Mt
I2 (λMT )

]

where λ is determined by

E

[∫ T

0
Mt I1 (t, λMt ) dt + MT I2 (λMT )

]
= x0.

The optimal consumption process

c∗
t = I1 (t, λMt ) .

The optimal portfolio weights process

u∗
t = σX∗(t)σ−1

t (S)

where σX∗(t) is the volatility of the optimal wealth process X∗
t .

In the rest of this section we will study the examples of power and logarithmic utility.
Proposition 4.12 is used repeatedly.

4.1 Example 1: Power utility under full information

LetU1(t, ct ) = cγ
t
γ
andU2(XT ) = Xγ

T
γ

with γ < 1, γ �= 0. To simplify the calculations

we introduce the notation β = γ
1−γ

. Simple calculations show that c∗
t = (λMt )

1
γ−1

and X∗
T = (λMT )

1
γ−1 , and that λ is given by

x0 = E

[∫ T

0
Mt (λMt )

1
γ−1 dt + MT (λMT )

1
γ−1

]

= λ
1

γ−1 H0

with H0 defined through the last equality. This implies that c∗
t = x0

H0
M

1
γ−1
t , X∗

T =
x0
H0

M
1

γ−1
T and X (∞) = 0.

We now introduce a process H , with H0 as starting value, which we will use
to characterize the solution c∗

t , X
∗
t and u∗

t . The process H is a generalization of the
processH studied inBjörk et al. (2010).TheprocessH of thepresent paper differs from
the process H of Björk et al. (2010) because of the agent’s possibility of consumption.
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Definition 4.13 Define the process H by Ht = EFt

[∫ T
t

[
Ms
Mt

]−β

ds +
[
MT
Mt

]−β
]
for

all t ∈ [0, T ].
The optimal wealth process is then

X∗
t = x0

H0
EFt

[∫ T

t

M−β
s

Mt
ds + M−β

T

Mt

]

= x0
Ht

H0
M

1
γ−1
t .

Lemma 4.14 The process H can be written in the following Itô process form

dHt = μH (t)Htdt + σH (t)HtdWt

for some processes μH (t) and σH (t).

Proof Use the definition of H and rewrite it as

Ht = EFt

[∫ T

t

[
Ms

Mt

]−β

ds +
[
MT

Mt

]−β
]

=
[
EFt

[∫ T

0
M−β

s ds

]
−

∫ t

0
M−β

s ds

]
Mβ

t + Mβ
t EFt

[
M−β

T

]
.

The expected values in this expression are both martingales so they are by Proposi-
tion 2.5 driven byW . From the definition of M it follows that also Mβ

t is driven byW .
The result follows from Itô’s formula and the obvious fact that H is strictly positive.

�	
From the results above, the definition of Mt and Itô’s formula it follows that

dX∗
t = d

(
x0

Ht

H0
M

1
γ−1
t

)
= d

⎡

⎣x0e

∫ t
0 (...)ds+∫ t

0

[
−ϑ ′

s
γ−1+σH (s)

]
dWs

⎤

⎦

= (. . .)dt +
⎡

⎣x0e

∫ t
0 (...)ds+∫ t

0

[
−ϑ ′

s
γ−1+σH (s)

]
dWs

⎤

⎦
[ −ϑ ′

t

γ − 1
+ σH (t)

]
dWt

= (. . .)dt + X∗
t

[ −ϑ ′
t

γ − 1
+ σH (t)

]
dWt .

This implies that σX∗(t) = −ϑ ′
t

γ−1 + σH (t), so that u∗
t =

[ −ϑ ′
t

γ−1 + σH (t)
]
σ−1
t (S). The

process H in Björk et al. (2010) is in that paper investigated by means of a probability
measure Q0. In the following remark we perform a similar investigation of our process
H under a probabilitymeasure Q0 which is a generalization of the probabilitymeasure
in Björk et al. (2010).

123



102 K. Lindensjö

Remark 4.15 Consider the likelihood process (assume in this example that it is a

martingale) L0
t = e

∫ t
0 βϑ ′

sdWs− 1
2

∫ t
0 β2||ϑs ||2ds and the measure Q0 given by dQ0

dP = L0
T

on FT . Now use that M−β
t = Bβ

t L
−β
t = Bβ

t L
0
t e

1
2

∫ t
0

β
1−γ

||ϑs ||2ds to see that the process
H has the representation

Ht = EQ0

Ft

[∫ T

t

[
Bs

Bt

]β

e
1
2

∫ s
t

β
1−γ

||ϑu ||2duds +
[
BT

Bt

]β

e
1
2

∫ T
t

β
1−γ

||ϑu ||2du
]

.

We now introduce a process � which we use to characterize the solution (c∗
t , X

∗
t and

u∗
t ) in a novel fashion.

Definition 4.16 Let � be the price process of a derivative with dividend process
M−(β+1)

t and derivative payoff M−(β+1)
T at time T , i.e. let

�t = EFt

[∫ T

t

Ms

Mt
M−(β+1)

s ds + MT

Mt
M−(β+1)

T

]
.

In the following lemma we investigate the dynamics of�, the connection between the
volatilities of � and H , and we also characterize the drift of the process H using the
dynamics of the process �.

Lemma 4.17 The process � can be written in the following Itô process form

d�t = μ�(t)�dt + σ�(t)�t dWt

for some process σ� and μ�(t) = rt − M−(β+1)
t
�t

+σ�(t)ϑt . The volatility and the drift
of the process H are characterized by σH (t) = σ�(t) − (β + 1)ϑ ′

t and

μH (t) = μ�(t) − ||σ�(t)||2
2

− (β + 1)

(
rt + ||ϑt ||2

2

)

+ || − (β + 1) ϑ ′
t + σ�(t)||2

2
.

Moreover H0 = �0.

Proof By definition it directly follows that HtM
−β−1
t = �t . Thus the dynamics of

� is clearly of the claimed form. Basic arbitrage theory implies that the return rate of
a financial derivative with a dividend process is the risk free rate minus the dividend
yield rate under the risk-neutral measure. This, together with Definition 4.16 and the
Girsanov theorem gives the expression forμ�. The solutions of Mt and�t imply that

Ht = Mβ+1
t �t

= M0�0e
∫ t
0

[
μ�(s)− 1

2 ||σ�(s)||2+(β+1)
(
−rs− 1

2 ||ϑs ||2
)]

ds+∫ t
0 [σ�(s)−(β+1)ϑ ′

s]dWs

and Itô’s formula then gives the second last result. The last result is trivial. �	
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The solution for power utility is presented in the following proposition. The proof
consists of basic manipulations of the results above.

Proposition 4.18 (Power utility under full information) Let x0 ∈ (0,∞). The optimal
wealth process

X∗
t = x0

Ht

H0
M

1
γ−1
t = x0

�t

�0
.

The optimal consumption process

c∗
t = x0

H0
M

1
γ−1
t = x0

Ht

�t

�0
.

The optimal portfolio weights process

u∗
t =

[ −ϑ ′
t

γ − 1
+ σH (t)

]
σ−1
t (S) = σ�(t)σ−1

t (S).

4.2 Example 2: Logarithmic utility under full information

Let U1(t, ct ) = ln(ct ) and U2(XT ) = ln(XT ). Simple calculations show that
c∗
t = (λMt )

−1, X∗
T = (λMT )−1, and that λ = (T + 1)/x0. This implies that

c∗
t = x0

Mt (T+1) , X
∗
T = x0

MT (T+1) and X (∞) = 0. The optimal wealth process is
consequently given by

X∗
t = EFt

[∫ T

t

Ms

Mt

x0
Ms(T + 1)

ds + MT

Mt

x0
MT (T + 1)

]

= x0
Mt

T + 1 − t

T + 1
.

This implies (use Itô’s formula) that σX∗(t) = ϑ ′
t and hence that the optimal portfolio

weights process u∗
t = ϑ ′

tσ
−1
t (S).

Remark 4.19 The results on optimal consumption for logarithmic utility in the present
paper are contained in the more general results of Korn and Seifried (2013) who study
optimal consumption under logarithmic utility in a general semimartingale setting.
Their general setting allows for partial information and other concepts such as ambi-
guity, nonlinear wealth dynamics and trading constraints.

5 The partial information problem

In this sectionwewill study the partial information optimization problemwe originally
set out to study.We therefore dropAssumption 4.1 so thatF S ⊆ F where the inclusion
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generally is strict.We allow some repetition and restate the problem, although omitting
some details. The asset price dynamics are given by

dSt = D(St )αt dt + D(St )σt (S)dWt . (12)

D(St ) is then×n diagonalmatrixwith the vector St asmain diagonal and D(St )σt (S) is
an invertible regular nonanticipative functional. The process α and theWiener process
W are generally not adapted to the observable filtration F S . The instantaneous short
rate r is adapted to F S . The task is to maximize

E

[∫ T

0
U1(t, ct )dt +U2

(
Xu,c
T

)]

over the set of admissible consumption and portfolio weights processes (ut , ct ) (which
need to be adapted to F S), where Xu,c

T is wealth at the terminal time T , and to
characterize the resulting optimal consumption process c̄∗

t , optimal portfolio weights
process ū∗

t and optimal wealth process X̄∗
t (recall that the bar indicates a quantity

under partial information).
We solve this partial information problem by transforming it to a corresponding full

information problemof the type studied inSect. 4. Themain tool for this transformation
is a projection of the dynamics of the process S in (12) (which is only partially
observable) to the observable filtration F S . This type of approach is standard in the
literature of partial information optimal investment and consumption, see Sect. 1. We
need the following regularity in order to use the filtering theory of Sect. 2.

Assumption 5.1
∫ T
0 E

[
||σ−1

t (S)αt ||2
]
dt < ∞.

Let α̂ denote the filter estimate process of the process α with respect to the observable
filtration F S (see Definition 2.6 for details). Lemma 2.8 implies that the process W̄
defined by

dW̄t = (D(St )σt (S))−1 (
dSt − D(St )α̂t dt

)
, W̄0 = 0 (13)

is F S-Wiener. Rewrite (13) as

dSt = D(St )α̂t dt + D(St )σt (S)dW̄t (14)

and note that S in (14) is exactly the same process as S in (12).
Now consider the optimization problem stated in the beginning of this section, but

instead of (12) describing the dynamics of the asset prices S let (14) do so. Moreover,
consider the financial market as living on the filtration

(
�,F , P,F S), instead of(

�,F , P,F)
. In other words the filtration that we now consider is the observable

filtration F S , and not the larger filtration F . It is then clear that we have transformed
the partial information problem to a corresponding full information problem. We can
thereforemodify the relevant full information results of Sect. 4 to corresponding results
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of the original partial information problem. The rest of this section is devoted to these
corresponding results.12

The partial information setting unique equivalent risk-neutral measure Q̄ is given

by d Q̄
dP = L̄T on F S

T for d L̄t = −ϑ̄ ′
t L̄ t dW̄t , L̄0 = 1, where ϑ̄t = σ−1

t (S)(α̂t − rt1)

(defined in the same way as ϑt in Sect. 4). The partial information setting stochastic
discount factor is M̄t ≡ B−1

t L̄ t . The necessary regularity conditions are collected in
the following assumptions.

Assumption 5.2 The local martingale (with respect to F S) L̄ t is an F S-martingale.

The same holds for ¯̃Lt ≡ e− ∫ t
0 (σ−1

s (S)α̂s )
′dW̄s− 1

2

∫ t
0 ||σ−1

s (S)α̂s ||2ds.Moreover,
∫ T
0 ||ϑ̄t ||2dt

< ∞ a.s.13

Assumption 5.3 E
[∫ T

0 M̄tdt + M̄T

]
< ∞ and X̄ (y) ≡ E

[∫ T
0 M̄t I1(t, yM̄t )dt

+ M̄T I2(yM̄T )
]

< ∞,∀y ∈ (0,∞).

The results of Sect. 4 are based on the assumption that the stochastic basis(
�,F , P,F)

satisfies the usual conditions. We therefore need the following result.

Lemma 5.4 Let the measure ¯̃Q be defined by d ¯̃Q
dP = ¯̃LT on F S

T so that the process ¯̃W
defined by d ¯̃Wt = σ−1

t (S)α̂t dt + dW̄t is F S-Wiener under ¯̃Q.

Then the observable filtration F S = F ¯̃W . Moreover, the stochastic basis(
�,F , P,F S) satisfies the usual conditions.

Proof The Girsanov theorem says that ¯̃W is an F S-Wiener process under ¯̃Q (use
Assumption 5.2). Simple calculations show that S has no drift under this measure and
the equality of the filtrations follows from Proposition 2.3 [see also (4) in the proof
of Proposition 2.5]. The stochastic basis

(
�,F , P,F)

satisfies the usual conditions
by assumption and since F S , by definition, is an augmented filtration we only need
to check that F S is right-continuous. The augmented filtration generated by a Wiener
process is right-continuous, see e.g. Karatzas and Shreve (1998). �	

The following result follows directly from the above and Proposition 4.5.

Corollary 5.5 The market is observationally complete in the sense that every
F S
T -measurable contingent claim ζ , with ζ B−1

T a.s. bounded from below and
E[ζ B−1

T L̄T ] < ∞, can be replicated by an admissible portfolio strategy.

Remark 5.6 The approach described in the present paper does not rely on any particu-
lar utility function assumptions or on any particular optimization approach. Rather, it is
a unified approach for studying partial information optimization problems in observa-
tionally complete non-Markovian Itô process markets with path-dependent volatility
and path-dependent interest rates.

12 Corollary 2.11 is a more formal version of this reasoning.
13 ∫ T

0 ||σ−1
t (S)α̂t ||2dt < ∞ a.s. can be shown to follow from Assumption 5.1.
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Obtaining a solution for Problem 1 is now just a matter of adding a bar to the
relevant quantities in the full information solution (Proposition 4.12).

Theorem 5.7 (Optimal investment and consumption under partial information)
Let x0 ∈ (X̄ (∞),∞). The optimal wealth process

X̄∗
t = EF S

t

[∫ T

t

M̄s

M̄t
I1

(
s, λ̄M̄s

)
ds + M̄T

M̄t
I2

(
λ̄M̄T

)]

where λ̄ is determined by

E

[∫ T

0
M̄t I1

(
t, λ̄M̄t

)
dt + M̄T I2

(
λ̄M̄T

)] = x0.

The optimal consumption process

c̄∗
t = I1

(
t, λ̄M̄t

)
.

The optimal portfolio weights process

ū∗
t = σX̄∗(t)σ−1

t (S)

where σX̄∗(t) is the volatility of the optimal wealth process X̄∗
t .

The results in the examples of power and logarithmic utility under full information
in Sect. 4 can also easily be transformed into corresponding partial information results
by adding bars to the relevant quantities.Wepresent the partial information logarithmic
utility results. The power utility results are just as easily transformed.

Example 3: Logarithmic utility under partial information

The optimal wealth process X̄∗
t = x0

M̄t

T+1−t
T+1 , the optimal consumption process c̄∗

t =
x0

M̄t (T+1)
, and the optimal portfolio weights process ū∗

t = ϑ̄ ′
tσ

−1
t (S).
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