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Abstract We study the performance of a reflected fluid production/inventory model
operating in a stochastic environment that is modulated by a finite state continuous
time Markov chain. The process alternates between ON and OFF periods. The ON
period is switched to OFF when the content level reaches a predetermined level q and
returns to ONwhen it drops to 0. The ON/OFF periods generate an alternative renewal
process. Applying a matrix analytic approach, fluid flow techniques and martingales,
we developmethods to obtain explicit formulas for the cost functionals (setup, holding,
production and lost demand costs) in the discounted case and under the long-run
average criterion. Numerical examples present the trade-off between the holding cost
and the loss cost and show that the total cost appears to be a convex function of q.

Keywords Production–inventory model · Cost functionals · Fluid process ·
Martingale

1 Introduction

Inventory control has long focused on managing certain specific types and sources of
uncertainty in the production and demand process. Manufacturing systems, operating
in random environment, are implemented by a variety of manufacturing firms in the
food-processing industry, such as sugar (Grunow et al. 2007), electronic computer
industries and the pharmaceutical industry (see also Mohebbi 2006). In practice, the
average production rate of these facilities is higher than the average demand. As a
consequence, the production facility has to be switched off once in a while to pre-
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2 Y. Barron

vent inventory from growing without bound. In the special case of constant demand
and production, the production–inventory system reduces to the classical economic
production quantity (EPQ) model of Taft (1918). In the classic EPQ model every
production cycle is composed of ON and OFF deterministic periods. There exists a
predetermined level q such that the system is ON and the inventory level increases
from level 0 up to level q. When level q is reached, the production is stopped and the
inventory decreases down to 0. The time it takes from q to 0 is the OFF period.

In contrast with the assumption that production facilities can be switched off, many
industries are characterized by high setup times and high setup costs where switching
off the production is financially or operationally prohibitive. Thus, for both financial
and operational reasons, it is critical to establish a proper production process early in
the planning process; an overly high production rate results in high holding costs due
to excess inventory, while a low production rate results in high penalty costs due to
frequent stockouts and subsequent lost-sales.

In this paper we aim at filling some of this category. Specifically, we consider
the heavy traffic version of a EPQ system in which neither production nor demand
never stop (another interpretation to the latter assumption could be the case in which
customers are allowed to return items to the system).Here, too,we assume two periods,
ONandOFF; however, the production and demand rates differ duringON/OFFperiods
and are modulated by a continuous-time Markov chain (CTMC) which represents the
environment. For example, the rates can change due toweather, economy, competition,
seasonal promotion, customer status, forecasting, etc. We further assume that the
average growth rate (which is the production rate minus the demand rate) is positive
during ON periods and negative during OFF periods. Thus, each cycle is composed of
two parts; the first part is the ON period which ends when the content level reaches a
predetermined level q and the second part, the OFF period, is the time it takes from q
until the content level reaches level 0; we assume that switching from one period to the
other takes no time. Finally, we assume that backlogging is not allowed (i.e., demands
that cannot be satisfied directly from the inventory are lost); hence, the content level
is generated by reflection on the total production minus the total demand (satisfied or
unsatisfied), with 0 acting as the reflecting barrier.

For background on stochastic EPQ models, Vickson (1986) studied a continu-
ous review, single product stochastic cycling problem with demand modelled as a
Brownian motion process. Recently, Wu and Chao (2013) extend this result to include
a two-dimensional Brownian motion process. Berman and Perry (2001) present an
ON/OFF model with a reflected Brownian motion. Boxma et al. (2001) consider a
fluid system in which during the OFF times the buffer content increases as a piecewise
linear process according to some semi-Markov process, and during the ON times, it
decreases with a state-dependent rate. They derive the stationary distribution, steady
state Laplace–Stieltjes transform and moments of the buffer content. Berman et al.
(2007) study the long-run average performance of a fluid production/inventory model
which alternates between ON periods and OFF periods and derive the pertinent reward
functionals in a closed form.

Further examples on the ON/OFF process come from queueing literature (e.g.,
Kella and Whitt 1992; Boxma et al. 2005; Zhang and Zwart 2012), limited-capacity
industries (e.g., Perry and Posner 2002), service systems, seasonal food products (i.e.,
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Performance analysis of a reflected fluid production/inventory. . . 3

ice cream, soup powder) and epidemics in which the quantity of interest is the number
of susceptibles and the OFF period corresponds to mass preventive actions whenever
the number of susceptibles exceed a specific number (Taylor 1968).

An example that the authors are familiar with comes from EL-AL, Israel Airline
Ltd., (www.elal.com). EL-AL has internal workshops that are responsible for the
maintenance of the aircraft. Their activity is to repair the damaged aircraft spare parts.
Huge cost and time associated with switching assembly lines off cause the workshops
to operate continuously in a 24/7manner. Due to the stochastic nature of the production
(damaged components) and the demand (repaired items) processes, inventories (items
waiting to be repaired) may reach undesirably high levels and can cause a shortage of
repaired items essential for the airlines operations. Thus, each time a predetermined
inventory level is reached, the workshop reduces the inventory level by increasing the
rate of repair.

Another potential application of our study arises from customers which are allowed
to return items to the buffer and negative inventory is not allowed. Inventory manage-
ment with returning items have received a lot of attention in the literature; for example,
Beltran and Krass (2002) experience with a major Canadian catalogue retailer that 30–
40%of inventory formany fashion itemswas due to returns, whichmade this source of
“re-supply” very important. Recently, Shaharudin et al. (2015) study product returns
and recovery management among six manufacturing firms in Malaysia. More exam-
ples of this line of research are Fleischmann et al. (2002) and Pinçe et al. (2008).

Our paper is also related to the literature encompasses a compound Poisson demand
(e.g., Shi et al. 2014; Barron et al. 2014) or demand process that is a mixture of
continuous demand and compound Poisson demand (e.g., Kok et al. 1984; Germs and
Foreest 2014). For models based on Markovian decision process see e.g., Song and
Zipkin (1993).

The underlying inventory process studied in this paper can also describe a variety of
interpretations drawn from the contexts of perishable models. There are two types of
perishable inventory models. The first family of models assumes that the quality of the
items is slowly decreases over time; for example, a plant that produces ice-cream (see
Boxma et al. 2014, 2015). The second family is models with obsolescences. Here, the
items might perish at each period with some probability which is typically increasing
over time. Examples of obsolescence models range from avionics and military sec-
tors, high tech products, communications, construction equipment, medical devices,
transportations and supply chain networks [we refer the readers to Tyler (2004), Song
and Lau (2004), Shen and Willems (2014) for more examples].

In this paperwe study four types of costs: (i) fixed setup cost; (ii) holding cost for the
inventory; (iii) production cost and (iv) lost demand cost due to the reflection at level
zero. Our objective is to obtain tractable formulas for the appropriate cost functionals.
We focus on the discounted cost criterion using a discount factor β > 0; however,
we also deal with the long run average cost criterion. To the best of our knowledge,
although the related literature is voluminous, our model seems to be more general and
new and has been never investigated in the inventory literature; thus our research dif-
fers. Furthermore, while the afore-mentioned papers involve analytic derivations of the
quantities of interest, we emphasize our study using a more probabilistic approach via
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exit-time results and regenerative theory. this enables a simple derivation of quantities
of interest and obtains easy-to-implement explicit formulas.

Our analysis is based on a combination of a certain martingale technique and an
application of fluid flow theory. Themartingale approachwas introduced byAsmussen
and Kella (2000) and was frequently used in the study of inventory models, see e.g.,
Kella et al. (2003), Barron (2015), Barron et al. (2014) and Shi et al. (2013) and the
references given therein. Markov-modulated fluid flow models have been an active
area of research in recent years; one of their main applications is to the modeling the
traffic evolution in communication channels. Silva and Latouche (2005) consider fluid
queue with a buffer of a finite capacity where the behavior of the background Markov
process is allowed to change whenever the buffer is empty or when it is full. We use
results of Ramaswami (1999) who initiated an unified matrix-analytic algorithmic
approach to fluid flows, and this was followed by a series of papers by him, Ahn and
others (see Ramaswami 2006; Ahn et al. 2007).

Our analysis enables a simple derivation of quantities of interest and obtains easy-to-
implement explicit formulas. These explicit formulas can then be used for an analysis
of the dependence of the cost functionals on the system parameters, or for optimization
purposes when some of these parameters (e.g., the costs, production rates and the
storage capacity) are taken as decision variables. Through numerical examples we
display the behavior of the costs and present the trade-off between the holding cost
and the lost demand cost as a function of q. We show that the set up and holding costs
are similar to those associated with the classical EPQmodel. Finally, our observations
show that the expected discounted total cost appears to be a convex function of q; thus
it is worthwhile for the controller to determine the optimal q in order to minimize the
total cost.

The remainder of the paper is organized as follows. In Sect. 2 we present the
mathematical description of the model and the cost functionals. The crucial tools
of our analysis are introduced in Sect. 3. In Sect. 4 all the cost functionals for the
discounted case derived in closed form. Finally, the long-run average analysis is given
in Sect. 5. We also provide some numerical examples and insights.

2 Mathematical description of the model

We apply similar notations and definitions presented by Barron (2015). Let I (t) be the
fluid level in the buffer at time t . The rate of change of the fluid level is modulated by a
CTMC {J (t) : t ≥ 0} on a finite state space S = {1, 2, . . . , n}with a generator matrix
Q = [Qi j ]. Let π = [π1, . . . , πn] be the limiting distribution of theJ (t) process, i.e.,
π is the unique solution to πQ = 0, πe = 1 (where 0 is a row vector with all 0’s and
e is a column vector with all 1’s). Let υ = [υ1, υ2, . . . , νn] be the initial probability
vector of J (t). We assume I (0) = 0. The process I (t) can be partitioned into two
parts, I+(t) and I−(t). The first part of the cycle is the ON period τ and this period
ends whenever the content level reaches a predetermined level q. The second part of
the cycle, the OFF period T, is the time it takes from τ until the content level reaches
level 0. Each period is characterized by stochastic inputs (production) and outputs
(demand). However, we assume two sets of production rates {p11, . . . , p1n} ⊂ (0,∞)
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and {p21, . . . , p2n} ⊂ (0,∞) and two sets of demand rates {d11 , . . . , d1n } ⊂ (0,∞) and
{d21 , . . . , d2n } ⊂ (0,∞). The rate at which the inventory is filled at time t is determined
by the current environmental state J (t) and the period. During the ON period (OFF
period) and as long as J (t) is in state i, the production occurs continuously at rate
p1i (p2i ), and there is a demand at rate d1i (d2i ). The growth rate is the difference of
the production rate and the demand rate, r1i = p1i − d1i (r2i = p2i − d2i ). Note that
r1i , r2i i = 1, . . . , n may be either negative or positive. Let R1 = {r11 , . . . , r1n } and
R2 = {r21 , . . . , r2n }. In our model we do not allow backlog; thus when the content level
drops to level 0 (notice that this event can occurs only during ON periods), it stays
there as long as the environmental growth rate is negative and until the environmental
state changes to some positive growth rate. Furthermore, the behavior of the process
during each period is different; during the OFF period R2 satisfies

n∑

i=1

πi r
2
i < 0, (1)

and during the ON period, R1 satisfies

n∑

i=1

πi r
1
i > 0. (2)

A typical sample path of the inventory process is given in Fig. 1.
Note that, (1) is a necessary and sufficient condition for the stability of the OFF

process (see Kulkarni and Yan 2007), while the ON process, with the absence of (2),
is stable due to the reflection at level 0; however, (2) is assumed in order to avoid high
lost demand. We assume that conditions (1) and (2) hold for the rest of this paper.
Note that, due to the stochastic behavior of the process, the content level can exceeds
q during the OFF period.

Fig. 1 A sample path of the inventory process I (t)
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6 Y. Barron

Remark 1 Themodel described above can be easily generalized by assuming arbitrary
initial content level γ > 0 (see e.g., Berman et al. 2007). Obviously, the long-run
average cost is not affected; however, it affects the discounted cost. For simplicity, and
since the case of γ > 0 can be easily derived from our analysis, we assume γ = 0.

Clearly, the content level process is a semi-regenerative process which alternates
between ON periods and OFF periods. Define the following stopping times:

T0 = 0

Tn = inf {t > τn : I (t) = 0} n = 1, 2, . . .

τn = inf {t ≥ Tn−1 : I (t) = q} n = 1, 2, . . .

Tn, n = 1, 2, . . . are the times of switchings from OFF to ON and τn, n = 1, 2, . . . are
the time instants of switchings from ON to OFF. Thus, the content level process is a
semi-regenerative process with T ′

ns are semi-regenerative points. Define the nth cycle
as the time elapsed between Tn−1 and Tn, n = 1, 2, . . . and let Cn = Tn − Tn−1, n =
1, 2 . . . be the nth cycle length. Note that, if the ON periods are deleted from the
sample path and the OFF periods are glued together we obtain a fluid EOQ model
with refillings every time level 0 is reached.

For the rest of the paper, we use P (E) to denote the underlying probability measure
(expectation), and Pi (Ei ) denotes conditional probability (expectation) given initial
state i ∈ S. E and Ei are the corresponding vector expectation and conditional vec-
tor expectation operators. E,P represent a matrix-valued expectation and probability
operators, respectively. We denote by ei a vector with the i th component equal to 1
and all the other components 0, by I the identity matrix (all of the appropriate sizes)
and by 1{A} the indicator of an event A.

2.1 The cost functionals

Let us now introduce the functionals representing thevarious expecteddiscounted costs
in our model, using the discount factor β > 0. We will use the fact that the inventory
process is a semi renewalMarkov process with T ′

ns points as semi-regenerative points.
For the rest of the paper let τ = τ1, T = T1, T ′ = T −τ andC = C1 (soC = τ +T ′).
Note that I (t) is partitioned into two parts, I+(t) (the ON period, the time until τ ) and
I−(t) (theOFF period, the time that elapses from τ until T ); furthermore, conditioning
on the state at time τ and the common background environmental process, the two
process I+(t)0≤t≤τ and I−(t)τ≤t≤T are independent.

In this paper we consider four costs: (a) the setup cost, (b) the holding cost of
the inventory, (c) the production cost and (d) the unsatisfied demand cost. Our main
objective is to develop techniques enabling us to determine all these costs in closed
form under the discounted as well as under the long run average cost criterion. In the
course of our derivationswewill determine not only the cost functionals themselves but
also various other transforms and probabilities describing the inventory level process
that may be of independent interest.
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(a) Set up cost Let k1 be the setup cost to switch from OFF to ON (at time T ) and k2
be the setup cost to switch from ON to OFF (at time τ). The expected discounted
set-up cost SC∞(β) is given by

SC∞(β) = υE
∞∑

n=1

(k1 exp (−βTn) + k2 exp (−βτn)) . (3)

where υ is the initial probability vector. Since I (t) is a semi-regenerative process,
SC∞(β) can be expressed in terms of one cycle:

SC∞(β) = υ
(
I − E

(
e−βC

))−1 (
k1E

(
e−βC

)
+ k2E

(
e−βτ

))
e. (4)

We use E(e−βC ) as a shorthand notations for the (n × n) matrix whose i j th
component is given by

[
E

(
e−βC

)]

i j
= E

(
e−βC1{level 0 hit at timeC in phase j} | J (0) = i

)
. (5)

Similarly, the i j th component of the (n × n) matrix E(e−βτ ) is given by

[
E
(
e−βτ

)]
i j = E

(
e−βτ1{level q hit at time τ in phase j} | J (0) = i

)
. (6)

(b) Holding cost The total expected discounted holding cost can be expressed by the
functional

HC∞(β) = hE

⎛

⎝
∞∫

0

e−βt I (t)dt

⎞

⎠ ,

where hdt is the holding cost for a unit of stock during the time interval dt .
Revoking the ergodic theorem for regenerative process, we can write HC∞(β) in
terms of the first cycle and have

HC∞(β) = hυ
(
I − E

(
e−βC

))−1 (̂
h1(β) + E

(
e−βτ

)
ĥ2(β)

)
,

where (n × 1) vectors ĥ1(β) and ĥ2(β) are given by

ĥ1(β) = E

⎛

⎝
τ∫

0

e−βt I+(t)dt

⎞

⎠ , ĥ2(β) = E

⎛

⎜⎝
T ′∫

0

e−βt I−(t + τ)dt

⎞

⎟⎠ .
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8 Y. Barron

(c) Production cost Let c be the production cost for one unit. Similarly, the expected
discounted production cost PC∞(β) is given by

PC∞(β) = cE

⎛

⎝
∞∫

0

pJ (t)e
−βt dt

⎞

⎠

= cυ
(
I − E

(
e−βC

))−1 (
p̂1(β) + E

(
e−βτ

)
p̂2(β)

)
,

where p̂1(β) and p̂2(β) are (n × 1) vectors represent the expected discounted
production amount during ON and OFF periods, respectively.

p̂1(β) = E

⎛

⎝
τ∫

0

p1J (t)
e−βt dt

⎞

⎠ , p̂2(β) = E

⎛

⎜⎝
T ′∫

0

p2J (t+τ )
e−βt dt

⎞

⎟⎠ .

(d) Lost demand cost In our mode, backlog is not allowed; any demand which cannot
be satisfied immediately is lost. Clearly, there is no unsatisfied demand during the
OFF period. During ON period, once level 0 is reached the process stays there
until the environment changes to state with a positive growth rate. Assume the
process hits 0 at state i (for some r1i < 0), the demand is lost with rate (−r1i )

until the environmental state changes. Let wdt be the cost for a lost unit during a
time interval of length dt (w > 0). As a measure for the expected discounted lost
demand cost one can use the functional

UC∞(β) = −wE

⎛

⎝
∞∫

0

e−βt r1J (t)1{I+(t)=0}dt

⎞

⎠

= −wυ
(
I − E

(
e−βC

))−1
E

⎛

⎝
τ∫

0

e−βt r1J (t)1{I+(t)=0}dt

⎞

⎠

= wυ
(
I − E

(
e−βC

))−1
û(β). (7)

The (n×1) vector û(β) is the expected discounted production loss during the first
cycle. Notice that the lost demand can be written in terms of the local time process.
Consider the process X (t) = ∫ t

0 r
1
J (u)

du and let L(t) = −min0≤u≤t X (u). The
process X (t) represents the inventory level at time t of the unrestricted process
(the process without a barrier at level 0). The process L(t) is known as the local
time and is a non-decreasing process that increases only whenever I+(t) = 0.
Therefore, an appropriate functional for the unsatisfied demand is

û(β) = E

⎛

⎝
τ∫

0

e−βt dL(t)

⎞

⎠ . (8)
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A simple cost function for the entire systemwould be the sum, say TC(β), of these
four expected discounted costs:

TC∞(β) = SC∞(β) + PC∞(β) + HC∞(β) + UC∞(β). (9)

The cost functionals E(e−βC ), E(e−βτ ), p̂1(β), p̂2(β), ĥ1(β), ĥ2(β) and û(β)

will be derived in Sect. 4. The crucial tools of our analysis are introduced in the
next section.

3 Preliminaries

For the determination of the cost functionals we use two tools: (a) an application
of optional sampling theorem to a multi-dimensional martingale first presented by
Asmussen and Kella (2000) and (b) the matrix-analytic approach and the theory of
Markov-modulated fluid flows initiated by Ramaswami (2006). We summarize them
shortly in order to make this paper self-contained.

3.1 The multi-dimensional martingale

Let {X(t), t ≥ 0} be a right continuous Markov modulated Lévy process with mod-
ulating process {J (t), t ≥ 0} which is a right continuous irreducible finite state
space continuous time Markov chain. Let {Y (t), t ≥ 0} be an adapted continuous
process with a finite expected variation on finite intervals and let Z(t) = X(t)+Y (t).
Asmussen and Kella (2000) have shown, that for such a process, the matrix with
elements Ei [eαX(t);J (t) = j] has the form of etK (α) for some matrix K (α). Theo-
rem 2.1 in Asmussen and Kella (2000) yields that under certain mild conditions on
{Z(t), t ≥ 0}, the multi-dimensional process

M(α, t) =
∫ t

0
eaZ(s)1J (s)dsK (α) + eaZ(0)1J (0) − eaZ(t)1J (t)

+α

∫ t

0
eaZ(s)1J (s)dY (s) (10)

is a (row) vector valued zero mean martingale.
In our model, the inventory content level I (t) is a special case of X(t) and has

piecewise linear sample paths with slope r1j during ON period and r2j during OFF
period on intervals where J (t) = j ∈ S; Thus, some of the relevant functionals
in this paper will be obtained by applying the optional stopping theorem (OST) (or
Doob’s optional sampling theorem) to appropriate special cases of (10).

3.2 The fluid inventory model

The conventionalMarkov-modulatedfluidflow (MMFF) process is a fluid input-output
process in which the rates of changes of fluid level are all linear and are governed by
underlying Markov chain with infinitesimal generator Q and state space S (|S| = n).
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10 Y. Barron

Let us partition the Markov chain phases as two sets {S1, S2} where S1 is the set
of phases with increasing rates and S2 is the set of phases with decreasing rates
(S = S1 ∪ S2, |S1| = n1, |S2| = n2). Comfortingly to S1 and S2, the infinitesimal

generator can be expressed as Q =
(
Q11 Q12
Q21 Q22

)
. During the sojourn time when

the Markov phase is in i ∈ S1, the fluid level increases with rate (slope) ri > 0
and decreases with slope |ri | (for ri < 0) during i ∈ S2 (provided the fluid level
is positive). We construct diagonal matrices Uj = diag{|ri |, i ∈ S j }, j = 1, 2 and
U = diag(U1,U2) from these rates.

Let F(t) be the fluid level at time t and J (t) the phase of the Markov chain at time
t ; the two dimensional stochastic process {F(t),J (t), t ≥ 0} is called the MMFF
process. In the analysis of MMFF-related process, first passage times play important
roles. Let σ(x) = inf{t > 0,F(t) = x} be the first passage time to level x and define
the following Laplace–Stieltjes transforms (LST)

[
(β)]i j = E
(
e−βσ(0),J (σ (0)) = j | F(0) = 0,J (0) = i

)
i ∈ S1, j ∈ S2.

(11)
[
(β)]i j represents the LST of σ(0) restricted to the event that the fluid process hits
level 0 at state j ∈ S2, given F(0) = 0 and J (0) = i ∈ S1. Ramaswami (2006,
Appendix 1, p. 512) shows how to compute the matrix 
(β) and provides a good
algorithm for this. Let baτ(x, y) (for x ≥ 0, y ≥ 0) be the first passage time of F from
level x to level y avoiding a visit to the levels in [0, a]∪[b,∞) enroute (note that in the
case of unlimited visit, a and b are omitted). We use the notation b

a f̂ (x, y, β) to denote
the matrix of Laplace–Stieltjes transform of the joint distribution of the first passage
time b

aτ(x, y) and the state of the phase process at each first passage time. Once we
have computed 
(β), the LST matrix b

a f̂ (x, y, β) is straightforward to evaluate. In
the “Appendix”, we present the detailed algorithm to compute 
(β) and the formulas
for other LST matrices. For more details, we refer the readers to Ramaswami (2006).

Regarding our model, each ON/OFF period has one type of rates (R1 or R2);
hence, given the state at switching epoch and the common environment, the ON/OFF
periods are independent. Thus, we can analyze the inventory content level within
each period independently using MMFF process. Specifically, we consider two fluid
processes F+ (with Q+) and F− (with Q−) corresponding to the ON and OFF
periods, respectively; we also have the matrices U+ = diag(U+

1 ,U+
2 ) and 
+(β)

(U− = diag(U−
1 ,U−

2 ),
−(β)) corresponding to the ON (OFF) process. We list
in Table 1 LST matrices for hitting times, that we will use throughout our deriva-

Table 1 LST of first passage times

LST First passage time Matrix size

0 f̂12(x, 0, β) From (x, S1) to (0, S2) avoiding 0 inF n1 × n2

0 f̂22(x, 0, β) From (x, S2) to (0, S2) avoiding 0 inF n2 × n2

0 f̂11(0, x, β) From (0, S1) to (x, S1) avoiding 0 inF n1 × n1
x
(β) From (0, S1) to (0, S2) avoiding x inF n1 × n2
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Performance analysis of a reflected fluid production/inventory. . . 11

tion. As mentioned before, these matrices are straightforward to evaluate once we
have computed 
(β) and are given in Ramaswami (2006). Note that, for our model,
each LST matrix should be derived for ON (marked as +) and OFF (marked as −)
processes. For the rest of the paper we do not insert the marks + or − correspond-
ing to ON/OFF processes; it should be clear from the context which of the marks
applies.

Remark 2 In the course of our derivations, we will apply the phase type distribution.
A phase-type distribution with representation (E, α0, α,T) is the distribution of the
time to absorption for a CTMC with a finite state space E and one absorbing state.
α0 ∈ [0, 1) is the probability of immediate absorption or the atom at 0; it is omitted
if the distribution has no atom at 0. α is the initial probability vector on the set of
transient states and T is the matrix of transition rates among the transient states. Let
X be a phase type distributed, then

E(X) = α
(
−T−1

)
e

MX (β) = α0 + α (β I − T)−1 T o

where MX (β) is the Laplace–Stieltjes transform of X and T o = −Te.

In this paper, for any matrix B, we shall denote its elements by (B)i j or by [B]i j
and reserve the notation Bi j for the sub-matrix of B with row indices in Si and column
indices in S j . Furthermore, for matrices A and B we use the shorthand notation (A, B)

to denote the matrix obtained by stringing the matrix B after the matrix A (obviously,
A and B have the same number of rows).

4 The discounted model

Let us now derive the seven functionals indicating the expected discounted costs in
our model using a discount factor β > 0.

4.1 Setup cost functionals

In order to obtain the setup costs we have to derive the (n × n) matrices E(e−βτ ) and
E(e−βC ) [see (5), 6)].

4.1.1 The matrix E(e−βτ )

Let Ê(e−βτ ) be an (n × n1) matrix whose i j th component is the LST of the time to
reach level q in phase j ∈ S1, given initial phase i ∈ S. Since time τ occurs only for
states in S1, E(e−βτ ) has the form of

E
(
e−βτ

) = (
Ê
(
e−βτ

)
, 0(n×n2)

)
(12)
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12 Y. Barron

where 0a×b is a shorthand notation for an (a × b) matrix with all entries equal to 0.
For convenience, we will drop the size (a × b) and apply 0 in the cases that were
previously mentioned (instead of 0a×b).

Now, for the derivation of Ê(e−βτ ) we introduce two similar LST matrices which
differ only with their initial environment: (i) an (n1 × n1) matrix f̂11(0, q, β) whose
i j th component ( f̂11(0, q, β))i j represents the LST of the time until the content level
hits q in state j ∈ S1, given I (0) = 0 and J (0) = i ∈ S1 and (ii) an (n2 × n1) matrix
f̂21(0, q, β) whose i j th component ( f̂21(0, q, β))i j represents the LST of the time
until the content level hits q in state j ∈ S1, given I (0) = 0 and J (0) = i ∈ S2.

Proposition 4.1 The matrix f̂11(0, q, β) and f̂21(0, q, β) are given by

f̂11(0, q, β) = 0 f̂11(0, q, β) + q
(β) (β I − Q22)
−1 Q21 f̂11(0, q, β) (13)

f̂21(0, q, β) = (β I − Q22)
−1 Q21 f̂11(0, q, β). (14)

Proof Assume I (0) = 0,J (0) ∈ S1. There are two scenarios to reach level q > 0.
In the first scenario, I (t) hits level q avoiding 0. Applying the fluid parameters and
Table 1, the LST matrix of that time is 0 f̂11(0, q, β). In the second scenario, I (t)
drops to level 0 before reaching level q (with LST matrix q
(β)). Once the process
hits level 0, it stays there for a phase-type distributed time with transition matrix Q22.

Thus, (β I − Q22)
−1Q21 is the expected discounted time until exiting from level 0

with environmental in S1. From that point, the process starts again from level 0. The
proof of (14) is similar. 	


The matrix Ê(e−βτ ) is given by

Ê
(
e−βτ

) =
(

f̂11(0, q, β)

f̂21(0, q, β)

)
. (15)

Substituting (15) in (12) returns E(e−βτ ).

Notice that substituting β = 0 in (12) and (15) returns the (n × n) probability
matrix

E
(
1J (τ )

) =
((

f̂11(0, q, 0)
f̂21(0, q, 0)

)
, 0
)

. (16)

The i j th component of E(1J (τ )) is the probability that the ON process hits level q at
state j given J (0) = i ∈ S.

4.1.2 The matrix E(e−βC )

Given the state at time τ, the ON period and the OFF period are independent. Thus,
regarding C = τ + T ′ we obtain

E

(
e−βC

)
= E

(
e−βτ

)
E

(
e−βT ′)

.
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Performance analysis of a reflected fluid production/inventory. . . 13

E(e−βτ ) is given by (12). Let Ê(e−βT ′
) be an (n×n2) matrix whose i j th components

is the LST of the time to reach level 0 in phase j ∈ S2, givenJ (0) = i ∈ S, I (0) = q.

Since time T ′ occurs only for states in S2, E(e−βT ′
) has the form of

E

(
e−βT ′) =

(
0(n×n1), Ê

(
e−βT ′))

. (17)

It is easy to see that the matrix Ê(e−βT ′
) is given by

Ê

(
e−βT ′) =

(
0 f̂12(q, 0, β)

0 f̂22(q, 0, β)

)
. (18)

where 0 f̂12(q, 0, β) and 0 f̂22(q, 0, β) are given in Table 1, with q replacing x . Notice
that substituting β = 0 in (17) and (18) returns the (n × n) matrix

E(1J (T ′)) =
(
0,
(

f̂12(q, 0, 0)
f̂22(q, 0, 0)

))
. (19)

The i j th component of E(1J (T ′)) is the probability that the OFF process hits level
0 at state j given J (τ ) = i .

Substituting (12) and 17) in (4) leads to the expected discounted set-up cost.

4.2 Holding cost

We start with the derivation of the (n × 1) vector ĥ1(β), the expected discounted
inventory level during the ON period. Recall that since we are now dealing with the
ON period, for all the matrices in Table 1 we have to add the index + and use the
corresponding matrices associated to F+(t).

4.2.1 ĥ1(β) Functional

The basic tool we use to derive E(
τ∫

0
e−βt I+(t)dt) (and all other the required integrals,

here and in the following sections) is optional sampling theory (OST) to theAsmussen–
Kella multi-dimensional martingale, as introduced in Sect. 3.1. Consider the process

X (t) =
∫ t

0
rJ (u)du 0 ≤ t ≤ τ

X (0) = 0 (20)

as defined in Sect. 2.1(d). Chapter XI, p. 311 of Asmussen (2003) yields that

Ei

[
eαX (t);J (t) = j

]
=
(
etK (α)

)

i j
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14 Y. Barron

where
K (α) = Q + αU. (21)

(specifically, K+(α) = Q+ + αU+ and Q+, U+ are given in Sect. 3.2).
Recall that L(t) = −min0≤u≤t X (u) is the local time and let Z(t) = X (t) + L(t).

It is not difficult to see that the latter process up to time τ, i.e., (Z(t))0≤t<τ , has the
same distribution as (I (t))0≤t<τ . Finally, define Y (t) = L(t) − (β/α)t, for arbitrary
β ≥ 0 and α < 0, and W (t) = X (t) + Y (t) = Z(t) − (β/α)t . Since Y is adapted
and has paths of finite expected total variation on bounded intervals, Theorem 2.1 of
Asmussen and Kella (2000) yields that the process

M(α, t) =
(
M1(α, t), M2(α, t), . . . , Mn(α, t)

)ᵀ

=
t∫

0

eαW (u)1J (u)duK (α) + eαW (0)1J (0) − eαW (t)1J (t)

+α

⎛

⎝
t∫

0

eαW (u)1J (u)dY (u)

⎞

⎠

=
t∫

0

eαZ(u)−βu1J (u)du (K (α) − β I ) + eαZ(0)1J (0) − eαZ(t)−βt1J (t)

+α

⎛

⎝
t∫

0

e−βu1J (u)dL(u)

⎞

⎠ (22)

is an n-row vector-valued zero mean martingale. Here 1J (t) denotes the (1×n) vector
1J (t) = (1{J (t)=1}, . . . , 1{J (t)=n}).

Recall that E is the matrix-valued expectation operating on n-row vector random
variables likeM(α, t)whose (i, j) component is the conditional expectation of the j th
( j ∈ S) entry given J (0) = i ∈ S. For example, [E(M(α, t))]i, j = [E(Mi (α, t))] j .

The OST yields E(M(α, τ )) = E(M(α, 0)) = 0,

E

⎛

⎝
τ∫

0

eαZ(u)−βu1J (u)du

⎞

⎠ =
[
E

(
eαZ(τ )−βτ1J (τ )

)
− E

(
eαZ(0)1J (0)

)
(23)

−αE

(
τ∫

0
e−βu1J (u)dL(u)

)]
(K (α) − β I )−1 .

SinceJ (0) = i ∈ S and Z(0) = 0weobtainE(eαZ(0)1J (0)) = I .Applying Z(τ ) = q
and the fluid method yields

E

(
eαZ(τ )−βτ1J (τ )

)
= eαq

E
(
e−βτ

)
(24)

where E(e−βτ ) is given by (12).
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Performance analysis of a reflected fluid production/inventory. . . 15

To finish the computation of (23), we have to derive the (n × n) matrix

E(
τ∫

0
e−βu1J (u)dL(u)), which is the expected discounted lost demand until time τ .

First, we assume that the process starts at level 0 with environment in S2 and derive
the expected lost demand until first exiting from0.Notice that a loss occurs only during
states in S2. For that, we introduce the (n2 × n2) matrix ϒ(β) whose i j th component,
ϒi j (β), is the expected discounted loss in state j ∈ S2 until exiting level 0, given that
the process starts at level 0 with state i ∈ S2. ϒ(β) is given by

ϒ(β) = −E

⎛

⎝
ξ∫

t=0

re−βt dt

⎞

⎠+ E
(
e−βξ

)
Pϒϒ(β). (25)

Note that once the inventory process hits 0 in state i ∈ S2, it stays there for an

exponential random time ξi with parameter−Q22(i, i).Thematrix−E(
ξ∫

t=0
re−βt dt) is

an (n2×n2) diagonal matrix represents the expected discounted loss during time ξi ; its
(i i)th component is given by − ri

β

(
1 + Q22(i,i)

β−Q22(i,i)

)
. From that point, with probability

Q22(i, j)
−Q22(i,i)

, the state changes to j ∈ S2, and the expected discounted loss from state j

is ϒ j i (β). Thus, E(e−βξ ) is an (n2 × n2) diagonal matrix whose (i i)th component is

given by −Q22(i,i)
β−Q22(i,i)

and Pϒ is an (n2 ×n2) probability matrix with (Pϒ)i j = Q22(i, j)
−Q22(i,i)

for i �= j and 0 otherwise.
Now, we applyϒ(β) to the derivation of the loss until time τ. Since the lost demand

occurs only for states in S2, the matrix E(
τ∫

0
e−βu1J (u)dL(u)) has the form

E

⎛

⎝
τ∫

0

e−βu1J (u)dL(u)

⎞

⎠ = (
0, L̂(β)

)
(26)

where L̂(β) is an (n × n2) matrix whose i j th component is the expected discounted
loss in state j ∈ S2 until τ, givenJ (0) = i ∈ S. Let L̂1(β) be an (n1×n2) sub-matrix
of L̂(β) includes all rows corresponding to states in S1 and L̂2(β) be an (n2 × n2)
sub-matrix of L̂(β) includes all rows corresponding to states in S2 such that

L̂(β) =
(
L̂1(β)

L̂2(β)

)
. (27)

Proposition 4.2

L̂1(β) =
(
I − q
(β) (β I − Q22)

−1 Q21

)−1
q
(β)ϒ(β)

L̂2(β) = ϒ(β) + (β I − Q22)
−1 Q21L̂1(β) (28)

123



16 Y. Barron

Proof Assume J (0) ∈ S1. L̂1(β) satisfies the following equation

L̂1(β) = q
(β)
(
ϒ(β) + (β I − Q22)

−1 Q21L̂1(β)
)

. (29)

Lost demand occurs when the process drops to level 0 avoiding q. The LST of that
event is q
(β). From that point, by the proof of (25), ϒ(β) is the discounted lost
demand. The term (β I − Q22)

−1Q21 is the discounted time until exiting level 0 with
environmental state in S1 and starting again with LST L̂1(β). Solving (29) for L̂1(β)

yields (28). The matrix L̂2(β) has a similar proof. 	


Substitute (26) and (24) in (23), multiply by e returns

E

⎛

⎝
τ∫

0

eαZ(u)−βudu

⎞

⎠ = (
eαq

E
(
e−βτ

)− I − α
(
0n×n1, L̂(β)

))
(K (α) − β I )−1 e.

(30)
Taking the derivation of (30) with respect to α and setting α = 0 leads to

ĥ1(β) = E

⎛

⎝
τ∫

0

e−βu I+(u)du

⎞

⎠ = E

⎛

⎝
τ∫

0

e−βu Z(u)du

⎞

⎠

= ∂

∂α

[(
eαq

E
(
e−βτ

)− I − α
(
0n×n1, L̂(β)

))
(K (α) − β I )−1 e

]∣∣∣∣
α=0

= (
qE
(
e−βτ

)− I − (
0n×n1, L̂(β)

))
(Q − β I )−1 e − (

E
(
e−βτ

)− I
)

(Q − β I )−2Ue. (31)

which is the expected discounted inventory level during the ON period.

4.2.2 ĥ2(β) Functional

In order to finish the holding cost we have to find the (n × 1) vector ĥ2(β) =
E(

T ′∫

0
e−βt I−(t)dt). Recall that since we are now dealing with the OFF period, for

all the matrices in Table 1 we have to add the index (−) and use the corresponding
matrices associated toF−(t). The OFF period stars at time τ . We shift the time origin
to τ so that the OFF period starts at time 0. Consider X̃(t) similar to (20) but with Q−
andU− and X̃(0) = q.Clearly, the latter process up to time T ′, i.e., (X̃(t))0≤t<T ′ , has
the same distribution as (I (t))0≤t<T ′ . Let W̃ (t) = X̃(t)+ Ỹ (t)with Ỹ (t) = −(β/α)t ,
for arbitrary β ≥ 0 and α < 0. Applying the optional sampling theory to the multi-
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Performance analysis of a reflected fluid production/inventory. . . 17

dimensional martingale (22) with T ′ replacing τ we obtain

E

⎛

⎜⎝
T ′∫

0

eα X̃(s)−βsds

⎞

⎟⎠ =
[
E

(
eα X̃(T ′)−βT ′

1J (T ′)
)

− E

(
eα X̃(0)1J (0)

)]

× (K (α) − β I )−1 e. (32)

Substituting X̃(0) = q and X̃(T ′) = 0 returns

E

(
eα X̃(0)1J (0)

)
= eαq I

E

(
eα X̃(T ′)−βT ′

1J (T ′)
)

= E

(
e−βT ′)

(33)

where E(e−βT ′
) is given by (17). Substituting (33) in (32), take the derivative with

respect to α and let α = 0 leads to

ĥ2(β) = E

⎛

⎜⎝
T ′∫

0

e−βs I (s)ds

⎞

⎟⎠

= ∂

∂α

[((
0,
(

f̂12(q, 0, 0)
f̂22(q, 0, 0)

))
− eαq I

)
(K (α) − β I )−1 e

]∣∣∣∣
α=0

= −q I (Q − β I )−1 e −
((

0,
(

f̂12(q, 0, 0)
f̂22(q, 0, 0)

))
− I

)
(Q − β I )−2Ue.

(34)

4.3 Production cost

The expected discounted production vector costs p̂1(β) = E(
∫ τ

0 e−βs p1J (s)ds) and

p̂2(β) = E(
∫ T ′
0 e−βs p2J (s)ds) (of order (n × 1)) can be easily derived as follows.

For the derivation of p̂1(β) (ON period), let C+
1 ,C+

2 and C+ be diagonal matrices as
follows:

C+
j = diag

{
p1i , i ∈ S j

}
, j = 1, 2.

C+ = diag
(
C+
1 ,C+

2

)
. (35)

Let E(
∫ τ

0 e−βs1J (s)ds) be an (n × n) matrix whose (i, j) component represents
the expected discounted time in phase j ∈ S given I (0) = i ∈ S. Clearly, p̂1(β) is
given by

p̂1(β) = E

(∫ τ

0
e−βs1J (s)ds

)
C+e,
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18 Y. Barron

Applying (23) to get

E

⎛

⎝
τ∫

0

eαZ(s)−βs1J (s)ds

⎞

⎠ = (
eαq

E
(
e−βτ

)− I − α
(
0, L̂(β)

))
(K (α) − β I )−1 .

(36)
Substituting α = 0 yields

E

⎛

⎝
τ∫

0

e−βs1J (s)ds

⎞

⎠ = (
E
(
e−βτ

)− I
)
((0) − β I )−1 . (37)

Nowmultiplying (37) by the vectorC+e returns the expected discounted production
cost, p̂1(β), for the ON process.

Regarding p̂2(β) and similar to above, we apply (32) to get the (n × n) matrix

E

⎛

⎜⎝
T ′∫

0

eα X̃(s)−βs1J (s)ds

⎞

⎟⎠ =
[
E

(
eα X̃(T ′)−βT ′

1J (T ′)
)

− E

(
eα X̃(0)1J (0)

)]

(K (α) − β I )−1

=
(
E

(
e−βT ′)− eαq I

)
(K (α) − β I )−1 . (38)

Now, define C−,C−
j , j = 1, 2 as in (35) with p2i replacing p1i . Substitute α = 0

in (38) and multiply by the matrix C− we obtain the expected discounted production
rate for the OFF process

p̂2(β) = E

⎛

⎜⎝
T ′∫

0

e−βs1J (s)ds

⎞

⎟⎠C−e =
(
E

(
e−βT ′)− I

)
(K (0) − β I )−1 C−e.

4.4 Loss cost

To end our discounted analysis, we need to derive the (n × 1) expected discounted

production loss vector û(β) = E(
τ∫

0
e−βt dL(t)).

Corollary 4.1 It is easy to see that û(β) = L̂(β)e.

We summarize the main computation steps of the performance measures for the
discounted case:

1. Compute 
(β) and the LST matrices (see Table 1).
2. Obtain f̂11(0, q, β) and f̂21(0, q, β) using (13) and (14).
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3. Compute E(e−βτ ), Ê(e−βτ ) and E(e−βC ) [Eqs. (12)–(18)] which leads to
SC∞(β).

4. Applying (31) and (34) returns ĥ1(β) and ĥ2(β) which leads to HC∞(β).
5. Applying (37) and (38) to obtain p̂1(β) and p̂2(β), and thus PC∞(β).
6. Finally, Corollary 4.1 returns û(β) which leads to UC∞(β).

Example 1 Weconsider aMarkov chainwithn = 4 stateswith the following generator
matrix

Q =

⎛

⎜⎜⎝

−7 1.5 2.5 3
3 −9 2 4
2 4 −9 3
4 3 2 −9

⎞

⎟⎟⎠ .

As initial probability vector we take υ = (0.2, 0.3, 0.35, 0.15). We take the following
basic values for the parameters:

β = 0.01, k1 = 5, k2 = 5, c = 3, h = 1, w = 1.

Let γ1 and γ2 be the average growth rates (in short, drifts) of the ON and OFF
periods, respectively, i.e.,

γ1 =
n∑

i=1

πi r
1
i > 0, γ2 =

n∑

i=1

πi r
2
i < 0

We assume γ2 = −0.214. Let γ1 vary in {0.207, 0.48, 0.69, 0.96} (by changing the
production rates during the ON period) and q vary in {1, 2, 3, 4, 5}. We determine the
expected discounted setup, holding, loss and total cost. We do not reproduce lengthy
tables of calculated values (which could be easily done, but is not very illuminating);
instead we present our results in terms of graphical displays. Figures 2, 3 and 4 shows

Fig. 2 The expected discounted
setup cost, SC∞(β)
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20 Y. Barron

Fig. 3 The expected discounted
holding cost, HC∞(β)

Fig. 4 The expected discounted
loss cost, UC∞(β)

SC∞(β), HC∞(β), UC∞(β) and TC∞(β) as functions of γ1 and q, respectively. We
see that SC∞(β) decreases as a function of q and almost unaffected by γ1. Figure 3
shows that HC∞(β) increases as a function of both γ1 and q; however, UC∞(β) has
an opposite behavior, since increasing production rates or increasing q decrease the
number of drops to level 0 and cause less loss. In Fig. 5 we see that the total cost
increases as a function of γ1 and appears to be a convex function of q; thus we can
conclude that for each γ1 there is an optimal q which minimize the total cost. Notice
that, the behavior of SC∞(β), HC∞(β) and TC∞(β) as a function of q is similar to
those associated with the classical EPQ model.

Furthermore, sincewe see that the expecteddiscounted total cost appears to be a con-
vex function of q, we have been carried out additional numerical checkings and present
in Table 2 the optimal value q∗ and TC∗∞(β) for γ1 vary in {0.207, 0.48, 0.69, 0.96}.
We can see that the optimal value q∗ and the optimal discounted total cost TC∗∞(β)

increase in γ1.
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Fig. 5 The expected discounted
total cost, TC∞(β)

Table 2 q∗ and TC∗∞(β) for γ1
vary in {0.207, 0.48, 0.69, 0.96} γ1 q∗ TC∗∞(β)

0.207 1.6 457.96

0.48 1.69 493.006

0.69 1.74 511.216

0.96 1.78 524.768

5 Long run average analysis

Let TC(t) be the total cost until time t . We are interested in the long run average total
cost per time unit:

TC = lim
t→∞

TC(t)

t
.

Regarding Tn, let Jn = J (Tn), n = 0, 1, . . . be the environmental state at Tn (at the
beginning of each cycle). Notice that (Jn, Tn) is a Markov renewal process, and the
content level process I (t) is a semi-regenerative process with respect to (Jn, Tn). T

′
ns

are semi-regenerative points of the process. Thus, the processJn, n = 0, 1, 2, . . . is an
irreducible positive recurrentMarkov chain; we denote its transition probabilitymatrix
by P∗. Let π∗ be the corresponding stationary probability vector. π∗ is determined by
the following equations:

π∗ = π∗
E
(
1J (τ )

)
E
(
1J (T ′)

)

π∗e = 1, (39)

where E(1J (τ )) and E(1J (T ′)) are given in (16) and (19), respectively.
The long run average cost TC can be derived from TC∞(β) by a well-known

procedure
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TC = lim
β−→0

βTC(β) = SC + HC + PC + UC

where on the right side we have the long-run average costs of the set-up, holding stock,
production and unsatisfied demand, respectively.

Let N (t) be the number of cycles until time t , i.e., N (t) = sup{n ≥ 0 | T0 +
· · · + Tn ≤ t}, t ≥ 0. Following Asmussen (2003), Chapter VI, Theorem 3.1 and
Chapter VII, Proposition 5.2, the four long-run quantities can be given in terms of the
first-cycle functionals as follows:

SC = lim
t−→∞

N (t)(k1 + k2)

t
=k1 + k2

E(C)
.

HC = lim
t−→∞

hE

(
t∫

0
I (s)ds

)

t
=

h
∑

i π
∗
i Ei

(
C∫

0
I (t)dt

)

E(C)

= hπ∗ (̂h1(0) + E(1J (τ ))̂h2(0)
)

E(C)
.

PC = lim
t−→∞

cE

(
t∫

0
pJ (s)ds

)

t
=

c
∑

i π
∗
i Ei

(
C∫

0
pJ (t)dt

)

E(C)

= cπ∗ (p̂1(0) + E(1J (τ ))̂p2(0)
)

E(C)

UC = lim
t−→∞

wE

(
t∫

0
dL(s)

)

t
= wπ∗û(0)

t
= wπ∗E(L(τ ))

E(C)
.

Note that E(C)denotes the steady-state expected value ofC . Clearly, E(C) = π∗E(C)

whereE(C) is an (n×1) vector whose i th component is Ei (C) = E(C | J0 = i ∈ S].
To apply the above equations we have to compute ĥ1(0), ĥ2(0), p̂1(0), p̂2(0),

E (L(τ )) ,E(C) and π∗.

5.1 Long-run average inventory level

In order to derive ĥ1(0) set β = 0 in (23) leads to

E

⎛

⎝
τ∫

0

eαZ(u)du

⎞

⎠ =
[
E

(
eαZ(τ )1J (τ )

)
− E

(
eαZ(0)1J (0)

)

−αE

⎛

⎝
τ∫

0

1J (u)dL(u)

⎞

⎠

⎤

⎦ K (α)−1e. (40)
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Applying Z(τ ) = q leads to the (n × n) matrix

E

(
eαZ(τ )1J (τ )

)
= eαq

E
(
1J (τ )

)
.

Clearly E(eαZ(0)1J (0)) = I. For the final term, set β = 0 in (26)–(28). Notice that
once the process drops to level 0, it stays there for a phase type distributed random
variable with transition rate matrix Q22. Thus

ϒ(0) = (−Q22)
−1 .

(for a proof, see Latouche and Ramaswami 1999, Theorem 2.4.3). Now take the
derivation of (40) with respect to α and set α = 0. However this is not possible as
K (α) is singular at α = 0. Instead we have to use (23) to conclude that

∂

∂α

[(
eαq

E
(
1J (τ )

)− I − α
(
0, L̂(0)

))
K (α)−1e

]
−→ E

⎛

⎝
τ∫

0

Z(u)du

⎞

⎠ (41)

as α −→ 0 through values for which K (α) is non-singular. Relation (41) amounts
to applying L’Hôpital’s rule in order to determine the (n × 1) vector ĥ1(0) =
E(

τ∫

0
Z(u)du) = E(

τ∫

0
I+(u)du).

For the derivation of ĥ2(0) and similar as above, substituting β = 0 in (32) leads to

∂

∂α

[(
E
(
1J (T ′)

)− eαq I
)
K (α)−1e

]
→ E

⎛

⎜⎝
T ′∫

0

X̃(s)ds

⎞

⎟⎠ (42)

as α → 0 through values for which K (α) is non-singular. Applying L’Hôpital’s rule

determines the (n × 1) vector ĥ2(0) = E(
T ′∫

0
X̃(s)ds) = E(

T ′∫

0
I−(s)ds).

5.2 Long-run average production rate

To compute p̂1(0) set β = 0 in (36). Then, we would like to set α = 0; however, this
is not viable, as det K (0) = 0. Instead we have to use (36) to conclude that

(
eαq

E
(
1J (τ )

)− I − α
(
0, L̂(0)

))
K (α)−1C+e −→ E

⎛

⎝
τ∫

0

1J (s)ds

⎞

⎠ (43)

as α −→ 0 through values for which det K (0) �= 0. Relation (43) amounts to applying

L’Hôpital’s rule in order to determine the vector p̂1(0) = E(
τ∫

0
1J (s)ds).
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Similarly as above, set β = 0 in (38) returns

E

⎛

⎜⎝
T ′∫

0

eα X̃(s)1J (s)ds

⎞

⎟⎠ = (
E
(
1J (T ′)

)− eαq I
)
K (α)−1. (44)

By setting α −→ 0 and applying L’Hôpital’s rule we obtain p̂2(0).

5.3 Long-run average lost demand

û(0) has been defined as the (n × 1) vector whose i th component, (̂u(0))i , represents
the expected total demand loss until time τ given J0 = i ∈ S, i.e.,

û(0) = E

⎛

⎝
τ∫

0

dL(t)

⎞

⎠ = E (L(τ )) . (45)

Corollary 5.1 It is easy to see that û(0) = L̂(0)e.

Remark 3 Notice that Li (τ ), the total demand loss until time τ given J0 = i ∈ S,

has a phase type distribution with representation

{
PH

(
S2, ei 0 f̂11(0, q, 0)e, ei q
(0), Q22 + Q21

q
(0)
)

i ∈ S1
PH (S2, 0, ei , Q22 + Q21

q
(0)) i ∈ S2

}
.

The proof is as follows. We distinguish between two cases: (i) i ∈ S1 and (ii) i ∈ S2.
In the first case ei 0 f̂11(0, q, 0)e is the probability of no loss. According to Table 1,
ei q
(0) is the probability vector to hit level 0 avoiding q. From that point on, there
is a demand loss for a time period that has the same distribution as the time to absorp-
tion in a CTMC with transition rate matrix Q22 + Q21

q
(0). (The rate matrix Q22
refers to internal rate changes; the matrix Q21 is the rate matrix to exit level 0 and
with probability q
(0) the process returns to 0 avoiding q.) For the second case, the
inventory process starts with lost demand; thus the probability of no loss is 0. The rest
of the proof is similar.

5.4 The expected cycle length

Regarding E(C) = E(τ )+E(T ′), letE(τ ) be the (n×1) vector whose i th component
is Ei (τ ) = E(τ | J0 = i) and, similarly, let E(T ′) be the (n × 1) vector whose i th
component is Ei (T ′) = E(T ′ | J (τ ) = i). Obviously,

E(τ ) = π∗E(τ )

E
(
T ′) = π∗

E
(
1J (τ )

)
E
(
T ′) . (46)

Finally, we will determine E(τ ) and E(T ′).
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5.4.1 The expected ON period length

In order to obtain Ei (τ ) (hence, we apply the quantities associated with F+(t)), we
use the notation of (20) and (21) and apply themethod introduced in Asmussen (2003),
Sect. XI, pp. 312–313. The matrix K (α) [see (21)] has a real eigenvalue k(α) with
maximal real part (c.f. Asmussen 2003, Chapter XI, p. 312). The corresponding left
and right eigenvectors υα and hα may be chosen with strictly positive components.
Moreover, without loss of generality, it can be assumed that υαhα = 1, and that
πhα = 1 where π = υ0is the stationary distribution of J (t) and h0 is a column
vector of 1’s. Let h′ be the derivative of hα at α = 0. Corollary 2.6, Chapter XI, p. 313
of Asmussen (2003) implies that for any stopping time τ with Ei (τ ) < ∞,

Ei (X (τ )) = k′(0)Ei (τ ) + h′
i − Ei

(
h′
J (τ )

)
. (47)

By Corollaries 2.7 and 2.8, Chapter XI, p. 313 of Asmussen (2003):

k′(0) =
∑

i∈S
πi r

1
i . (48)

To find the vector h′ we apply the same technique as in Asmussen and Kella (2000,
p. 385). We start from

k(α)hα = K (α)hα. (49)

Take the derivative of (49) with respect to α, let α = 0. Furthermore, use k(0) =
0,h0 = e, K ′(0) = U and K (0) = Q. This yields

k′(0)e = Qh′ +Ue. (50)

Note that πhα = 1, so that πh′ = 0. Subtracting eπh′ = 0 from the two sides of
(50) shows that

h′ = (Q − eπ)−1 [k′(0)I −U
]
e. (51)

Now notice that Z(t) = X (t) + L(t) where L(t) represents the lost demand until
time t . Thus, applying (47) we obtain

Ei (X (τ )) = Ei (Z(τ )) − Ei (L(τ )) = k′(0)Ei (τ ) + h′
i − Ei

(
h′
J (τ )

)
, (52)

where

Ei (Z(τ )) = q

Ei (h
′
J (τ )) = eiE

(
1J (τ )

)
h′. (53)

For the derivation of Ei (L(τ )) see (45). Substituting (53) in (52) , we obtain the
(n × 1) vector of expectations

E(τ ) = qe − û(0) − h′ + E(1J (τ ))h′

k′(0)
. (54)
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5.4.2 The expected OFF period length

We shift the origin time to τ and assume J (τ ) = i ∈ S. Consider X̃(t)0≤t≤T ′ as
defined in Sect. 4.2.2 but with X (0) = 0 (clearly with the quantities associated with
F−(t)). It is easy to see that {X̃(t)}0≤t≤T ′ has the same distribution as {I (t)−q}0≤t≤T ′ .
Applying again the method of Sect. 5.4.1 to derive Ei (T ′) leads to

Ei
(
X̃
(
T ′)) = k′(0)Ei

(
T ′)+ h′

i − Ei

(
h′
J (T ′)

)
, (55)

with

k′(0) =
∑

i∈S
πi r

2
i .

h′ = (Q − eπ)−1 [k′(0)I −U
]
e.

In a similar way we obtain

Ei
(
X̃
(
T ′)) = −q

Ei

(
h′
J (T ′)

)
= eiE

(
1J (T ′)

)
h′. (56)

Substituting (56) in (55) leads to the (n × 1) vector of expectations

E
(
T ′) = −qe − h′ − E

(
1J (T ′)

)
h′

k′(0)
. (57)

Substituting (57) and (54) in (46) returns the average cycle length.
We summarize the main computation steps of the performance measures for the

average case:

1. Applying (39), (54) and (57) to obtain π∗,E(τ ) and E(T ′); then derive E(C) and
SC.

2. Using (41) and (42) to obtain ĥ1(0) and ĥ2(0); then compute HC.

3. Similarly, use (43) and (44) to obtain p̂1(0) and p̂2(0) which leads to PC.

4. Finally, Corollary 5.1 and (27) leads to û(0) and UC.

Example 2 We consider the same data as in Example 1. This time we vary q in
{5, 7, 10, 12, 15}. Figures 6, 7 and 8 presents the average production cost PC, the
averageONperiod length E(τ ) and the averageOFFperiod length E(T ′). As expected,
PC increases as a function of both γ1 and q. Figures 6 and 7 shows that both E(τ )

and E(T ′) increases as a function of q; however E(τ ) decreases as a function of γ1
and E(T ′) almost unaffected by γ1 since increasing γ1 does not affect on the OFF
functionals.
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Fig. 6 The average production
cost, PC

Fig. 7 The average ON period
length, E(τ )

Fig. 8 The average OFF period
length, E(T ′)
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Appendix

In this “Appendix”we introduce the algorithmdeveloped inRamaswami (2006) for the
computation of the matrix 
(β) associated with the MMFF process (F(t),J (t), t ≥
0), as described in Sect. 3.2. Let σ(x) = inf{t > 0,F(t) = x} be the first passage
time to level x and define the following LST

[
(β)]i j = E
(
e−βσ(0),J (σ (0)) = j | F(0) = 0,J (0) = i

)
i ∈ S1, j ∈ S2.

(58)
[
(β)]i j represents the LST of σ(0) restricted to the event that the fluid process hits
level 0 at state j ∈ S2, given F(0) = 0 and J (0) = i ∈ S1. Ramaswami (2006,
Appendix 1, p. 512) shows how to compute the matrix 
(β) and provides a good
algorithm for this. The algorithm for 
(β) is given as follows.

For λ > 0, let

Pλ = 1

λ
U−1Q + I

whereU and Q define in Sect. 3.2. Choose (fixed) positive numbers λ and δ such that

λ ≥ max
i∈s

{
−[U−1Q]i i

}

max
i∈S

[
Re(β)

λ
U−1

]

i i
≤ δ < 1, and

max
i∈S

[
Pλ − Re(β)

λ
U−1

]

i i
> 0

Define the matrices

A2(β, λ) =
(
0 0
0 λU2 (β I + 2λU2)

−1

)

A1(β, λ) = �U (β I + �U )−1
(

0 0
1
2 P21

1
2 P22

)

A0(β, λ) =
(
P11 − β

λ
U−1
1 P12

0 0

)

where� = diag(λI|S1|, 2λI|S2|) and P = Pλ. Consider now the following algorithm.
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Algorithm

Fix ε > 0 and set di f f = 100;

H∗∗(1, β, λ) = (I − A1(β, λ))−1 A0(β, λ);
L∗∗(1, β, λ) = (I − A1(β, λ))−1 A2(β, λ);
G∗∗(1, β, λ) = L∗∗(1, β, λ);
T (1) = H∗∗(1, β, λ);
Dowhile(di f f > ε)

k = k + 1;
U∗∗(k, β, λ) = H∗∗(k − 1, β, λ)L∗∗(k − 1, β, λ)

+ L∗∗(k − 1, β, λ)H∗∗(k − 1, β, λ);
M = (H∗∗(k − 1, β, λ))2;
H∗∗(k, β, λ) = (I −U∗∗(k, β, λ))−1M;
M = (L∗∗(k − 1, β, λ))2;
L∗∗(k, β, λ) = (I −U∗∗(k, β, λ))−1M;
G∗∗(k, β, λ) = G∗∗(k − 1, β, λ) + T (k − 1)L∗∗(k, β, λ);
T (k) = T (k − 1)H∗∗(k, β, λ);
di f f = max

j,k∈S
{[G∗∗(k, β, λ)] j,k − [G∗∗(k − 1, β, λ)] j,k

} ;
end


(β) ∼= G∗∗
12(k, β, λ)G∗∗

22(k, β, λ)−1.

Oncewe have computed
(β), the LSTmatrix of other hitting times are straightfor-
ward to evaluate; we list these matrices and their sizes in Tables 3 and 4. All matrices
have nice probabilistic interpretations. For more details see Ahn et al. (2007).

The following LSTs of first-passage times are needed in our analysis:

Table 3 Transform matrices
Quantity Matrix size

K (β) = U−1
1 (Q11 − β I ) + 
(β)U−1

2 Q21 n1 × n1

H(β) = U−1
2 (Q22 + Q21
(β)) n2 × n2

�(β, x) = 
(β)
∫
(0,x) e

H(β)y(U−1
2 Q1

21)e
K (β)ydy n1 × n1

Table 4 LST of first-passage times

LST First passage time Matrix size

0 f̂12(x, 0, β) = 
(β)eH(β)x From (x, S1) to (0, S2)

avoiding 0 inF n1 × n2

0 f̂22(x, 0, β) = eH(β)x From (x, S2) to (0, S2)

avoiding 0 inF n2 × n2

0 f̂11(0, x, β) = eK (β)x (I + �(β, x))−1 From (0, S1) to (x, S1)

avoiding 0 forF n1 × n1

x
(β) = 
(β) − 0 f̂11(0, x, β)
(β)eH(β)x From (0, S1) to (0, S2)

avoiding x forF n1 × n2
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