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Abstract This note concerns discrete-time controlled Markov chains driven by a
decision maker with constant risk-sensitivity λ. Assuming that the system evolves on
a denumerable state space and is endowed with a bounded cost function, the paper
analyzes the continuity of the optimal average cost with respect to the risk-sensitivity
parameter, a property that is promptly seen to be valid at each no-null value of λ.
Under standard continuity-compactness conditions, it is shown that a general form of
the simultaneous Doeblin condition allows to establish the continuity of the optimal
average cost at λ = 0, and explicit examples are given to show that, even if every state
is positive recurrent under the action of any stationary policy, the above continuity
conclusion can not be ensured under weaker recurrence requirements, as the Lyapunov
function condition.
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1 Introduction

This work is concerned with discrete-time Markov decision processes (MDPs) evolv-
ing on a denumerable state space. Assuming that the cost function is bounded and that
the controller has a constant risk-sensitivity coefficient, denoted by λ, the performance
of a control policy is measured by the corresponding λ-sensitive average cost criterion.
In this context, the continuous dependence of the optimal value function J ∗(λ, ·) on
the risk-sensitivity parameter is analyzed. As it is shown in Sect. 2, under the sole
condition that the cost function is bounded, the mapping λ �→ J ∗(λ, ·) is continuous
at each no-null value of λ but, for a general transition structure, the continuity at λ = 0
is not guaranteed, a fact that leads to consider the main problem studied in this work:

• To determine conditions on the transition law ensuring that, for every state x , the
optimal λ-sensitive average cost J ∗(λ, x) is a continuous function of λ at zero.

This problem is interesting by itself, but an additional and strong motivation for its
analysis stems froma fact recently presented inBäuerle andRieder (2013). In that paper
it was proved that, for strictly positive costs, the average indexwith respect to the power
utility U (x) = x p coincides with the classical risk-neutral average criterion, which
corresponds to the (identity) utility function V (x) = x ; in this direction, it was shown
in Cavazos-Cadena and Hernández-Hernández (2015) that the same occurs for the
logarithmic utility, so that very different utilities render the same optimal average cost.
An explanation for this phenomenon was given in the aforementioned paper, where
the main result, established for finite models with positive costs, can be summarized
as follows: For a general utility function U (x) assume that U ′′(x)/U ′(x) → λU ∈ R

as x → ∞. In this case, if the mapping λ �→ J ∗(λ, ·) is continuous at λU , then
the optimal average cost with respect to the utility function U coincides with the
optimal average index J ∗(λU , ·), which is associated to a controller with constant
risk-sensitivity λU . This last result provides a strong motivation to study the problem
posed above, since the case λU = 0 is common in applications (Stokey and Lucas
1989). As it will be mentioned later in this section, the analysis of the main problem
naturally leads to consider other interesting questions, which are related with the
recurrence–communication properties of the transition law.

The study ofMarkovmodels endowed with a risk-sensitive average criterion can be
traced back, at least, to the seminal paper by Howard andMatheson (1972). Assuming
that the controller has constant risk-sensitivity, in that paper finite and communicating
modelswere studied via the Perron–Frobenius theory of positivematrices, and the opti-
mal average cost, as well as an optimal stationary policy, were obtained form a solution
to the risk-sensitive average cost optimality equation; this technique has been recently
applied in Sladký (2008) to study finite models with general communication structure.
A different perspective of analysis uses ‘the discounted approach’, which is based on
contractive operators whose fixed points are used to generate convergent approxima-
tions to a solution of the optimality equation. For denumerable models, the discounted
technique was combined with game theoretical ideas in Hernández-Hernández and
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Continuity of the optimal risk-sensitive average cost 271

Marcus (1996), and with the total cost criterion in Cavazos-Cadena and Fernández-
Gaucherand (2002). For models with Borel state space, the discounted method is the
main instrument in Masi and Stettner (1999, 2000, 2007), or Jaśkiewicz (2007). In
all of these papers it is assumed that the controller has constant risk-sensitivity; for
a general utility function, risk-sensitive criteria were recently analyzed in Bäuerle
and Rieder (2013), and applications of MDPs to financial problems are presented in
Bäuerle and Rieder (2011).

Besides standard continuity-compactness conditions, the main structural require-
ment used in the paper is a general form of the simultaneous Doeblin condition, under
which a given stationary policy may have several recurrence classes, but in such a case
it is possible to travel form one class to another under the action of a different policy;
see Assumption 3.1. In this context, the main result of the paper, which is stated as
Theorem 3.1, establishes that, for every state x , the optimal λ-sensitive average cost
J ∗(λ, x) is a continuous function of the risk-sensitivity parameter at λ = 0; also,
examples are given to show that (i) the continuity result is not valid for a general tran-
sition law, and (ii) if Assumption 3.1 is replaced by the Lyapunov function condition,
which is a a weaker communication-recurrence requirement, then the continuity of the
mapping λ �→ J ∗(λ, ·) can not be ensured. Essentially, the examples illustrating these
facts make use of an important difference between the risk-neutral and risk-sensitive
average criteria, namely, the class of transient states plays an important role in the
determination of the risk-sensitive average index, but does not have any influence in
the risk-neutral case (Cavazos-Cadena and Fernández-Gaucherand 1999). Thus, the
following is a most interesting question:

• Assume that anMDP satisfies the Lyapunov function condition, and that each state
is positive recurrent under the action of every stationary policy. In this context, is
it true that the mapping λ �→ J ∗(λ, x) is continuous at λ = 0 for each state x?

This questionwill be analyzed in Sect. 8, where an explicit examplewill be constructed
to show that the answer is negative.

The approach of the paper is based on the discounted technique, which is used
to establish the main technical tool of this work stated as Theorem 4.1. That result
ensures that, underAssumption 3.1, there exists a neighborhood of 0, sayV , such that if
0 �= λ ∈ V , then the optimality equation characterizing J ∗(λ, ·) has a bounded solution
and, moreover, the bound is uniform for all no-null values of λ in the neighborhood V .

The organization of the subsequent material is as follows: In Sect. 2 the decision
model is briefly described, the λ-sensitive average index is introduced, and it is shown
that the optimal value function J ∗(λ, ·) depends continuously on λ at any no-null
value of the parameter, but not necessarily at λ = 0. In Sect. 3 the simultaneous
Doeblin assumption used in the paper is formulated, and the main result, establishing
the continuity of the optimal average cost function at λ = 0, is stated as Theorem 3.1;
also, an explicit example is given to show that such a conclusion can not be obtained
under the Lyapunov function condition. Next, in Sect. 4 the main technical tool of
the paper, concerning the existence of uniformly bounded solutions of the λ-sensitive
optimality equation, is stated as Theorem 4.1, a result that, via the preliminaries on the
discounted approach presented in Sect. 5, is proved in Sect. 6. Finally, Theorem 3.1 is
established in Sect. 7, and the exposition concludes in Sect. 8, where a brief discussion
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of the previous results is presented, and an example is given to show that, even when
every state is positive recurrent, the continuity conclusion in Theorem 3.1 can not be
guaranteed under the Lyapunov function condition.

NotationThe set of all nonnegative integers is denoted byN and, for a given topological
space K , the space B(K ) consists of all functions C : K → R which are bounded,
that is, satisfy that

‖C‖ := sup
x∈K

|C(x)| < ∞.

If A is an event, the corresponding indicator function is denoted by I [A] and, as usual,
all relations involving conditional expectations are supposed to hold almost surely
with respect to the underlying probability measure. Finally, for a, b ∈ R, a ∧ b :=
min{a, b}.

2 Decision model

LetM = (S, A, {A(x)}x∈S,C, P) be an MDP, where the state space S is a denumer-
able set endowed with the discrete topology, the action set A is a metric space and, for
each state x ∈ S, A(x) ⊂ A is the nonempty set of admissible actions at x ; the space
K := {(x, a) | a ∈ A(x), x ∈ S} is the class of admissible pairs. On the other hand,

C ∈ B(K)

is the cost function and P = [pxy(·)] is the controlled transition law on S given K,
that is, for each (x, a) ∈ K and z ∈ S, pxz(a) ≥ 0 and

∑
y∈S pxy(a) = 1. This model

is interpreted as follows: At each time t ∈ N the decision maker observes the state of a
dynamical system, say Xt = x ∈ S, and chooses an action (control) At = a ∈ A(x).
Then, a cost C(x, a) is incurred and, regardless of the previous states and controls,
the state of the system at time t + 1 will be Xt+1 = y ∈ S with probability pxy(a);
this is the Markov property of the decision process.

Assumption 2.1 (i) For each x ∈ S, A(x) is a compact subset of A.
(ii) For every x, y ∈ S, the mappings a �→ C(x, a) and a �→ pxy(a) are continuous

in a ∈ A(x).

Policies The space Ht of possible histories up to time t ∈ N is defined by
H0 := S and Ht := K

t × S, t ≥ 1. A generic element of Ht is denoted by
ht = (x0, a0, . . . , xi , ai , . . . , xt ), where ai ∈ A(xi ). A policy π = {πt } is a special
sequence of stochastic kernels: For each t ∈ N and ht ∈ Ht , πt (·|ht ) is a probability
measure on A concentrated on A(xt ), and for each Borel subset B ⊂ A, the map-
ping ht �→ πt (B|ht ), ht ∈ Ht , is Borel measurable; under a policy π , the control
At applied at time t belongs to B ⊂ A with probability πt (B|ht ). The class of all
policies is denoted by P . Given the policy π being used for choosing actions and the
initial state X0 = x , the distribution of the state-action process {(Xt , At )} is uniquely
determined (Arapostathis et al. 1993; Hernández-Lerma 1989; Puterman 1994); such
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a distribution and the corresponding expectation operator are denoted by Pπ
x and Eπ

x ,
respectively. Next, define F := ∏

x∈S A(x) and note that F is a compact metric space,
which consists of all functions f : S → A such that f (x) ∈ A(x) for each x ∈ S. A
policy π is stationary if there exists f ∈ F such that the probability measure πt (·|ht )

is always concentrated at f (xt ), and in this case π and f are naturally identified; with
this convention, F ⊂ P .

Performance criteria Throughout the remainder it is supposed that the decision maker
has a constant risk-sensitivity coefficient λ ∈ R, that is, the controller assesses a
(bounded) random cost Y using the expectation of Uλ(Y ), where the utility function
Uλ is given as follows: For each y ∈ R,

Uλ(y) = sign(λ)eλy when λ �= 0, and U0(y) = y; (2.1)

note that for every c, x ∈ R,

Uλ(x + c) = eλcUλ(x), λ �= 0. (2.2)

The certainty equivalent of Y corresponding toUλ is the real number Eλ[Y ] satisfying

Uλ(Eλ[Y ]) = E[Uλ(Y )],

so that the controller is indifferent between paying the certainty equivalent Eλ[Y ] for
sure, or incurring the random cost Y . It follows from the above relation and (2.1) that

Eλ[Y ] =
⎧
⎨

⎩

1

λ
log

(
E
[
eλY

])
, if λ �= 0,

E[Y ], if λ = 0,
(2.3)

and from this expression it is not difficult to see that Eλ[·] is monotone and homoge-
neous, that is, for (bounded) random variables Y and W ,

Y ≤ W a.s. �⇒ Eλ[Y ] ≤ Eλ[W ] (2.4)

and
Eλ[Y + a] = Eλ[Y ] + a, a ∈ R. (2.5)

Suppose now that the controller is driving the system using policy π ∈ P starting at
x ∈ S, and let Jn(λ, π, x) be the certainty equivalent of the total cost

∑n−1
t=0 C(Xt , At )

incurred before time n, that is,

Jn(λ, π, x) =

⎧
⎪⎨

⎪⎩

1

λ
log

(
Eπ
x

[
eλ

∑n−1
t=0 C(Xt ,At )

])
, if λ �= 0,

Eπ
x

[∑n−1
t=0 C(Xt , At )

]
, if λ = 0.

(2.6)

123
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With this notation, the (superior limit) λ-sensitive average cost at x ∈ S under policy
π is given by

J (λ, π, x) := lim sup
n→∞

1

n
Jn(λ, π, x), (2.7)

whereas
J ∗(λ, x) := inf

π∈P
J (λ, π, x), x ∈ S, (2.8)

is the optimal λ-sensitive average cost function; a policy π∗ ∈ P is λ-optimal if
J (λ, π∗, x) = J ∗(λ, x) for each x ∈ S. The criterion (2.7) measures the behavior of
the policy π at x ∈ S in terms of the largest limit point of the sequence of average
certainty equivalents {Jn(λ, π, x)/n}, and a more ‘optimistic’ point of view uses the
smallest limit point of that sequence: When X0 = x , the inferior limit λ-sensitive
average criterion J−(λ, π, x) corresponding to π ∈ P is defined by

J−(λ, π, x) := lim inf
n→∞

1

n
Jn(λ, π, x), (2.9)

and the corresponding inferior limitλ-sensitive average optimal value function is given
by

J∗(λ, x) := inf
π∈P

J−(λ, π, x), x ∈ S, (2.10)

so that
J∗(λ, ·) ≤ J ∗(λ, ·). (2.11)

Under the stability condition in the following section, it will be shown that the optimal
value functions J∗(λ, ·) and J ∗(λ, ·) coincide.
The problemAs alreadymentioned, the objective of this work is to study the continuity
of the optimal value function J ∗(λ, ·) with respect to the risk-sensitivity coefficient λ,
a property that can be immediately verified at every λ �= 0.

Proposition 2.1 For each x ∈ S, the mapping λ �→ J ∗(λ, x) is continuous onR\{0}.
Proof Let x ∈ S, the positive integer n, and the no-null real numbers λ and ν

be arbitrary. Now, observe that λ
∑n−1

t=0 C(Xt , At ) = ν
∑n−1

t=0 C(Xt , At ) + (λ −
ν)
∑n−1

t=0 C(Xt , At ) ≤ ν
∑n−1

t=0 C(Xt , At ) + n|λ − ν|‖C‖, an inequality that via (2.6)
implies that

λJn(λ, π, x) = log
(
Eπ
x

[
eλ

∑n−1
t=0 C(Xt ,At )

])

≤ log
(
Eπ
x

[
eν

∑n−1
t=0 C(Xt ,At )

])
+ n|λ − ν| ‖C‖

= ν Jn(ν, π, x) + n|λ − ν|‖C‖,

and then

λ
Jn(λ, π, x)

n
≤ ν

Jn(ν, π, x)

n
+ |λ − ν| ‖C‖. (2.12)

Next, suppose that λ and ν are both positive. Taking the superior limit as n goes
to ∞ in both sides of the above inequality, via (2.7) it follows that λJ (λ, π, x) ≤
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ν J (ν, π, x) + |λ − ν|‖C‖, and then, taking the infimum over π ∈ P in both side of
this relation, (2.8) leads to λJ ∗(λ, x) ≤ ν J ∗(ν, x) + |λ − ν|‖C‖; consequently, since
λ, ν ∈ (0,∞) are arbitrary,

λJ ∗(λ, x) − ν J ∗(ν, x)| ≤ |λ − ν|‖C‖. (2.13)

Assume now that λ and ν are both negative. In this context, taking the inferior limit
as n goes to ∞ in both sides of (2.12), from (2.7) it follows that λJ (λ, π, x) ≤
ν J (ν, π, x) + |λ − ν|‖C‖, a relation that, after taking the supremum over π ∈ P ,
leads to λJ ∗(λ, x) ≤ ν J ∗(ν, x)+|λ−ν|‖C‖, and interchanging the roles of λ and ν it
follows that (2.13) is also valid in this case. In short, it has been shown that λJ ∗(λ, x)
is a Lipschitz function of λ on each one of the intervals (0,∞) and (−∞, 0), so that
λ �→ J ∗(λ, x) is continuous at each point in R \ {0}. ��

The conclusion of the previous proposition depends only on the boundedness of the
cost function; in contrast, as the following example shows, the continuity of J ∗(·, x)
at λ = 0 can not be generally ensured under the sole assumption of bounded costs.

Example 2.1 Let the state space and the action set be given by S = {0, 1,−1} and the
singleton A = {a}, respectively, so that A(x) = {a} for every x ∈ S. Define the cost
function by

C(x, a) ≡ C(x) = x, x ∈ S,

and let the transition law [pxy(a)] ≡ [pxy] be determined by

p0,x = 1

2
, pxx = 1, x = 1,−1.

For this model there is a unique (stationary) policy, say f , and it will not be indicated
in the diverse quantities appearing below. Note that the states 1 and −1 are absorbing,
and then the specification of the cost function yields that

J (λ, x) = x, x = −1, 1, λ ∈ R.

Now suppose that the system starts at X0 = 0. In this case at time 1 the system will
arrive to state 1 or -1 with probability 1/2 and, for each integer n > 1, the Markov
property and the definition of the cost function together yield that

E0

[
n−1∑

t=0

C(Xt )

]

= C(0) + 1

2

(

E−1

[
n−2∑

t=0

C(Xt )

]

+ E1

[
n−2∑

t=0

C(Xt )

])

= 0,

and then
J (0, 0) = 0. (2.14)

On the other hand, for λ �= 0,

E0

[
eλ

∑n−1
t=0 C(Xt )

]
= 1

2

(
eλ(n−2) + e−λ(n−2)

)
= 1

2

(
e|λ|(n−2) + e−|λ|(n−2)

)
,
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so that

e|λ|(n−2)/2 ≤ E0

[
eλ

∑n−1
t=0 C(Xt )

]
≤ e|λ|(n−2),

a relation that via (2.6)–(2.8) leads to

J (λ, 0) = lim
n→∞

1

nλ
log

(
E0

[
eλ

∑n−1
t=0 C(Xt )

])
= |λ|

λ
= sign(λ), λ �= 0.

Combining this last display with (2.14) it follows that J (·, 0) is not continuous at
λ = 0.

In the above example, the discontinuity of the mapping λ �→ J ∗(λ, 0) can be traced
back to the fact that the recurrent states −1 and 1 do not communicate, and the main
problem considered in this note can be now stated as follows:

• To determine conditions on the transition law ensuring that, for every continuous
and bounded cost function, the mapping λ �→ J ∗(λ, x) is continuous at λ = 0 for
each x ∈ S.

The result in this direction is presented in the following section.

3 Main result

The continuity of the optimal value function J ∗(·, x) at zero will be studied under the
(variant of the) simultaneous Doeblin condition stated below. The following notation
will be used: For each nonempty set F ⊂ S, the return time TF is defined by

TF := min{n ∈ N \ {0} | Xn ∈ F} (3.1)

where, according to the usual convention, the minimum of the empty set is ∞; when
F = {z} is a singleton, instead of T{z} the simpler notation Tz is employed.

Assumption 3.1 There exists a finite set F ⊂ S and a constant M > 0 satisfying the
following properties (i) and (ii):

(i) E f
x [TF ] ≤ M, x ∈ S \ F, f ∈ F;

(ii) For each y ∈ F there exists a policy f y ∈ F such that

E f y
x

[
Ty
] ≤ M, x ∈ F \ {y}. (3.2)

Frequently, this simultaneous Doeblin condition is stated using a singleton instead
of F ; in this case the second condition is vacuously satisfied and each stationary
policy has a unique positive recurrent class, a property that is not necessarily valid
under Assumption 3.1. On the other hand, observe that in Example 2.1 the first part
of Assumption 3.1 holds with F = {−1, 1} and M = 1, but the second part fails. The
main objective of this note is to establish the following result.

123



Continuity of the optimal risk-sensitive average cost 277

Theorem 3.1 Under Assumptions 2.1 and 3.1, for each state x ∈ S the mapping

λ �→ J ∗(λ, x) is continuous at λ = 0.

The proof of this theorem will be presented after establishing the necessary tech-
nical tools in the following two sections. At this point it is interesting to observe that,
under Assumption 2.1, the simultaneous Doeblin condition in Assumption 3.1 has
an important consequence in the analysis of the risk-neutral average cost criterion,
namely, the corresponding optimality equation has a bounded solution, a fact that
has two substantial implications: (a) the optimal average cost is constant, as well as
(b) an optimal stationary policy exists ( Arapostathis et al. 1993; Hernández-Lerma
1989; Puterman 1994). These two properties can be also ensured by imposing con-
ditions under which the optimality equation has a possibly unbounded solution, like
the Lyapunov function condition (LFC) introduced in Hordijk (1974) which, under
Assumption 2.1, can be formulated as follows in the present context of bounded costs
(Cavazos-Cadena and Hernández-Lerma 1992):

There exists a state z such that

lim
n→∞ sup

f ∈F
E f
x [Tz I [Tz > n]] = 0, x ∈ S. (3.3)

It is natural to ask if the continuity result in Theorem 3.1 still holds when the LFC
replaces Assumption 3.1. As it is shown in the following example (concerning an
uncontrolled model), the answer to this question is negative.

Example 3.1 Suppose that S = N and that A = {a} = A(x) for every x ∈ S. Let the
cost function be given by

C(0, a) ≡ C(0) = 0, and C(x, a) ≡ C(x) = 1 for x ∈ S \ {0}, (3.4)

and consider the transition law [pxy(a)] ≡ [pxy] determined by

p0,0 = 1, px x+1 = x2

(x + 1)2
= 1 − px0, x = 1, 2, 3, . . .

There is only one policy f in this model, and it will not be explicitly indicated in the
diverse expressions appearing below.

• It will be shown that the Lyapunov function condition holds for this model with
z = 0. To achieve this goal observe that, since there is only one policy, (3.3) is
equivalent to

Ex [T0] < ∞, x ∈ S. (3.5)

To verify this property note that E0[T0] = 1, because 0 is an absorbing state. Now,
consider a no-null state x and observe that the specification of the transition law yields
that for every positive integer n
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Px [T0 > n] = Px [Xr = x + r, 0 < r ≤ n]
= x2

(x + 1)2
(x + 1)2

(x + 2)2
· · · (x + n − 1)2

(x + n)2

= x2

(x + n)2
(3.6)

and then

Ex [T0] = 1 +
∞∑

n=1

Px [T0 > n] = 1 +
∞∑

n=1

x2

(x + n)2
≤ 1 + x, (3.7)

completing the verification of (3.5).

• Next, it will be proved that, for each x �= 0, the mapping λ �→ J (λ, x) is not
continuous at zero. First, note that

J (λ, 0) = 0, λ ∈ R,

because the state 0 is absorbing and C(0) = 0; since the Lyapunov function
condition implies that the risk-neutral average cost J (0, x) does not depend on the
state x (Hordijk 1974), it follows that

J (0, x) = 0, x ∈ S. (3.8)

Now, let the state x �= 0 and λ > 0 be arbitrary, and observe that Xt �= 0 occurs
Px -almost surely on the event [t < T0], so that (3.4) and (3.6) lead to

eλn ≥ Ex

[
eλ

∑n−1
t=0 C(Xt )

]
≥ Ex

[
eλ

∑n−1
t=0 C(Xt ) I [T0 > n]

]
= eλnx2/(x + n)2.

Thus, using (2.6) and (2.7), 1 ≥ 1
n Jn(λ, x) > 1 + log(x2/(x + n)2)/(λn), and it

follows that

1 = lim
n→∞

1

n
Jn(λ, x) = J (λ, x), x �= 0, λ > 0,

and then J (·, x) is not continuous at λ = 0, by (3.8). In short, the (uncontrolled)
model in this example satisfies the Lyapunov function condition, but the mapping
λ �→ J ∗(λ, x) is not continuous at zero when the state x is no-null.

4 Optimality equation

The proof of Theorem 3.1 relies on the following optimality equation for the average
criterion in (2.7):

Uλ(gλ + hλ(x)) = inf
a∈A(x)

∑

y∈S
pxy(a)Uλ(C(x, a) + hλ(y)), x ∈ S, (4.1)
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where gλ ∈ R and hλ(·) is a real valued function defined on S. The important role of
this equation in the study of the λ-sensitive average index is signaled by the following
verification result.

Lemma 4.1 Given λ ∈ R, let gλ ∈ R and hλ ∈ B(S) be such that the optimality
equation (4.1) holds. In this case,

(i) For each x ∈ S the summation in the right-hand side of (4.1) is a continuous
function of a ∈ A(x), and then has a minimizer fλ(x) ∈ A(x).

(ii) For every state x ∈ S,

gλ = lim
n→∞

1

n
Jn(λ, fλ, x) = J ∗(λ, x) = J∗(λ, x).

For the risk-averse case λ > 0 this result has been established, for instance, in Di
Masi and Stettner (1999). By completeness, a short proof is given below in the present
context in which the sign of λ is unrestricted; the argument shows that the conclusion
relies heavily on the fact that the exponential utilityUλ(·) is always (strictly) increasing.
Proof (i) Using that the cost function and hλ are bounded, the conclusion follows
combining the bounded convergence theorem with Assumption 2.1.
(ii) Note that (4.1) implies that

Eπ
x [Uλ(C(X0, A0) + hλ(X1))] ≥ Uλ(gλ + hλ(x))

for every x ∈ S and π ∈ P; from this point an induction argument using the Markov
property yields that for every positive integer n

Eπ
x

[

Uλ

(
n−1∑

t=0

C(Xt , At ) + ‖hλ‖
)]

≥ Eπ
x

[

Uλ

(
n−1∑

t=0

C(Xt , At ) + hλ(Xn)

)]

≥ Uλ(ngλ + hλ(x))

where the first inequality used thatUλ is increasing. Together with (2.3)–(2.5) this last
display leads to ‖hλ‖ + Jn(λ, π, x) ≥ ngλ + hλ(x) and, dividing both sides of this
relation by n and taking the inferior limit as n goes to ∞ in both sides of the resulting
inequality, it follows that J−(λ, π, x) ≥ gλ; since the policy π and the state x are
arbitrary, via (2.9) and (2.10), this yields that

lim inf
n→∞

1

n
Jn(λ, fλ, x) ≥ J∗(λ, x) ≥ gλ, x ∈ S. (4.2)

On the other hand, the definition of the policy fλ implies that

E fλ
x [Uλ(C(X0, A0) + hλ(X1))] = Uλ(gλ + hλ(x)), x ∈ S,

and an induction argument yields that, for every n = 1, 2, 3, . . .,
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Uλ(ngλ + hλ(x)) = E fλ
x

[

Uλ

(
n−1∑

t=0

C(Xt , At ) + hλ(Xn)

)]

≥ E fλ
x

[

Uλ

(
n−1∑

t=0

C(Xt , At ) − ‖hλ‖
)]

,

where the inequality is due to the fact thatUλ is increasing. Via (2.3)–(2.5) this relation
yields that ngλ + h(x) ≥ Jn(λ, fλ, x) − ‖hλ‖ and then

gλ ≥ lim sup
n→∞

1

n
Jn(λ, fλ, x) ≥ J ∗(λ, x), x ∈ S;

see (2.8) for the second inequality. Now, the conclusion follows combining this last
display with (4.2) and (2.11). ��

The main tool that will be used to establish Theorem 3.1 is the following result,
which establishes that, for some δ > 0, the optimality equations corresponding to a
risk-sensitivity parameter λ ∈ (−δ, δ) \ {0} has a solution (gλ, hλ(·)), in such a way
that the family {hλ}0<|λ|<δ is bounded in B(S).

Theorem 4.1 Under Assumptions 2.1 and 3.1, there exist positive numbers δ and B
such that

for every λ ∈ (−δ, δ)\{0} the optimality equation (4.1) has

a solution (gλ, hλ(·)) satisfying ‖hλ‖ ≤ B.

This theorem extends the main result in Cavazos-Cadena (2003), where assuming
that (i) the state and action sets are finite, (ii) that λ is positive, and (iii) that Assumption
3.1 holds for a singleton F ⊂ S, it was establish that, for a given λ ∈ (−δ, δ), (4.1) has
a bounded solution. The proof of Theorem 4.1 uses the discounted approach, that will
be presented in the following section, and relies heavily on the next consequence of
Assumption 3.1, whose proof uses classical ideas in the analysis of the simultaneous
Doeblin condition in Hordijk (1974).

Lemma 4.2 Suppose that Assumption 3.1 holds. In this case, there exist b ∈ (1,∞)

and ρ ∈ (0, 1) such that the following assertions (i) and (ii) hold for every n ∈ N:

(i) P f
x [TF ≥ n] ≤ bρn for every x ∈ S \ F and f ∈ F.

(ii) For each y ∈ F, the stationary policy f y in the second part of Assumption 3.1
satisfies that

P f y
x [Ty ≥ n] ≤ bρn, x ∈ S \ {y},

Proof Using the notation in Assumption 3.1 let the positive integer N be such that
N ≥ 2M . In this case Markov’s inequality implies that

P f
x [TF ≥ N ] ≤ E f

x [TF ]
N

≤ M

N
≤ 1

2
, x ∈ S \ F, f ∈ F.
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Starting from this relation, an induction argument using the Markov property yields
that, for every state x ∈ S \ F and f ∈ F, the inequality P f

x [TF ≥ kN ] ≤ (1/2)k

holds for every nonnegative integer k. Next, given n ∈ N write n = kN + r where
r ∈ {0, 1, 2, . . . , N − 1}, and note that P f

x [TF ≥ n] ≤ P f
x [TF ≥ kN ] ≤ (1/2)k , so

that
P f
x [TF ≥ n] ≤ b̃ρ̃n, x ∈ S \ F, f ∈ F, n ∈ N, (4.3)

where ρ̃ = (1/2)1/N ∈ (0, 1) and b̃ = ρ̃−N ∈ (1,∞). Now, for each y ∈ F consider
the policy f y ∈ F in Assumption 3.1. It will be shown that

E f y
x [Ty] ≤ 2M, x ∈ S \ {y}. (4.4)

To achieve this goal note that the inequality holds for x ∈ F \{y}, by (3.2). To complete
the argument note that the inclusion y ∈ F implies that TF ≤ Ty , so that

E f y
x [Ty] = E f y

x [TF ] + E f y
x [(Ty − TF )I [Ty > TF ]]

≤ M + E f y
x [(Ty − TF )I [Ty > TF ]], x ∈ S \ F,

where the inequality stems formAssumption 3.1(i). Next, observing that XTF ∈ F\{y}
on the event Ty > TF and using (3.1), the strong Markov property applied to the

Markov chain induced by f y yields, via (3.2), that E f y
x [(Ty − TF )I [Ty > TF ]|Ty >

TF , XTF ] = EXTF
[Ty] ≤ M , and then

E f y
x [(Ty − TF )I [Ty > TF ]] ≤ M,

a relation that together with the previous display yields that the inequality in (4.4) is
also valid when x ∈ S \ F . Consider now the ‘reduced’ model M f y obtained from
M by restricting the available actions at each x ∈ S to the singleton { f y(x)}. For this
model M f y , relation (4.4) establishes that Assumption 3.1 holds with F = {y}, and
then the first part of the proof yields that there exist by ∈ (1,∞) and ρy ∈ (0, 1) such
that

P f y
x [Ty ≥ n] ≤ byρ

n
y , n ∈ N, x ∈ S \ {y}.

Setting b = max{b̃, by, y ∈ F} ∈ (1,∞) and ρ := max{ρ̃, ρy, y ∈ F} ∈ (0, 1), the
above display and (4.3) together yield that the desired conclusions (i) and (ii) hold. ��

5 Discounted approach

This section presents the auxiliary results that will be used to establish the uniform
boundedness result in Theorem 4.1, which will play a central role in the proof of
Theorem 3.1. The approach relies on following discounted operators introduced in Di
Masi and Stettner (1999).
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Definition 5.1 For α ∈ (0, 1) and λ ∈ R \ {0}, the operator Tα,λ : B(S) → B(S) is
defined as follows: For each V ∈ B(S), the function Tα,λ[V ] is determined by

Uλ(Tα,λ[V ](x)) = inf
a∈A(x)

⎡

⎣
∑

y∈S
pxy(a)Uλ(C(x, a) + αV (y))

⎤

⎦, x ∈ S. (5.1)

Combining (2.2) with the fact thatUλ is increasing, it is not difficult to see that Tα λ

is a monotone and α-homogeneous operator, that is, given V,W ∈ B(S), Tα,λ[V ] ≥
Tα,λ[W ] when V ≥ W , and Tα,λ[V + r ] = Tα,λ[V ] + αr for every r ∈ R. These
properties yield that Tα,λ is a contractive operator on the space B(S) endowed with
the supremum norm, and that its contraction module is α, that is Di Masi and Stettner
(1999), ‖Tα,λ[V ] − Tα,λ[W ]‖ ≤ α‖V − W‖, V,W ∈ B(S). (5.2)

Consequently, by Banach’s fixed point theorem, there exists a unique function Vα,λ ∈
B(S) satisfying Tα,λ[Vα,λ] = Vα,λ; more explicitly,

Uλ(Vα,λ(x)) = inf
a∈A(x)

⎡

⎣
∑

y∈S
pxy(a)Uλ(C(x, a) + αVα,λ(y))

⎤

⎦ , x ∈ S. (5.3)

Observe now that (5.1) yields that Tα,λ[0](x) = infa∈A(x) C(x, a), so that ‖Tα,λ[0]‖ ≤
‖C‖. Using (5.2) with Vα,λ and 0 instead of V and W , respectively, it follows that

(1 − α)‖Vα,λ‖ ≤ ‖C‖. (5.4)

Next, for each x ∈ S define

gα,λ(x) = (1 − α)Vα,λ(x) ∈ [−‖C‖, ‖C‖], α ∈ (0, 1), λ ∈ R \ {0}, (5.5)

and note that the boundedness of Vα,λ and C(·, ·) together with Assumption 2.1 imply
that, for every λ �= 0 and α ∈ (0, 1), there exists a stationary policy fα,λ satisfying

Uλ(Vα,λ(x)) =
∑

y∈S
pxy( fα,λ(x))Uλ(C(x, fα,λ(x)) + αVα,λ(y))

= E
fα,λ
x

[
Uλ(C(X0, A0, ) + αVα,λ(X1))

]
, x ∈ S. (5.6)

The main result of this section is the following theorem.

Theorem 5.1 Under Assumptions 2.1 and 3.1, there exist δ > 0 and B∗ > 0 such
that, for every λ ∈ (−δ, δ) \ {0} and α ∈ (0, 1),

α|Vα,λ(x) − Vα,λ(z)| ≤ B∗, x, z ∈ F, (5.7)

and
α|Vα,λ(x) − Vα,λ(z)| ≤ 2B∗ x ∈ S, z ∈ F. (5.8)

The proof of this theorem is based on the following lemma.
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Lemma 5.1 Suppose that Assumptions 2.1 and 3.1 hold. Let b > 1 and ρ ∈ (0, 1) be
as in Lemma 4.2 and set

δ := 1

2‖C‖ log

(
1 + ρ

2ρ

)

and B = log

(
2b

1 − ρ

)

. (5.9)

With this notation, for each α ∈ (0, 1) the assertions (i)–(iv) below hold, where F is
the finite set in Assumption 3.1, and the return time TF is as in (3.1).

(i) For each x ∈ S \ F and f ∈ F,

e−|λ|B/δ ≤ E f
x [e2λ‖C‖TF ] < e|λ|B/δ, 0 < |λ| ≤ δ.

(ii) For each z ∈ F the stationary policy f z in Assumption 3.1(ii) satisfies that

e−|λ|B/δ ≤ E f z
x [e2λ‖C‖Tz ] < e|λ|B/δ, x ∈ S \ {z}, 0 < |λ| ≤ δ.

(iii) For each x ∈ S \ F, f ∈ F and λ ∈ (−δ, δ) \ {0},

lim
n→∞ E f

x

[

Uλ

(TF∧n−1∑

t=0

[C(Xt , At ) − gα,λ(Xt )] + αVα,λ(XTF∧n)
)]

= E f
x

[

Uλ

(TF−1∑

t=0

[C(Xt , At ) − gα,λ(Xt )] + αVα,λ(XTF )

)]

; (5.10)

see (5.5) for the definition of gα,λ(·).
(iv) For each λ ∈ (−δ, δ) \ {0}, and z ∈ F, the policy f z ∈ F in Assumption 3.1(ii)

satisfies that, for every x ∈ S \ {z},

lim
n→∞ E f z

x

⎡

⎣Uλ

⎛

⎝
Tz∧n−1∑

t=0

[C(Xt , At ) − gα,λ(Xt )] + αVα,λ(XTz∧n)

⎞

⎠

⎤

⎦

= E f z
x

⎡

⎣Uλ

⎛

⎝
Tz−1∑

t=0

[C(Xt , At ) − gα,λ(Xt )] + αVα,λ(XTz )

⎞

⎠

⎤

⎦ . (5.11)

Proof (i) Let x ∈ S \ F and f ∈ F be arbitrary. By Lemma 4.2(i), the inequality
P f
x [TF ≥ n] ≤ bρn holds for every n. Thus, since (5.9) yields that e2δ‖C‖ρ =

(1 + ρ)/2 < 1, it follows that

E f
x [e2δ‖C‖TF ] =

∞∑

k=1

e2δ‖C‖k P f
x [TF = k]

≤ b
∞∑

k=1

e2δ‖C‖kρk ≤ b

1 − ρe2‖C‖δ = b

1 − (1 + ρ)/2
= eB,
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where (5.9) was used to set the last equality. Now let λ ∈ (−δ, δ)\ {0} be arbitrary
but fixed, and note that E f

x [e2λ‖C‖TF ] ≤ E f
x [e(|λ|/δ)2δ‖C‖TF ]; from this point,

Jensen’s inequality applied to the concave function ϕ(x) = x |λ|/δ on (0,∞) yields
that E f

x [e2λ‖C‖TF ] ≤ E f
x [e2δ‖C‖TF ](|λ|/δ), and together with the above display this

leads to

E f
x

[
e2λ‖C‖TF

]
≤ e|λ|B/δ.

Observe now that, if W is a positive random variable, then E[W−1] ≥ 1/E[W ],
by Jensen’s inequality. Combining this fact with the above display it follows that

e|λ|B/δ ≥ E f
x

[
e2λ‖C‖TF

]
≥ E f

x

[
e−2|λ|‖C‖TF

]
≥ 1/E f

x

[
e2|λ|‖C‖TF

]
≥ e−|λ|B/δ.

(ii) Using Lemma 4.2(ii), the conclusion follows paralleling the argument used to
establish the previous part.

(iii) Let λ ∈ (−δ, δ)\{0}, x ∈ S\F and f ∈ F be arbitrary, and observe the following
properties (a) and (b):
(a) For each positive integer n, the equality

TF∧n−1∑

t=0

[
C(Xt , At ) − gα,λ(Xt )

] + αVα,λ(XTF∧n)

=
TF∑

t=0

[
C(Xt , At ) − gα,λ(Xt )

] + αVα,λ(XTF )

holds on the event [TF ≤ n]. Since TF is finite P f
x -a. s., it follows that

lim
n→∞Uλ

(TF∧n−1∑

t=0

[C(Xt , At ) − gα,λ(Xt )] + αVα,λ(XTF∧n)
)

= Uλ

(TF−1∑

t=0

[C(Xt , At ) − gα,λ(Xt )] + αVα,λ(XTF )

)

P f
x -a. s.

(b) By (2.1) and (5.5),

∣
∣
∣
∣
∣
Uλ

(TF∧n−1∑

t=0

[C(Xt , At ) − gα,λ(Xt )] + αVα,λ(XTF∧n)
)∣
∣
∣
∣
∣

≤ e|λ|∑TF∧n−1
t=0 |C(Xt ,At )−gα,λ(Xt )|+α|λ||Vα,λ(XTF∧n)|

≤ e2|λ|(TF∧n)‖C‖+α|λ|‖C‖/(1−α)

≤ e2δ‖C‖TF eα|λ|‖C‖/(1−α).
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Since E f
x
[
e2δ‖C‖TF ] is finite, by part (i), the property (5.10) follows combining (a)

and (b) with the bounded convergence theorem. A similar argument using part (ii) can
be used to establish the convergence (5.11). ��
Proof of Theorem 5.1. Given z ∈ F , let f z be the stationary policy in Assumption
3.1(ii). From (5.3) it follows that for every x ∈ S

Uλ(Vα,λ(x)) ≤
∑

y∈S
pxy( f

z(x))Uλ(C(x, f z(x)) + αVα,λ(y)),

an inequality that via (2.1) and (5.5) leads to

Uλ(αVα,λ(x))

≤
∑

y∈S
pxy( f

z(x))Uλ(C(x, f z(x)) − gα,λ(x) + αVα,λ(y))

= E f z
x

[
Uλ(C(X0, A0) − gα,λ(X0) + αVα,λ(X1))

]
, x ∈ S. (5.12)

It will be proved by induction that, for every positive integer n, and x ∈ S,

Uλ(αVα,λ(x))

≤ E f z
x

⎡

⎣Uλ

⎛

⎝
Tz∧n−1∑

t=0

[C(Xt , At ) − gα,λ(Xt )] + αVα,λ(XTz∧n)

⎞

⎠

⎤

⎦ . (5.13)

To establish this claim note that for n = 1 the above relation is equivalent to (5.12),
because Tz ≥ 1. Suppose now that (5.13) holds for some positive integer n. Let x ∈ S
be arbitrary and observe that

E f z
x

⎡

⎣Uλ

⎛

⎝
Tz∧n−1∑

t=0

[C(Xt , At ) − gα,λ(Xt )] + αVα,λ(XTz∧n)

⎞

⎠

⎤

⎦

= E f z
x

⎡

⎣Uλ

⎛

⎝
Tz−1∑

t=0

[C(Xt , At ) − gα,λ(Xt )] + αVα,λ(XTz )

⎞

⎠ I [Tz ≤ n]
⎤

⎦

+ E f z
x

[

Uλ

(
n−1∑

t=0

[C(Xt , At ) − gα,λ(Xt )] + αVα,λ(Xn)

)

I [Tz > n]
]

. (5.14)

Next, using (2.2) note that

Uλ

(
n−1∑

t=0

[C(Xt , At ) − gα,λ(Xt )] + αVα,λ(Xn)

)

I [Tz > n]

= e
λ
n−1∑

t=0
[C(Xt ,At )−gα,λ(Xt )]

I [Tz > n]Uλ

(
αVα,λ(Xn)

)
,
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and observe that (5.12) implies that

Uλ

(
αVα,λ(Xn)

)

≤
∑

y∈S
pXn y( f

z(Xn))Uλ(C(Xn, f z(Xn)) − gα,λ(Xn) + αVα,λ(y))

= E f z
x

[
Uλ(C(Xn, An) − gα,λ(Xn) + αVα,λ(Xn+1)) |Xk, k ≤ n

]
,

where the equality is due to the Markov property. Using (2.2) the two last displays
yield that

Uλ

⎛

⎝
Tz∧n−1∑

t=0

[C(Xt , At ) − gα,λ(Xt )] + αVα,λ(XTz∧n)

⎞

⎠ I [Tz > n]

≤ E f z
x

[

Uλ

(
n∑

t=0

[C(Xt , At )−gα,λ(Xt )]+αVα,λ(Xn+1)

)

I [Tz >n]
∣
∣
∣
∣
∣
Xk, k ≤ n

]

and then

E f z
x

⎡

⎣Uλ

⎛

⎝
Tz∧n−1∑

t=0

[C(Xt , At ) − gα,λ(Xt )] + αVα,λ(XTz∧n)

⎞

⎠ I [Tz > n]
⎤

⎦

≤ E f z
x

[

Uλ

(
n∑

t=0

[C(Xt , At ) − gα,λ(Xt )] + αVα,λ(Xn+1)

)

I [Tz > n]
]

= E f z
x

⎡

⎣Uλ

⎛

⎝
Tz−1∑

t=0

[C(Xt , At ) − gα,λ(Xt )] + αVα,λ(XTz )

⎞

⎠ I [Tz = n + 1]
⎤

⎦

+ E f z
x

[

Uλ

(
n∑

t=0

[C(Xt , At ) − gα,λ(Xt )] + αVα,λ(Xn+1)

)

I [Tz > n + 1]
]

;

combining this relation with (5.14) it follows that

E f z
x

⎡

⎣Uλ

⎛

⎝
Tz∧n−1∑

t=0

[C(Xt , At ) − gα,λ(Xt )] + αVα,λ(XTz∧n)

⎞

⎠

⎤

⎦

≤ E f z
x

⎡

⎣Uλ

⎛

⎝
Tz−1∑

t=0

[C(Xt , At ) − gα,λ(Xt )] + αVα,λ(XTz )

⎞

⎠ I [Tz ≤ n + 1]
⎤

⎦
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+ E f z
x

[

Uλ

(
n∑

t=0

[C(Xt , At ) − gα,λ(Xt )] + αVα,λ(Xn+1)

)

I [Tz > n + 1]
]

= E f z
x

⎡

⎣Uλ

⎛

⎝
Tz∧(n+1)−1∑

t=0

[C(Xt , At ) − gα,λ(Xt )] + αVα,λ(XTz∧(n+1))

⎞

⎠

⎤

⎦ ,

a relation that together with the induction hypothesis yields that (5.13) holds with n+1
instead of n, completing the induction argument. Taking the limit as n goes to ∞ in
(5.12), via the convergence (5.11) in Lemma 5.1(ii) it follows that, for every x ∈ S

Uλ(αVα,λ(x)) ≤ E f z
x

⎡

⎣Uλ

⎛

⎝
Tz−1∑

t=0

[C(Xt , At ) − gα,λ(Xt )] + αVα,λ(XTz )

⎞

⎠

⎤

⎦ ;

using that Tz is finite P
f z
x -almost surely and that XTz = zwhen Tz < ∞, this inequality

and (2.2) yield that

Uλ(α[Vα,λ(x) − Vα,λ(z)]) ≤ E f z
x

⎡

⎣Uλ

⎛

⎝
Tz−1∑

t=0

[C(Xt , At ) − gα,λ(Xt )]
⎞

⎠

⎤

⎦

≤ E f z
x

[
Uλ (2‖C‖Tz)

]
, x ∈ S, (5.15)

where the fact that Uλ is increasing was used in the last step. Consider now the
following exahustive cases about λ:
Case 1 λ ∈ (0, δ). In this context Uλ(w) = eλw for every w ∈ R, so that (5.15)
yields that eλα[Vα,λ(x)−Vα,λ(z)] ≤ E f z

x
[
e2λ‖C‖Tz ], and then eλα[Vα,λ(x)−Vα,λ(z)] ≤ eλB/δ

for x �= z, by Lemma 5.1(ii); since this last inequality also holds for x = z it follows
that

α[Vα,λ(x) − Vα,λ(z)] ≤ B

δ
, x ∈ S. (5.16)

Case 2 λ ∈ (−δ, 0). In this framework Uλ(w) = −eλw for every w ∈ R, and (5.15)
leads to eλα[Vα,λ(x)−Vα,λ(z)] ≥ E f z

x
[
e2λ‖C‖Tz ], and via Lemma 5.1(ii) this implies that,

for x �= z, eλα[Vα,λ(x)−Vα,λ(z)] ≥ e−|λ|B/δ = eλB/δ , an inequality that is also valid for
x = z. From this point, recalling that λ is negative, it follows that (5.16) also occurs
in the present case.
Since z ∈ F was arbitrary in this argument, (5.16) implies that α[Vα,λ(x)−Vα,λ(z)] ≤
B/δ for every x, z ∈ F , so that (5.7) holds with

B∗ = B

δ
. (5.17)

Next, it will be shown that this constant B∗ also satisfies (5.8). To begin with, note
that by (5.7) it is sufficient to show that the inequality in (5.8) holds when x ∈ S \ F .
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Now let fα,λ be the stationary policy in (5.6), and multiply both sides of that equality
by e−λ(1−α)Vα,λ(x) to obtain, via (2.2) and (5.5), that

Uλ(αVα,λ(x)) = E
fα,λ
x

[
Uλ

([C(X0, A0) − gα,λ(X0)] + αVα,λ(X1)
)]

, x ∈ S.

Starting from this equality, an induction argument along the lines used in the above
proof of (5.7) yields that, for every positive integer n and x ∈ S \ F,

Uλ(αVα,λ(x)) = E
fα,λ
x

[

Uλ

(TF∧n−1∑

t=0

[C(Xt , At ) − gα,λ(Xt )] + αVα,λ(XTF∧n)
)]

,

so that

Uλ(αVα,λ(x)) = E
fα,λ
x

[

Uλ

(TF−1∑

t=0

[C(Xt , At ) − gα,λ(Xt )] + αVα,λ(XTF )

)]

,

by (5.10). Multiplying both sides of this equality by e−λαVα,λ(z) where z ∈ F is
arbitrary but fixed, via (2.2) it follows that for every state x in S \ F ,

Uλ(α[Vα,λ(x) − Vα,λ(z)])

= E
fα,λ
x

[

Uλ

(TF−1∑

t=0

[C(Xt , At ) − gα,λ(Xt )] + α[Vα,λ(XTF ) − Vα,λ(z)]
)]

,

that is,

eλα[Vα,λ(x)−Vα,λ(z)]

= E
fα,λ
x

[

eλ
∑TF−1

t=0 [C(Xt ,At )−gα,λ(Xt )]+λα[Vα,λ(XTF )−Vα,λ(z)]
]

. (5.18)

Combining this equality with (5.5) and (5.7) it follows that for every x ∈ S \ F

E f z
x

[
e−2|λ‖C‖TF−|λ|B∗] ≤ eλα[Vα,λ(x)−Vα,λ(z)] ≤ E f z

x

[
e2|λ‖C‖TF+|λ|B∗]

,

and via Lemma 5.1(i) this leads to

e−|λ|B/δe−|λ|B∗ ≤ eλα[Vα,λ(x)−Vα,λ(z)] ≤ e|λ|B/δe|λ|B∗
.

Finally, using (5.17), this relation implies thatα|Vα,λ(x)−Vα,λ(z)| ≤ B∗+B/δ = 2B∗
for every x ∈ S \ F , completing the verification of the inequality (5.8). ��
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6 Proof of the uniform boundedness theorem

In this section a proof of Theorem 4.1 will be presented. Throughout the remainder

z ∈ F and λ ∈ (−δ, δ) \ {0}

are arbitrary but fixed, and for each α ∈ (0, 1) the function hα,λ ∈ B(S) is given by

hα,λ(x) = α[Vα,λ(x) − Vα,λ(z)], x ∈ S. (6.1)

Observe the following relation between hα,λ and gα,λ in (5.5):

gα,λ(x) − gα,λ(z) = 1 − α

α
hα,λ(x), (6.2)

and note that (5.4), (5.5) and Theorem 5.1 imply that

|gα,λ(z)| ≤ ‖C‖ and |hα,λ(x)| ≤ B, x ∈ S, α ∈ (0, 1), (6.3)

where

B := 2B∗.

From this point, Cantor’s diagonal method yields that there exists a sequence (αn) ⊂
(0, 1) such that

αn ↗ 1, (6.4)

and the following limits exists:

lim
n→∞ gαn ,λ(z) = g∗ ∈ [−‖C‖, ‖C‖],
lim
n→∞ hαn ,λ(x) = h∗

λ(x) ∈ [−B, B], x ∈ S; (6.5)

combining these two last displays with (6.2) it follows that

lim
n→∞ gαn ,λ(x) = g∗, x ∈ S. (6.6)

Now, let fα,λ ∈ F be the stationary policy in (5.6). Since F is a compact metric space,
taking a subsequence of (αn), if necessary, without loss of generality it can be assumed
( fαn ,λ) converges in F:

lim
n→∞ fαn ,λ(x) = f ∗

λ (x) ∈ A(x), x ∈ S. (6.7)
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Proof of Theorem 4.1. It will be shown that the pair (g∗, h∗
λ(·)) in (6.5) is a solu-

tion of the λ-optimality Eq. (4.1). To begin with, multiply both sides of (5.3) by
e−λ[αVα,λ(z)+(1−α)Vα,λ(x)] to obtain, via (2.2), (5.5) and (6.1), that for every x ∈ S

Uλ(hα,λ(x)) = inf
a∈A(x)

⎡

⎣
∑

y∈S
pxy(a)Uλ(C(x, a) − gα,λ(x) + hα,λ(y))

⎤

⎦ , (6.8)

and

Uλ(hα,λ(x)) =
∑

y∈S
pxy( fα,λ(x))Uλ(C(x, fα,λ(x)) − gα,λ(x) + hα,λ(y)), (6.9)

where fα,λ is the stationary policy in (5.6). Also observe that (2.1), (5.5) and (6.3)
together yield the following bound:

|Uλ(C(x, a) − gα,λ(x) + hα,λ(y))|
≤ e|λ|(|C(x,a)|+|gα,λ(x)|+|hα,λ(y)|) ≤ e|λ|(2‖C‖+B), (x, a) ∈ K. (6.10)

Now let (x, a) ∈ K be fixed. Replacing α by αn in (6.8) it follows that

Uλ(hαn ,λ(x)) ≤
∑

y∈S
pxy(a)Uλ(C(x, a) − gαn ,λ(x) + hαn ,λ(y)),

and then, taking the limit as n goes to ∞ in both sides of this inequality, the bounded
convergence theorem, (6.5) and (6.10) together imply that

Uλ(h
∗
λ(x)) ≤

∑

y∈S
pxy(a)Uλ(C(x, a) − g∗

λ + h∗
λ(y)), (x, a) ∈ K. (6.11)

Select now a finite set G ⊂ S and note that (6.9) and (6.10) yield that

Uλ(hαn ,λ(x)) ≥
∑

y∈G
pxy( fαn ,λ(x))Uλ(C(x, fαn ,λ(x)) − gαn ,λ(x) + hαn ,λ(y))

−
∑

y∈S\G
pxy( fαn ,λ(x))e

|λ|(2‖C‖+B)

=
∑

y∈G
pxy( fαn ,λ(x))Uλ(C(x, fαn ,λ(x)) − gαn ,λ(x) + hαn ,λ(y))

−
⎛

⎝1 −
∑

y∈G
pxy( fαn ,λ(x))

⎞

⎠ e|λ|(2‖C‖+B),
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and then, letting n go to ∞, (6.5)–(6.7) and Assumption 2.1 together imply that

Uλ(h
∗
λ(x)) ≥

∑

y∈G
pxy( f

∗
λ (x))Uλ(C(x, f ∗

λ (x)) − g∗
λ(x) + h∗

λ(y))

−
⎛

⎝1 −
∑

y∈G
pxy( f

∗
λ (x))

⎞

⎠ e|λ|(2‖C‖+B);

letting G increase to S this relation leads to

Uλ(h
∗
λ(x)) ≥

∑

y∈S
pxy( f

∗
λ (x))Uλ(C(x, f ∗

λ (x)) − g∗
λ(x) + h∗

λ(y)).

Combining this inequality with (6.11) it follows that the pair (g∗
λ, h∗

λ(·)) satisfies the
λ-optimality equation (4.1). Since ‖h∗

λ‖ ≤ B = 2B∗ and λ ∈ (−δ, δ)\{0} is arbitrary,
this establishes the conclusion of Theorem 4.1. ��

7 Proof of the continuity result

After the previous preliminaries, in this section Theorem 3.1 will be established.
Throughout the remainder δ and B are the positive numbers in Theorem 4.1, and for
each λ ∈ (−δ, δ) \ {0} the pair (gλ, hλ(·)) ∈ R × B(S) is a solution of the optimality
equation (4.1) satisfying that

‖hλ‖ ≤ B; (7.1)

note that Lemma 4.1 yields that gλ is the optimal average cost at every initial state x ,
so that

|gλ| ≤ ‖C‖. (7.2)

Next, recalling the Uλ(x) = sign(λ)eλx for every x ∈ R, divide both sides of (4.1)
by sign(λ)λ = |λ| > 0 and substract 1/λ from both sides of the resulting equality to
obtain

eλ(gλ+hλ(x)) − 1

λ

= inf
a∈A(x)

∑

y∈S
pxy(a)

eλ(C(x,a)+hλ(y)) − 1

λ
, x ∈ S, 0 < |λ| < δ, (7.3)

and observe that (7.1) and Assumption 2.1 together yield that there exists

fλ ∈ F (7.4)
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such that, for each x ∈ S, fλ(x) ∈ A(x) minimizes the right hand side of (7.3), that
is,

eλ(gλ+hλ(x)) − 1

λ

=
∑

y∈S
pxy( fλ(x))

eλ(C(x, fλ(x))+hλ(y)) − 1

λ
, x ∈ S, 0 < |λ| < δ. (7.5)

Finally, it is convenient to point out the following fact, which follows from the second
order Taylor’s expansion of the exponential function:

lim
λ→0

	(λ) = 0, where 	(λ) := sup
x : |x |≤‖C‖+B

∣
∣
∣
∣
eλx − 1

λ
− x

∣
∣
∣
∣ . (7.6)

With this notation, (7.1) yields that

∣
∣
∣
∣
∣

eλ(C(x,a)+hλ(y)) − 1

λ
− [C(x, a) + hλ(y)]

∣
∣
∣
∣
∣
≤ 	(λ).

Proof of Theorem 3.1. It will be proved that

lim
λ→0

gλ = J ∗(0, x), x ∈ S. (7.7)

To achieve this goal, let {λn}n∈N be an arbitrary sequence such that

λn ∈ (−δ, δ) \ {0}, n = 0, 1, 2, . . . , and lim
n→∞ λn = 0. (7.8)

Recalling that the set F of stationary policies is a compact metric space, (7.4), (7.2)
and (7.1) allow to use Cantor’s diagonal method to construct a subsequence {λnk }k∈N
such that the following limits exist:

lim
k→∞ gλnk

=: g∗
0 , lim

k→∞ hλnk
(x) =: h∗

0(x),

lim
k→∞ fλnk (x) =: f ∗

0 (x), x ∈ S. (7.9)

Now, let (x, a) ∈ K be arbitrary and note that (7.3) yields that

eλnk (gλnk
+hλnk

(x)) − 1

λnk
≤
∑

y∈S
pxy(a)

eλnk (C(x,a)+hλnk
(y)) − 1

λnk
,

an inequality that via (7.1) and (7.6) leads to

gλnk
+ hλnk

(x) − 	(λnk ) ≤
∑

y∈S
pxy(a)(C(x, a) + hλnk

(y)) + 	(λnk ).
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Thus, since 	(λnk ) → 0 as k → ∞, taking the limit as k goes to ∞ in the above
inequality, (7.9) and the bounded convergence theorem together imply that

g∗
0 + h∗

0(x) ≤
∑

y∈S
pxy(a)(C(x, a) + h∗

0(y)), (x, a) ∈ K. (7.10)

Next, let x ∈ S be arbitrary and observe that (7.5) and (7.6) lead to

gλnk
+ hλnk

(x) + 	(λnk )

≥ eλnk (gλnk
+hλnk

(x)) − 1

λnk

≥
∑

y∈S
pxy( fλnk (x))

eλnk (C(x, fλnk (x))+hλnk
(y)) − 1

λnk

≥
∑

y∈S
pxy( fλnk (x))(C(x, fλnk (x)) + hλnk

(y)) − 	(λnk ),

and then, using (7.1), it follows that for any nonempty and finite set G of the state
space S,

gλnk
+ hλnk

(x) ≥
∑

y∈G
pxy( fλnk (x))(C(x, fλnk (x)) + hλnk

(y))

−(‖C‖ + B)

⎡

⎣1 −
∑

y∈G
pxy( fλnk (x))

⎤

⎦ − 2	(λnk );

letting k increase to ∞, Assumption 2.1 and (7.9) together yield that

g∗
0 + h∗

0(x) ≥
∑

y∈G
pxy( f

∗
0 (x))(C(x, f ∗

0 (x)) + h∗
0(y))

−(‖C‖ + B)

⎡

⎣1 −
∑

y∈G
pxy( f

∗
0 (x))

⎤

⎦ ,

an inequality that letting G increase to S leads to

g∗
0 + h∗

0(x) ≥
∑

y∈S
pxy( f

∗
0 (x))(C(x, f ∗

0 (x)) + h∗
0(y)), x ∈ S. (7.11)

Combining this relation with (7.10) it follows that

g∗
0 + h∗

0(x) = inf
a∈A(x)

⎡

⎣C(x, a) +
∑

y∈S
pxy(a)h∗

0(y)

⎤

⎦ , x ∈ S, (7.12)
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showing that the pair (g∗
0 , h

∗
0(·)) satisfies the (risk-neutral) optimality equation corre-

sponding to the utility function U0(x) = x ; since h∗
0 is a bounded function, it follows

that

g∗
0 = J ∗(0, x), x ∈ S.

Summarizing: It has been proved that every sequence (λn)n∈N satisfying (7.8) has a
subsequence (λnk )k∈N such that limk→∞ gλnk

= J ∗(0, ·), a property that is equivalent
to (7.7); since gλ = J ∗(λ, ·) when 0 < |λ| < δ, by Lemma 4.1 and Theorem 4.1, it
follows that limλ→0 J ∗(λ, x) = J ∗(0, x) for every x ∈ S. ��
Remark 7.1 By (7.11), the policy f ∗

0 in the above proof satisfies that, for every state
x , the action f ∗

0 (x) is a minimizer of the right-hand side of the optimality equation in
(7.12), and then f ∗ is risk-neutral average optimal (Hernández-Lerma (1989); Puter-
man (1994)).

8 A communicating model under LFC

In the previous sections, the continuity of the optimal risk-sensitive average cost func-
tion J ∗(λ, ·) with respect to λ has been studied. As it was shown in Proposition 2.1,
for bounded costs such a property always holds at λ �= 0, but the continuity at zero
may fail, as in the simple model presented in Example 2.1. Under the version of the
simultaneous Doeblin condition in Assumption 3.1, it was established in Theorem 3.1
that J ∗(λ, ·) is also continuous at λ = 0. Note that the first part of Assumption 3.1
ensures that, under any stationary policy, the class of recurrent states is non-empty,
but there may be several recurrence classes; if such is the case, the second part of
Assumption 3.1 guarantees that, employing other stationary policy, a given recurrence
class is accessible from any other one, a condition that fails in Example 2.1. On the
other hand, the simultaneous Doeblin condition is a strong requirement ensuring, via
the existence of a bounded solution to the risk-neutral optimality equation, that (a)
the optimal (risk-neutral) average cost is constant, and that (b) an optimal stationary
exists, properties that can be guaranteed under the Lyapunov function condition (3.3),
under which the risk-neutral optimality equation has a (generally) unbounded solution.
However, it was shown in Example 3.1 that, under LFC, the mapping λ �→ J ∗(λ, x)
may have a discontinuity at λ = 0. At this point it is interesting to observe a common
feature in Examples 2.1 and 3.1, namely, in those examples the discontinuity at zero
of the mapping λ �→ J ∗(λ, x) occurs when x is a transient state. This fact highlights
the prominent role of the transient states in the determination of the risk-sensitive
average cost (Cavazos-Cadena and Fernández-Gaucherand 1999) and, naturally, leads
to consider the following question:
Assume that the Lyapunov function condition holds, and that the state space is a
communicating class under each stationary policy, so that no state is transient. In this
context, is it true that the mapping λ �→ J ∗(λ, x) is continuous at zero for every state
x?
As it is shown by the following example, the answer to this question is negative.

123



Continuity of the optimal risk-sensitive average cost 295

Example 8.1 Consider a denumerable set S∗ whose elements are denoted by x∗, where
x = 1, 2, 3, . . ., and define

S = N ∪ S∗ = N ∪ {x∗ | x = 1, 2, 3, . . .}.

Now let the transition law [ps,s1 ] on S be determined as follows:

Forx = 1, 2, 3, . . . ,

1 − px,0 = px,x+1 = x2

(x + 1)2
= px∗,(x+1)∗ = 1 − px∗,0,

p0,x∗ = γ

x3
= p0,x , (8.1)

where γ −1 = ∑∞
x=1 2/x

3. Finally, define the cost function C : S → R by

C(x) = 1, C(x∗) = −1, x = 1, 2, 3, . . . , and C(0) = 0; (8.2)

setting the action set A equal to a singleton, the above quantities determine an MDP
with a unique (stationary) policy, which will not be explicitly indicated in the analysis
below.

In the next proposition it is shown that the Lyapunov function condition is satisfied
in this example, and the risk-neutral average cost is determined.

Proposition 8.1 In Example 8.1 the following assertions (i)–(iii) hold:

(i) The Lyapunov function condition (3.3) is satisfied with z = 0.
(ii) The state process (Xt )t∈N is irreducible, that is, Pw[Ty < ∞] > 0 for every

w, y ∈ S.
(iii) The risk neutral average cost function is null: J (0, y) = 0 for every y ∈ S.

Proof (i) Since there is only one stationary policy, it is sufficient to verify that

Ey[T0] < ∞, y ∈ S. (8.3)

To establish this assertion note that, paralleling the argument used in Example 3.1,
the definition of the transition law in (8.1) yields that for every positive integer n

Px [T0 > n] = Px [Xr = x + r, 0 ≤ r ≤ n]
= x2

(x + n)2

= Px∗ [Xr = (x + r)∗, 0 ≤ r ≤ n]
= Px∗ [T0 > n], x = 1, 2, 3, . . . , (8.4)
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and then Ex∗ [T0] = Ex [T0] ≤ ∑∞
n=0 x

2/(x + n)2 ≤ 1 + x for x = 1, 2, 3, . . .
whereas, by the Markov property,

E0[T0] = 1 +
∞∑

x=1

(
p0,x Ex [T0] + p0,x∗Ex∗ [T0]

) ≤ 1 + γ

∞∑

x=1

[2(1 + x)/x3] < ∞.

(ii) Observing that P0[X1 = y] > 0 for every y ∈ S \ {0}, the irreducibility of the
state process follows from (8.3).

(iii) Combining the previous part and (8.3) it follows that the transition law in (8.1)
has a unique invariant distribution (νy)y∈S and then the ergodic theorem yields
that, for every y ∈ S,

J (0, y) = lim
n→∞

1

n
Ey

[
n−1∑

t=0

C(Xt )

]

=
∑

x∈S
νxC(x).

On the other hand, using (8.1) it is not difficult to see that νx = νx∗ for every
x = 1, 2, 3, . . ., a property that together with (8.2) leads to J (0, ·) = 0. ��

Next, the average cost function corresponding to a non-null risk sensitivity para-
meter will be determined.

Proposition 8.2 For the model in Example 8.1 the following properties (i)–(iii) are
valid.

(i) For each λ �= 0, the λ-sensitive average cost J (λ, ·) is constant
(ii) If λ > 0 then J (λ, ·) = 1, and
(iii) J (λ, ·) = −1 for each λ < 0.

Proof (i) Let λ ∈ R\ {0} andw, y ∈ S be arbitrary. Using Proposition 8.1(ii), select
k ∈ N such that Pw[Xk = y] > 0 and note that, for n > k the Markov property
and (8.2) yield that

eλJn(λ,w) = Ew

[
eλ

∑n−1
t=0 C(Xt )

]

≥ Ew

[
eλ

∑k−1
t=0 C(Xt ) I [Xk = y]eλ

∑n−1
t=k C(Xt )

]

≥ e−k|λ|Pw[Xk = y]Ey

[
eλ

∑n−k−1
t=0 C(Xt )

]

= e−k|λ|Pw[Xk = y]eλJn−k (λ,y)

and then

λ
Jn(λ,w)

n
≥ log(e−k|λ|Pw[Xk = y])

n
+ λ

Jn−k(λ, y)

n
(8.5)

If λ > 0, taking the superior limit as n goes to ∞ in both side of this inequality,
it follows that

λJ (λ,w) ≥ λJ (λ, y); (8.6)
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when λ < 0, this last relation also follows form (8.5) after taking the inferior
limit as n increases to∞. Thus, since the statesw and y are arbitrary, (8.6) yields
that J (λ, ·) is constant for every no-null risk-sensitivity coefficient λ.

(ii) Suppose that λ > 0. Using that C(x) = 1 for every x = 1, 2, 3, . . ., it follows
that for every positive integer n

eλJn(λ,1) = E1

[
eλ

∑n−1
t=0 C(Xt )

]

≥ E1

[
eλ

∑n−1
t=0 C(Xt ) I [Xr = 1 + r, 0 ≤ r < n]

]

= eλn P1 [Xr = 1 + r, 0 ≤ r < n] = eλn 1

n2
,

where (8.4) was used to set the last equality. Thus,

Jn(λ, 1)/n ≥ 1 − 2 log(n)/(λn),

and then J (λ, 1) = lim supn→∞ Jn(λ, 1)/n ≥ 1; recalling the C(·) ≤ 1 it
follows that J (λ, 1) = 1 so that J (λ, ·) = 1, by part (i).

(iii) Suppose that λ < 0. Recall that C(x∗) = −1 for every x = 1, 2, 3, . . . and
observe that for each positive integer n

eλJn(λ,1∗) = E1∗
[
eλ

∑n−1
t=0 C(Xt )

]

≥ E1∗
[
eλ

∑n−1
t=0 C(Xt ) I [Xr = (x + r)∗, 0 ≤ r < n]

]

= e−λn P1∗
[
Xr = (x + r)∗, 0 ≤ r < n

] = e−λn 1

n2
;

since λ is negative, this relation yields that Jn(λ, 1∗)/n ≤ −1 + 2 log(n)/(nλ),
a relation that combined with the inequality C(·) ≥ −1 leads to J (λ, x) =
lim supn→∞ Jn(λ, x)/n = −1; from this point, part (i) implies that J (λ, ·) = −1. ��

For the model in Example 8.1, the Lyapunov function condition holds and every
state is positive recurrent, by parts (i) and (ii) of Proposition 8.1. However, assertions
(ii) and (iii) of Proposition 8.2 and the third part of Proposition 8.1 together yield that,
for every state y, the mapping λ �→ J (λ, y) is not continuous at λ = 0, neither form
the left nor from the right.
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Jaśkiewicz A (2007) Average optimality for risk sensitive control with general state space. AnnAppl Probab

17:654–675
Puterman ML (1994) Markov decision processes. Wiley, New York
Stokey NL, Lucas RE (1989) Recursive methods in economic dynamics. Harvard University Press, Cam-

bridge
Sladký K (2008) Growth rates and average optimality in risk-sensitiveMarkov decision chains. Kybernetika

44:205–226

123


	Continuity of the optimal average cost in Markov decision chains with small risk-sensitivity
	Abstract
	1 Introduction
	2 Decision model
	3 Main result
	4 Optimality equation
	5 Discounted approach
	6 Proof of the uniform boundedness theorem
	7 Proof of the continuity result
	8 A communicating model under LFC
	Acknowledgments
	References




