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Abstract This paper extends the notion of individual minimal rights for a transferable
utility game (TU-game) to coalitional minimal rights using minimal balanced families
of a specific type, thus defining a corresponding minimal rights game. It is shown that
the core of a TU-game coincides with the core of the corresponding minimal rights
game. Moreover, the paper introduces the notion of the k-core cover as an extension of
the core cover. The k-core cover of a TU-game consists of all efficient payoff vectors
for which the total joint payoff for any coalition of size at most k is bounded from
above by the value of this coalition in the corresponding dual game, and from below
by the value of this coalition in the corresponding minimal rights game. It is shown
that the core of a TU-game with player set N coincides with the largest integer below
or equal to |N |

2 -core cover. Furthermore, full characterizations of games for which a
k-core cover is nonempty and for which a k-core cover coincides with the core are
provided.
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148 E. Sánchez-Rodríguez et al.

1 Introduction

The core of a transferable utility game (TU-game), as introduced by Gillies (1953),
consists of all efficient payoff vectors for the monetary value of the grand coalition
from which no coalition has an incentive to deviate. Some well-known core catchers
are the dominance core (cf. Gillies 1953, 1959), the Weber set (Weber 1988) and the
core cover (Tijs and Lipperts 1982).

The literature shows that both convex games (Shapley 1971), for which the core
equals the Weber set, and compromise stable games (Quant et al. 2005), which are
balanced games for which the core equals the core cover, have several interesting and
helpful properties. Restricting attention to compromise stability, we want to mention
that the nucleolus (Schmeidler 1969) of any compromise stable game can be directly
computed by using the Aumann Maschler rule (Aumann and Maschler 1985) of an
associated bankruptcy game (cf. O’Neill 1982), thus unifying seemingly unrelated
results on the nucleolus for, e.g., bankruptcy games and clan games (Potters et al. 1989).

It is well-known that the core of a gamemay be empty. Due to this, many researchers
have defined set valued solution concepts that always contain the core, as the core
cover. The core cover has a very simple structure since it is determined by the effi-
cience hyperplane and bounded by the vectors ofminimal rights and utopia values (and
thus determined by 2|N | + 1 hyperplanes). Its extreme points are, however, hard to
determine due to the computational difficulty of the underlying minimal rights vector.
Moreover, although the core is always contained in the core cover, the core cover may
also be empty. In this paper, we exploit the simplicity of the core cover structure to bet-
ter understand the structure of the core.With this purpose, we generalize the core cover
by introducing k-core covers: an extension of the core cover based on coalitional con-
siderations. Individual marginal contributions can readily be extended to coalitional
marginal contributions using the corresponding dual game. This paper proposes to
extend individual minimal rights to coalitional ones by using for each coalition S min-
imal balanced families on N\S with the size of its elements restricted to at most |S|. In
this way, an associated minimal rights game is obtained. A first result shows that the
core of a TU-game coincides with the core of its corresponding minimal rights game.

Using the dual game and the minimal rights game, we define the k-core cover, with
k ∈ {1, . . . , |N |}, of a TU-game with player set N as the set of all efficient payoff
vectors for which the total joint payoff to any coalition S of size at most k is bounded
from above by the value of S in the corresponding dual game, and from below by
the value of S in the corresponding minimal rights game1. It is shown that the 1-core
cover coincides with the core cover, that each k-core cover is a core catcher and,
interestingly, that the core is a � |N |

2 �-core cover2.

1 In a similar spirit, Grabisch and Miranda (2008) introduced the k-additive core, where coalitions of at
most size k pay an important role. It turns out that the k-additive core in Grabisch and Miranda (2008) has
no general relation with neither the k-core cover, nor the k-core introduced in this paper. Moreover, unlike
the k-core cover and k-core here defined, k-additive cores need not be linear and coalitions of size at least
|N | − k do not have an influential role in their definition.
2 � |N |

2 � is the integer part of |N |
2
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k-core covers and the core 149

Defining a game to be k-compromise admissible if the k-core cover is nonempty,
and k-compromise stable if it is balanced and the k-core cover and core coincide, this
paper characterizes k-compromise admissible games and k-compromise stable games
by means of conditions on specific minimal balanced families in both the dual game
and the minimal rights game. Finally, we show that assignment games (Shapley and
Shubik 1972) are a specific case of 2-compromise stable games.

The paper is structured as follows. Section 2 presents basic definitions and notations
regardingTU-games andbalanced families. Section 3 introduces and analyzesminimal
right games and the k-core cover, while Sect. 4 characterizes k-compromise admissible
games and k-compromise stable games. Section 5 shows that assignment games are
2-compromise stable.

2 Preliminaries

A transferable utility game (TU-game) is an ordered pair (N , v)where N is a finite set
of players and v : 2N → R satisfies v(∅) = 0. In general, v(S) represents the value
of coalition S, that is, the joint payoff that can be obtained by this coalition when its
members decide to cooperate. Let GN be the set of all TU-games with player set N .
Given S ⊆ N , let |S| be the number of players in S.

The main focus within a cooperative setting is on how to share the total joint payoff
obtained when all players decide to cooperate. Given a TU-game v ∈ GN , the core of
v, Core(v), is defined as the set of efficient allocations (for which exactly v(N ) is allo-
cated) that are stable, in the sense that no coalition has an incentive to deviate. Formally,

Core(v) =
{
x ∈ R

N :
∑
i∈N

xi = v(N ),
∑
i∈S

xi ≥ v(S) for all S ⊆ N

}
.

It is well known that the core of a game may be empty. In Tijs and Lipperts (1982),
the core cover is introduced as a core catcher. The core cover is the set of efficient
allocations in which every player gets an amount no lower than his minimal right and
no higher than his utopia value. Given a game v ∈ GN and a player i ∈ N , the utopia
value of player i, Mi (v), is defined by

Mi (v) = v(N ) − v(N\{i})
and the minimal right of player i, mi (v), is defined by

mi (v) = max
S⊆N : S	i

⎧⎨
⎩v(S) −

∑
j∈S\{i}

Mj (v)

⎫⎬
⎭ .

The core cover of v ∈ GN , CC(v), is defined by

CC(v) =
{
x ∈ R

N :
∑
i∈N

xi = v(N ) and m(v) ≤ x ≤ M(v)

}
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150 E. Sánchez-Rodríguez et al.

where m(v) = (mi (v))i∈N and M(v) = (Mi (v))i∈N . A game v ∈ GN is compromise
admissible if CC(v) is nonempty. Formally, if

m(v) ≤ M(v) and
∑
i∈N

mi (v) ≤ v(N ) ≤
∑
i∈N

Mi (v). (1)

A compromise admissible game is compromise stable if the core cover coincides with
the core.

Theorem 2.1 (Tijs and Lipperts (1982)) Let v ∈ GN be compromise admissible.
Then,

(i) Core(v) ⊆ CC(v).
(ii) If |N | = 3, then, Core(v) = CC(v).

Quant et al. (2005) characterize the class of compromise stable games.

Theorem 2.2 (Quant et al. (2005)) Let v ∈ GN be compromise admissible. Then,
Core(v) = CC(v) if, and only if, for every S ⊆ N,

v(S) ≤ max

⎧⎨
⎩

∑
i∈S

mi (v), v(N ) −
∑

i∈N\S
Mi (v)

⎫⎬
⎭ .

Let ∅ �= S ⊆ N . A family B of nonempty subcoalitions of S is called balanced
on S if there are positive weights δ = {δT }T∈B, δT > 0 for all T ∈ B, such that∑

T∈B δT eT = eS or, equivalently,
∑

T∈B:T	i δT = 1 for all i ∈ S. Here, eS ∈ R
N

is the characteristic vector of S and is defined by eSi = 1 if i ∈ S and eSi = 0 if
i /∈ S. Given a balanced family B, we denote by �(B) the set of positive weights
satisfying the balancedness condition. For each k = 1, . . . , |N |, we denote by Fk(S)

the collection of balanced families on S such that for all B ∈ Fk(S) and R ∈ B,
|R| ≤ k. A balanced family B ∈ Fk(S) is minimal if B′ ⊆ B and B′ ∈ Fk(S) implies
B′ = B. We denote by Fm

k (S) the collection of minimal balanced families on S. It is
well known that a minimal balanced family has a unique vector of balanced weights.
Given B ∈ Fm

k (S), we denote by {γB
T }T∈B the corresponding vector of balanced

weights. It is also known that if B ∈ Fk(S)\Fm
k (S) and δ ∈ �(B), then, there exist

B1, . . . ,Br ∈ Fm
k (S) with r ≥ 2 and t1, . . . , tr ∈ (0, 1) with

∑r
l=1 tl = 1 such that

B = ∪r
l=1Bl and δR = ∑

l∈{1,...,r}:Bl	R tlγ
Bl
R .

A game v ∈ GN is called balanced if for all balanced families B ∈ F|N |(N ) and
all {δS}S∈B ∈ �(B),

∑
S∈B δSv(S) ≤ v(N ). Bondareva (1963) and Shapley (1967)

established that a game v ∈ GN has a nonempty core if, and only if, it is balanced.
In fact, they show that a game has a nonempty core if, and only if, all balancedness
inequalities are satisfied for minimal balanced families on N .
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k-core covers and the core 151

3 A family of core catchers

3.1 Utopia and minimal rights games

In this subsection we introduce the notions of the utopia and minimal rights games
associated to a TU-game.

Definition 3.1 Let v ∈ GN . The dual or utopia game, vD , is defined by

vD(S) = v(N ) − v(N\S) for all S ⊆ N .

The minimal rights game,3 vm , is defined by

vm(S) = max
T⊆N :T⊇S

{
v(T ) − max

B∈Fm|S|(T \S)

∑
R∈B

γB
R vD(R)

}
for all S ⊆ N .

Note that, for each S ⊆ N , vD(S) reflects the marginal contribution of coalition S to
the grand coalition N . Therefore, if coalition S asks for a higher share of v(N ) than
vD(S), it will be profitable for coalition N\S to avoid cooperation with the players of
S. Accordingly, vD(S) can be interpreted as a utopia value for coalition S. Once the
values of the utopia game are known to all players, the question is how to compute the
minimal rights game. Following the general idea of the minimal rights of a player, we
first have to consider what is left from the value of coalition T , with S ⊆ T , once the
players in T \S are paid using the utopia game; secondly, coalition S will maximize its
benefit over all potential partners T \S, with S ⊆ T . Clearly, the difficulty encountered
when defining the value of a coalition S in theminimal rights game is how to determine
the amount that S should concede to the players of T \S, with S ⊆ T , according to the
utopia game. Using a common pessimistic approach, we consider that this quantity
is the maximum expected utopia value that coalition T \S can achieve. When the
minimal right of a coalition S is computed, the allowed cooperation of the players
of T \S is restricted to coalitions of size at most |S|. Note that, by only considering
the balanced families of cardinality at most |S|, we are generalizing the concept of
minimal right of a player where only the utopia values of the individual players are
taken into account. In fact, given a player i and a coalition T with i ∈ T , player i
concedes

∑
j∈T \{i} Mj (v) to the players in T \{i}, where {{ j} : j ∈ T \{i}} is the

only minimal balanced family in Fm
1 (T \{i}). To conclude, note that if |T \S| < |S|,

then, Fm
|T \S|(T \S) = Fm

|S|(T \S) since all coalitions in any minimal balanced family
in Fm

|S|(T \S) are contained in T \S.
It is easily seen that the maximum expected value for a coalition T over all balanced

families of elements with cardinality at most k and over all associated positive weights
is achieved in a minimal balanced family. Formally, given v ∈ GN , T ⊆ N , and
k ∈ {1, . . . , |T |}, we have

3 In general, it is computationally hard to obtain vm (S) even for coalitions S of size 1. In case of convex
games, vm = v as we show subsequently.
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152 E. Sánchez-Rodríguez et al.

Table 1 Utopia and minimal rights games in Example 3.2

S {1} {2} {3} {4} {1, 2} {1, 3} {1, 4} {2, 3} {2, 4} {3, 4}
v(S) 1 1 2 3 2 3 5 3 4 5

vD(S) 2 2 3 4 5 6 7 5 7 8

vm (S) 1 1 2 3 3 4 5 4 5 6

S {1, 2, 3} {1, 2, 4} {1, 3, 4} {2, 3, 4} {1, 2, 3, 4}

v(S) 6 7 8 8 10

vD(S) 7 8 9 9 10

vm (S) 6 7 8 8 10

max
B∈Fk (T )

max
δ∈�(B)

∑
R∈B

δRv(R) = max
B∈Fm

k (T )

∑
R∈B

γB
R v(R). (2)

In particular, when applying Eq. (2) to the dual game, we see that the definition of
minimal rights game coincides with our informal description.

Example 3.2 Consider the game v ∈ GN given in Table 1, where also the values of
the utopia and minimal rights games are provided. Next, we illustrate the computation
of vm({1}), vm({1, 2}), and vm({1, 2, 3}).

vm({1}) = max
T⊆N :T⊇{1}

{
v(T ) − max

B∈Fm
1 (T \S)

∑
R∈B

γB
R vD(R)

}

= max {v({1}), v({1, 2}) − vD({2}), v({1, 3}) − vD({3}),
v({1, 4}) − vD({4}),
v({1, 2, 3}) − vD({2}) − vD({3}), v({1, 2, 4}) − vD({2}) − vD({4}),
v({1, 3, 4})−vD({3})−vD({4}), v(N )−vD({2})−vD({3})−vD({4})}

= max {1, 2 − 2, 3 − 3, 5 − 4, 6 − 2 − 3, 7 − 2 − 4, 8 − 3 − 4,

10 − 2 − 3 − 4} = 1.

vm({1, 2}) = max
T⊆N :T⊇{1,2}

{
v(T ) − max

B∈Fm
2 (T \S)

∑
R∈B

γB
R vD(R)

}

= max {v({1, 2}), v({1, 2, 3}) − vD({3}), v({1, 2, 4}) − vD({4}),
v(N ) − max{vD({3}) + vD({4}), vD({3, 4})}}

= max {2, 6 − 3, 7 − 4, 10 − max{3 + 4, 8}} = 3.

vm({1, 2, 3}) = max
T⊆N :T⊇{1,2,3}

{
v(T ) − max

B∈Fm
3 (T \S)

∑
R∈B

γB
R vD(R)

}

= max {v({1, 2, 3}), v(N ) − vD({4})}
= max {6, 10 − 4} = 6.
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k-core covers and the core 153

The following proposition gives some straightforward implications of the defini-
tions of utopia and minimal rights games. In fact, statement (a) implies that utopia
and minimal rights games generalize the utopia values and minimal rights of players.
We recall that a game v ∈ GN is monotone if v(S) ≤ v(T ) for every S ⊆ T ⊆ N . A
game v ∈ GN is convex (see Shapley 1971) if v(S ∪ {i}) − v(S) ≤ v(T ∪ {i}) − v(T )

for every i ∈ N and S ⊆ T ⊆ N\{i}.
Proposition 3.3 Let v ∈ GN . Then,

(a) vD({i}) = Mi (v) and vm({i}) = mi (v) for every i ∈ N.
(b) vD(N ) = vm(N ) = v(N ) and vm(N\{i}) = v(N\{i}) for all i ∈ N.
(c) vm ≥ v.
(d) If v is monotone, then, vD is non-negative and monotone.
(e) If v is convex, then, vm = v.

Proof The first three items are straightforward.

(d) Let v be monotone. Then, vD(S) = v(N )−v(N\S) ≥ 0 for all S ⊆ N . If S ⊆ T ,
then, N\S ⊇ N\T , and vD(S) = v(N )− v(N\S) ≤ v(N )− v(N\T ) = vD(T );
therefore, vD is monotone.

(e) Let v be convex. First, we show that for all S ⊆ R ⊆ N ,

v(S) ≥ v(R) −
∑
i∈R\S

vD({i}) (3)

or, equivalently, that v(R) − v(S) ≤ ∑
i∈R\S vD({i}). Let R\S = {i1, . . . , ir }.

Then,

v(R) − v(S) = v(S ∪ (R\S)) − v(S)

= v(S ∪ {i1, . . . , ir }) − v(S ∪ {i1, . . . , ir−1})
+ v(S ∪ {i1, . . . , ir−1}) − v(S ∪ {i1, . . . , ir−2}) + . . .

+ v(S ∪ {i1}) − v(S)

≤ v(N ) − v(N\{ir }) + v(N ) − v(N\{ir−1}) + . . .

+ v(N ) − v(N\{i1})
=

∑
i∈R\S

vD({i})

where the inequality follows from convexity of v.
Next, we show that for all S ⊆ R ⊆ N ,

max
B∈Fm|S|(R\S)

∑
U∈B

γB
U vD(U ) =

∑
i∈R\S

vD({i}). (4)

Consider B ∈ Fm
|S|(R\S). Note that for all U ∈ B, vD(U ) ≤ ∑

i∈U vD({i}) as a
consequence of applying Inequality (3) to R = N and S = N\U . Then,
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154 E. Sánchez-Rodríguez et al.

∑
U∈B

γB
U vD(U ) ≤

∑
U∈B

γB
U

∑
i∈U

vD({i}) =
∑
i∈R\S

vD({i}).

Clearly, with B = {{i} : i ∈ R\S} ∈ Fm
|S|(R\S) and γB

U = 1 for every U ∈ B,
we have

∑
U∈B γB

U vD(U ) = ∑
i∈R\S vD({i}) and (4) is proved.

Then,

vm(S) = max
T⊆N :T⊇S

{
v(T ) − max

B∈Fm|S|(T \S)

∑
R∈B

γB
R vD(R)

}

= max
T⊆N :T⊇S

⎧⎨
⎩v(T ) −

∑
i∈T \S

vD({i})
⎫⎬
⎭

= v(S),

where the last equality follows from Inequality (3) and Proposition 3.3 (c). ��

3.2 k-core covers

This subsection introduces the k-core cover of a TU-game v ∈ GN , where k is a
natural number between 0 and |N |. The k-core cover is the set of efficient allocations
in which every coalition of size less than or equal to k gets an amount no lower than
its value of the minimal rights game and no higher than its value of the utopia game.
Formally, we have

Definition 3.4 Let v ∈ GN and k ∈ {0, 1, 2, . . . , |N |}. The k-core cover of v, CCk(v),
is defined by

CCk(v) =
{
x ∈ R

N :
∑

i∈N xi = v(N ) and

vm(S) ≤ ∑
i∈S xi ≤ vD(S) for every S ⊆ N with |S| ≤ k

}
.

Note that CC0(v) = {
x ∈ R

N : ∑
i∈N xi = v(N )

}
, CC1(v) = CC(v), and

CC|N |−1(v) = CC|N |(v).

Remark 3.1 Equivalently, the k-core cover can be recursively defined as follows.

1. CC0(v) = {
x ∈ R

N : ∑
i∈N xi = v(N )

}
.

2. For k = 1, . . . , |N |,

CCk(v)=
{
x ∈CCk−1(v) : vm(S)≤

∑
i∈S

xi ≤vD(S) for every S⊆N with |S|=k

}
.

The following result states that any k-core cover is a core catcher.

Theorem 3.5 Let v ∈ GN . Then,

∅ �= CC0(v) ⊇ CC1(v) ⊇ CC2(v) ⊇ . . . ⊇ CC|N |−1(v) = CC|N |(v) = Core(v).
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k-core covers and the core 155

Proof Clearly, we only have to show the last equality.
First, we show “⊆”. For this, let x ∈ CC|N |(v). We show that x ∈ Core(v). Note

that
∑

i∈N xi = v(N ) and for every S ⊆ N ,
∑

i∈S xi ≥ vm(S) ≥ v(S) where the last
inequality follows from Proposition 3.3 (c). Therefore, x ∈ Core(v).

Second, we show “⊇”. Let x ∈ Core(v). We show that x ∈ CC|N |(v). Note that∑
i∈N xi = v(N ), hence, we only have to show that vm(S) ≤ ∑

i∈S xi ≤ vD(S) for
every S ⊆ N . Let S ⊆ N . To see that

∑
i∈S xi ≤ vD(S), note that

∑
i∈S

xi =
∑
i∈N

xi −
∑

i∈N\S
xi = v(N ) −

∑
i∈N\S

xi ≤ v(N ) − v(N\S) = vD(S). (5)

To show that
∑

i∈S xi ≥ vm(S), let T ⊆ N with S ⊆ T . Then, for every B ∈
Fm

|S|(T \S), we have that

v(T )≤
∑
i∈T

xi =
∑
i∈S

xi +
∑
i∈T \S

xi =
∑
i∈S

xi +
∑
R∈B

γB
R

∑
i∈R

xi ≤
∑
i∈S

xi +
∑
R∈B

γB
R vD(R),

where the second inequality follows from Eq. (5). Hence,

∑
i∈S

xi ≥ v(T ) −
∑
R∈B

γB
R vD(R) for every B ∈ Fm

|S|(T \S).

Consequently,
∑

i∈S xi ≥ maxT⊆N :T⊇S{v(T )−maxB∈Fm|S|(T \S)

∑
R∈B γB

R vD(R)} =
vm(S). ��

Using Theorem 3.5, it can be shown that the core of a game coincides with the core
of its minimal rights game.

Theorem 3.6 Let v ∈ GN and vm its minimal rights game. Then, Core(v) =
Core(vm).

Proof Note that Core(vm) ⊆ Core(v) since for all S ⊆ N , vm(S) ≥ v(S) while
vm(N ) = v(N ). Then, we only have to show that Core(vm) ⊇ Core(v). Let x ∈
Core(v). Then, Core(v) = CC|N |(v) by Theorem 3.5 and

∑
i∈S xi ≥ vm(S) for all

S ⊆ N . Consequently, x ∈ Core(vm). ��
Moreover, it turns out that the core of a game with set of players N coincides with4

the � |N |
2 �-core cover. From this fact, one can easily derive the coincidence of the core

and the 1-core cover for arbitrary 3-player games (cf. Theorem 2.1 (ii)).

Theorem 3.7 Let v ∈ GN . Then, Core(v) = CC� |N |
2 �(v).

Proof Using Theorem 3.5, it is sufficient to show that Core(v) ⊇ CC� |N |
2 �(v). Let

x ∈ CC� |N |
2 �(v). Clearly,

∑
i∈N xi = v(N ). Let S ⊆ N with |S| ≤ � |N |

2 �. Then,

4 For each r ∈ R, �r� denotes the largest integer below or equal to r .
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156 E. Sánchez-Rodríguez et al.

∑
i∈S

xi ≥ vm(S) ≥ v(S),

where the first inequality is a direct consequence of the definition of � |N |
2 �-core cover

and the second inequality follows from Proposition 3.3 (c). Next, let S ⊆ N with
|S| > � |N |

2 �. Then,
∑
i∈S

xi =
∑
i∈N

xi −
∑

i∈N\S
xi = v(N ) −

∑
i∈N\S

xi ≥ v(N ) − vD(N\S) = v(S)

where the inequality is a direct consequence of x ∈ CC� |N |
2 �(v) and 0 < |N\S| ≤

� |N |
2 �. Consequently, x ∈ Core(v). ��
As an immediate consequence of Theorem 3.5 and Theorem 3.7, we have the

following result.

Corollary 3.8 Let v ∈ GN . Then, CCk(v) = Core(v) for all k ≥ �|N |
2 �.

Since, by Theorem 3.5, the k-core cover is contained in the l-core cover for every
l < k, it is useful to define the smallest nonempty k-core cover of a game.

Definition 3.9 For v ∈ GN , the least core cover, LCC(v), is defined by LCC(v) =
CCk∗

(v) where k∗ = max{k ∈ {0, 1, . . . , � |N |
2 �} : CCk(v) �= ∅}.

Note that the least core cover is a nonempty core catcher. Besides, if v is balanced,
then, LCC(v) = Core(v). The following example illustrates the least core cover of a
game with an empty core.

Example 3.10 Consider the 6-player game v ∈ GN where the characteristic function
is given by

v(S) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if |S| = 1,

2 if |S| = 2,

5 if |S| = 3,

4 if |S| = 4,

5 if |S| = 5,

8 if |S| = 6.

First, we show that this game has an empty core. For this, suppose that the core is
nonempty and let x ∈ Core(v). Then, x1 + x2 + x3 ≥ 5 and x4 + x5 + x6 ≥ 5.
Adding both inequalities and taking into account that

∑6
i=1 xi = v(N ) = 8 since

x ∈ Core(v), we obtain 8 = ∑6
i=1 xi ≥ 10, establishing a contradiction. According

to Theorem 3.7, CC3(v) = Core(v) = ∅. It turns out that the game has a nonempty
2-core cover. We subsequently compute the 1- and 2-core covers.

Note that vD({i}) = v(N ) − v(N\{i}) = 3 for all i ∈ N and

vm({i}) = max{v({i}),max{v(S) −
∑

j∈S\{i}
vD({ j}) : S ⊆ N , i ∈ S}} = 0
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for all i ∈ N . Then, vm({i}) ≤ vD({i}) for all i ∈ N and
∑

i∈N vm({i}) ≤ v(N ) ≤∑
i∈N vD({i}). Therefore, CC1(v) �= ∅ and it is given by5

CC1(v) = con({3e{i} + 3e{ j} + 2e{k} : i, j, k ∈ N , |{i, j, k}| = 3}).

Next, we compute the 2-core cover. Note that vD({i, j}) = v(N )−v(N\{i, j}) = 8−
4 = 4 for all i, j ∈ N with i �= j . Moreover, for all i, j ∈ N with i �= j and all S ⊆ N
with i, j ∈ S and |S| ≥ 4,we have that v(S)−maxB∈Fm

2 (S\{i, j})
∑

R∈B γB
R vD(R) ≤ 0.

Thus, for all i, j ∈ N with i �= j ,

vm({i, j}) = max{v({i, j}),max{v({i, j, k}) − vD({k}) : k ∈ N\{i, j}}} = 2.

Then, for all i, j ∈ N with i �= j, vm({i, j}) ≤ vD({i, j}) and

CC2(v) = con({eN + 2e{i} : i ∈ N }) = LCC(v).

4 k-compromise admissibility and k-compromise stability

4.1 k-compromise admissible games

Definition 4.1 For k ∈ {0, 1, . . . , |N |}, a game v ∈ GN is k-compromise admissible
if CCk(v) is nonempty.

Note that any game is 0-compromise admissible. Before characterizing k-compromise
admissibility, we introduce the concepts of k-core and k-anti core.

Definition 4.2 Let v ∈ GN and k ∈ {1, . . . , |N |}. The k-core of v, Corek(v), is the
set of efficient allocations that are stable for coalitions of size smaller than or equal to
k. Formally,

Corek(v) =
{
x ∈ R

N :
∑
i∈N

xi =v(N ),
∑
i∈S

xi ≥ v(S) for all S ⊆ N with |S| ≤ k

}
.

Similarly, the k-anti core of vD , ACorek(vD), is defined by

ACorek(vD)=
{
x ∈R

N :
∑
i∈N

xi =vD(N ),
∑
i∈S

xi ≤vD(S) for all S⊆N with |S|≤k

}
.

The following result follows directly from the definitions of k-core and k-anti core.

Proposition 4.3 Let v ∈ GN . Then,

Core1(v) ⊇ Core2(v) ⊇ . . . ⊇ Core|N |(v) = Core(v) and

ACore1(vD) ⊇ ACore2(vD) ⊇ . . . ⊇ ACore|N |(vD) = Core(v).

5 Given a finite set A ⊆ R
N , con(A) denotes the convex hull of A.
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As an immediate consequence, we have

Theorem 4.4 Let v ∈ GN and k ∈ {1, . . . , |N |}. Then, CCk(v) = Corek(vm) ∩
ACorek(vD) and Core(v) = Core� |N |

2 �(vm) ∩ ACore� |N |
2 �(vD).

Next, we introduce the concepts of k-balanced games and k-dual balanced games
and show that k-balancedness (k-dual balancedness) is a sufficient and necessary
condition for non-emptiness of the k-core (k-anti core).

Definition 4.5 Let v ∈ GN and k ∈ {1, . . . , |N |}.
• v is k-balanced if for all balanced families B ∈ Fk(N ) and all {δS}S∈B ∈ �(B),

∑
S∈B

δSv(S) ≤ v(N ).

• v is k-dual balanced if for all balanced families B ∈ Fk(N ) and all {δS}S∈B ∈
�(B),

∑
S∈B

δSv(S) ≥ v(N ).

Just like for balanced games, one defines k-minimal balanced and k-minimal dual
balanced games based on k-minimal balanced families.

The following theorem extends the characterization of Bondareva-Shapley of non-
emptiness of the core (Bondareva 1963; Shapley 1967) to the nonemptiness of the
k-core and the k-anti core. The proof follows the same lines as the proof in Shapley
(1967) and is, therefore, omitted.

Theorem 4.6 Let v ∈ GN and k ∈ {1, . . . , |N |}. Then,
(a) Corek(v) �= ∅ if, and only if, v is minimally k-balanced.
(b) ACorek(vD) �= ∅ if, and only if, vD is minimally k-dual balanced.

Example 4.7 Consider the 6-player game v ∈ GN where the characteristic function
is given by

v(S) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if |S| = 1,

3 if |S| = 2 and 1 ∈ S,

2 if |S| = 2, 1 �∈ S, and 2 ∈ S,

1 if |S| = 2, 1 �∈ S, and 2 �∈ S,

0 if |S| = 3,

4.75 if |S| = 4 and 1, 2 ∈ S,

3.75 if |S| = 4, 1 ∈ S, and 2 �∈ S,

2.75 if |S| = 4 and 1 �∈ S,

3.25 if |S| = 5,

6.25 if S = N .
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It turns out that Core2(vm) �= ∅, ACore2(vD) �= ∅, and CC2(v) = Core2(vm) ∩
ACore2(vD) = ∅. To see this we give the values of the minimal rights game and the
utopia game for coalitions of cardinality at most 2. We have that vm(S) = v(S) for
every S ⊆ N with |S| ≤ 2 and

vD(S) =

⎧⎪⎪⎨
⎪⎪⎩
3 if |S| = 1,
3.5 if |S| = 2 and 1 ∈ S,

2.5 if |S| = 2, 1 �∈ S, and 2 ∈ S,

1.5 if |S| = 2 and 1, 2 �∈ S.

Note that (2.5, 1.5, 0.5, 0.5, 0.5, 0.75) ∈ Core2(vm) and (2.75, 0.75, 0.75, 0.75, 0.75,
0.5) ∈ ACore2(vD). However, CC2(v) = Core2(vm)∩ACore2(vD) = ∅. To see this,
suppose that the 2-core cover is nonempty and let x ∈ CC2(v). Then, x1 + x3 ≥ 3,
x1+x4 ≥ 3, x2+x5 ≥ 2, x2+x6 ≥ 2 and x1+x2 ≤ 3.5. Adding the first four inequali-
ties and subtracting the last one, and taking into account that

∑6
i=1 xi = v(N ) = 6.25,

we obtain 6.25 = ∑6
i=1 xi ≥ 6.5.

Next, we characterize the class of k-compromise admissible games. Note that k-
compromise admissibility, for k ≥ �|N |

2 �, is equivalent to balancedness by Theo-
rem 3.7 which is equivalent to balancedness of the minimal rights game by The-
orem 3.6. Therefore, we restrict our attention to k-compromise admissibility for
k ∈ {1, . . . , � |N |

2 � − 1}.We denote by Fk,|N |−k(N ) the set of balanced families on
N whose elements have cardinality at most k, or at least |N | − k. We denote by
Fm
k,|N |−k(N ) the corresponding set of minimal balanced families. Theorem 4.8 can be

shown following the same lines as the proof of in Shapley (1967) using the Duality
Theorem for linear programming problems or, alternatively, making use of Farkas’
Lemma. For this reason, the proof is omitted.

Theorem 4.8 Let v ∈ GN and k ∈ {1, . . . , � |N |
2 � − 1}. Then, v is k-compromise

admissible if, and only if, the following condition is satisfied:

∑
R∈B

0<|R|≤k

γB
R vm(R) −

∑
R∈B|N |−k≤|R|<|N |

γB
R vD(N\R) ≤

(
1 −

∑
R∈B|N |−k≤|R|<|N |

γB
R

)
v(N )

for every B ∈ Fm
k,|N |−k(N ), B �= {N }.

Remark 4.1 (i) Observe that Theorem 4.8 generalizes the characterization of 1-
compromise stability given in Eq. (1). Recall that, by Proposition 3.3 (a),mi (v) =
vm({i}) and Mi (v) = vD({i}) for every i ∈ N . Note that Fm

1,|N |−1(N ) consists of
the families: {{i} : i ∈ N }, {{i}, N\{i}} for every i ∈ N , {N\{i} : i ∈ N } and
{N }.
If B = {{i}, N\{i}} with i ∈ N , then, γB{i} = γB

N\{i} = 1 and the condition in
Theorem 4.8 becomes mi (v) = vm({i}) ≤ vD({i}) = Mi (v).
If B = {{i} : i ∈ N }, then, γB{i} = 1 for every i ∈ N and the condition in
Theorem 4.8 becomes

∑
i∈N mi (v) = ∑

i∈N vm({i}) ≤ v(N ).
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If B = {N\{i} : i ∈ N }, then, γB
N\{i} = 1

|N |−1 for every i ∈ N and the condition
in Theorem 4.8 becomes

∑
i∈N Mi (v) = ∑

i∈N vD({i}) ≥ v(N ).
(ii) It can be easily seen that the conditions (a) vm(S) ≤ vD(S) for all S ⊆ N such that

|S| ≤ k and (b)
∑

S∈B γB
S vm(S) ≤ v(N ) ≤ ∑

S∈B γB
S vD(S) for all B ∈ Fm

k (N )

are necessary for k-compromise admissibility. They are however not sufficient for
k > 1 as we see below.
Note that the game in Example 4.7 satisfies vm(S) ≤ vD(S) for all S ⊆
N such that |S| ≤ 2 and

∑
S∈B γB

S vm(S) ≤ v(N ) ≤ ∑
S∈B γB

S vD(S)

for all B ∈ Fm
2 (N ). However, CC2(v) = ∅. To see this, we take B =

{{1, 3}, {1, 4}, {2, 5}, {2, 6}, {3, 4, 5, 6}} ∈ Fm
2,|N |−2(N ) where γB

S = 1
2 for every

S ∈ B. Then,∑
R∈B

0<|R|≤2

γB
R vm(R) −

∑
R∈B|N |−2≤|R|<|N |

γB
R vD(N\R)

= 1

2
(vm({1, 3})+vm({1, 4})+vm({2, 5}) + vm({2, 6}) − vD(N\{3, 4, 5, 6}))

= 1

2
(3 + 3 + 2 + 2 − 3.5) = 6.5

2

>
6.25

2
=

(
1 − 1

2

)
6.25 =

⎛
⎜⎜⎝1 −

∑
R∈B|N |−2≤|R|<|N |

γB
R

⎞
⎟⎟⎠ v(N ).

4.2 k-compromise stable games

Quant et al. (2005) introduce and characterize the class of compromise stable games,
which are those games that are compromise admissible and for which the core and the
core cover coincide. Here, we perform a similar analysis for so called k-compromise
stable games.

Definition 4.9 A k-compromise admissible game v ∈ GN is called k-compromise
stable if CCk(v) = Core(v).

Note that a k-compromise stable game is k-compromise admissible and that, con-
sequently, the k-core cover, which coincides with the core, is nonempty and the game
is balanced. The game in Example 3.10 has an empty core and, therefore, it is not
k-compromise stable for any k.

Example 4.10 Reconsider the game v ∈ GN in Example 3.2. It is readily
checked that this game is 1-compromise stable since Core(v) = CC1(v) =
con({(2, 2, 3, 3), (2, 2, 2, 4), (2, 1, 3, 4), (1, 2, 3, 4)}).

Note that for each balanced game, the game is � |N |
2 �-compromise stable. Our main

theorem in this section will provide necessary and sufficient conditions for a balanced
game to be k-compromise stable with k ∈ {1, . . . , � |N |

2 �}. The next lemma provides
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necessary and sufficient conditions for Corek(vm) = Core(v) and ACorek(vD) =
Core(v).

Lemma 4.11 Let v ∈ GN be a balanced game and k ∈ {1, . . . , � |N |
2 �}. Then,

(a) Corek(vm) = Core(v) if, and only if, v(S) ≤ maxB∈Fm
k (S)

∑
R∈B γB

R vm(R) for
all S ⊆ N.

(b) ACorek(vD) = Core(v) if, and only if, v(S) ≤ v(N ) − minB∈Fm
k (N\S)

∑
R∈B

γB
R vD(R) for all S ⊆ N.

(c) Corek(vm) = Core(v) = ACorek(vD) if, and only if,
v(S) ≤ min

{
maxB∈Fm

k (S)

∑
R∈B γB

R vm(R), v(N ) − minB∈Fm
k (N\S)

∑
R∈B

γB
R vD(R)

}
for all S ⊆ N.

Proof Weprove (a) in detail. The proof of (b) can be done following similar arguments
and (c) is an immediate consequence of (a) and (b) combined. First, we show the “if”
part. Let

v(S) ≤ max
B∈Fm

k (S)

∑
R∈B

γB
R vm(R) (6)

for all S ⊆ N . We show that Corek(vm) = Core(v). By Proposition 4.3 and Theo-
rem 3.6, we know that Corek(vm) ⊇ Core(vm) = Core(v). Therefore, we only have
to prove that Corek(vm) ⊆ Core(v). Let x ∈ Corek(vm). Then,

∑
i∈N xi = v(N ).

Let S ⊆ N be such that k < |S|. We show that
∑

i∈S xi ≥ v(S). Note that
vm(R) ≤ ∑

i∈R xi for every R ⊆ N with |R| ≤ k and for all B ∈ Fm
k (S),∑

i∈S
xi =

∑
R∈B

γB
R

∑
i∈R

xi ≥
∑
R∈B

γB
R vm(R). (7)

Therefore, using (6),
∑

i∈S xi ≥ maxB∈Fm
k (S)

∑
R∈B γB

R vm(R) ≥ v(S).

Next, we show the “only if” part. LetCorek(vm) = Core(v). First, note thatCorek(vm)

is nonempty and can be obtained as the set of optimal solutions of the linear program-
ming problem (P1):

(P1) min
∑
i∈N

xi

∑
i∈R

xi ≥ vm(R) for every R ⊆ N , |R| ≤ k,

∑
i∈N

xi ≥ v(N ).

Let S ⊆ N . If 1 ≤ |S| ≤ k, then, clearly,

v(S) ≤ vm(S) ≤ max
B∈Fm

k (S)

∑
R∈B

γB
R vm(R)

where the second inequality follows from the fact that {S} ∈ Fm
k (S) with γ

{S}
S = 1.

Take now |S| ≥ k + 1. Since Corek(vm) = Core(v) = Core(vm), we know that
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∑
i∈S xi ≥ vm(S) for every x ∈ Corek(vm). Therefore, we can now modify problem

(P1) into problem (P2)

(P2) min
∑
i∈N

xi

∑
i∈R

xi ≥ vm(R) for every R ⊆ N , |R| ≤ k,

∑
i∈S

xi ≥ vm(S) for every S ⊆ N , |S| ≥ k + 1,

∑
i∈N

xi ≥ v(N )

where for each S ⊆ N with |S| ≥ k + 1, the inequality constraint
∑

i∈S xi ≥ vm(S)

is redundant. As a consequence, for every S ⊆ N with |S| ≥ k + 1, there exists a
non-negative linear combination of the constraint inequalities in (P1) such that the
linear combination makes the inequality

∑
i∈S xi ≥ vm(S) redundant. That is, there

exists {δR}R⊆S, |R|≤k with δR ≥ 0 for each R ⊆ S with |R| ≤ k and
∑

R δR = 1, or
equivalently, there is B ∈ Fk(S) and {δR}R∈B ∈ �(B) such that

∑
i∈S

xi =
∑
R∈B

δR
∑
i∈R

xi ≥
∑
R∈B

δRvm(R) ≥ vm(S).

Then,v(S) ≤ vm(S) ≤ maxB∈Fk(S) max{δR}R∈B∈�(B)

∑
R∈B δRvm(R)=maxB∈Fm

k (S)∑
R∈B γB

R vm(R), where the first inequality is a direct consequence of Proposition 3.3
(c) and the last equality follows from Eq. (2) applied to vm . ��

Note that Lemma 4.11 (c) provides a sufficient condition for k-compromise admis-
sibility. The following result provides a full characterization of the class of k-
compromise stable games.

Theorem 4.12 Let v ∈ GN be a balanced game and k ∈ {1, . . . , � |N |
2 �}. Then, v is

k-compromise stable if, and only if, for every S ⊆ N,

v(S) ≤ max

{
max

B∈Fm
k (S)

∑
R∈B

γB
R vm(R), v(N ) − min

B∈Fm
k (N\S)

∑
R∈B

γB
R vD(R)

}
. (8)

Proof We start showing the “only if” part. Let k ∈ {1, . . . , � |N |
2 �} and assume that

CCk(v) = Core(v). We show that (8) is satisfied.
Let S ⊆ N be such that |S| ≤ k. Then,

v(S) ≤ vm(S) ≤ max
B∈Fm

k (S)

∑
R∈B

γB
R vm(R)

where the second inequality follows by considering B = {S} and γB
S = 1. Therefore,

(8) follows.
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Let S ⊆ N be such that |S| > k. If v(S) ≤ maxB∈Fm
k (S)

∑
R∈B γB

R vm(R), then (8)
follows. Therefore, assume that

v(S) > max
B∈Fm

k (S)

∑
R∈B

γB
R vm(R). (9)

Note that Theorem 3.5 and the assumption CCk(v) = Core(v) imply CCk(v) =
CCl(v) = Core(v) for all l > k. Therefore, the inequalities

∑
i∈R xi ≥ vm(R),

with |R| > k, are redundant in the description of CCl(v) for every l ≥ |R| and, in
particular,

∑
i∈S xi ≥ vm(S) is also redundant in the description of CCl(v) for every

l ≥ |S|. Now, suppose that we can derive
∑

i∈S xi ≥ vm(S) as a positive linear com-
bination of inequalities of the form

∑
i∈R xi ≥ vm(R) with R ⊆ N , |R| ≤ k. Then,

there exists B1 ∈ Fm
k (S) such that

∑
i∈S

xi =
∑
R∈B1

γ
B1
R

∑
i∈R

xi ≥
∑
R∈B1

γ
B1
R vm(R) ≥ vm(S) ≥ v(S),

establishing a contradiction with (9). Therefore, there must exist a linear combination
of inequalities of the form

∑
i∈R xi ≤ vD(R) with R ⊆ N , |R| ≤ k, that makes∑

i∈S xi ≥ vm(S) redundant. Then, there exists B2 ∈ Fm
k (N\S) such that

∑
i∈S

xi =
∑
i∈N

xi −
∑

i∈N\S
xi = v(N ) −

∑
R∈B2

γ
B2
R

∑
i∈R

xi ≥ v(N ) −
∑
R∈B2

γ
B2
R vD(R)

≥ vm(S) ≥ v(S).

Hence, it follows that v(S) ≤ v(N )−minB∈Fm
k (N\S)

∑
R∈B γB

R vD(R) and (8) follows.
To conclude, we show the “if” part. Assume that

v(S) ≤ max

{
max

B∈Fm
k (S)

∑
R∈B

γB
R vm(R), v(N ) − min

B∈Fm
k (N\S)

∑
R∈B

γB
R vD(R)

}

for every S ⊆ N .We have to show that CCk(v) = Core(v). By Theorem 3.5, it suffices
to prove that CCk(v) ⊆ Core(v). Let x ∈ CCk(v), then,

∑
i∈N

xi = v(N ) (10)

and vm(R) ≤ ∑
i∈R xi ≤ vD(R) for every R ⊆ N with |R| ≤ k. We have to show

that
∑

i∈S xi ≥ v(S) for every S ⊆ N .
First, let S ⊆ N with |S| ≤ k, then,

∑
i∈S

xi ≥ vm(S) ≥ v(S). (11)
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Second, let S ⊆ N with |S| ≥ |N | − k. Then, |N\S| ≤ k and

∑
i∈S

xi =
∑
i∈N

xi −
∑

i∈N\S
xi = v(N ) −

∑
i∈N\S

xi ≥ v(N ) − vD(N\S) = v(S) (12)

where the first inequality follows from the fact that
∑

i∈R xi ≤ vD(R) for every R ⊆ N
with |R| ≤ k.

Third, let S ⊆ N with k < |S| < |N | − k. We distinguish between two situations:

1. maxB∈Fm
k (S)

∑
R∈B γB

R vm(R) ≥ v(N ) − minB∈Fm
k (N\S)

∑
R∈B γB

R vD(R).

By Condition (8), we have that v(S) ≤ maxB∈Fm
k (S)

∑
R∈B γB

R vm(R). Then, for

B̄ ∈ argmaxB∈Fm
k (S)

∑
R∈B γB

R vm(R), it follows that

∑
i∈S

xi =
∑
R∈B̄

γ B̄
R

∑
i∈R

xi ≥
∑
R∈B̄

γ B̄
R vm(R) = max

B∈Fm
k (S)

∑
R∈B

γB
R vm(R) ≥ v(S),

(13)
where the inequality follows from the fact that

∑
i∈R xi ≥ vm(R) for every R ⊆ N

with |R| ≤ k.
2. v(N ) − minB∈Fm

k (N\S)

∑
R∈B γB

R vD(R) > maxB∈Fm
k (S)

∑
R∈B γB

R vm(R).

By Condition (8), we have that v(S) ≤ v(N ) − minB∈Fm
k (N\S)

∑
R∈B γB

R vD(R).

Then, for B̄ ∈ argminB∈Fm
k (N\S)

∑
R∈B γB

R vD(R), it follows that

∑
i∈S

xi =
∑
i∈N

xi −
∑

i∈N\S
xi = v(N ) −

∑
R∈B̄

γ B̄
R

∑
i∈R

xi

≥ v(N ) −
∑
R∈B̄

γ B̄
R vD(R) = v(N ) − min

B∈Fm
k (N\S)

∑
R∈B

γB
R vD(R) ≥ v(S),

(14)

where the inequality follows from the fact that
∑

i∈R xi ≤ vD(R) for every R ⊆ N
with |R| ≤ k. ��
Note that, for the case k = 1, we have that the characterization in Theorem 4.12

boils down to Theorem 2.2.

Example 4.13 Consider the 6-player game v ∈ GN given by

v(S) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if |S| = 1,

2 if |S| = 2,

2 if |S| = 3,

5 if |S| = 4,

15 if |S| = 5,

20 if |S| = 6.
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Table 2 Game, utopia game, and minimal rights game in Example 4.13

|S| 1 2 3 4 5 6

v(S) 0 2 2 5 15 20

vD(S) 5 15 18 18 20 20

vm (S) 0 2 2 10 15 20

maxB∈Fm
2 (S)

∑
R∈B γB

R vm (R) 0 2 3 4 5 8

v(N ) − minB∈Fm
2 (N\S)

∑
R∈B γB

R vD(R) −5 0 5 10 15 20

It turns out that this game is 2-compromise stable, but not 1-compromise stable,
that is, Core(v) �= CC1(v) while Core(v) = CC2(v) = Core2(vm) ∩ ACore2(vD).
In Table 2, we provide the values of v, vD, vm , together with the values of
maxB∈Fm

2 (S)

∑
R∈B γB

R vm(R) and v(N ) −minB∈Fm
2 (N\S)

∑
R∈B γB

R vD(R) for every

S ⊆ N . It follows, by Theorem 4.12, that Core(v) = CC2(v). However, by
Lemma 4.11 (a) and (b), we have that Core2(vm) �= Core(v) and ACore2(vD) �=
Core(v).

5 Assignment games and 2-compromise stability

This section shows that assignment games as introduced in Shapley (1967) are 2-
compromise stable. In an assignment situation there is a two sided market with finite
and disjoint set of buyers, M , and of sellers, M ′. We denote m = |M |, m′ = |M ′|,
and |N | = m +m′. The worth obtained when one buyer i ∈ M and one seller j ∈ M ′
decide to cooperate is ai j ≥ 0. These values can be represented in an m × m′ matrix
A. Following the notation in Núñez and Rafels (2002), a matching between coalitions
S ⊆ M and T ⊆ M ′ is a subsetμ of S×T such that each player belongs to at most one
pair in μ. Given two coalitions S ⊆ M and T ⊆ M ′, we denote the set of matchings
between S and T by M(S, T ); then, the maximum value that S ∪ T can obtain from
cooperation is maxμ∈M(S,T )

∑
(i, j)∈μ ai j .

Given an assignment situation ((M, M ′), A), the associated assignment game (M∪
M ′, v) is defined by

v(S ∪ T ) = max
μ∈M(S,T )

∑
(i, j)∈μ

ai j .

Given an optimalmatchingμ ∈ M(M, M ′) forM andM ′, Shapley and Shubik (1972)
show that the nonempty core of the assignment game v is given by

Core(v) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(x, y) ∈ R
M×M ′

∣∣∣∣∣∣∣∣∣

xi ≥ 0 for all i ∈ M , y j ≥ 0 for all j ∈ M ′,
xi + y j = ai j if (i, j) ∈ μ,

xi + y j ≥ ai j if (i, j) �∈ μ,

xi = 0 if i is not assigned by μ, y j = 0 if j is not assigned by μ

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
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Theorem 5.1 Assignment games are 2-compromise stable.

Proof Let ((M, M ′), A) be an assignment situation and let (M ∪ M ′, v) be the
associated assignment game. It suffices to show that Core(v) = CC2(v). By The-
orem 3.5, we know that Core(v) ⊆ CC2(v). Therefore, we only need to show that
Core(v) ⊇ CC2(v). Let μ ∈ M(M, M ′) be an optimal matching for M and M ′, let
(x, y) ∈ CC2(v), and let i ∈ M and j ∈ M ′. Clearly, vm({i}) ≤ xi ≤ vD({i}) and
vm({ j}) ≤ y j ≤ vD({ j}) for every i ∈ M and j ∈ M ′. Note that vm({i}) ≥ v({i}) = 0,
and vm({ j}) ≥ v({ j}) = 0, thus,

xi ≥ 0 for all i ∈ M and y j ≥ 0 for all j ∈ M ′.

First, let (i, j) ∈ μ. Then,

vD({i, j}) = v(M ∪ M ′) − v((M\{i}) ∪ (M ′\{ j})) = ai j = v({i, j}) ≤ vm({i, j})
≤ vD({i, j})

where the second equality follows because μ is optimal for M and M ′ and (i, j) ∈ μ.
Therefore, all inequalities are equalities. Since (x, y) ∈ CC2(v), we have that ai j =
vm({i, j}) ≤ xi + y j ≤ vD({i, j}) = ai j and

xi + y j = ai j .

Second, let (i, j) �∈ μ. Then, vm({i, j}) ≥ v({i, j}) = ai j . Since xi + x j ≥ vm({i, j}),
we have that

xi + y j ≥ ai j .

Third, let i ∈ M be not assigned by μ. Then,

vD({i}) = v(M ∪ M ′) − v((M\{i}) ∪ M ′) = 0 = v({i}) ≤ vm({i}) ≤ vD({i})

where the second equality follows because μ is optimal for M and M ′ and i is not
assigned by μ. Therefore, all inequalities are equalities. Since (x, y) ∈ CC2(v), we
have that 0 = vm({i}) ≤ xi ≤ vD({i}) = 0 and

xi = 0.

Analogously, if j ∈ M ′ is not assigned by μ, then, vm({ j}) = 0 = vD({ j}) and

y j = 0.

Therefore, (x, y) ∈ Core(v). ��
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Remark 5.1 In fact, it can be seen that the core of an assignment game coincides
with the 2-core of the corresponding minimal rights game and with the 2-anti core of
the utopia game. Therefore, the class of assignment games satisfies the conditions in
Lemma 4.11 (c).

The following example illustrates that assignment games can be 1-compromise
stable.

Example 5.2 Consider M = {1, 2, 3} and M ′ = {4} and the assignment matrix A =
(1, 1, 1)t . It is easy to check that Core(v) = {(0, 0, 0, 1)} = CC1(v). This game is
both 1- and 2-compromise stable.
Consider M = {1, 2} and M ′ = {3, 4} and the assignment matrix

A =
(
5 3
4 3

)
.

Then, Core(v) = con{(0, 0, 5, 3), (1, 0, 4, 3), (3, 3, 2, 0), (4, 3, 1, 0)} = CC2(v)

while Core(v) �= CC1(v) since (1, 3, 1, 3) ∈ CC1(v)\Core(v). This game is 2-
compromise stable, but not 1-compromise stable.
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