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Abstract In this paper we consider stochastic optimization problems for an ambi-
guity averse decision maker who is uncertain about the parameters of the underlying
process. In a first part we consider problems of optimal stopping under drift ambiguity
for one-dimensional diffusion processes. Analogously to the case of ordinary optimal
stopping problems for one-dimensional Brownian motions we reduce the problem to
the geometric problem of finding the smallest majorant of the reward function in a
two-parameter function space. In a second part we solve optimal stopping problems
when the underlying process may crash down. These problems are reduced to one
optimal stopping problem and one Dynkin game. Examples are discussed.

Keywords Optimal stopping · Ambiguity aversion · Crash-scenario ·
Dynkin games · Diffusion processes

1 Introduction

In most articles dealing with stochastic optimization problems one major assumption
is that the decision maker has full knowledge of the parameter of the underlying
stochastic process. This does not seem to be a realistic assumption in many real world
situations. Therefore, different multiple prior models were studied in the economic
literature in the last years. Here, we want to mention Duffie and Epstein (1992) and
Epstein and Schneider (2003), and refer to Cheng and Riedel (2010) for an economic
discussion and further references.

In this setting it is assumed that the decision maker deals with the uncertainty via a
worst-case approach, that is, she optimizes her reward under the assumption that the
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208 S. Christensen

“market” chooses the worst possible prior. This is a natural assumption, and we also
want to pursue this approach.

A very important class of stochastic optimization problems is given by optimal
stopping problems. These problems arise in many different fields, e.g., in pricing
American-style options, in portfolio optimization, and in sequential statistics. Dis-
crete time problems of optimal stopping in a multiple prior setting were first discussed
in Riedel (2009) and analogous results to the classical ones were proved. In this set-
ting a generalization of the classical best choice problem was treated in detail in
Chudjakow and Riedel (2009). In continuous time the case of an underlying diffusion
with uncertainty about the drift is of special interest. The general theory (includ-
ing adjusted Hamilton-Jacobi-Bellman equations) is developed in Cheng and Riedel
(2010). Some explicit examples are given there, but no systematic way for finding
an analytical solution is described. In Alvarez (2007) the case of monotonic reward
functions for one-dimensional diffusion processes is considered. The restriction to
monotonic reward functions simplifies the problem since only two different worst-
case measures can arise.

Another class of stochastic optimization problems under uncertainty was dealt with
in a series of papers starting with Korn and Wilmott (2002): Portfolio optimization
problems are considered under the assumption that the underlying asset price process
may crash down at a certain (unknown) time point. The decision maker is again
considered to be ambiguity averse in the sense that she tries to choose the best possible
stopping policy out of the worst possible realizations of the crash date. See Korn and
Seifried (2009) for an overview on existing results.

The aim of this article is to treat optimal stopping problems under uncertainty
for underlying one-dimensional diffusion processes. These kinds of problems are of
special interest since they arise in many situations and often allow for an explicit
solution.

The structure of this article is as follows: In Sect. 2 we first review some well-
known facts about the solution of ordinary optimal stopping problems for an under-
lying Brownian motion. These problems can be solved graphically by characterizing
the value function as the smallest concave majorant of the reward function. Then
we treat the optimal stopping problem under ambiguity about the drift in a similar
way: The result is that the value function can be characterized as the smallest majo-
rant of the reward function in a two-parameter class of functions. The main tool is
the use of generalized r -harmonic functions. The proof is inspired by the ideas first
described in Beibel and Lerche (1997). It seems that other standard methods for deal-
ing with optimal stopping problems for diffusions without drift ambiguity [such as
Martin boundary theory as in Salminen (1985), generalized concavity methods as in
Dayanik and Karatzas (2003), or linear programming arguments as in Helmes and
Stockbridge (2010)] are not applicable with minor modifications due to the nonlinear
structure coming from drift ambiguity. After giving an example and characterizing the
worst-case measure, we generalize the results to general one-dimensional diffusion
processes.

In Sect. 3 we introduce the optimal stopping problem under ambiguity about crashes
of the underlying process in the spirit of Korn and Seifried (2009). In this situation
the optimal strategy can be described by two easy strategies: One pre-crash and one
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Optimal decision under ambiguity 209

post-crash strategy. These strategies can be found as solutions of a one-dimensional
Dynkin game and an ordinary optimal stopping problem, which can both be solved
using standard methods. We want to point out that this model is a natural situation
where Dynkin games arise and the theory developed in the last years can be used
fruitfully. As an explicit example we study the valuation of American call-options in
the model with crashes. Here, the post-crash strategy is the well-known threshold-
strategy in the standard Black-Scholes setting. The pre-crash strategy is of the same
type, but the optimal threshold is lower.

2 Optimal stopping under drift ambiguity

2.1 Graphical solution of ordinary optimal stopping problems

Problems of optimal stopping in continuous time are well-studied and the general
theory is well-developed. Nonetheless, the explicit solution to such problems is often
hard to find and the class of explicit examples is very limited. Most of them are
generalizations of the following situation, that allows for an easy geometric solution:

Let (Wt )t≥0 be a standard Brownian motion on a compact interval [a, b] with
absorbing boundary points a and b. We consider the problem of optimal stopping
given by the value function

v(x) = sup
τ

Ex (g(Wτ )1l{τ<∞}), x ∈ [a, b],

where the reward function g : [a, b] → [0,∞) is continuous and the supremum
is taken over all stopping times w.r.t. the natural filtration for (Wt )t≥0. Here and in
the following, Ex denotes taking expectation for the process conditioned to start in
x . In this case it is well-known that the value function v can be characterized as the
smallest concave majorant of g, see Dynkin and Yushkevich (1969). This means that
the problem of optimal stopping can be reduced to finding the smallest majorant of g
in an easy class of functions. For finding the smallest concave majorant of a function
g one only has to consider affine functions, i.e., for each fixed point x ∈ [a, b] the
value of the smallest concave majorant is given by

inf{hc,d(x) : c, d ∈ R, hc,d ≥ g},

where hc,d is an element of the two-parameter class of affine functions of the form
hc,d(y) = cy + d. This problem can be solved geometrically, see Fig. 1. We want to
remark that this problem is indeed a semi-infinite linear programming problem:

min! cx + d

s.t cy + d ≥ g(y) for all y ∈ [a, b].

This gives rise to an efficient method for solving these problems, which can be gen-
eralized in an appropriate way, see Helmes and Stockbridge (2010) for an analytical
method and Christensen (2012) for a numerical point of view.
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Fig. 1 Graph of a function g
(black) and its smallest concave
majorant (blue). (Color figure
online)
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The example described above is important both for theory and applications of
optimal stopping since by studying it one can obtain an intuition for more complex sit-
uations such as finite time horizon problems and multidimensional driving processes,
where numerical methods have to be used in most situations of interest.

The goal of this section is to handle optimal stopping problems with drift ambiguity
for diffusion processes similarly to the ordinary case discussed above. This gives rise
to an easy to handle geometric method for solving optimal stopping problems under
drift ambiguity explicitly.

2.2 Special case: Brownian motion

In the following we use the notation of Cheng and Riedel (2010): Let (Xt )t≥0 be a
Brownian motion under the measure Q, fix κ ≥ 0 and denote by Pκ the set of all
probability measures, that are equivalent to Q with density process of the form

exp

⎛
⎝

t∫

0

θsd Xs − 1/2

t∫

0

θ2
s ds

⎞
⎠

for a progressively measurable process (θt )t≥0 with |θt | ≤ κ for all t ≥ 0. We want to
find the value function

v(x) = sup
τ

inf
P∈Pκ

E
P
x (e

−rτ g(Xτ )1l{τ<∞})

for some fixed discounting rate r > 0 and a measurable reward function g : R →
[0,∞), where E

P
x means taking expectation under the measure P when the process

is started in x . Instead of taking affine functions as in Sect. 2.1 we construct another
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Optimal decision under ambiguity 211

class of appropriate functions based on the minimal r -harmonic functions (introduced
below) for the Brownian motion with drift −κ resp. κ as follows:

Denote the roots of the equation

1/2z2 − κz − r = 0

by α1 < 0 < α2 and the roots of

1/2z2 + κz − r = 0

by β1 < 0 < β2. Then eαi x , i = 1, 2, are the minimal r -harmonic functions for a
Brownian motion with drift −κ , and eβi x , i = 1, 2, the corresponding functions for a
Brownian motion with drift κ . Note that β1 ≤ α1 ≤ 0 ≤ β2 ≤ α2 and β1 = −α2 and
β2 = −α1. For all c ∈ R define the functions hc : R → [0,∞) via

hc(x) =
{

α2
α2−α1

eα1(x−c) − α1
α2−α1

eα2(x−c), if x > c
β2

β2−β1
eβ1(x−c) − β1

β2−β1
eβ2(x−c), if x ≤ c,

and

h∞(x) = eβ1x , h−∞(x) = eα2x .

For c ∈ R, the function hc is constructed by smoothly merging r -harmonic functions
for the Brownian motion with drift κ (for x ≤ c) and −κ (for x > c) at their minimum
in c. By taking derivatives and taking into account that β1 = −α2 and β2 = −α1, one
sees that the function hc is indeed C2.

The set {λhc : c ∈ [−∞,∞], λ ≥ 0} does not form a convex cone for κ > 0. This
is the main difference compared to the case without drift ambiguity. Therefore, the
standard techniques for optimal stopping are not applicable immediately. Nonetheless,
this leads to the right Pκ -supermartingales to work with:

Lemma 1 (i) For all a, b, x ∈ R with a ≤ x ≤ b, c ∈ [−∞,∞], P ∈ Pκ and
τ = inf{t ≥ 0 : Xt �∈ [a, b]} it holds that

E
P
x (e

−rτhc(Xτ )1l{τ<∞}) ≥ hc(x) and E
Pc
x (e

−rτhc(Xτ )1l{τ<∞}) = hc(x),

where the measure Pc is such that

d Xt = −κsgn(Xt − c)dt + dW c
t

for a Brownian motion W c under Pc.
(ii) For all c ∈ [−∞,∞] and all stopping times τ it holds that

E
Pc
x (e

−rτhc(Xτ )1l{τ<∞}) ≤ hc(x).
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212 S. Christensen

(iii) For all a, b, x ∈ R with a < x < b, P ∈ Pκ , and τa = inf{t ≥ 0 : Xt = a},
τb = inf{t ≥ 0 : Xt = b} it holds that

E
P
x (e

−rτa h∞(Xτa )1l{τa<∞}) ≥ h∞(x),
E

P∞
x (e−rτa h∞(Xτa )1l{τa<∞}) = h∞(x),

and

E
P
x (e

−rτb h−∞(Xτb )1l{τb<∞}) ≥ h−∞(x),
E

P−∞
x (e−rτb h−∞(Xτb )1l{τb<∞}) = h−∞(x).

Proof (i) For P ∈ P with density process θ , by Girsanov’s theorem, we may write

Xt = W P
t +

t∫

0

θsds,

where W P is a Brownian motion under P . Since hc ∈ C2 we can apply Itô’s
lemma and obtain

dhc(Xt ) = h′
c(Xt )dW P

t + (h′
c(Xt )θt + 1/2h′′

c (Xt ))dt.

By construction of hc, it holds that

1/2h′′
c (Xt )− κsgn(Xt − c)h′

c(Xt )− rhc(Xt ) = 0,

hence

e−r t hc(Xt ) = hc(X0)+
t∫

0

e−ru(κsgn(Xu − c)+ θu)h
′
c(Xu)du

+
t∫

0

e−ruh′
c(Xu)dW P

u .

Noting that (κsgn(Xu − c)+ θu) ≥ 0 iff h′
c(Xu) ≥ 0, we obtain that the process

(e−r(t∧τ)hc(Xt∧τ ))t≥0 is a bounded P-submartingale. Therefore, by the optional
sampling theorem,

E
P
x (e

−rτhc(Xτ )) ≥ E
P
x (hc(X0)) = hc(x).

Under Pc we see that (e−r(t∧τ)hc(Xt∧τ ))t≥0 is actually a local martingale that is
bounded. Therefore, the optional sampling theorem yields equality.
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Optimal decision under ambiguity 213

(ii) By the calculation in (i) the process (e−r t hc(Xt ))t≥0 is a positive local
Pc-martingale, i.e. also a Pc-supermartingale. The optional sampling theorem
for non-negative supermartingales is applicable.

(iii) By noting that h∞ is decreasing and h−∞ is increasing the same arguments as in
(i) apply.

The following theorem shows that the geometric solution described in Sect. 2.1 can
indeed be generalized to the drift ambiguity case. Moreover, we give a characterization
of the optimal stopping set as maximum point of explicitly given functions.

Theorem 1 (i) It holds that

v(x) = inf{λhc(x) : c ∈ [−∞,∞], λ ∈ [0,∞], λhc ≥ g} for all x ∈ R.

Furthermore, the infimum in c is indeed a minimum.
(ii) A point x ∈ R is in the optimal stopping set {y : v(y) = g(y)} if and only if there

exists c ∈ [−∞,∞] such that

x ∈ argmax
g

hc
.

Proof For each x ∈ R, c ∈ [−∞,∞] and each stopping time τ we obtain using
Lemma 1 (ii)

inf
P

E
P
x (e

−rτ g(Xτ )1l{τ<∞}) = inf
P

E
P
x

(
e−rτhc(Xτ )

g

hc
(Xτ )1l{τ<∞}

)

≤ sup

(
g

hc

)
inf
P

E
P
x (e

−rτhc(Xτ )1l{τ<∞})

≤ sup

(
g

hc

)
E

Pc
x (e

−rτhc(Xτ )1l{τ<∞})

≤ sup

(
g

hc

)
hc(x).

Since λhc ≥ g holds if and only if λ ≥ sup
(

g
hc

)
we obtain that

v(x) ≤ inf{λhc(x) : c ∈ [−∞,∞], λ ≥ 0, λhc ≥ g}.

For the other inequality consider the following cases:

Case 1:

sup
y∈R

g(y)

h∞(y)
= sup

y≤x

g(y)

h∞(y)
.

Take a sequence (yn)n∈N with yn ≤ x such that g(yn)/h∞(yn) → supy∈R

g(y)
h∞(y) .

Then for τn = inf{t ≥ 0 : Xt = yn} using Lemma 1 (iii) we obtain
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v(x) ≥ inf
P

E
P
x (e

−rτn g(Xτn )1l{τn<∞})

= inf
P

E
P
x (e

−rτn h∞(Xτn )
g

h∞
(Xτn )1l{τn<∞})

= g

h∞
(yn)E

P∞
x (e−rτn h∞(Xτn )1l{τn<∞})

= g

h∞
(yn)h∞(x)

→ sup
y∈R

g(y)

h∞(y)
h∞(x) for n → ∞.

Therefore, v(x) ≥ inf{λhc(x) : c ∈ [−∞,∞], λ ∈ [0,∞], λhc ≥ g}.
Moreover, if x is in the stopping set, i.e. v(x) = g(x), then we see that
g(x)/h∞(x) = supy∈R

g(y)
h∞(y) , i.e. x is a maximum point of the function g/h∞,

i.e. (i i).

Case 2: The case supy∈R g(y)/h−∞(y) = supy≥x g(y)/h−∞(y) can be handled
the same way.

Case 3:

sup
y≤x

g(y)

h∞(y)
> sup

y≥x

g(y)

h∞(y)
and sup

y≤x

g(y)

h−∞(y)
< sup

y≥x

g(y)

h−∞(y)
.

First we show that there exists c∗ ∈ R such that

sup
y≤x

g(y)

hc∗(y)
= sup

y≥x

g(y)

hc∗(y)
:

To this end, write

hc,1(y) = α2

α2 − α1
eα1(y−c) − α1

α2 − α1
eα2(y−c),

hc,2(y) = β2

β2 − β1
eβ1(y−c) − β1

β2 − β1
eβ2(y−c).

By construction of hc it holds that hc = min(hc,1, hc,2). Therefore,

sup
y≤x

g(y)

hc(y)
=

[
inf
y≤x

(
min

(
hc,1(y)

g(y)
,

hc,2(y)

g(y)

))]−1

=
[

min

{
e−α2c inf

y≤x

(
α2

α2 − α1

eα1 y

g(y)
e(α2−α1)c + α1

α2 − α1

eα2 y

g(y)

)
,

e−β2c inf
y≤x

(
β2

β2 − β1

eβ1 y

g(y)
e(β2−β1)c + β1

β2 − β1

eβ2 y

g(y)

) }]−1
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Since the functions

z �→ inf
y≤x

(
α2

α2 − α1

eα1 y

g(y)
z + α1

α2 − α1

eα2 y

g(y)

)

and

z �→ inf
y≤x

(
β2

β2 − β1

eβ1 y

g(y)
z + β1

β2 − β1

eβ2 y

g(y)

)

are continuous as concave functions, we obtain that the function c �→ supy≤x
g(y)
hc(y)

is

continuous. By the same argument, the function c �→ supy≥x
g(y)
hc(y)

is also continuous.
By the intermediate value theorem applied to the function

c �→ sup
y≤x

(
g(y)

hc(y)

)
− sup

y≥x

(
g(y)

hc(y)

)

there exists c∗ with supy≤x
g(y)

hc∗ (y) = supy≥x
g(y)

hc∗ (y) as desired.
Now take sequences (yn)n∈N and (zn)n∈N with yn ≤ x ≤ zn such that

sup
y≤x

g(y)

hc∗(y)
= lim

n→∞
g(yn)

hc∗(yn)
= lim

n→∞
g(zn)

hc∗(zn)
= sup

y≥x

g(y)

hc∗(y)
.

Using τn = inf{t ≥ 0 : Xt �∈ [yn, zn]} we obtain by Lemma 1 (i)

v(x) ≥ inf
P

E
P
x (e

−rτn hc∗(Xτn )
g

hc∗
(Xτn )1l{τn<∞})

≥
(

g

hc∗
(yn) ∧ g

hc∗
(zn)

)
inf
P

E
P
x (e

−rτn hc∗(Xτn )1l{τn<∞})

=
(

g

hc∗
(yn) ∧ g

hc∗
(zn)

)
hc∗(x) → sup

(
g

hc∗

)
hc∗(x).

This yields the result (i). As above we furthermore see that if x is in the optimal
stopping set, then it is a maximum point of g/hc∗ , i.e. (i i). �
Remark 1 1. We would like to emphasize that we do not need any continuity assump-

tions on g. This is remarkable, because even for the easy case described at the
beginning of this section most standard techniques do not lead to such a general
result.

2. A characterization of the optimal stopping points as in Theorem 1 (ii) for the
problem without ambiguity can be found in Christensen and Irle (2011).

2.3 Worst-case prior

Theorem 1 leads to the value of the optimal stopping problem with drift ambiguity and
also provides an easy way to find the optimal stopping time. Another important topic
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is to determine the worst-case measure for a process started in a point x , i.e. we would
like to determine the measure P such that v(x) = supτ E

P
x (e

−rτ g(Xτ )1l{τ<∞}). Using
the results described above the worst-case measure can also be found immediately:

Theorem 2 Let x ∈ R and let c be a minimizer as in Theorem 1 (i). Then Pc is a
worst-case measure for the process started in x.

Proof This is immediate from the proof of Theorem 1. �

2.4 Example: American straddle in the Bachelier market

Because it is easy and instructive we consider the example discussed in Cheng and
Riedel (2010) in the light of our method:

We consider a variant of the American straddle option in a Bachelier market model
as follows: As a driving process we consider a standard Brownian motion under P0

with reward function g(x) = |x |. Our aim is to find the value in 0 of the optimal
stopping problem

sup
τ

min
P∈Pκ

E
P (e−rτ |Xτ |1l{τ<∞}).

Using Theorem 1 we have to find the majorant of | · | in the set

{λhc : c ∈ [−∞,∞], λ ∈ [0,∞], λhc ≥ g}.

One immediately sees that if λhc(·) ≥ | · |, then λh0(·) ≥ | · | and furthermore
λh0(0) ≤ λhc(0). Therefore, we only have to consider majorants of | · | in the set

{λh0 : λ ∈ [0,∞], λh0 ≥ g}.

This one-dimensional problem can be solved immediately. For λ = max(| · |/h0(·))
one obtains v(0) = λh0(0).

In fact, if −b, b denote the maximum points of | · |/h0(·) we obtain that v(x) =
λh0(x) for x ∈ [−b, b]. Moreover, for x �∈ [−b, b] one immediately sees that there
exists c ∈ R such that x is a maximum point of | · |/hc(·) and we obtain

v(x) =
{
λh0(x), if x ∈ [−b, b]
|x |, else.

Moreover, the worst-case measure is P0, i.e. the process X has positive drift κ on
(−∞, 0) and drift −κ on [0,∞).

2.5 General diffusion processes

The results obtained before can be generalized to general one-dimensional diffu-
sion processes. The only problem is to choose appropriate functions hc carefully.
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Optimal decision under ambiguity 217

After these functions are constructed the same arguments as in the previous subsec-
tions work.

Let (Xt )t≥0 be a regular one-dimensional diffusion process on some interval I with
boundary points a < b, a, b ∈ [−∞,∞], that is characterized by its generator

A = 1

2
σ 2(x)

d2

dx2 + μ(x)
d

dx

for some continuous functions σ > 0, μ. For convenience we furthermore assume
that the boundary points a, b of I are natural. For a generalization to other boundary
behaviors see the discussion in Beibel and Lerche (2000, Section 6). Again denote by
Pκ the set of all probability measures, that are equivalent to Q with density process
of the form

exp

⎛
⎝

t∫

0

θsd Xs − 1/2

t∫

0

θ2
s ds

⎞
⎠

for a progressively measurable process (θt )t≥0 with |θt | ≤ κ for all t ≥ 0. We denote
the fundamental solutions of the equation

1

2
σ 2(x)

d2

dx2ψ + (μ(x)+ κ)
d

dx
ψ = rψ

by ψκ+ resp. ψκ− for the increasing resp. decreasing positive solution, cf. Borodin and
Salminen (2002, II.10) for a discussion and further references. Analogously, denote
the fundamental solutions of

1

2
σ 2(x)

d2

dx2ψ + (μ(x)− κ)
d

dx
ψ = rψ

by ψ−κ+ resp. ψ−κ− . Note that for each positive solution ψ of one of the above ODEs
it holds that

d2

dx2ψ(x) = −(μ(x)± κ) d
dxψ(x)+ rψ(x)

1
2σ

2(x)
, (1)

hence all extremal points are minima, so that ψ has at most one minimum. Therefore,
for each s ∈ (0, 1) the function ψ = sψ±κ+ + (1 − s)ψ±κ− has a unique minimum
point and each c ∈ I arises as such a minimum point. Therefore, for each c ∈ (a, b)
we can find constants γ1, ..., γ4 such that the function

hc : E → R, x �→
{
γ1ψ

κ+(x)+ γ2ψ
κ−(x), if x ≤ c

γ3ψ
−κ+ (x)+ γ4ψ

−κ− (x), if x > c
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is C1 with a unique minimum point in c with the standardization hc(c) = 1. More
explicitly, γ1, ..., γ4 are given by

γ1 = ψκ−′(c)
Dκ(c)

, γ2 = −ψκ+′(c)
Dκ(c)

, γ3 = ψ−κ−
′
(c)

D−κ(c)
, γ4 = −ψ−κ+

′
(c)

D−κ(c)
, (2)

where

D±κ(c) = ψ±κ+ (c)ψ±κ−
′
(c)− ψ±κ− (c)ψ±κ+

′
(c).

Furthermore, write ha = ψ−κ+ and hb = ψκ−. First, we show that the functions hc are
always C2.

Lemma 2 For each c ∈ [a, b], the function hc is C2.

Proof For c ∈ {a, b} the claim obviously holds. Let c ∈ (a, b). We only have to prove
that h′′

c (c−) = h′′
c (c+). Using Eq. (1), we obtain that

h′′
c (c−) = γ1ψ

κ+
′′
(c)+ γ2ψ

κ−
′′
(c)

= −(μ(c)+ κ)
1
2σ

2(c)
(γ1ψ

κ+
′
(c)+ γ2ψ

κ−
′
(c))+ r

1
2σ

2(c)
(γ1ψ

κ+(c)+ γ2ψ
κ−(c))

= −(μ(c)+ κ)
1
2σ

2(c)
h′

c(c)+ r
1
2σ

2(c)
hc(c).

By the choice of γ1, γ2, we obtain

h′′
c (c−) = r

1
2σ

2(c)

and analogously

h′′
c (c+) = r

1
2σ

2(c)
.

This proves the claim. �
Now all the arguments given in Sects. 2.2 and 2.3 apply and we again obtain the

following results (compare Theorems 1 and 2):

Theorem 3 (i) It holds that

v(x) = inf{λhc(x) : c ∈ [a, b], λ ∈ [0,∞], λhc ≥ g} for all x ∈ I.

(ii) A point x ∈ I is in the optimal stopping set {y : v(y) = g(y)} if and only if there
exists c ∈ [a, b] such that

x ∈ argmax
g

hc
.
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Theorem 4 Let x ∈ R and let c be a minimizer as in Theorem 3 (i). Then Pc is a
worst-case measure for the process started in x.

2.6 Example: an optimal decision problem for Brownian motions with drift

The following example illustrates that our method also works in the case of a discon-
tinuous reward function g, where differential equation techniques cannot be applied
immediately. Furthermore, we see that our approach can be used for all parameters in
the parameter space, although the structure of the solution changes.

Let X = σWt + μt denote a Brownian motion with drift μ ∈ (−∞,∞) and
volatility σ under P0, and let

g(x) =
{

1, x ≤ 0,

x, x > 0.

The fundamental solutions are given by

ψκ+(x) = eα1x , ψκ−(x) = eα2x , ψ−κ+ (x) = eβ1x , ψ−κ− (x) = eβ2x ,

where α1 < 0 < α2 and β1 < 0 < β2 are the roots of

1/2σ 2z2 + (μ− κ)z − r = 0, resp. 1/2σ 2z2 + (μ+ κ)z − r = 0.

Using Eq. (2) we obtain

hc(x) =
{

α2
α2−α1

eα1(x−c) − α1
α2−α1

eα2(x−c), if x > c,
β2

β2−β1
eβ1(x−c) − β1

β2−β1
eβ2(x−c), if x ≤ c.

We consider

l∗(c) := sup
y≤0

1

hc(y)
=

{
1

hc(0)
, c ≥ 0,

1, c ≤ 0

and l∗(c) := supy≥0
y

hc(y)
= yc

hc(yc)
, where yc denotes the unique maximum point of

y/hc(y), y ≥ 0.
We first consider the case 1 = l∗(0) ≥ l∗(0). By Theorem 3 (ii), we obtain that x =

0 is in the optimal stopping set S as a maximizer of y �→ g(y)/h0(y). Furthermore,
by decreasing c to −∞, we see that (−∞, 0] ⊆ S. Since l∗(c) → 0 and l∗(c) → ∞
for c → ∞, there exists a unique c∗ ≥ 0 such that l∗(c∗) = l∗(c∗). Therefore,
by Theorem 3 (ii) again, x∗ := yc∗ ∈ S and by increasing c to ∞, we obtain that
S = (−∞, 0] ∪ [x∗,∞). Theorem 3 (i) yields

123



220 S. Christensen

Fig. 2 Value function for
l∗(0) ≥ l∗(0)

v(x) =

⎧⎪⎨
⎪⎩

1, x ≤ 0
hc∗ (x)
hc∗ (0) , x ∈ [0, x∗],
x x ≥ x∗,

see Fig. 2 below. By Theorem 4 we furthermore obtain that Pc∗
is a worst-case measure

for the process started in x ∈ (0, x∗). That is, under the worst-case measure, the
process has drift μ + κ on [0, c∗) and drift μ − κ on [c∗, x∗]. Now, we consider
the case 1 = l∗(0) < l∗(0). By a similar reasoning as in the first case, we see that
there exists c∗ < 0 such that l∗(c∗) = l∗(c∗). Write x∗ = c∗ < 0, x∗ = yc∗ . Then,
S = (−∞, x∗] ∪ [x∗,∞) is the optimal stopping set and the value function is given
by

v(x) =

⎧⎪⎨
⎪⎩

1, x ≤ x∗

hc∗(x), x ∈ [x∗, x∗],
x x ≥ x∗,

see Fig. 3 below. The worst-case measure is given by Pc∗
, which means that the process

has drift μ− κ on [x∗, x∗].

3 Optimal decision for models with crashes

Now denote by Y a one-dimensional regular diffusion process on an interval I . Denote
by F the natural filtration generated by Y . In this section we assume that all parameters
of this process are known. This process represents the asset price process of the under-
lying asset if no crash occurs; therefore for economical plausibility it is reasonable to
assume I = (0,∞).
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Fig. 3 Value function for
l∗(0) < l∗(0)

Now we modify the process such that at a certain random time point σ a crash of
bounded height occurs. To be more precise, let c ∈ (0, 1) be a given constant that
describes an upper bound for the height of the crash. For a given stopping time σ
and an Fσ -measurable and [c, 1]-valued random variable ζ we consider the modified
process Xσ,ζ given by

Xσ,ζt =
{

Yt t ≤ σ

ζYt t > σ.

Now we consider the optimal stopping problem connected to the pricing of perpetual
American options in this market, i.e., let g : (0,∞) → [0,∞) be a continuous reward
function. We furthermore assume g to be non-decreasing, so that a crash always leads
to a lower payoff. We fix a constant discounting rate r > 0 and furthermore assume
that the holder of the option does know that the process will crash once in the future.
We assume the crash to be observable for the decision maker, so she will specify her
action by a pre-crash stopping time τ and a post-crash stopping time τ , i.e. given σ
she takes the strategy

τ = τσ =
{
τ , τ ≤ σ

σ + τ ◦ θσ , else,
(3)

where θ· denotes the time-shift operator. As before we assume the holder of the option
to be ambiguity averse in the sense that she maximizes her expected reward under the
worst-case scenario, i.e. she tries to solve the problem

v(x) = sup
τ ,τ

inf
σ,ζ

Ex (e
−rτ g(Xσ,ζτ )), (4)

where τ = τσ is given as in (3).
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Remark 2 Obviously by the monotonicity of the reward function we always have

v(x) = sup
τ ,τ

inf
σ

Ex (e
−rτ g(Xστ ))

where Xσ := Xσ,c.

We obtain the following reduction of the optimal stopping problem under ambiguity
about the crashes: It shows that the problem can be reduced into one optimal stopping
problem and one Dynkin game for the diffusion process Y (without crashes).

Theorem 5 (i) Let ĝ be the value function for the optimal stopping problem for cY
with reward g, i.e.

ĝ(y) = sup
τ

Ey(e
−rτ g(cYτ )) for all y ∈ (0,∞) (5)

and let ĝ < ∞. Then it holds that

v(x) = sup
τ

inf
σ

Ex (e
−rτ g(Yτ )1l{τ≤σ } + e−rσ ĝ(Yσ )1l{τ>σ }). (6)

(ii) If τ is optimal for (5) and τ , σ is a Nash-equilibrium for (6), then (τ , τ ), (σ, c) is
a Nash-equilibrium for (4).

Proof (i) First fix τ , τ . Then for all σ by conditioning on Fσ we obtain

Ex (e
−rτ g(Xστ )) = Ex (e

−rτ g(Yτ )1l{τ≤σ } + e−r(σ+τ◦θσ )g(cYσ+τ◦θσ )1l{τ>σ })
= Ex (e

−rτ g(Yτ )1l{τ≤σ }
+e−rσ

Ex (e
−r(τ◦θσ )g(cYσ+τ◦θσ )|Fσ )1l{τ>σ }).

By the strong Markov property we furthermore obtain

Ex (e
−r(τ◦θσ )g(cYσ+τ◦θσ )|Fσ ) = EYσ (e

−rτ g(cYτ )) ≤ ĝ(Yσ ).

Therefore,

Ex (e
−rτ g(Xστ )) ≤ Ex (e

−rτ g(Yτ )1l{τ≤σ } + e−rσ ĝ(Yσ )1l{τ>σ }),

showing that

v(x) ≤ sup
τ

inf
σ

Ex (e
−rτ g(Yτ )1l{τ≤σ } + e−rσ ĝ(Yσ )1l{τ>σ }).

Now take a sequence of 1/n-optimal stopping times (τ n)n∈N for the problem (5),
i.e.

ĝ(y) ≤ Ey(e
−rτ n g(cYτ n ))+ 1

n
for all n ∈ N and all y.
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Then

EYσ (e
−rτ n g(cYτ n )) ≤ ĝ(Yσ )+ 1

n
,

and hence considering the post-crash strategy τ n and arbitrary τ , σ we see that

v(x)+ 1

n
≥ sup

τ
inf
σ

Ex (e
−rτ g(Yτ )1l{τ≤σ } + e−rσ ĝ(Yσ )1l{τ>σ }),

proving equality.

(ii) is obvious by the proof of (i).

�
Remark 3 Note that the arguments used so far have nothing to do with diffusion
processes, but can be applied in the same way for general nice one-dimensional strong
Markov processes, like one-dimensional Hunt processes. Nonetheless we decided to
consider this more special setup because of its special importance and since the theory
for explicitly solving optimal stopping problems and Dynkin games is well established.

The previous reduction theorem solves the optimal stopping problem (4) since
both problems (6) and (5) are well-studied for diffusion processes, see e.g. the refer-
ences given above for optimal stopping problems and Ekström and Villeneuve (2006),
Alvarez (2008), and Peškir (2011) for Dynkin games. It is interesting to see that the
optimal stopping problem under crash-scenarios naturally leads to Dynkin games,
which were studied extensively in the last years. The financial applications studied
so far were based on Israeli options, which are (at least at first glance) of a different
nature, see Kifer (2000).

3.1 Example: call-like problem with crashes

As an example we consider a geometric Brownian motion given by the dynamics

d Xt = Xt (μdt + σdWt ), t ≥ 0

and we take g : (0,∞) → [0,∞) given by g(x) = (x − K )+, where K > 0 is a
constant. To exclude trivial cases we assume that μ < r . Then a closed-form solution
of the optimal stopping problem

ĝ(y) = sup
τ

Ey(e
−rτ (cYτ − K )+) = sup

τ
Ecy(e

−rτ (Yτ − K )+)

is well known [see e.g. Peškir and Shiryaev (2006, Chapter VII)] and is given by

ĝ(y) =
{

cy − K , cy ≥ x∗,
d(cy)γ , cy < x∗,
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Fig. 4 Graphs of g (blue) and ĝ
(red). (Color figure online)

where γ is the positive solution to

σ 2

2
z2 + (

μ− σ 2

2

)
z + r = 0,

and x∗ and d are appropriate constants. Moreover, the optimal stopping time is given
by τ := inf{t ≥ 0 : Xt ≥ x∗}. By Theorem 5 we are faced with the Dynkin game

v(x) = sup
τ

inf
σ

Ex (e
−rτ (Yτ − K )+1l{τ≤σ } + e−rσ ĝ(Yσ )1l{τ>σ }). (7)

To solve this problem first note that there exists x ′ ∈ (K , x∗/c) such that g(x) ≤ ĝ(x)
for x ∈ (0, x ′] and g(x) ≥ ĝ(x) for x ∈ [x ′,∞); indeed, x ′ is the unique positive
solution to

d(cx)γ = x − K ,

see Fig. 4.
We could use the general theory to solve the optimal stopping game (7), but we can

also solve it elementary here:
First let x > x ′. Then for all stopping times σ ∗ with σ ∗ = 0 under P(·|Y0 = x)

and each stopping time τ we obtain

Ex (e
−rτ (Yτ − K )+1l{τ≤σ ∗} + e−rσ ∗

ĝ(Yσ ∗)1l{τ>σ ∗})
= Ex (g(x)1l{τ=0} + ĝ(x)1l{τ>0})
≤ g(x)

with equality if τ = 0 P(·|Y0 = x)-a.s. On the other hand for τ ∗ = 0 the payoff is
g(x), independent of σ .
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For x ≤ x ′ by by taking τ = inf{t ≥ 0 : Xt ≥ x ′} we have for each stopping time
σ by definition of x ′

Ex (e
−rτ (Yτ − K )+1l{τ≤σ } + e−rσ ĝ(Yσ )1l{τ>σ })

= Ex (e
−rτ (x ′ − K )1l{τ≤σ } + e−rσd(cYσ )

γ 1l{τ>σ })
= Ex (e

−rτd(cx ′)γ 1l{τ≤σ } + e−rσ d(cYσ )
γ 1l{τ>σ })

= Ex (e
−r(σ∧τ )d(cYσ∧τ )γ )

= dcγEx (e
−r(σ∧τ )(Yσ∧τ )γ )

= dcγ xγ = ĝ(x),

where the last equality holds by the fundamental properties of the minimal r -harmonic
functions, see e.g. Borodin and Salminen (2002, II.9). By taking any stopping time
σ ∗ ≤ inf{t ≥ 0 : yt ≥ x ′} and any stopping time τ the same calculation holds.

Putting pieces together we obtain that τ , σ ∗ is a Nash-equilibrium of the Dynkin
game (7) for any stopping time σ ∗ ≤ τ .

By applying Theorem 5 we get

Proposition 1 The value function v is given by

v(x) =
{

x − K , x ≥ x ′,
d(cx)γ , x < x ′,

and for

τ = inf{t ≥ 0 : Xt ≥ x ′} ‘pre-crash strategy’

and

τ = inf{t ≥ 0 : Xt ≥ x∗} ‘post-crash strategy’

and any stopping time σ ∗ ≤ τ it holds that (τ , τ ), (σ ∗, c) is a Nash-equilibrium of
the problem.

The solution to this example is very natural: If the investor expects a crash in the
market, then she exercises the option as soon as the asset price reaches the level x ′
(pre-crash strategy). After the crash, i.e. if the investor does not expect to have more
crashes, then she takes the ordinary stopping time, i.e. she stops if the process reaches
level x∗ > x ′ (post-crash strategy).
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