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Abstract We study a two-sided singular control problem in a general linear dif-
fusion setting and provide a set of conditions under which an optimal control exists
uniquely and is of singular control type. Moreover, under these conditions the associ-
ated value function can be written in a quasi-explicit form. Furthermore, we investigate
comparative static properties of the solution with respect to the volatility and control
parameters. Lastly we illustrate the results with two explicit examples.
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1 Introduction

Let (�,F ,P) be a complete probability space and F = {Ft | t < ∞} a right con-
tinuous, completed filtration. Consider the controlled process Zt = Xt + Ut − Dt

where Xt is a general, linear time homogeneous Itô diffusion on R+ := (0,∞) and
(Ut , Dt ) is a pair of F-adapted, non-decreasing cádlág processes on R+. We consider
the one-dimensional two-sided singular, or reflecting, control problem

sup
(Ut ,Dt )

Ex

⎧
⎨

⎩

ζZ∫

0

e−rsπ(Zs)ds + p

ζZ∫

0

e−rsd Ds − q

ζZ∫

0

e−rsdUs

⎫
⎬

⎭
,

where π : R+ → R is a revenue function satisfying suitable conditions (given in
Sect. 3), r > 0 and q, p ∈ R, q > p, are exogenously given constants, ζZ =inf{t ≥
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0 | Zt /∈ R+} denotes the first exit time from R+, and the supremum is taken over all
admissible controls.

In this study we give sufficient conditions under which the above mentioned prob-
lem has a unique two-sided reflecting control as an optimal control. Moreover, under
the same conditions, we see that the value function can be written in a (quasi-)explicit
form. Further, since we can identify the value function and control boundaries explic-
itly, we are also able to investigate the comparative static properties of the value
function with respect to the volatility and the control coefficients p and q.

Since the pioneering work by Bather and Chernoff (1966) appeared, singular sto-
chastic control problems have been subjected to extensive investigation due to their
applicability in various fields. These fields include for example a costly reversible
investment problem, or an irreversible one, depending whether Ut ≡ 0 or not. In these
problems the investor has a chance to purchase capital at price q and sell it with lower
price p < q. In different specific forms the irreversible case is studied for example
in Kobila (1993), Oksendal (2000), Chiarolla and Haussmann (2005) and the costly
reversible case in Abel and Eberly (1996), Guo and Pham (2005), Alvarez (2011).
Another example is an optimal dividend payments problem combined to obligative
reinvestment (see Sethi and Taksar 2002; Paulsen 2008). The company pays dividends
to the owners at rate p and on the other hand, the owners are obliged to reinvest if the
value of the income process becomes too small. Without the reinvestment possibility,
the dividend payments problem has been studied for example in Asmussen and Taksar
(2006), Højgaard and Taksar (1999), Alvarez and Virtanen (2006). Further applica-
tions include, for example, rational harvesting (see e.g. Lande et al. 1995; Lungu and
Oksendal 1997; Alvarez 2000; Alvarez and Koskela 2007), monotone fuel follower
problem (Chow et al. 1985; Jacka 2002; Bank 2005), exchange rates (Mundaca and
Oksendal 1998), inventory theory (Harrison and Taksar 1983) and controlling a dam
(Faddy 1974).

Singular stochastic control problems can be approached in different ways. The one
used also in this study is based on the theory of partial differential equations and on
variational arguments. In this approach one typically first constructs (by ad hoc meth-
ods) a solution to some necessary (e.g. Hamilton–Jacobi–Bellman) conditions and
then validates the optimality of the solution by a verification theorem (see Karatzas
1983; Shreve et al. 1984; Chow et al. 1985; Bayraktar 2008; Alvarez and Lempa
2008). Alternatively, it is also possible to rely on probabilistic methods. In Karatzas
and Shreve (1984), Karatzas (1985a), and Karatzas and Wang (2001) the existence of
an optimal control was proved by showing, leaning on a weak compactness argument,
that the optimizing sequence of the considered problem converges to an admissible
control. These two approaches could be classified as direct techniques, as the problem
is approached straightforwardly. In contrast to this, in an indirect approach the control
problem is showed to be equivalent with other type of problem and the latter one is
then solved. For example in recent studies (Guo and Tomecek 2008a,b) the authors
reveal one-to-one correspondence between a singular control and a switching prob-
lem. They then go on to use this relation in a general multidimensional case to find an
integral representation for the value function and, moreover, sufficient conditions for
the existence of an optimal control.
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On solvability of a two-sided singular control problem 241

Although singular control problems have attained lots of attention in general, theory
considering two-sided controls is not yet as vast as the theory of one-sided controls.
There are some general existence results for a two-sided control problem, e.g. Shreve
et al. (1984), Sethi and Taksar (2002), Guo and Tomecek (2008b), and Paulsen (2008),
which provide sufficient conditions or verification theorems for the solution in a gen-
eral diffusion setting. In this paper we also follow this path and give rather easily
verifiable sufficient conditions for the optimality, but in addition we can also give a
(quasi-) explicit form for the value function. To accomplish this task, we have chosen
to combine some existing techniques (from Harrison 1985; Shreve et al. 1984; Alvarez
2008; Lempa 2010) in appropriate way with the classical theory of linear diffusions
and r-excessive mappings.

More specifically, we formulate the problem in exact terms in Sect. 2, after which
we derive necessary first order optimality conditions for the two-sided singular control
in Sect. 3. In Sect. 4, we present our first result, leaning on techniques from Harrison
(1985) and Shreve et al. (1984). We prove that if the derived necessary optimality con-
ditions attain a solution, then under a set of weak assumptions this solution is unique
and the associated reflecting control is the optimal one among all admissible controls.
In Sect. 5 we will find sufficient assumptions under which the above mentioned first
order optimality conditions obtain a solution, after which it follows from the first
result that this solution must be unique. The solution to the optimality conditions is
found by using a fixed point argument, originating from Alvarez and Lempa (2008),
and Lempa (2010), which results directly into the verification of the existence of the
optimal exercise thresholds. An advantage of this approach is that it simultaneously
results into an algorithm for finding the optimal thresholds numerically as a limit of a
converging sequence.

The most important results are presented in Sect. 6, where we consider the com-
parative static properties of the value function. Previously this kind of examination
has been done with one-sided controls (e.g. Alvarez 2001), but the author is not aware
of similar treatment concerning a general two-sided control problem. We show that
the same set of sufficient assumptions as above guarantees that the value function
is unambiguously decreasing with respect to the volatility. This in turn decelerates
the usage of optimal controls by expanding the inactivity region where exerting the
optimal policy is suboptimal. These findings are in line with the previous literature
concerning one-sided policies, see e.g. Alvarez (2001). We also demonstrate the sen-
sitiveness with respect to the control parameters, and in particular that the one-sided
control problem can be attained as a special case of this two-sided problem when
p → 0 or q → ∞. Lastly, we will illustrate our results with two explicit examples in
Sect. 7.

2 Problem formulation

2.1 The underlying dynamics

Let (�,P, {Ft }t≥0,F) be a complete filtered probability space satisfying the usual
conditions (see Borodin and Salminen 2002, p. 2). We assume that the regular linear
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diffusion process Xt is defined on (�,P, {Ft }t≥0,F) and evolves on R+ according
to the dynamics described by the Itô stochastic differential equation

d Xt = μ(Xt )dt + σ(Xt )dWt X0 = x, (1)

where Wt denotes a standard Brownian motion. We assume that both the drift coeffi-
cient μ : R+ �→ R and the volatility coefficient σ : R+ �→ R+ are once continuously
differentiable and that σ(x) > 0 for all x ∈ (0,∞). These conditions are sufficient
for the existence of a weak solution for the stochastic differential equation (1) (cf.
(Karatzas and Shreve, 1988, Section 5.5.B–C)). Moreover, we assume that the bound-
ary ∞ is unattainable (i.e. natural or entrance-not-exit) for the process Xt and that
the boundary 0 can, in addition to being unattainable, be also attainable (i.e. exit or
regular), and that whenever 0 is regular we assume that it is killing. Further, if 0
is attainable, we assume in addition that the condition μ(0+) ≤ 0 holds. It is also
worth mentioning here that the assumption that the state space is R+ is for notational
convenience.

We define the differential operator associated to the underlying diffusion process as

A = 1
2σ

2(x)
d2

dx2 + μ(x)
d

dx
.

Let us denote, respectively, by ψ and ϕ the increasing and decreasing fundamental
solution of the ordinary differential equation (A − r)u = 0, where r > 0 is the dis-
count coefficient (for a complete characterization and basic properties of these minimal
r -excessive functions, see Borodin and Salminen 2002, pp. 18–20). We know that

BS′(x) = ψ ′(x)ϕ(x)− ϕ′(x)ψ(x), (2)

where B is the constant Wronskian of the fundamental solutions ψ and ϕ and

S′(x) = exp

⎛

⎝−
x∫

2μ(y)

σ 2(y)
dy

⎞

⎠

is the density of the scale function of Xt .
We denote by L1 the class of measurable mappings f : R+ → R satisfying the

absolute integrability condition Ex
∫∞

0 e−rs | f (Xs)|ds < ∞. For all f ∈ L1 write

(Rr f )(x) = Ex

∞∫

0

e−rs f (Xs)ds

for the expected cumulative present value of a flow f . It is known from the literature
on linear diffusion (e.g. Oksendal 2000, Proposition 4.3) that (Rr f )(x) can be also
re-expressed as
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On solvability of a two-sided singular control problem 243

(Rr f )(x) = B−1ϕ(x)

x∫

0

ψ(y) f (y)m′(y)dy

+B−1ψ(x)

∞∫

x

ϕ(y) f (y)m′(y)dy, (3)

where m′(x) = 2/(σ 2(x)S′(x)) denotes the density of the speed measure of Xt .

2.2 The control and the problem

An admissible control policy is defined as a pair of processes (Ut , Dt ) such that
both processes are non-negative, non-decreasing, right-continuous, and {Ft }-adapted.
With admissible control (Ut , Dt ), we define the associated controlled process Zt =
Xt + Ut − Dt . We associate a unit price p to the downward control Dt and a unit cost
−q to the upward control Ut . For example, in a timber harvesting example, Dt repre-
sents the cumulative harvest while Ut can be interpreted as the cumulative replanting.
In capital theoretic or natural resource management applications of singular stochastic
control, the unit price p is typically positive and the unit cost −q is negative. However,
there are cases where we may want to use negative values of p as well. For example
if we consider controlling a boat in a stormy sea, with the controls as steering left and
right, then it is sensible that both of these controls are costly, and so p < 0. So in
order to grasp the most general aspect of the problem, we only assume q > p without
specifying their signs (the opposite inequality would lead easily to an infinite value
function).

For an admissible control (U, D) our payoff function gets the form

H (U,D)(x) = Ex

⎡

⎣

ζZ∫

0

e−rs(π(Zs)ds + pd Ds − qdUs)

⎤

⎦ , (4)

where ζZ = inf{t ≥ 0 : Zt 
∈ R+} denotes the first exit time of the controlled dif-
fusion from its state space and π : R+ → R captures the state dependent cash flow
accrued from continuing operation, or it can be also interpreted as an utility function
of the controller. Our objective is to solve the problem

V (x) = sup
(U,D)

H (U,D)(x), (5)

where the supremum is taken over all admissible policies (Ut , Dt ). Our purpose is to
delineate a set of fairly general assumptions under which there exists a well-defined
and unique two-sided reflecting control policy for which the supremum (5) is attained.
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3 Assumptions and preliminary results

3.1 Barrier policy and associated value function

For two arbitrary barriers z and y satisfying the inequality 0 < z < y < ∞, we
focus on barrier policies which maintain the state between these two barriers at all
times. For given boundaries (z, y) we denote the exerted barrier policies, or reflect-
ing controls, as U z and Dy . If the initial state of the controlled process is between
the boundaries, then the barrier policy (U z, Dy) is obtained by assigning to the Xt

the two-sided regulator so that U z and Dy are continuous and increase only when
Z = z and Z = y, respectively. Thus, for x ∈ (z, y), the controlled process evolves
according to the diffusion Xt reflected at the boundaries z and y. If x > y, then we
take Dy

0 = x − y resulting into an instantaneous gain p(x − y) and apply the above
mentioned regulator to X − Dy

0 from thereon. Similarly if x < z, we exert the policy
U z

0 = z − x resulting into the instantaneous cost −q(z − x) and apply the regulator
to X + U z

0 from thereon. We shall see that the optimal control is of this class.
Next we shall write down the associated value function using the following appli-

cation of Ito’s lemma (cf. Harrison 1985, Corollary 5.2.4).

Lemma 3.1 Let f be a twice continuously differentiable function. Fix z < x < y and
consider the barrier policy (U z, Dy). Then

f (x) = Ex

⎡

⎣

∞∫

0

e−rs [(r − A) f (Zs)ds + f ′(y)d Dy
s − f ′(z)dU z

s

]

⎤

⎦ .

Proof By (generalised) Ito’s lemma

e−r t f (Zt ) = f (Z0)+
t∫

0

e−rsd f (Zs)− r

t∫

0

e−rs f (Zs)ds

= f (x)+ Mt +
t∫

0

e−rs [(A − r) f (Zs)ds − f ′(y)d Dy
s + f ′(z)dU z

s

]
,

(6)

where Mt = ∫ t
0 e−rsσ(Zs) f ′(Zs)dWs . Since z < Zs < y for all s > 0, we see that

both f (Zs) and f ′(Zs) are bounded and so limt→∞ e−r t f (Zt ) = 0 and Ex {Mt } = 0.
Therefore the claim follows by taking expectation of both sides in (6) and letting
t → ∞. ��

Fix barriers z and y, let π be an integrable and once continuously differentiable
function, and let H (z,y) be the value function associated to the barrier policy (U z, Dy).
For z < x < y we have, by definition,

123
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H (z,y)(x) = Ex

⎡

⎣

∞∫

0

e−rs (π(Zs)ds + pd Dy
s − qdU z

s

)

⎤

⎦ . (7)

Consider now the function f (x) = (Rrπ)(x) + c1ψ(x) + c2ϕ(x), where c1 =
c1(z, y) and c2 = c2(z, y) are such that f ′(z) = q and f ′(y) = p. This is a twice con-
tinuously differentiable function and consequently, by the lemma above, for x ∈ (z, y),
we have

f (x) = Ex

⎡

⎣

∞∫

0

e−rs [π(Zs)ds + pd Dy
s − qdU z

s

]

⎤

⎦ .

Comparing this to (7) we see that, for x ∈ (z, y), we must have H (z,y)(x) = f (x).
Furthermore, it is clear from the definition of barrier policy rule that for x ≥ y we
have H (z,y)(x) = p(x − y)+ H (z,y)(y), and similarly for x ≤ z we have H (z,y)(x) =
q(x −z)+ H (z,y)(z). Hence the proposed class of considered barrier policies (U z, Dy)

leads to the value function

H (z,y)(x) =
⎧
⎨

⎩

p(x − y)+ H (z,y)(y) x ≥ y,
(Rrπ)(x)+ c1(z, y)ψ(x)+ c2(z, y)ϕ(x) z < x < y,
q(x − z)+ H (z,y)(z) x ≤ z,

(8)

where the z and y-dependent factors c1 and c2 are such that

{
(Rrπ)

′(y)+ c1(z, y)ψ ′(y)+ c2(z, y)ϕ′(y) = p,
(Rrπ)

′(z)+ c1(z, y)ψ ′(z)+ c2(z, y)ϕ′(z) = q.

Notice that the value function H (z,y) is once continuously differentiable for all barriers
z < y.

3.2 The first order optimality conditions

A necessary first order condition for a pair (z, y) to be optimal is that dc1
dz = dc1

dy =
0 = dc2

dz = dc2
dy . Carrying out the computations we see that these conditions are, in

fact, equivalent to the smooth pasting requirement that the second derivative of H (z,y)

vanishes at z and y, i.e. the requirement that H (z,y) is twice continuously differentiable
everywhere. After performing the differentiations, our necessary optimality conditions
for the two-sided threshold (z∗, y∗) can be written as

{
Jq(z∗)− Jp(y∗) = 0,
Iq(z∗)− Ip(y∗) = 0,

(9)
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where, for b = p, q,

Jb(x) :=
(
(Rrπ)

′(x)− b
)
ϕ′′(x)− (Rrπ)

′′(x)ϕ′(x)
ψ ′(x)ϕ′′(x)− ϕ′(x)ψ ′′(x)

and Ib(x) :=
(
(Rrπ)

′(x)− b
)
ψ ′′(x)− (Rrπ)

′′(x)ψ ′(x)
ψ ′(x)ϕ′′(x)− ϕ′(x)ψ ′′(x)

.

(10)

If the pair of equations (9) is solvable, then the factors c1 and c2 are −Jq(z∗) and
Iq(z∗) respectively. Furthermore, provided that sufficient differentiability conditions
hold, we get by straight differentiation, and using the harmonicity of (Rrπ), ψ and ϕ,
that for b = p, q

J ′
b(x) = ϕ′(x)

(
π ′(x)+ b(μ′(x)− r)

)

r BS′(x)
= ϕ′(x)ρ′

b(x)

r BS′(x)

and I ′
b(x) = ψ ′(x)

(
π ′(x)+ b(μ′(x)− r)

)

r BS′(x)
= ψ ′(x)ρ′

b(x)

r BS′(x)
,

(11)

where ρb(x) = π(x)+ b(μ(x)− r x).

3.3 Assumptions and auxiliary results

The assumptions presented here are needed to show that the solution is unique and of
two-sided reflecting control type. So, throughout the study we will make the following
assumptions.

Assumption 3.2 For b ∈ [p, q], denote ρb(x) := π(x)+ b(μ(x)− r x). Assume that

(i) q > p,
(ii) μ(x), π(x), σ (x) ∈ C1(R+) and π(x), μ(x), x ∈ L1,

(iii) μ′(x) < r , and if 0 is attainable, then in addition μ(0+) ≤ 0 (these imply that
ψ and ϕ are convex, see Lemma 3.3 below),

(iv) for every b ∈ [p, q], there is x̃b ∈ R+ such that d
dx ρb(x) � 0 whenever x � x̃b.

Let us make a few remarks on Assumption 3.2. First the differentiability conditions
for π in Assumption (ii) could be relaxed, but it would complicate matters without
gaining any relevant extra insight.

Assumption (iii) seems a little restricting, but it is justified; in the opposite case
(μ′ > r ) we would easily end up to an infinite value function, implying an ill-posed
problem setting. Moreover, oftenμ is assumed to be Lipschitz continuous, i.e. that for
some C > 0 we have μ′ < C , and hence Assumption (iii) may be seen merely setting
an upper bound for the Lipschitz constant. One could try to relax this assumption by
assuming that μ′ > r in some bounded subset of R+, but that would complicate the
analysis and possibly lead to a peculiar behaviour (see e.g. Example 5.3 in Shreve
et al. 1984).

The three first assumptions are more or less standard assumptions, setting no strict
restrictions for the problem. It turns out that the last quasi-concavity assumption (iv),
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On solvability of a two-sided singular control problem 247

the only restraining assumption needed, is enough to ensure the uniqueness of a well-
defined solution (cf. Proposition 4.2 and Theorem 4.4). The function ρb(x) itself, for
b = p, q, can be seen (cf. Alvarez and Lempa 2008) to measure the expected net
return from postponing the dividend payments (or reinvestments, depending whether
b = p or q) into the future instead of paying out the dividends (or reinvesting) instan-
taneously.

We close this section by revealing vital monotonicity properties, which shall be
used later on several times.

Lemma 3.3 (A) Let Assumption 3.2 (iii) hold and assume that x ∈ L1. Then ψ and
ϕ are convex functions.

(B) Let Assumption 3.2 hold. Then
(1) for b = p, q, d

dx Jb(x) � 0, whenever x � x̃b. In addition Jp(x) > Jq(x)
for all x ∈ R+.

(2) for b = p, q, d
dx Ib(x) � 0, whenever x � x̃b. In addition Ip(x) > Iq(x) for

all x ∈ R+.

Proof See Appendix A.1. ��

4 Uniqueness and optimality of the two-sided reflecting control

4.1 Uniqueness of (z∗, y∗)

Before proving the main proposition about the uniqueness of the solution of (9) we
will show that we can restrict the examination to two disjoint sets on positive real line.

Lemma 4.1 Let Assumption 3.2 hold. Assume further that the necessary condition
(9) has a solution (z∗, y∗). Then (z∗, y∗) ∈ (0, x̃q)× (x̃ p,∞), where x̃q ≤ x̃ p are as
in Assumption 3.2(iv).

Proof To see that the inequality x̃q ≤ x̃ p holds, set x < x̃ p. Then

ρ′
q(x) = π ′(x)+ q(μ′(x)− r) ≤ π ′(x)+ p(μ′(x)− r) = ρ′

p(x) ≤ 0

by Assumption 3.2(iii) and (i). Thus by Assumption 3.2(iv) we must have x̃q ≤ x̃ p.
The rest of the proof follows that of Alvarez (2008, Theorem 4.3). For a fixed

y ∈ R+, consider the functional

L y
1(z) = Jq(z)− Jp(y).

By Lemma 3.3(B) we know that L y
1(y) < 0 and that L y

1(z) is z-decreasing on (0, x̃q)

and z-increasing on (x̃q ,∞). Thus, if there exists a root z∗
y ∈ (0, y) satisfying the

condition L y
1(z

∗
y) = 0, it has to be on the interval (0, x̃q).

Analogously, for a fixed z ∈ R+, consider the functional

Lz
2(y) = Iq(z)− Ip(y).
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By Lemma 3.3(B) we know that Lz
2(z) < 0 and that Lz

2(y) is y-decreasing on (0, x̃ p)

and y-decreasing on (x̃ p,∞). Thus, if there exists a root y∗
z ∈ (z,∞) satisfying the

condition Lz
2(y

∗
z ) = 0, it has to be on the interval (x̃ p,∞). ��

Previous lemma narrows the possible region for the optimal thresholds. We shall
use this information in next proposition, which is our main result on the uniqueness
of the solution to the necessary conditions (9).

Proposition 4.2 Let Assumption 3.2 hold. Assume further that the necessary condi-
tions (9) have a solution (z∗, y∗). Then the pair (z∗, y∗) is unique.

Proof Define a function K : (0, x̃q ] → (0, x̃q ] by K (x) = (
Ĵ−1

q ◦ Ĵp ◦ Î −1
p ◦ Îq

)
(x),

where Ĵq = Jq |(0,x̃q ], Ĵp = Jp|[x̃ p,∞), Îq = Iq |(0,x̃q ] and Î p = Ip|[x̃ p,∞).

By Lemma 3.3(B) we know that the functions Ĵb and Îb, for b = p, q, are monotonic
in their domains (0, x̃q ] and [x̃ p,∞) and therefore

K ′(x) = Ĵ−1′
q ( Ĵp( Î

−1
p ( Îq(x)))) · Ĵ ′

p( Î
−1
p ( Îq(x))) · Î −1′

p ( Îq(x)) · Î ′
q(x) > 0,

for all x ∈ (0, x̃q) and thus K is monotonically increasing.
Moreover, we see at once that if there exists a pair (z∗, y∗) satisfying the necessary

conditions (9), then z∗ must be a fixed point for K , that is K (z∗) = z∗. In order to
prove the uniqueness, it suffices to establish that K ′(z∗) < 1 for any given fixed point
z∗. Utilizing the fixed point property K (z∗) = z∗ and the monotonicity properties of
ψ ′ and ϕ′ [Lemma 3.3(A)], ordinary differentiation yields

K ′(z∗) = ψ ′(z∗)
ψ ′(y∗)

ϕ′(y∗)
ϕ′(z∗)

< 1.

This means that whenever the curve K (x) intersects the diagonal of R
2+, the intersec-

tion is from above. This observation completes the proof. ��
Thus, if the first order optimality conditions (9) attain a solution (z∗, y∗), it must

be unique under Assumption 3.2. Next we shall concentrate on the optimality of the
associated control (U z∗

, Dy∗
).

4.2 Proving the optimality of the barrier policy

The two-sided barrier policy (z∗, y∗), which satisfy the pair of equations (9), leads to
the value function [cf. (8)]

V (x) =
⎧
⎨

⎩

p(x − y∗)+ V (y∗) x ≥ y∗,
(Rrπ)(x)+ c∗

1ψ(x)+ c∗
2ϕ(x) z∗ < x < y∗,

q(x − z∗)+ V (z∗) x ≤ z∗,

where c∗
1 = −Jq(z∗) = −Jp(y∗) and c∗

2 = Iq(z∗) = Ip(y∗) with I and J as in (10).
Using the expressions c∗

1 = −Jp(y∗) and c∗
2 = Ip(y∗), applying the harmonicity of
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(Rrπ), ψ and ϕ, and using the identity (2) we can calculate the limit in the boundary
y∗ to get

V (y∗−) =
(

p 2μ(y∗)
σ 2(y∗)−(Rrπ)

′′(y∗)− 2μ(y∗)
σ 2(y∗) (Rrπ)

′(y∗)+ 2r
σ 2(y∗) (Rrπ)(y∗)

)
S′(y∗)B

2r
σ 2(y∗) S′(y∗)B

= 1
r

[
pμ(y∗)+ π(y∗)

]
.

Similarly, using now the expressions c∗
1 = −Jq(z∗) and c∗

2 = Iq(z∗), we get

V (z∗+) = 1
r

[
qμ(z∗)+ π(z∗)

]
,

and so the value function can be written as

V (x) =
⎧
⎨

⎩

p(x − y∗)+ 1
r

[
pμ(y∗)+ π(y∗)

]
x ≥ y∗,

(Rrπ)(x)+ c∗
1ψ(x)+ c∗

2ϕ(x) z∗ < x < y∗,
q(x − z∗)+ 1

r

[
qμ(z∗)+ π(z∗)

]
x ≤ z∗.

(12)

To prove that the two-sided barrier control (U z∗
, Dy∗

) is the optimal control among
all admissible controls and that V (x) above is the optimal value function we shall need
the following concavity result, which is a slight modification of Shreve et al. (1984,
Lemma 4.2).

Lemma 4.3 Let Assumption 3.2 hold, let (z∗, y∗) be a solution to (9) and let V be as
in (12). Then

(A) V ′′(x) ≤ 0 for all x ∈ (z∗, y∗).
(B) V is an increasing function.

Proof See Appendix A.2. ��
Now we are ready to prove the main result about optimality of a reflecting control.

Theorem 4.4 Let Assumption 3.2 hold and assume in addition that the necessary con-
ditions (9) have a solution (z∗, y∗). Then the barrier policy (U z∗

, Dy∗
) is the unique

optimal policy to the problem (5) and the optimal value function V (x) is as in (12).

Proof Let V ∗ be the optimal value of the problem (5) and let V be as in (12). Since
V is obtained with an admissible control (U z∗

t , Dy∗
t ), we know that V ∗ ≥ V . The

following properties will be proved to be sufficient for the opposite inequality:

(i) V ∈ C2;
(ii) (A − r)V (x)+ π(x) ≤ 0 for all x ∈ R+;

(iii) p ≤ V ′(x) ≤ q for all x ∈ R+.

Let us show that V satisfies these. Firstly the case (i) is valid, since (z∗, y∗)was chosen
so that V is twice continuously differentiable. To show that (ii) hold, we get by straight
differentiation that
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(A − r)V (x)+ π(x) =
⎧
⎨

⎩

ρp(x)− ρp(y∗) if x ≥ y∗,
0 if x ∈ (z∗, y∗),
ρq(x)− ρq(z∗) if x ≤ z∗.

Here the first and the last expressions are non-positive due to Assumption 3.2(iv)
and Lemma 4.1, and thus the case (ii) follows. The case (iii) is obtained as soon as
we notice that combining the concavity of V from Lemma 4.3(A) with the fact that
V ′(z∗+) = q > p = V ′(y∗−) yields p ≤ V ′(x) ≤ q for z∗ ≤ x ≤ y∗ and that
V ′(x) = p for x > y∗ and V ′(x) = q for x < z∗.

To show that these three properties imply V ≥ V ∗, let (Ut , Dt ) be an arbitrary
admissible control, fix T < ∞ and define

U c
t = Ut −

∑

0<s≤t

	Us and Dc
t = Dt −

∑

0<s≤t

	Ds,

where 	Us = Us − Us− so that U c
t and Dc

t are the continuous parts of Ut and Dt

respectively. Letting τT = T ∧ ζZ , which is an almost surely finite stopping time, we
apply generalised Ito’s lemma to the function e−rτT V (ZτT ) to get

Ex
[
e−rτT V (ZτT )

] = V (x)+ Ex

⎡

⎣

τT∫

0

e−rs(A − r)V (Zs)ds

⎤

⎦

+Ex

⎡

⎣

τT∫

0

e−rs V ′(Zs)(dU c
s − d Dc

s )

⎤

⎦

+Ex

⎡

⎣
∑

0≤s≤τT

e−rs	V (Zs)

⎤

⎦ ,

where 	V (Zs) = V (Zs)− V (Zs−).
Let v be the value function corresponding the chosen control (Ut , Dt ). Set

vτT (x) = Ex

⎡

⎣

τT∫

0

e−rs(π(Zs)ds + pd Ds − qdUs)+ e−rτT V (ZτT )

⎤

⎦ . (13)

This is a compound policy, which follows the arbitrarily chosen policy (Ut , Dt ) until
time τT and thereafter applies the barrier policy (U z∗

, Dy∗
)with value function V (x).

Using the expression for Ex
[
e−rτT V (ZτT )

]
above and utilizing the three properties

of the function V above we can calculate that

vτT (x) = V (x)+ Ex

⎡

⎣

τT∫

0

e−rs ((A − r)V (Zs)+ π(Zs)) ds

⎤

⎦
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+Ex

⎡

⎣

τT∫

0

e−rs(V ′(Zs)− q)dU c
s

⎤

⎦

+Ex

⎡

⎣

τT∫

0

e−rs(p − V ′(Zs))d Dc
s

⎤

⎦ + Ex

⎡

⎣
∑

0≤s≤τT

	V (Zs)− q	Us + p	Ds

⎤

⎦

≤ V (x)+ Ex

⎡

⎣
∑

0≤s≤τT

	V (Zs)− q	Us + p	Ds

⎤

⎦ .

Here the last sum is non-positive: assume that 	Us > 0 and 	Ds = 0. Then
	Zs = 	Us and

	V (Zs)− q	Us + p	Ds

= V (Zs)− V (Zs −	Us)− q	Us ≤ q	Us − q	Us = 0,

where the inequality follows from the fact that V ′(x) ≤ q for all x > 0. Similar
arguments apply to the case, where 	Us = 0 and 	Ds > 0 as well as to the case
	Us > 0 and	Ds>0. In every case vτT (x) ≤ V (x). As V (x) is bounded from below,
limT →∞ e−rT V (ZT ) ≥ 0. Letting T → ∞ in (13) we see that v(x) ≤ vτT (x) ≤ V (x)
for all admissible policies (Ut , Dt ). Therefore also V ∗ ≤ V . Lastly, the uniqueness
follows from Proposition 4.2.

The argument in the proof has been used for example in Harrison (1985, Chapter 6),
where it is called a policy improvement logic. The theorem itself confirms that if we
have already found a solution satisfying the first order optimality conditions (9), then
fairly weak conditions ensure it to be unique and the corresponding control to be
optimal for the problem (5) and the value function can be written explicitly as in
(12). All in all, this is a pleasant result for the applications, since often if a solution
to the necessary conditions (9) exists, it can be found numerically without too much
difficulty.

Moreover we have seen in Lemma 4.3 that under Assumption 3.2 the marginal
value V ′(x) is positive but diminishing everywhere. This generalises the known result
from one-sided control, e.g. (Alvarez, 2001, Theorem 5), to two-sided ones.

A connection to the Dynkin game is also worth mentioning. There is a strong con-
nection between one-sided singular control and optimal stopping, which is known
already from the pioneering work (Bather and Chernoff 1966). It says that a derivative
of the value function of a one-sided control problem constitutes the value function
of an associated optimal stopping problem, see also Karatzas and Shreve (1984) and
Karatzas (1985b) and Alvarez (2001). The two-sided control problem, like ours, is
in turn known to have a similar connection with an associated two-player optimal
stopping game known as a Dynkin game, see for example Karatzas and Wang (2001)
and Boetius (2005).
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5 Sufficient conditions for the solution

5.1 Assumptions and auxiliary results

Although one could try to find numerically the solution to the necessary conditions (9),
we are nevertheless in a state of uncertainty whether there does exist a solution or not.
To make things clearer, in this section we shall provide a set of sufficient conditions
under which there exists a unique pair (z∗, y∗) satisfying the first order optimality
conditions (9). These conditions are summarised in the following.

Assumption 5.1 Assume that Assumption 3.2 hold, that the boundaries 0 and ∞ are
natural and in addition that for b = p, q

(v) ρb(∞) = −∞ and that ρ′
b(0+) > 0

(vi) limx↓0 − ∫ x̃b
x ϕ′(t)/S′(t)dt = ∞.

Basically all these additional assumptions aim to dictate the boundary behaviour
of the auxiliary functions I and J , so that we can be sure they intersect each other. Of
these assumptions, especially (vi) seems a bit bizarre and hard to verify, but it has a
clear interpretation; the assumption that 0 is natural means that it is also not-entrance,
implying that the scale derivative −ϕ′(x)/S′(x) approaches infinity as x tends to zero.
Now, Assumption (vi) requires the scale derivative to be even steeper at zero, namely
that also the integral − ∫ x̃b

x ϕ′(t)/S′(t)dt approaches infinity as x tends to zero. So
loosely speaking one could say that Assumption (vi) makes zero even more forbidden
entrance than the naturality assumption of the boundary. Since this assumption can
be troublesome to verify, we shall give in Lemma 5.2 below two different conditions
which imply the assumption. Before that we need to introduce the associated diffusion

d X̂t = (μ(X̂t )+ σ ′(X̂t )σ (X̂t ))dt + σ(X̂t )dWt ,

with killing rate r−μ′(x). (Its infinitesimal generator Â−(
r − μ′(x)

) = 1
2σ

2(x) d2

dx2 +
(
μ(x)+ σ ′(x)σ (x)

) d
dx − (

r − μ′(x)
)

is got by differentiating the generator A − r .)

Lemma 5.2 Assume that either

(A) μ′(x)< r for all x ≥ 0,μ is concave near zero, and the boundary 0 is not-entrance
for the associated diffusion X̂t ; or

(B) ψ ′(0) = 0 and (Rr id)′(0+) > 0.

Then limx↓0 − ∫ x̃b
x ϕ′(t)/S′(t)dt = ∞ for b = p, q.

Proof See Appendix A.3. ��
In previous lemma the condition (A) can be checked from initial functions, while
condition (B) can be convenient, if ψ and (Rr id) can be calculated explicitly. Moving
on, in the following lemma we see that I and J from (10) can be written in a tidy
integral form.
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Lemma 5.3 Let Assumption 5.1 hold. Then, for b = p, q, the functions I and J from
(10) can be written as

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Jb(x) = − 1

B

⎛

⎝

∞∫

x

ϕt (ρb(x)− ρb(t))m
′
t dt

⎞

⎠

Ib(x) = 1

B

⎛

⎝

x∫

0

ψt (ρb(x)− ρb(t))m
′
t dt

⎞

⎠

Proof See Appendix A.4 ��
We have previously proved (Lemma 3.3) that these auxiliary functions satisfy cer-

tain monotonicity properties, which were adequate for the uniqueness of a solution.
But for the existence we also need to know something about their boundary behaviour.

Lemma 5.4 Let Assumption 5.1 hold. Then

(A) for b = p, q, Jb(0+) = ∞ and Jb(∞) ≤ 0.
(B) for b = p, q, Ib(0+) ≥ 0 and Ib(∞) < 0.

Proof See Appendix A.5. ��

5.2 Proving the existence of (z∗, y∗)

We already know from Lemma 4.1 that if there exists a pair (z∗, y∗) satisfying the con-
dition (9), then it must be in the set (0, x̃q)× (x̃ p,∞). Now with stricter assumptions,
we can shrink this acceptable set into a bounded set.

Lemma 5.5 Let Assumption 5.1 hold. Assume further that the necessary conditions
(9) have a solution (z∗, y∗). Then (z∗, y∗) ∈ (x J

q , x̃q)× (x̃ p, x I
p), where x J

q , x I
p ∈ R+

are the unique interior points for which Jq(x J
q ) = 0 and Ip(x I

p) = 0 and x̃q , x̃ p are
as in Assumption 3.2(iv).

Proof The proof follows that of Theorem 4.3 in Alvarez (2008). From Lemma 5.4
we get Jb(0+) > 0 and Jb(∞)≤ 0 for b = p, q. Combining these facts with the
monotonicity properties (Lemma 3.3) we see that there must exist a unique x J

b < x̃b

such that Jb(x) � 0 for all x � x J
b . Especially we see that Jb(x) < 0 for all x > x̃b.

Analogously we see that there exists a unique x I
b > x̃b such that Ib(x) � 0 for all

x � x I
b , and especially that Ib(x) > 0 for all x < x̃b.

To prove the new lower boundary for z∗, we notice first that by Lemma 4.1 we
have y∗ > x̃ p, and thus, since z∗ satisfies (9), using the sign results above we get
Jq(z∗) = Jp(y∗) < 0. Moreover utilizing the sign results above once more we get
z∗ > x J

q . The new upper boundary for y∗ follows similarly.

So the possible region for optimal thresholds is narrowed to a compact region. This
information is useful in next theorem, which is our main result on the solvability of
the necessary conditions (9).
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Theorem 5.6 Let Assumption 5.1 hold. Then there exists a unique pair (z∗, y∗) sat-
isfying the first order optimality conditions (9).

Proof As in proof of Proposition 4.2, define a function K : [x J
q , x̃q ] → [x J

q , x̃q ] by

K (x) = (
Ĵ−1

q ◦ Ĵp ◦ Î −1
p ◦ Îq

)
(x),where Ĵq = Jq |(0,x̃q ], Ĵp = Jp|[x̃ p,∞), Îq = Iq |(0,x̃q ]

and Î p = Ip|[x̃ p,∞). As before, we notice that K is increasing. Notice that now the
domain of K is different.

To ensure that K is well defined, we will show that the endpoints x J
q , x̃q are mapped

into the domain of K . Firstly 0 < x J
q < x̃q , and so Iq(x J

q ) > 0. Since Ip(x) > Iq(x)

for all x ∈ R+, there exists a point s1 ∈ (x̃ p, x I
p) such that Ip(s1) = Iq(x J

q ). Moreover,
Jp(s1) < 0 and since Jp(x) > Jq(x) for all x ∈ R+, there exists a point s2 ∈ (x J

q , x̃q)

such that Jp(s1) = Jq(s2), so especially K (x J
q ) = s2 ∈ (x J

q , x̃q). For the upper end-
point, since Ip(x) > Iq(x) for all x ∈ R+, we know that there exists t1 ∈ (x̃ p, x I

p)

such that Ip(t1) = Iq(x̃q). Reasoning as above, we get that there exists t2 ∈ (x J
q , x̃q)

such that Jp(t1) = Jq(t2) so in particularly K (x̃q) = t2 ∈ (x J
q , x̃q) and K is well

defined.
Let us define a sequence zn = K n(x J

q )(= (K ◦ · · · ◦ K )(x J
q )). This sequence con-

verges by induction: It is clear that z1 = K (z0) > z0. Because K is an increasing
function, we have K

(
K (z0)

)
> K (z0). By induction K n(z0) > K n−1(z0). Since the

sequence zn is increasing and bounded from above, it converges.
Writing z∗ = limn→∞ zn , we see that z∗ is the fixed point of the function K .

Defining y∗ = Ĵ−1
p ( Ĵq(z∗))(= Î −1

p ( Îq(z∗))), we get a pair (z∗, y∗) that satisfies
the necessary conditions (9). The uniqueness of such a pair follows directly from
Proposition 4.2. ��

In the previous theorem we saw that under Assumption 5.1 the unique pair (z∗, y∗)
satisfying (9) always exists. Furthermore we saw how it can be found when it is
identified as a fixed point. Analogous fixed point argument is used also in Alvarez
and Lempa (2008) in an impulse control situation and in Lempa (2010) in a tradi-
tional optimal stopping situation. Theorem 5.6 also shows how we can find the pair
(z∗, y∗) numerically. First we identify the point x J

q . After that, we apply the function

K (x) = (
Ĵ−1

q ◦ Ĵp ◦ Î −1
p ◦ Îq

)
(x) to that point (actually any point in (0, x J

q ] will do)
and calculate K k(x J

q ), where we might for example set a stopping limit ε > 0 and
stop at the first step step k, for which |K k(x J

q )− K k−1(x J
q )| < ε. After this we have

z∗ ≈ K k(x J
q ) and y∗ ≈ J−1

2 (J1(K k(x J
q ))).

6 Comparative analysis

Let us next study the sensitiveness of the value function and the optimal barriers, firstly
and most importantly with respect to the volatility, and secondly with respect to the
control parameters. We shall also compare the differences between the solutions of
two-sided and one-sided control problems.
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6.1 Volatility sensitiveness

Our main results on the effect of the increased volatility are summarised in the
following.

Theorem 6.1 Let Assumption 3.2 hold and let (z∗, y∗) be a solution to (9). Then

(A) V (x) is non-increasing in σ .
(B) if we assume further that the inequalities concerning ρ′

b in Assumption 3.2(iv)
are strict, the inactivity region (z∗, y∗) widens as σ increases.

Proof Let σ̂ (x) ≥ σ(x) for all x ≥ 0 and let Â = 1
2 σ̂

2(x) d2

dx2 +μ(x) d
dx be the infin-

itesimal generator, V̂ the optimal value function and (ẑ∗, ŷ∗) the optimal inactivity
region with respect to the volatility σ̂ .

(A) We have

(Â − r)V (x)+ π(x) =
⎧
⎨

⎩

ρp(x)− ρp(y∗) ≤ 0 if x ≥ y∗
1
2

(
σ̂ 2(x)− σ 2(x)

)
V ′′(x) ≤ 0 if x ∈ (z∗, y∗)

ρq(x)− ρq(z∗) ≤ 0 if x ≤ z∗,

the first and the last expressions being non-positive due to Assumption 3.2(iv) and
the middle expression due to the concavity of V (Lemma 4.3). Hence V satisfies the
property (ii) in the proof of Theorem 4.4 with respect to σ̂ , while the properties (i)
and (iii) can be handled as previously. Therefore analysis similar to that in the proof
of Theorem 4.4 shows that V ≥ V̂ .

(B) Let us first prove the ordering for the lower boundaries. Suppose, contrary to
our claim, that z∗ < ẑ∗. Now from the value function expression (12) we see that

V (z∗) = 1

r
ρq(z

∗)+qz∗ < 1

r
ρq(ẑ

∗)+qz∗ = V̂ (z∗)−q(z∗−ẑ∗)+q(z∗−ẑ∗) = V̂ (z∗),

where the inequality follow from strict inequality in Assumption 3.2(iv). This con-
tradicts the fact V ≥ V̂ (item (A)). The same reasoning applies also to the case
y∗ < ŷ∗. ��

According to our theorem, increased volatility affects negatively both the opti-
mal policy and its value. Put differently, our theorem shows that increased volatility
expands the inactivity region and postpones the usage of singular policies by decreas-
ing the marginal value of the optimal policy. This result generalises previous findings
based on one-sided policies (e.g. Theorem 6 in Alvarez 2001) to a two-sided setting.

6.2 Comparing the two-sided and one-sided solutions

It is also of interest to study the relationship between two-sided and one-sided con-
trols. Obviously, since not using a control is an admissible control, the optimal value
function is greater in the two-sided case. But are the reflected barriers from these two
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problems ordered consistently, and if so, how? To this end let Assumption 5.1 hold
and let (z∗, y∗) be the optimal reflecting barriers in two-sided control problem.

Consider first the case where the dynamics are controlled only downwards, so that
Z = X−D. In that case the value reads as supD Ex

∫ ζZ
0 e−rs

(
π(Zs)ds+pd Ds

)
. Under

Assumption 5.1 this one-sided control problem is known to have solution (actually,
weaker assumptions are sufficient, see Lemma 3.4 in Alvarez and Lempa 2008) and
the optimal control is reflecting control with the reflecting barrier at x I

p (the unique
point for which Ip(x I

p) = 0, cf. Lemma 5.5), and we know from Lemma 5.5 that
y∗ < x I

p. So, in the harvest example, in the absence of a replanting opportunity we
harvest later.

Similarly, consider the case where the dynamics are controlled only upwards, so
that Z = X + U . In this case the value reads as supU Ex

∫ ζZ
0 e−rs

(
π(Zs)ds − qdUs

)
.

Going through the reasoning in Alvarez and Lempa (2008), one could verify that under
Assumption 5.1 this one-sided control problem has a solution, where the optimal con-
trol is a reflecting control with the reflecting barrier at x J

q (the unique point for which
Jq(x J

q ) = 0, cf. Lemma 5.5), and from Lemma 5.5 we know that z∗ > x J
q . Now, in a

dividend payments problem with obligative reinvestment example, in the absence of
dividend payments we reinvest later.

6.3 Sensitiveness on control parameters

Next we shall consider the sensitiveness with respect to the control parameters p and
q in the following two propositions.

Proposition 6.2 Let Assumption 5.1 hold. Then

(A) V (x) is p-increasing and q-decreasing.
(B) the inactivity region (z∗, y∗) shrinks as p increases and widens as q increases.

Proof Fix p1 < p2(< q) and let Vi (x) := V (x; pi ) and (z∗
i , y∗

i ) be the value function
and optimal reflecting barriers, respectively, with respect to pi .

(A) We see that

V1(x) = Ex

⎡

⎣

∞∫

0

e−r t (π(Zt )dt + p1d D
y∗

1
t − qdU

z∗
1

t )

⎤

⎦

≤ Ex

⎡

⎣

∞∫

0

e−r t (π(Zt )dt + p2d D
y∗

1
t − qdU

z∗
1

t )

⎤

⎦

≤ sup
(D,U )

Ex

⎡

⎣

∞∫

0

e−r t (π(Zt )dt + p2d Dt − qdUt )

⎤

⎦ = V2(x).

Proving that V (x; q2) ≤ V (x; q1) for all q2 > q1 is analogous.
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(B) Let us first study the sensitiveness with respect to p. Fix again p1 < p2(< q)
and let (z∗

i , y∗
i ) be the optimal reflecting barriers with respect to pi . Furthermore

let Ki (x) = (
Ĵ−1

q ◦ Ĵpi ◦ Î −1
pi

◦ Îq
)
(x), for i = 1, 2, be as in Theorem 5.6. Since

ψ ′′, ϕ′′ > 0 by Lemma 3.3(A) we can use the expression (10) to obtain inequali-
ties Ip2(x) < Ip1(x) and Jp2(x) < Jp1(x). Combining these with the monotonicity
properties of Ĵ and Î yields

Î −1
p1
( Îq(z

∗
1)) > Î −1

p2
( Îq(z

∗
1))

�⇒ Ĵp1( Î
−1
p1
( Îq(z

∗
1))) > Ĵp1( Î

−1
p2
( Îq(z

∗
1))) > Ĵp2( Î

−1
p2
( Îq(z

∗
1)))

�⇒ Ĵ−1
q ( Ĵp1( Î

−1
p1
( Îq(z

∗
1)))) < Ĵ−1

q ( Ĵp2( Î
−1
p2
( Îq(z

∗
1)))),

where all the inequalities are strict. In other words K2(z∗
1) > K1(z∗

1) = z∗
1. Now pro-

ceeding as in the proof of Theorem 5.6, we can deduce that as a limit of an increasing
sequence z∗

2 = limn→∞ K n
2 (z

∗
1)
( = (K2 ◦ · · · ◦ K2)(z∗

1)
)
> z∗

1. Moreover by the

monotonicity of functions Î we get

y∗
1 = Î −1

p1
( Îq(z

∗
1)) > Î −1

p2
( Îq(z

∗
1)) > Î −1

p2
( Îq(z

∗
2)) = y∗

2 .

Let us then consider the sensitiveness with respect to q. Same arguments as above
with slight changes applies to this case. Fix q2 > q1 and let (z∗

i , y∗
i ) be the opti-

mal continuation region with respect to qi . Now we need to define functions Hi :
[x̃ p, x I

p) → [x̃ p, x I
p) (for the definitions of x̃ p and x I

p see Lemma 5.5) as Hi (y) =
( Î −1

p ◦ Îqi ◦ Ĵ−1
qi

◦ Ĵp)(y), for i = 1, 2, so that H1(y∗
1 ) = y∗

1 . Reasoning as above we
can deduce that H2(y∗

1 ) > y∗
1 . Now Hn

2 (y
∗
1 ) is an bounded increasing sequence and

therefore y∗
2 = limn→∞ Hn

2 (y
∗
1 ) > y∗

1 . Lastly by monotonicity of functions Ĵ we get

z∗
1 = Ĵ−1

q1
( Ĵp(y

∗
1 )) > Ĵ−1

q2
( Ĵp(y

∗
1 )) > Ĵ−1

q2
( Ĵp(y

∗
2 )) = z∗

2.

��
Proposition 6.2 verifies intuitively clear facts: increasing the income (p) from using

an upper barrier, the value is understandably also increasing and the controller is
encouraged to use the controls, thus the inactivity region is narrowing. The contrary
is true when the cost q of using control at the lower barrier is increased.

Subsequent questions are the limiting properties, which are considered in the
following.

Proposition 6.3 Let Assumption 5.1 hold. Then

(A) z∗ ↘ 0 and y∗ ↗ x I
p as q ↗ ∞;

(B) if in addition π is increasing, we have z∗ ↘ x J
q and y∗ ↗ ∞ as p ↘ 0

(C) the inactivity region (z∗, y∗) shrinks arbitrary small as q − p ↘ 0. Moreover
x̃ p − x̃q ↘ 0 and z∗ ↗ x̃q , y∗ ↘ x̃q and the value function approaches, from
below, a function q(x − x̃q)+ 1

r

(
qμ(x̃q)+ π(x̃q)

)
.
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(D) if in addition π is increasing, we have (z∗, y∗) ↘ (0, 0) as q, p → ∞ and
(z∗, y∗) ↗ (∞,∞) as q, p → 0.

Proof (A) Let q1 < q2. Then

ρ′
q1
(x) = π ′(x)+ q1(μ

′(x)− r) > π ′(x)+ q2(μ
′(x)− r) = ρ′

q2
(x).

Therefore we can deduce that x̃q1 > x̃q2 . Now ρ′∞(x) = −∞ for all x > 0, and so
limq→∞ x̃q = 0. By Lemma 4.1 we know that z∗ < x̃q , and therefore we can conclude
that z∗ → 0 as q → ∞.

Since zero was assumed to be natural, the process never reaches the state 0, and it
follows that U z∗

t = U 0
t ≡ 0 as q → ∞. And so, when q → ∞, the problem reduces to

sup
D

Ex

ζZ∫

0

e−rs (π(Zs)ds + pd Ds) .

But this is the one-sided control problem introduced in Sect. 6.2, and its optimal

policy is known to be D
x I

p
t (see Lemma 3.4 in Alvarez and Lempa (2008)), and so

limq→∞ y∗ = x I
p. Moreover, from Lemma 5.5 we know that y∗ < x I

p for all q, and
so the convergence must be from below.

(B) Let 0 < p1 < p2. Then

ρ′
p2
(x) = π ′(x)+ p2(μ

′(x)− r) < π ′(x)+ p1(μ
′(x)− r) = ρ′

p1
(x).

Therefore we can deduce that x̃ p1 > x̃ p2 , and this holds for all π(x). Now if π is
increasing, then ρ′

0(x) = π ′(x) ≥ 0 for all x > 0, and so lim p→0 x̃ p = ∞. And since
y∗ > x̃ p (by Lemma 5.5), the rest of the reasoning is similar to the one in (A).

(C) First of all, Proposition 6.2(B) implies that the inactivity region (z∗, y∗) shrinks
as q − p ↘ 0. Moreover, above we saw that x̃q is decreasing in q and x̃ p is increasing
in p. Furthermore, since ρb(x) is b-continuous, it is clear that as q − p ↘ 0, we get
in fact x̃ p − x̃q ↘ 0 (x̃ p ≥ x̃q always by Lemma 4.1).

Without lost of generality, we from now on fix q and let p approach q. For all p < q
we know from Theorem 5.6 that there exist z∗(p) < x̃q and y∗(p) > x̃q . Further,
z∗(p) is p-increasing and y∗(p) is p-decreasing by Proposition 6.2(B). Moreover
from the proof of Proposition 6.2(B) we see that z∗(p) is p-continuous, since the
functions Ib, Jb, I −1

b , J−1
b , for b = p, q, are. Similarly also y∗(p) is p-continuous.

It follows that there exist Z∗ = lim p↗q z∗(p) and Y ∗ = lim p↗q y∗(p), which
satisfy the fixed point properties in the proof of Theorem 5.6 at the limit p ↗ q; i.e.
properties K (Z∗) = Z∗, Y ∗ = (I −1

q |[x̃q ,∞) ◦ Iq |[x J
q ,x̃q ])(Z∗) and K ′(Z∗) < 1. But

now since the pair (x̃q , x̃q) also satisfies these properties at the limit p ↗ q, and the
fixed point is unique, we must have (Z∗,Y ∗) = (x̃q , x̃q).

The value V (x) is p-increasing by Proposition 6.2(A). Moreover, from the value
function expression (12), we see that since z∗, y∗ → x̃q as p → q, we have limit
lim p→q V (x) = q(x − x̃q)+ 1

r

(
qμ(x̃q)+ π(x̃q)

)
for x ≥ y∗ and x ≤ z∗. And since

z∗ − y∗ → 0, as p → q, this expression holds everywhere.
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(D) Consider first the case q, p → ∞. We have already shown that z∗ ↘ 0 as
q → ∞, so we are left to prove that y∗ ↘ 0 as p → ∞. Since y∗ < x I

p (by
Lemma 5.5), it is sufficient to show that lim p→∞ x I

p = 0. Now

Ip(x) = 1

B

x∫

0

ψt (ρp(x)− ρp(t))m
′
t dt,

and since lim p→∞ x̃ p = 0, we know that ρp(x)−ρp(t) < 0 for all t < x as p → ∞.
Hence Ip(x) < 0 for all x > 0 at the limit p → ∞. Consequently x I

p → 0.
Let us then turn to the case q, p → 0. We already know that lim p→0 y∗ = ∞, and

thus it remains to prove that limq→0 z∗ = ∞. Since z∗ > x J
q (by Lemma 5.5), it is

sufficient to show that limq→0 x J
q = ∞. Now

Jq(x) = − 1

B

∞∫

x

ϕt (ρq(x)− ρq(t))m
′
t dt,

and since limq→0 x̃q → ∞, we know that ρq(x)− ρq(t) < 0 for all t > x as q → 0.
Hence Jq(x) > 0 for all x > 0 at the limit q → 0, and consequently x J

p → ∞.

In Proposition 6.3(A)–(B) we see that at the limits q → ∞ and p → 0 we get
the solutions of the associated one-sided control problems (cf. Sect. 6.2), so that the
theory presented in this paper can be seen as a natural generalisation of the one-sided
problem. Moreover, we see that the upper boundary x I

p is approached from below and
the lower boundary x J

q from above. It is also worth stressing that in Proposition 6.3(B)
the requirement that π is increasing is necessary; we shall see an example in Sect. 7.2
where a concave revenue function π enables the upper threshold y∗ to be finite even
with negative values of p.

From case (C) we see that as p and q approach each other, the inactivity region
(z∗, y∗) becomes arbitrarily small. Noteworthy is that, although technically at the
limit p ↗ q we get reflecting barriers (z∗, y∗) = (x̃q , x̃q), the corresponding pair of
controls (U x̃q , Dx̃q ) are no longer admissible policies.

In the last case (D) we see that when both control parameters are set to the same
limit, either 0 or ∞, we, respectively, either raise both of the thresholds z∗ and y∗
up toward infinity, or lower them down toward zero. Noteworthy is that in the limit
neither the control U∞ nor D0 are admissible, since they usher the diffusion to the
state ∞ or 0, respectively, which are not in the state space.

6.4 Stationary distribution

The controlled process Zt = Xt + U z∗
t − Dy∗

t is well defined on the finite interval

[z∗, y∗], and so it follows that M := m(z∗, y∗) = ∫ y∗
z∗ m′(u)du < ∞. Moreover,

since the boundaries of the controlled process are reflecting, we can define a station-
ary probability distribution for controlled process Zt as η(x) := m′(x)/M . Now, for
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every Borel-measurable bounded function f : [z∗, y∗] → R we have (see Borodin
and Salminen 2002, p. 37)

lim
t→∞ Ex [ f (Zt )] =

y∗
∫

x∗
f (u)η(u)du.

7 Examples

7.1 Geometric Brownian motion

To illustrate our results explicitly, assume that the underlying uncontrolled diffusion
evolves as geometric Brownian motion, i.e.

d X (t) = μX (t)dt + σ X (t)dW (t),

where σ ∈ R+, μ ∈ (−∞, r) are exogenously given constants. Furthermore, assume
that the revenue flow is π(x) = xa − c, with a ∈ (0, 1) and c ∈ R, so that

(Rrπ)(x) = xa

r + 1
2σ

2
(
a − a2

) − aμ
− c

r
.

It is worth mentioning that with linear payoff function (a = 1), there would not emerge
a two-sided reflecting barrier as an optimal rule due to invalidity of Assumption 3.2(iv).
Furthermore let us still assume that q > p.

With geometric Brownian motion our fundamental solutions of the ordinary differ-
ential equation (A − r)u = 0 are ψ(x) = xγ

+
and ϕ(x) = xγ

−
, where

γ± = 1

σ 2

(
1
2σ

2 − μ±
√

( 1
2σ

2 − μ)2 + 2σ 2r

)

(14)

are the solutions of the characteristic equation 1
2σ

2γ (γ −1)+μγ −r = 0. Especially
we see that γ+ > 1 since μ < r .

7.1.1 Solution to the problem

Let us check that this setup satisfies Assumption 5.1. Now the boundaries are natural
and Assumption (i) is already assumed to hold, and clearly conditions in (ii) are sat-
isfied. Furthermore, we assumed μ < r and so (iii) holds. By straight differentiation
ρ′

b(x) = axa−1 + b(µ − r), which satisfies assumption (iv) since 0 < a < 1. Fur-
thermore ρ′

b(0+) = ∞ and ρb(∞) = −∞, thus (v) is valid. Lastly ψ ′(0) = 0 since
γ+ > 1, and (Rr id)(x) = x/(r − μ) so that (Rr id)′(0) > 0 and therefore we can
conclude by Lemma 5.2 that also Assumption (vi) is valid.

Hence the results from Sect. 5 can be applied, so especially the optimal solution
to (5) is a two-sided reflected control. The optimal reflecting barriers (z∗, y∗) are the
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Fig. 1 Optimal value function
for a control problem, dashed
lines are tangents at the points
z∗ and y∗

unique solution to the necessary conditions (9), which can now be written as

{
z−γ− [

2aza(a − γ−)+ Aqz(γ− − 1)
] = y−γ+ [

2aya(a − γ−)+ Apy(γ− − 1)
]

z−γ− [
2aza(a − γ+)+ Aqz(γ+ − 1)

] = y−γ− [
2aya(a − γ+)+ Apy(γ+ − 1)

]
,

where A = 2r + a(σ 2(1 − a) − 2μ). Unfortunately this seems impossible to solve
explicitly, but we shall illustrate the optimal barriers numerically below.

With optimal barriers, the value function gets the form

V (x) =

⎧
⎪⎨

⎪⎩

p(x − y∗)+ 1
r

[
pμy∗ + y∗a − b)

]
x ≥ y∗,

xa

r+ 1
2 σ

2(a−a2)−aμ
− c

r − Jq(z∗)xγ+ + Iq(z∗)xγ−
z∗ < x < y∗,

q(x − z∗)+ 1
r

[
qμz∗ + z∗a − b

]
x ≤ z∗,

where Jq and Iq are as in (10).

7.1.2 Numerical illustration

Let us illustrate numerically the results under the parameter configuration μ = 0.05,
σ = 0.2 r = 0.08, a = 1/3, c = 1, p = 3 and q = 10. With these choices
(z∗, y∗) ≈ (0.28, 9.45), and the value function is drawn in Fig. 1. As was shown in
Lemma 4.3, V (x) is concave.

In Fig. 2 we see how the thresholds are altered, when we change parameter values.
By increasing a we increase the payoff function π (for x > 1), so that it is sensible
that the upper barrier y∗ increases. As was proved in Theorem 6.1, higher volatility
(σ ) leads to a wider inactivity region. Moreover the impact of a change in p and q
affects as proved in Propositions 6.2 and 6.3 (now (x J

q , x̃q , x I
p) ≈ (0.26, 1.17, 9.453)).

What is not seen from those propositions though, is the exceptional rapid widening
of the interval (z∗, y∗) with respect to q, when q is near p: With p = q = 3, we
have z∗ = y∗, but already with q = 3.02, we have y∗ − z∗ ≈ 3.0 and with q = 3.1,
y∗ − z∗ ≈ 4.8. Consequently q reaches its upper barrier x I

p rather quickly. On the
other hand, a change in p does not affect the boundaries so strongly. This suggests that
the optimal policy is more sensitive with respect to changes in costs than in revenues.
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(a) (b)

(c) (d)

Fig. 2 Sensitivity of the inactivity region with respect to the parameters a a; b σ ; c p; d q

Furthermore now m′(x) = 2
σ 2 x

2
(
μ

σ2 −1
)

. Thus, if μ 
= 1
2σ

2, the stationary proba-
bility distribution is

η(x) = 2μ− σ 2

σ 2

(

y∗ 2μ
σ2 −1 − z∗ 2μ

σ2 −1
) x

2
(
μ

σ2 −1
)

.

Using Sect. 6.4, we can calculate that, with the chosen numerical values,
limt→∞ E [Zt ] = 5.70 (the midpoint of the interval (z∗, y∗) is 4.9), and that the vari-
ance of the long run stationary state is limt→∞ Var(Zt ) = 6.00. Moreover, choosing
A = [6.4, y∗] (the upper third of the interval [z∗, y∗]), we get limt→∞ E [1A(Zt )] =
limt→∞ P (Zt ∈ A) = 0.45. All this advocates that, in the long run, the controlled
process spends more time near the upper threshold y∗ than near the lower threshold
z∗.

7.2 Mean reverting diffusion

As a slightly more challenging setting, consider that without a control the underlying
diffusion Xt follows a mean reverting diffusion:

d Xt = μXt (1 − βXt )dt + σ Xt dWt , X0 = x,

where μ > 0 is exogenous constant and β > 0 is the degree of the mean-reversion
and σ > 0 is the volatility coefficient. In this subsection we shall demonstrate a case,
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where the “gain” p from downward control can also be negative. An example, where
this kind of behaviour might arouse is the following.

Let us consider a house owner who wants to control the inside temperature of her
home and dislikes both cold and hot temperature, so that her temperature dependent
utility function, represented byπ , is a concave function. The house owner can naturally
control the temperature of her home either by heating or cooling, by paying a fixed
cost q and p for it, respectively. Since both heating and cooling are costly operations,
we must have q > 0 > p.

To carry on to a more specific analysis, fix q > 0 > p and the utility function
π(x) = −x2 + ax , where a > 0 is an exogenously given constant. Let us next check
that this structure satisfies Assumption 5.1(i)–(vi). We notice that Assumption (i) is
already assumed and that the smoothness conditions in Assumption (ii) are valid. To
see that the integrability Assumption (ii) holds, observe first that by Itô’s Lemma

X2
t = x2 +

t∫

0

2
(
σ 2 + μ (1 − βXs)

)
X2

s ds +
t∫

0

2σ X2
s dWs .

It is now straightforward to show that

2
(
σ 2 + μ (1 − βXs)

)
X2

s ≤ 2(σ 2 + μ)

3μβ
, and thus Ex [X2

t ] ≤ x2 + 2(σ 2 + μ)t

3μβ
.

Thus, it follows that Ex
∫∞

0 e−r t X2
t dt = ∫∞

0 e−r t
Ex

[
X2

t

]
dt < ∞, and consequently

π,μ(x), x ∈ L1 and assumption (ii) holds.
By straight calculations, Assumption (iii)–(v) hold under the sufficient conditions

μ < r , q < a
r−μ and p> − 1

μβ
. Finally, since Assumption (iii) is valid and the drift

μx(1 − βx) is concave, the last Assumption (vi) follows from Lemma 5.2 if 0 is
non-entrance for the associated diffusion X̂t , which in this case is

d X̂t = (μ(1 − β X̂t )+ σ 2)X̂t dt + σ X̂t dWt

and we observe that 0 is non-entrance for it.
It follows that under the above mentioned conditions, the results from Sect. 5 can

be applied. Unfortunately, due to complicated nature of ψ and ϕ in this case (see
Section 6.5 in Dayanik and Karatzas 2003), we cannot solve explicitly any results, but
an illustrative numerical solution is seen in Fig. 3.

Furthermore, in this case the speed density is

m′(x) = 2

σ 2 x
2
(
μ

σ2 −1
)

e− 2μβ
σ2 x

,
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Fig. 3 A numerical illustration
of the solution to (5) with the
mean reverting set up,
introduced above, with the
parameter configuration
μ = 0.04, β = 0.05, σ = 0.3,
r = 0.08, a = 10, q = 4 and
p = −2

and thus the stable stationary distribution on (z∗, y∗) is

η(x) = x
2
(
μ

σ2 −1
)

e− 2μβ
σ2 x

(
σ 2

2μβ

) 2μ
σ2 −1 (

�(
2μ
σ 2 − 1, 2μβ

σ 2 z∗)− �(
2μ
σ 2 − 1, 2μβ

σ 2 y∗)
) ,

where �(s, x) = ∫∞
x t s−ae−t dt is the upper incomplete gamma function.
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Appendix A: Omitted proofs

Firstly, we introduce the following general integral representation result (Corollary
3.2 in Alvarez 2004), which will be referred later on.

Lemma 7.1 A Assume that f ∈ C2(R+), that limx→0+ | f (x)| < ∞ and that
(A − r) f (x) ∈ L1. Then

f ′(x)ψ(x)
S′(x)

− ψ ′(x) f (x)

S′(x)
=

x∫

0

ψ(t)
(
(A − r) f

)
(t)m′(t)dt − δ,

where δ = 0 if 0 is unattainable and δ = B f (0)/ϕ(0) if 0 is attainable for Xt .
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B Assume that f ∈ C2(R+), that limx→∞ f (x)/ψ(x) = 0, and that (A−r) f (x) ∈
L1. Then

f ′(x)ϕ(x)
S′(x)

− ϕ′(x) f (x)

S′(x)
= −

∞∫

x

ϕ(t)
(
(A − r) f

)
(t)m′(t)dt

Proof of Lemma 3.3

(A) This follows directly from Corollary 1 in Alvarez (2003), if the so called transver-
sality condition limt→∞ Ex

[
e−r t Xt ; t < τ0

] = 0 holds. Here τ0 = inf{t ≥ 0 | Xt /∈
R+}. But we assumed that x ∈ L1, meaning that Ex

[∫∞
0 e−r t Xt dt

]
< ∞, and so the

transversality condition must hold.
(B) The derivative properties follow from the derivative form (11) by using Assump-

tion 3.2 (iv) together with the facts ϕ′ < 0 and ψ ′ > 0. Furthermore, from straight
calculation we get

Jp(x)− Jq(x) = (q − p)ϕ′′(x)σ 2(x)

2r BS′(x)
,

which is positive due to the fact q > p [Assumption 3.2(i)] and convexity of ϕ
(item (A) of this lemma). Similarly, from straight calculation we get Ip(x)− Iq(x) =
(q−p)ψ ′′(x)σ 2(x)

2r BS′(x) , which is positive due to the fact q > p [Assumption 3.2(i)] and con-
vexity of ψ (item (A) of this lemma). ��

Proof of Lemma 4.3

(A) The function V satisfies the differential equation (A − r)V + π(x) = 0 on the
interval (z∗, y∗). Differentiating this we obtain

1

2
σ 2(x)V ′′′(x) = (r − μ′(x))V ′(x)− (

μ(x)+ σ(x)σ ′(x)
)

V ′′(x)− π ′(x).

We begin by proving the claim in the caseμ(x)+σ(x)σ ′(x) ≡ 0. Since the necessary
conditions (9) hold, V is twice continuously differentiable, and V ′′(z∗) = V ′′(y∗) = 0
and V ′(z∗) = q > p = V ′(y∗), so

1

2
σ 2(z∗)V ′′′(z∗) = (r − μ′(z∗))V ′(z∗)− π ′(z∗) = −ρ′

q(z
∗) < 0

and
1

2
σ 2(y∗)V ′′′(y∗) = (r − μ′(y∗))V ′(y∗)− π ′(y∗) = −ρ′

p(y
∗) > 0,

where the inequalities follow from the facts that z∗ < x̃q and y∗ > x̃ p (Lemma
4.1). Therefore V ′′(x) ≤ 0 for all x in the neighbourhoods of z∗ and y∗. Let ȳ =
sup{y ∈ (z∗, y∗) | V ′′′(x) < 0 for all z∗ < x < y}. Then, since V ′′(x) < 0 for
all x < ȳ, we have V ′(x) < q for all x < ȳ. Further, since for all x ≤ x̃q and

123



266 P. Matomäki

b < q we have 0 < ρ′
q(x) = (μ′(x) − r)q + π ′(x) < (μ′(x) − r)b + π ′(x), and

V ′′′(x) = − 2
σ 2(x)

ρ′
V ′(x)(x), we must have ȳ > x̃q .

If V ′′ ≤ 0 for all x ∈ (z∗, y∗), then the lemma is proved. So consider for a moment,
contrary to our claim, that there exists at least one point for which V ′′ > 0 and let
w1 < y∗ be the supremum of such points and let w2 < w1 be the supremum of
the points for which V ′′ intersects x-axis from below. In other words V ′′(w2) = 0,
V ′′′(w2) > 0 and V ′′(w1) = 0, V ′′′(w1) < 0 and V ′(w1) > p. In fact we also have
V ′(w1) ≤ q; If this would not be true, we would have 0 < − 1

2σ
2(w1)V ′′′(w1) =

ρ′
V ′(w1)

(w1) < ρ′
q(w1), which contradicts Assumption 3.2(iv), since above we have

shown that x̃q < ȳ < w1.
Since V ′′(x) ≥ 0 for all w2 < x < w1, we have V ′(w2) < V ′(w1). Thus we can

calculate that 0 > − 1
2σ

2(w2)V ′′′(w2) = ρV ′(w2)(w2) > ρV ′(w1)(w2), but above we
chosew1 so that 0 < − 1

2σ
2(w1)V ′′′(w1) = ρ′

V ′(w1)
(w1). Since V ′(w1) ∈ (p, q), this

contradicts Assumption 3.2(iv), since w2 < w1. Therefore we must have V ′′(x) ≤ 0
for all x ∈ (z∗, y∗).

We now turn to the case δ(x) := μ(x)+σ(x)σ ′(x) 
≡ 0. Let us introduce a change
of variable f (x) = ∫ x

0 exp(
∫ u

0 δ(v)dv)du and define a function l ′(y) = (V ′◦ f −1)(y).
Then by straight derivation

1

2
(σ 2 ◦ f −1)(y)l ′′′(y) =

(
r − (μ′ ◦ f −1)(y)

)
l ′(y)− (π ′ ◦ f −1)(y)

( f ′ ◦ f −1)2(y)
.

Since l ′′( f (x)) = V ′′(x)/ f ′(x), we see that l ′′( f (x)) has the same sign as V ′′(x) and
thus the claimed property of V follows from that of l.

(B) From (12) we see that V ′(x) > 0 for all x ≤ z∗ and x ≥ y∗. Since, by item
(A) V ′′(x) ≤ 0 in between, we must also have V ′(x) > 0 for x ∈ (z∗, y∗). ��

Proof of Lemma 5.2

(A) Let ỹb ∈ (0, x̃b) be such that μ(x) is concave for all 0 < x ≤ ỹb and let x < ỹb.
We can write

−
x̃b∫

x

ϕ′(t)
S′(t)

dt = −
ỹb∫

x

ϕ′(t)
S′(t)

dt −
x̃b∫

ỹb

ϕ′(t)
S′(t)

dt.

Here the latter integral in the right-hand side is finite, so we need to show that former
one tends to infinity when x tends to zero. To that end let us inspect more closely the
associated diffusion X̂t . Straight calculation shows the density of the scale function
and the density of the speed measure to be Ŝ′(x) = S′(x)/σ 2(x) and m̂′(x) = 2/S′(x).
Moreover, by convexity of ϕ [Lemma 3.3(A)], we can verify the decreasing funda-
mental solution to be ϕ̂(x) = −ϕ′(x). Utilizing these together with the concavity of
μ allows us to write
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−
ỹb∫

x

ϕ′(v)
S′(v)

dv = 1

2

ỹb∫

x

μ′(v)− r

μ′(v)− r
ϕ̂(v)m̂′(v)dv

<
1

2(μ′(0)− r)

ỹb∫

x

(μ′(v)− r)ϕ̂(v)m̂′(v)dv.

We can now use Lemma 7.1(B) for the diffusion X̂t to obtain

1

2(μ′(0)− r)

ỹb∫

x

(μ′(v)− r)ϕ̂(v)m̂′(v)dv = 1

2(μ′(0)− r)

(
ϕ̂′(x)
Ŝ′(x)

− ϕ̂′(ỹb)

Ŝ′(ỹb)

)

.

Assumed boundary behaviour for X̂t at 0 and the fact that μ′(0) − r < 0 guarantee
that this approach to infinity as x approach to zero, which was desired.

(B) Derivating (3) we get

B(Rr id)′(x) = ϕ′(x)
x∫

0

ψ(t)tm′(t)dt + ψ ′(x)
∞∫

x

ϕ(t)tm′(t)dt.

We know that limx↓0 ϕ
′(x)

∫ x
0 ψ(t)tm

′(t)dt ≤ 0, so we must have
limx↓0 ψ

′(x)
∫∞

x ϕ(t)tm′(t)dt > 0, for otherwise (Rr id)′(0) cannot be positive. But
ψ ′(0+) = 0, so limx↓0

∫∞
x ϕ(t)tm′(t)dt = ∞. The proof is completed by showing

that this integral is smaller than the claimed one. To see this, apply Fubini’s Theorem:

∞∫

x

ϕ(t)tm′(t)dt =
∞∫

t=x

t∫

v=0

ϕ(t)m′(t)dtdv ≤ lim
u→0

∞∫

v=u

∞∫

t=v
ϕ(t)m′(t)dtdv

= lim
u→0

−1

r

∞∫

u

ϕ′(v)
S′(v)

dv,

where the last equality follows from Lemma 7.1 (B). Now, since

∞∫

u

ϕ′(v)
S′(v)

dv =
x̃b∫

u

ϕ′(v)
S′(v)

dv +
∞∫

x̃b

ϕ′(v)
S′(v)

dv

and the last integral in the right hand side is finite, this completes the proof. ��
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Proof of Lemma 5.3

Let us first prove the integral form for the function Jb(x). Since ϕ satisfies the differ-
ential equation (A − r)ϕ = 0 and (Rrπ)(x) satisfies (A − r)(Rrπ) = −π , we can
write Jb from (10) as

Jb(x) = 1

r BS′(x)

[
1

2
bσ 2(x)ϕ′′(x)−π(x)ϕ′(x)+r

(
(Rrπ)(x)ϕ

′(x)−(Rrπ)
′(x)ϕ(x)

)
]

= 1

Br

⎡

⎣
1

2
bσ 2(x)

ϕ′′(x)
S′(x)

+r

∞∫

x

ϕ(t)
(
π(x)−π(t))m′(t)dt

⎤

⎦ ,

where the integral representation follows from Lemma 7.1. Now to cope with the first
term observe that since (A − r)ϕ = 0, we can write

1

2
σ 2(x)

ϕ′′
x

S′
x

= r
ϕx − xϕ′

x

S′ − (μx − r x)
ϕ′

x

S′
x

= r
ϕx − xϕ′

x

S′ + (μx − r x)r

∞∫

x

ϕt m
′
t dt

so that we need an integral form to ϕx −xϕ′
x

S′ . But choosing f (x) = x in Lemma 7.1,

we get ϕx −xϕ′
x

S′ = − ∫∞
x ϕt (μt − r t)m′

t dt . Combining all these forms together gives
the desired integral representation for Jb(x). The proof for Ib(x) is similar. ��

Proof of Lemma 5.4

(A) To calculate the value at the upper boundary, let x > x̃b, for b = p, q. Using the
integral representation from Lemma 5.3 we can calculate that

lim
x→∞ Jb(x) = lim

x→∞

− 1

B

⎛

⎝

∞∫

x

ϕt (ρb(x)−ρb(t))m
′
t dt

⎞

⎠ ≤ lim
x→∞ − 1

B

⎛

⎝

∞∫

x

ϕt (ρb(t)−ρb(t))m
′
t dt

⎞

⎠ = 0,

where the inequality follows from Assumption 3.2(iv).
To calculate the value at the lower boundary, let ỹb ∈ (0, x̃b) and ε > 0 be such that

ρ′
b(x) > ε for all 0 ≤ x ≤ ỹb. This is possible for some constant ε since ρ′

b(0+) > 0
[Assumption 5.1(v)]. Let x < ỹb and apply Fubini’s Theorem, Lemma 7.1(B) and
inequality ρ′

b(x) > ε to get

Jb(x) = 1

B

∞∫

t=x

t∫

v=x

ϕ(t)m′(t)ρ′
b(v)dvdt = 1

B

∞∫

v=x

∞∫

t=v
ϕ(t)m′(t)ρ′

b(v)dtdv
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= − 1

Br

∞∫

x

ϕ′(v)
S′(v)

ρ′
b(v)dv = − 1

Br

ỹb∫

x

ϕ′(v)
S′(v)

ρ′
b(v)dv − 1

Br

∞∫

ỹb

ϕ′(v)
S′(v)

ρ′
b(v)dv

> − ε

Br

ỹb∫

x

ϕ′(v)
S′(v)

dv − 1

Br

∞∫

ỹb

ϕ′(v)
S′(v)

ρ′
b(v)dv.

Here the last integral term is finite and limx↓0 − ∫ ỹb
x

ϕ′(v)
S′(v)dv = ∞ by Assump-

tion 5.1(vi), so Jb(0+) = ∞.
(B) To calculate the value at the lower boundary, let x < x̃b, for b = p, q. Using

the integral representation from Lemma 5.3 we can calculate that

lim
x→0

Ib(x) = lim
x→0

1

B

⎛

⎝

x∫

0

ψt (ρb(x)− ρb(t))m
′
t dt

⎞

⎠

≥ lim
x→0

1

B

⎛

⎝

x∫

0

ψt (ρb(t)− ρb(t))m
′
t dt

⎞

⎠ = 0,

where the inequality follows from Assumption 3.2(iv).
To calculate the value at the upper boundary, let x > x̃b. We can write

Ib(x) = 1

B

x̃b∫

0

ψt
(
ρb(x)− ρb(t)

)
m′

t dt + 1

B

x∫

x̃b

ψt
(
ρb(x)− ρb(t)

)
m′

t dt

= 1

Br

(
ρb(x)− ρb(η)

)ψ ′(x̃b)

S′(x̃b)
+ 1

B

x∫

x̃b

ψt
(
ρb(x)− ρb(t)

)
m′

t dt,

for some η ∈ (0, x̃b) by mean value theorem for integrals. The last term in the last
row is always negative, since ρb(x) < ρb(t) for all t > x > x̃b and the first term in
the last row tends to minus infinity as x tends to infinity since by Assumption 5.1(v)
ρb(∞) = −∞. Hence Ib(∞) = −∞. ��

References

Abel AB, Eberly JC (1996) Optimal investment with costly reversibility. Rev Econ Stud 63:581–593
Alvarez LHR (2000) On the option interpretation of rational harvesting planning. J Math Biol 40(5):

383–405
Alvarez LHR (2001) Singular stochastic control, linear diffusions, and optimal stopping: a class of solvable

problems. SIAM J Control Optim 39:1697–1710
Alvarez LHR (2003) On the properties of r -excessive mappings for a class of diffusions. Ann Appl Probab

13:1517–1533
Alvarez LHR (2004) A class of solvable impulse control problems. Appl Math Optim 49:265–295

123



270 P. Matomäki

Alvarez LHR (2008) A class of solvable stopping games. Appl Math Optim 58:291–314
Alvarez LHR (2011) Optimal capital accumulation under price uncertainty and costly reversibility. J Econ

Dyn Control 35:1769–1788
Alvarez LHR, Koskela E (2007) Optimal harvesting under resource stock and price uncertainty. J Econ

Dyn Control 31(7):2461–2485
Alvarez LHR, Lempa J (2008) On the optimal stochastic impulse control of linear diffusion. SIAM J

Control Optim 47:703–732
Alvarez LHR, Virtanen J (2006) A class of solvable stochastic dividend optimization problems: on the

general impact of flexibility on valuation. Econ Theory 28(2):373–398
Asmussen S, Taksar M (1997) Controlled diffusion models for optimal dividend pay-out. Insurance Math

Econ 20:1–115
Bank P (2005) Optimal control under a dynamic fuel constraint. SIAM J Control Optim 44:1529–1541

(electronic)
Bather JA, Chernoff H (1966) Sequential decisions in the control of a spaceship. In: Proceedings of the fifth

Berkeley symposium on mathematical statistics and probability, vol 3, pp 181–207
Bayraktar E, Egami M (2008) An analysis of monotone follower problems for diffusion processes. Math

Oper Res 33:336–350
Boetius F (2005) Bounded variation singular stochastic control and Dynkin game. SIAM J Control Optim

44:1289–1321
Borodin A, Salminen P (2002) Handbook on Brownian motion—facts and formulae. Birkhauser, Basel
Chiarolla MB, Haussmann UG (2005) Explicit solution of a stochastic irreversible investment problem and

its moving threshold. Math Oper Res 30:91–108
Chow PL, Menaldi JL, Robin M (1985) Additive control of stochastic linear systems with finite horizon.

SIAM J Control Optim 23(6):858–899
Dayanik S, Karatzas I (2003) On the optimal stopping problem for one-dimensional diffusions. Stochast

Process Appl 107:173–212
Faddy MJ (1974) Optimal control of finite dams: continuous output procedure. Adv Appl Probab 6:689–710
Guo X, Pham H (2005) Optimal partially reversible investment with entry decision and general production

function. Stochast Process Appl 115:705–736
Guo X, Tomecek P (2008a) A class of singular control problems and the smooth fit principle. SIAM J

Control Optim 47:3076–3099
Guo X, Tomecek P (2008b) Connections between singular control and optimal switching. SIAM J Control

Optim 47:421–443
Harrison JM (1985) Brownian motion and stochastic flow systems. Wiley, New York
Harrison JM, Taksar M (1983) Instantaneous control of Brownian motion. Math Oper Res 8(3):439–453
Højgaard B, Taksar M (1999) Controlling risk exposure and dividends payout schemes: insurance company

example. Math Finance 2:153–182
Jacka S (2002) Avoiding the origin: a finite-fuel stochastic control problem. Ann Appl Probab 12:

1378–1389
Karatzas I (1983) A class of singular stochastic control problems. Adv Appl Probab 15(2):225–254
Karatzas I (1985a) Probabilistic aspects of finite-fuel stochastic control. Proc Natl Acad Sci USA 82:

5579–5581
Karatzas I (1985b) Connections between optimal stopping and singular stochastic control II. Reflected

follower problems. SIAM J Control Optim 23(3):433–451
Karatzas I, Shreve SE (1984) Connections between optimal stopping and singular stochastic control I.

Monotone follower problems. SIAM J Control Optim 22(6):856–877
Karatzas I, Shreve SE (1988) Brownian motion and stochastic calculus. Springer, New York
Karatzas I, Wang H (2001) Connections between bounded-variation control and dynkin games. In: Menaldi

JL, Sulem A, Rofman E (eds) Optimal control and partial differential equations volume in Honor of
Professor Alain Bensoussan’s 60th birthday. IOS Press, Amsterdam, pp 353–362

Kobila TO (1993) A class of solvable stochastic investment problems involving singular controls. Stochast
Stochast Rep 43(1–2):29–63

Lande R, Engen S, Saether BE (1995) Optimal harvesting of fluctuating populations with a risk of extinction.
Am Nat 145:728–745

Lempa J (2010) A note on optimal stopping of diffusions with a two-sided optimal rule. Oper Res Lett
38:11–16

123



On solvability of a two-sided singular control problem 271

Lungu EM, Øksendal B (1997) Optimal harvesting from a population in a stochastic crowded environment.
Math Biosci 145(1):47–75

Mundaca G, Øksendal B (1998) Optimal stochastic intervention control with application to the exchange
rate. J Math Econ 29:225–243

Øksendal A (2000) Irreversible investment problems. Finance Stochast 4:223–250
Paulsen J (2008) Optimal dividend payments and reinvestments of diffusion processes with fixed and pro-

portional costs. SIAM J Control Optim 47:2201–2226
Sethi SP, Taksar MI (2002) Optimal financing of a corporation subject to random returns. Math Finance

Int J Math Stat Financ Econ 12:155–172
Shreve SE, Lehoczky JP, Gaver DP (1984) Optimal consumption for general diffusion with absorbing and

reflecting barriers. SIAM J Control Optim 22:55–75

123


	On solvability of a two-sided singular control problem
	Abstract
	1 Introduction
	2 Problem formulation
	2.1 The underlying dynamics
	2.2 The control and the problem

	3 Assumptions and preliminary results
	3.1 Barrier policy and associated value function
	3.2 The first order optimality conditions
	3.3 Assumptions and auxiliary results

	4 Uniqueness and optimality of the two-sided reflecting control
	4.1 Uniqueness of (z*,y*)
	4.2 Proving the optimality of the barrier policy

	5 Sufficient conditions for the solution
	5.1 Assumptions and auxiliary results
	5.2 Proving the existence of (z*,y*)

	6 Comparative analysis
	6.1 Volatility sensitiveness
	6.2 Comparing the two-sided and one-sided solutions
	6.3 Sensitiveness on control parameters
	6.4 Stationary distribution

	7 Examples
	7.1 Geometric Brownian motion
	7.1.1 Solution to the problem
	7.1.2 Numerical illustration

	7.2 Mean reverting diffusion

	Acknowledgments
	Appendix A: Omitted proofs
	Proof of Lemma 3.3
	Proof of Lemma 4.3
	Proof of Lemma 5.2
	Proof of Lemma 5.3
	Proof of Lemma 5.4

	References


