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Abstract Let Z = {Z(t), t ≥ 0} be a semimartingale reflecting Brownian motion
that lives in the three-dimensional non-negative orthant. A 2002 paper by El Kharroubi,
Ben Tahar and Yaacoubi gave sufficient conditions for positive recurrence of Z .
Recently Bramson, Dai and Harrison have shown that those conditions are also neces-
sary for positive recurrence. In this paper we provide an alternative proof of sufficiency,
the salient feature of which is its use of a linear Lyapunov function.

Keywords Reflecting Brownian motion · Skorohod problem · Fluid model ·
Positive recurrence · Queueing networks · Heavy traffic · Diffusion approximation

1 Introduction

This paper considers a problem related to the recurrence classification of semi-
martingale reflecting Brownian motions (SRBMs). We will eventually focus on the
three-dimensional case, but it is useful at the outset to consider a general SRBM
Z = {Z(t), t ≥ 0} with state space S = R

d+. The data of the process Z are a drift
vector θ ∈ R

d , a non-singular d × d covariance matrix �, and a d × d matrix R that
specifies boundary behavior. In the interior of the orthant Z behaves as an ordinary
Brownian motion with parameters θ and �, and roughly speaking, Z is pushed in
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136 J. G. Dai, J. M. Harrison

direction R j whenever the boundary {z ∈ R
d+ : z j = 0} is struck, where R j is the j th

column of R.
For reasons that will become clear in Sect. 2, it is not necessary for our purposes to

state the precise definition of SRBM, which is simple in its essence but technical in
its details. However, to articulate a key restriction on the process data, the following
definition is indispensable. (Here and later, for a vector v, we write v > 0 to mean that
each component of v is positive, and we write v ≥ 0 to mean that each component of
v is non-negative.)

Definition 1 A d × d matrix R is said to be an S-matrix if there exists a d-vector
w ≥ 0 such that Rw > 0 (or equivalently, if there exists w > 0 such that Rw > 0),
and R is said to be completely-S if each of its principal sub-matrices is an S-matrix.

The definition of an S-matrix appears on page 140 of Cottle et al. (1992), and through-
out that book the prefix “completely” is used to indicate that a matrix property is shared
by all principal submatrices. Theorem 3.10.7 of Cottle et al. (1992) gives a number of
equivalent ways to characterize completely-S matrices.

The definition of SRBM is reviewed in Appendix A of Bramson et al. (2010),
and in the survey paper by Williams (1995), which also recapitulates the following
foundational result: there exists an SRBM Z with data (θ,�, R) if and only if R is
completely-S, in which case Z is unique in distribution. We say that Z is positive
recurrent if the expected time to hit an open neighborhood of the origin is finite for
every starting state; the words “stable” and “stability” will occasionally be used as
synonyms for “positive recurrent” and “positive recurrence,” respectively.

The next section lays out a set of conditions involving θ and R that are necessary
and sufficient for positive recurrence of Z when d = 3. The sufficiency of those con-
ditions was established by El Kharroubi et al. (2002), and the necessity by Bramson
et al. (2010). However, the proof of sufficiency by El Kharroubi et al. (2002) is not
entirely rigorous, involving verbal passages that mask significant technical difficul-
ties; see comments immediately following Definition 2 below. In this paper we provide
an alternative proof of sufficiency, the salient feature of which is its use of a linear
Lyapunov function, a proof technique that was originally promulgated by Chen (1996)
in the context of SRBMs. Readers are referred to Bramson et al. (2010) and Bramson
(2011) for a more complete discussion of the problem context, and a more extensive
compilation of references.

The rest of the paper is structured as follows. First, Sect. 2 introduces the important
notion of a fluid path associated with the process data (θ, R), allowing a general value
of d. There we also lay out the stability conditions identified by El Kharroubi et al.
(2002) when d = 3, and state the main result to be proved. Section 3 is devoted to the
construction of linear Lyapunov functions in a number of distinct cases, and then the
main result is proved in Sect. 4, again through consideration of different cases.

2 Fluid paths and the main result

Let θ ∈ R
d and let R be a d × d completely-S matrix. In the following definition,

(2.4) says that y j (·) only increases when z j (·) = 0.
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Reflecting Brownian motion in three dimensions 137

Definition 2 A fluid path associated with the data (θ, R) is a pair of continuous func-
tions y, z : [0,∞) → R

d that satisfy the following conditions:

z(t) = z(0) + θ t + Ry(t) for all t ≥ 0, (2.1)

z(t) ∈ S for all t ≥ 0, (2.2)

y(·) is continuous and nondecreasing with y(0) = 0, (2.3)
∞∫

0

z j (t) dy j (t) = 0, ( j = 1, . . . , d). (2.4)

A significant source of difficulty in fluid-based arguments is that the fluid path ema-
nating from a given initial state z(0) need not be unique. Specifically, if d = 3 and
z(0) has exactly one positive element, there may be uncountably many fluid paths
emanating from z(0), even over a small initial time interval 0 ≤ t ≤ ε, or there may
be just one, depending on the structure of θ and R. In our view, El Kharroubi et al.
(2002) are not sufficiently attentive to questions of fluid path uniqueness, as in the first
six lines on page 254 of their paper; also, phrases like “two consecutive times of face
change” (at the top of page 256) implicitly assume that fluid paths are piecewise linear
with just finitely many pieces in any finite time span, but the authors do not actually
establish that property.

Definition 3 We say that a fluid path (y, z) is attracted to the origin if z(t) → 0 as
t → ∞.

Dupuis and Williams (1994) showed that if all fluid paths associated with (θ, R)

are attracted to the origin, and if � is a non-singular d × d covariance matrix, then
the SRBM with data (θ,�, R) is positive recurrent. Armed with that result, we can
and will concern ourselves only with the behavior of fluid paths. That is, it will suffice
to show that under the conditions identified by El Kharroubi et al. (2002), all fluid
paths are attracted to the origin. To state those conditions, a number of preliminary
definitions are needed.

Definition 4 A fluid path (y, z) is said to be linear if it has the form y(t) = ut and
z(t) = vt, t ≥ 0, where u, v ≥ 0.

Linear fluid paths are in one-to-one correspondence with solutions of the following
linear complementarity problem (LCP): Find vectors u = (ui ) and v = (vi ) in R

d

such that

u, v ≥ 0, (2.5)

v = θ + Ru, (2.6)

u · v = 0, (2.7)

where u · v = ∑
i uivi is the inner product of u and v. See Cottle et al. (1992) for a

systematic account of the theory associated with the general problem (2.5)–(2.7). The
following definition is not standard. It first appeared in Bramson et al. (2010).
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138 J. G. Dai, J. M. Harrison

Definition 5 A solution (u, v) of the LCP (2.5)–(2.7) is said to be stable if v = 0 and
to be divergent otherwise.

As mentioned above, we study fluid paths primarily to understand the recurrence
of a corresponding SRBM. It is proved in Appendix C of Bramson et al. (2010) that
a necessary condition for the positive recurrence of the SRBM is the following:

R is non-singular and R−1θ < 0. (2.8)

If (2.8) holds, then clearly (u∗, 0) is the unique stable solution of the LCP, where

u∗ = −R−1θ > 0. (2.9)

Hereafter we specialize to dimension d = 3. Let C1 be the set of (θ, R) pairs that
satisfy

θ < 0, (2.10)

θ1 > θ2 R12 and θ3 < θ2 R32, (2.11)

θ2 > θ3 R23 and θ1 < θ3 R13, (2.12)

θ3 > θ1 R31 and θ2 < θ1 R21, (2.13)

and for (θ, R) ∈ C1 define

β1(θ, R) =
(

θ1 − θ2 R12

θ2 R32 − θ3

) (
θ2 − θ3 R23

θ3 R13 − θ1

) (
θ3 − θ1 R31

θ1 R21 − θ2

)
> 0. (2.14)

If (2.10)–(2.13) hold, then, starting from any point on the boundary of R
3+, there is a

piecewise linear fluid path that spirals on the boundary, and β1(θ, R) is the single-cycle
gain for that path, cf. Sect. 3 of Bramson et al. (2010). Figure 1 pictures such a fluid
path generated by

θ =
⎛
⎝−1

−1
−1

⎞
⎠ , R =

⎛
⎝ 1 3 0

0 1 3
3 0 1

⎞
⎠ , (2.15)

and initial state z(0) = (0, 0, κ). The corresponding single-cycle gain is β1(θ, R) = 8.
The example (2.15) is due to Bernard and El Kharroubi (1991), who showed that the
fluid path starting from the origin is not unique.

Now let C2 consist of all (θ, R) pairs that satisfy (2.10) and further satisfy (2.11)
through (2.13) with all six of the inequalities reversed, and for (θ, R) ∈ C2 define

β2(θ, R) = 1

β1(θ, R)
=

(
θ3 − θ2 R32

θ2 R12 − θ1

) (
θ1 − θ3 R13

θ3 R23 − θ2

)(
θ2 − θ1 R21

θ1 R31 − θ3

)
> 0. (2.16)

Then C2 consists of (θ, R) pairs giving rise to clockwise spiral fluid paths, and β2(θ, R)

is the single-cycle gain for such paths. Finally, as in Sect. 3 of Bramson et al. (2010), let
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Reflecting Brownian motion in three dimensions 139

Fig. 1 A fluid path that spirals
on the boundary

C = C1 ∪C2 and define β(θ, R) = β1(θ, R) for (θ, R) ∈ C1 and β(θ, R) = β2(θ, R)

for (θ, R) ∈ C2. Our goal in this note is to prove the following.

Theorem 1 Assume that R is completely-S, that (2.8) holds, and that one of the fol-
lowing additional hypotheses is satisfied: (a) (θ, R) ∈ C and β(θ, R) < 1; or (b)
(θ, R) 	∈ C and the unique solution of the LCP (2.5)–(2.7) is the stable solution
(u∗, 0) given by (2.9). Then each fluid path associated with (θ, R) is attracted to the
origin.

Condition (b) can be checked by solving finitely many systems of linear equations.
El Kharroubi et al. (2002) stated condition (b) in a different but equivalent form. The-
orem 1 will be proved in the next two sections, throughout which (2.8) is assumed
to hold. Hereafter we also assume, without loss of generality, that the problem data
(θ, R) have been normalized to satisfy the following conditions, cf. Appendix B of
Bramson et al. (2010):

Rii = 1 for i = 1, 2, 3, (2.17)

θi ∈ {−1, 0, 1} for i = 1, 2, 3. (2.18)

Remark 1 Under convention (2.18), condition (a) of Theorem 1 implies that

θ = (−1,−1,−1)′. (2.19)

3 Linear Lyapunov function

This section proves the following lemma.

Lemma 1 Under the hypotheses of Theorem 1, there exists h = (h1, h2, h3) > 0 that
satisfies all the following inequalities:
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140 J. G. Dai, J. M. Harrison

h1(θ1 − R13θ3) + h2(θ2 − R23θ3) < 0 if θ3 ≤ 0, (3.1)

h2(θ2 − R21θ1) + h3(θ3 − R31θ1) < 0 if θ1 ≤ 0, (3.2)

h1(θ1 − R12θ2) + h3(θ3 − R32θ2) < 0 if θ2 ≤ 0, (3.3)

h1θ1 + h2θ2 + h3θ3 < 0. (3.4)

The vector h will be used in Sect. 4 to define a linear Lyapunov function that is the
key to our proof of Theorem 1. As a preliminary to the proof of Lemma 1, let

Vi j = θi − Ri jθ j for i, j = 1, 2, 3. (3.5)

Normalization (2.17) implies that V is a 3 × 3 matrix with zeros on the diagonal.

Lemma 2 Assume that (2.8) holds and that the unique solution of the LCP (2.5)–(2.7)
is the stable solution (u∗, 0) given by (2.9). Then, θi ≤ 0 implies that the i th column
of V has at least one negative element, i = 1, 2, 3.

Proof Arguing by contradiction, suppose that θ1 ≤ 0 and that both V21 ≥ 0 and
V31 ≥ 0. Defining u = (−θ1, 0, 0)′ and v = (0, V21, V31)

′, it follows that (u, v) is
a solution of (2.5)–(2.7), and because u has two zero components, it is distinct from
the positive vector u∗ in (2.9), which contradicts the hypotheses of the lemma to be
proved. This establishes the desired conclusion for i = 1, and it is established for
i = 2 and i = 3 in exactly the same way. ��
Lemma 3 Assume that the hypotheses of Lemma 2 are satisfied, that θ =
(−1,−1,−1)′, that (θ, R) 	∈ C, and that none of the off-diagonal elements of V
is zero. Then

at least one row of V has both off-diagonal elements negative. (3.6)

Proof Arguing by contradiction, suppose (3.6) does not hold. It will be shown that
(θ, R) ∈ C , which establishes the desired conclusion. We know from Lemma 2 that
the first column of V has at least one negative element; suppose for concreteness that
V21 < 0. Then V23 > 0, because (3.6) is assumed not to hold. Then V13 < 0 by
Lemma 2, which implies that V12 > 0, because we have assumed both that (3.6) does
not to hold and that none of the off-diagonal elements of V is zero. In exactly the same
way, V32 < 0 by Lemma 2, implying that V31 > 0. Thus we have

V12 > 0, V23 > 0, V31 > 0,

V21 < 0, V13 < 0, V32 < 0,

which is precisely the condition that (θ, R) ∈ C1. One can prove similarly that if
V21 > 0, then (θ, R) ∈ C2. ��
Proof of Lemma 1 Recall that we assume the conventions (2.17) and (2.18). Also, we
assume (2.8) holds. Suppose first that condition (a) of Theorem 1 holds. The follow-
ing proof of (3.8) is a simple modification of the proof of Lemma 2 in Bramson et al.
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Reflecting Brownian motion in three dimensions 141

(2010). Assume (θ, R) ∈ C1 and β1(θ, R) < 1. By Remark 1, θ = (−1,−1,−1)′,
and conditions (2.11)–(2.13) imply that

R12, R23, R31 > 1 and R13, R21, R32 < 1. (3.7)

Thus, condition (3.4) is automatically satisfied for any h = (h1, h2, h3) > 0. To find
an h = (h1, h2, h3) > 0 that satisfies (3.1)–(3.3), it is sufficient to find an h that
satisfies

hV < 0. (3.8)

Convention (2.17) and condition (3.7) imply that V has the following representation

V =
⎛
⎝ 0 a2 −b3

−b1 0 a3
a1 −b2 0

⎞
⎠ , (3.9)

where ai , bi > 0 for i = 1, 2, 3. In this notation, the definition (2.14) is as follows:

β1(θ, R) = a1a2a3

b1b2b3
< 1. (3.10)

Setting

h1 = α1, h2 = a1a2

b1b2
and h3 = α3

a2

b2
,

for some constants α1 > 0 and α3 > 0 that satisfy

β1(θ, R) < α1 < α3 < 1,

it is easy to verify that hV 1 = −(1 − α3)a1a2/b2 < 0, hV 2 = −(α3 − α1)a2 < 0,
and hV 3 = −b3 (α1 − a1a2a3/(b1b2b3)) < 0. Thus, we have found an h > 0 that
satisfies (3.8). Similarly, when (θ, R) ∈ C2 and β2(θ, R) < 1, we can find an h > 0
such that (3.8) is satisfied.

In the rest of the proof, we assume that condition (b) of Theorem 1 is satisfied.
Then at least one component of θ must be −1, because otherwise the LCP (2.5)–(2.7)
would have a solution (u, v) that is distinct from (u∗, 0), where u∗ is given in (2.9).
We separate the proof of the lemma into three categories: in Category I, exactly one
component of θ is 1; in Category II, exactly two components of θ are 1; in Category III,
none of the components of θ is 1.

Category I Exactly one component of θi is equal to 1. We separate this category
into two cases: (a) among the remaining two components of θ , one component is −1
and the other is 0, and (b) the other two components of θ are both −1.
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142 J. G. Dai, J. M. Harrison

Case Ia Assume without loss of generality that θ = (−1, 0, 1)′. Constraint (3.1)
does not apply. Setting h3 = 1, constraints (3.3) and (3.4) are satisfied for any h1 > 1.
By Lemma 2, either θ2 − R21θ1 < 0 or θ3 − R31θ1 < 0. If θ2 − R21θ1 < 0, one can
choose h2 large enough so that (3.2) is satisfied. If θ3 − R31θ1 < 0, one can choose
h2 small enough so that (3.2) is satisfied.

Case Ib This turns out to be the most difficult case to prove. Without loss of gen-
erality, we assume that θ = (−1, 1,−1)′. In this case, the constraint (3.3) does not
apply. Setting h2 = 1, we now argue that there exists (h1, h3) > 0 that satisfies (3.1),
(3.2) and (3.4). Using the specific values of θ and h2, these constraints become

h1(R13 − 1) + (R23 + 1) < 0, (3.11)

(R21 + 1) + h3(R31 − 1) < 0, (3.12)

h1 + h3 > 1. (3.13)

We now show that there is a pair (h1, h3) > 0 that satisfies (3.11)–(3.13), thus proving
the lemma for Case Ib.

We first assume R13 −1 < 0. In this case one can choose h1 large enough to satisfy
(3.11) and (3.13) for any h3 > 0. By Lemma 2,either R21 + 1 < 0 or R31 − 1 < 0.
If R21 + 1 < 0, one can choose h3 small enough to satisfy (3.12). If R31 − 1 < 0 ,
one can choose h3 large enough to satisfy (3.12). Thus there exists (h1, h3) > 0 that
satisfies (3.11)–(3.13).

Next we assume R13 − 1 = 0. Then R23 + 1 < 0 by Lemma 2. Thus (3.11) is
satisfied for any h1 > 0. Setting h1 = 2, one sees that (3.13) is satisfied for any
h3 > 0. Now we can choose h3 > 0 small enough or large enough to satisfy (3.12),
just as in the case where R13 − 1 < 0. Thus there exists (h1, h3) > 0 that satisfies
(3.11)–(3.13).

Similarly, one can argue that if R31 − 1 ≤ 0, there exists (h1, h3) > 0 that satisfies
(3.11)–(3.13).

Finally, we assume that R13 − 1 > 0 and R31 − 1 > 0. By Lemma 2, R23 + 1 < 0
and R21 + 1 < 0. Note that there exists an (h1, h3) > 0 satisfying (3.11)–(3.13) if
and only if

− R23 + 1

R13 − 1
− R21 + 1

R31 − 1
> 1 (3.14)

or equivalently

− (R23 R31 + R21 R13) + R23 + R21 + 1 > R13 R31. (3.15)

On the other hand, let

R̂ =
(

1 R13
R31 1

)
, θ̂ = (θ1, θ3)

′, û = −(R̂)−1θ̂ ,
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Reflecting Brownian motion in three dimensions 143

and

β = θ2 + R21û1 + R23û3. (3.16)

It must be true that β < 0, because otherwise the LCP (2.5)–(2.7) would have a
solution (u, v) with u = (û1, 0, û3)

′ and v = (0, β, 0)′, so (u, v) would be distinct
from the unique stable solution (u∗, 0). After deriving an explicit expression for û,
condition β < 0 becomes

1 + 1

R31 R13 − 1
(R21(R13 − 1) + R23(R31 − 1)) < 0,

which is equivalent to

R31 R13 + R21(R13 − 1) + R23(R31 − 1) < 1. (3.17)

We have already established that β < 0, so (3.17) is satisfied, which implies that (3.15)
holds. Therefore, there exists (h1, h3) > 0 that satisfies (3.11)–(3.13).

Category II Exactly two components of θ are 1 and the other component is −1.
Without loss of generality, assume θ = (−1, 1, 1)′. Setting h1 = 1, constraints (3.1)–
(3.4) become

h2(R21 + 1) + h3(R31 + 1) < 0, (3.18)

h2 + h3 < 1. (3.19)

Because either (R21 +1) < 0 or (R31 +1) < 0 by Lemma 2, there exists (h2, h3) > 0
satisfying (3.18)–(3.19).

Category III No component of θ is 1. We separate this category into three cases: (a)
exactly one component is −1, (b) exactly two components are −1, and (c) all three
component are −1.

Case IIIa Assume without loss of generality that θ = (0, 0,−1)′. Clearly, (3.4) is
satisfied for any (hi ) > 0. Constraints (3.2) and (3.3) become h3(−1) < 0, which is
satisfied for any h3 > 0. By Lemma 2, either θ1 − R13θ3 < 0 or θ2 − R23θ3 < 0. Thus,
there exists (h1, h2) > 0 that satisfies (3.1). Therefore, we have (h1, h2, h3) > 0 that
satisfies (3.1)–(3.4).

Case IIIb Assume without loss of generality that θ = (0,−1,−1)′. Again it is clear
that (3.4) is satisfied for any (hi ) > 0. Constraint (3.2) becomes −h2 −h3 < 0, which
is satisfied for any (h2, h3) > 0. Set h1 = 1. If θ1 − R13θ3 < 0, one can choose h2
small enough to satisfy (3.1). Otherwise, θ2 − R23θ3 < 0 by Lemma 2, and thus one
can choose h2 large enough to satisfy (3.1). Similarly, one can prove that there exists
h3 > 0 that satisfies (3.3). Thus, we have (h1, h2, h3) > 0 that satisfies (3.1)–(3.4).
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144 J. G. Dai, J. M. Harrison

Case IIIc In this case, θ = (−1,−1,−1)′. Clearly, (3.4) is satisfied for any (hi ) > 0
and (3.1)–(3.3) become

h1V13 + h2V23 < 0, (3.20)

h2V21 + h3V31 < 0, (3.21)

h1V12 + h3V32 < 0. (3.22)

We first prove that if one off-diagonal element of V is zero, there exists an h =
(h1, h2, h3) > 0 that satisfies (3.20)–(3.22). Assume, for example, that V12 = 0. By
Lemma 2, V23 < 0. Thus, (3.22) is satisfied for any h1 > 0 and h2 > 0. Setting h3 = 1.
If V21 < 0, one can choose h3 small enough so that (3.21) is satisfied. Otherwise, it
must be true that V31 < 0 by Lemma 2. One can choose h3 large enough so that (3.21)
is satisfied. It follows similarly that one can choose h1 so that (3.22) is satisfied.

Now we assume that none of the off-diagonal element of V is zero. By Lemma 3,
there exists at least one row whose off-diagonal elements are both negative. We assume
for concreteness that the first row of V has both off-diagonal elements negative. That
is,

V12 < 0 and V13 < 0. (3.23)

Fix h2 = 1. If V21 < 0 we can choose h3 small enough so that (3.21) is satisfied.
Otherwise, it must be true that V31 < 0 by Lemma 2. Thus, we can choose h3 large
enough so that (3.21) is satisfied. Because (3.23) is assumed to hold, one can choose h1
large enough so that (3.20) and (3.22) are satisfied. Therefore, we have found (hi ) > 0
that satisfies (3.20)–(3.22). ��

4 Proof of Theorem 1

Let (y, z) be a fluid path. We would like to show that there exists a t0 ≥ 0 such
that z(t) = 0 for t ≥ t0. From Lemma 1, there exists (h1, h2, h3) > 0 that satisfies
(3.1)–(3.4). Let

f (t) = h1z1(t) + h2z2(t) + h3z3(t)

for t ≥ 0. Clearly, f (t) ≥ 0; furthermore, f (t) > 0 when z(t) 	= 0. The function f is
known as a Lyapunov function that is linear in the state variable z(t). We would like
to show that there exists a t0 ≥ 0 such that

f (t) = 0 for t ≥ t0, (4.1)

which proves the theorem.
To prove (4.1), we work with derivatives of f . Clearly, ḟ (t) = h1 ż1(t)+h2 ż2(t)+

h3 ż3(t) when the derivative ż(t) exists. However, ż(·) does not always exists, so one
needs to be careful in dealing with ḟ (t).
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Reflecting Brownian motion in three dimensions 145

Because θ t , viewed as a function of t , is Lipschitz continuous, it follows from the
oscillation inequality (c.f. Taylor and Williams 1993) that (y, z) is also Lipschitz in
t . In particular, (y, z) is absolutely continuous and hence it has derivatives for almost
every time t ∈ (0,∞) with respect to Lebesgue measure.

A time t > 0 is said to be a regular point for (y, z) if (y, z) is differentiable at time
t . At a regular point t , we use (ẏ(t), ż(t)) to denote the derivative of (y, z). Note that
zi (t) ≥ 0. When zi (t) = 0 and t is a regular point, it is necessarily true that żi (t) = 0.
Also, because yi is nondecreasing, ẏi (t) ≥ 0 for a regular point t . It follows from
condition (2.4) that zi (t) > 0 implies ẏi (t) = 0 when t is a regular point. At a regular
point t , we have from (2.1) that

ż(t) = θ + Rẏ(t). (4.2)

To prove (4.1), it suffices to prove that there exists an ε > 0 such that

ḟ (t) ≤ −ε for each regular t with z(t) 	= 0. (4.3)

The rest of this section is devoted to proving (4.3) by examining three separate cases,
depending on the signs of (z1(t), z2(t), z3(t)).

Case 1 All three components of z(t) are positive. In this case, ẏ1(t) = ẏ2(t) =
ẏ3(t) = 0. Therefore, żi (t) = θi for i = 1, 2, 3. Thus,

ḟ (t) = h1θ1 + h2θ2 + h3θ3,

which is negative by (3.4).

Case 2 Exactly two components of z(t) are positive. Without loss of generality,
assume that z1(t) = 0, z2(t) > 0, z3(t) > 0. In this case, ẏ2(t) = ẏ3(t) = 0 and
ẏ1(t) = −θ1 ≥ 0. Thus

ż2(t) = θ2 − R21θ1,

ż3(t) = θ3 − R31θ1.

Therefore,

ḟ (t) = h2(θ2 − R21θ1) + h3(θ3 − R31θ1),

which is negative by (3.2).

Case 3 Exactly one component of z(t) is positive. Without loss of generality, assume
that z1(t) > 0, z2(t) = z3(t) = 0. Then, ẏ1(t) = 0, and ż2(t) = ż3(t) = 0. Let

R̃ =
(

1 R23
R32 1

)
and θ̃ =

(
θ2
θ3

)
.
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Also, define ũ = (ẏ2(t), ẏ3(t))′. Combining (4.2) with our current hypotheses, one
has

θ̃ + R̃ũ = 0 where ũ ≥ 0. (4.4)

In the case where condition (a) of Theorem 1 is satisfied, one has θ̃ = (−1,−1)

by Remark 1, and one of the following holds, depending on whether (θ, R) ∈ C1 or
(θ, R) ∈ C2: either R23 > 1 and R32 < 1, or else R23 < 1 and R32 > 1. In either
of these scenarios readers can easily verify that (4.4) is impossible, so hereafter we
restrict attention to the case where condition (b) of Theorem 1 is satisfied.

(i) Assume that det(R̃) 	= 0. It follows from (4.2) that ũ = −R̃−1θ̃ and hence

ż1(t) = θ1 − (R12, R13)R̃−1θ̃ ≡ β1.

Now it must be true that β1 < 0, because otherwise (ẏ(t), ż(t)) would be a solution
of the LCP (2.5)–(2.7) that is different from the stable solution (u∗, 0), contradicting
condition (b) of Theorem 1. Thus, in this case,

ḟ (t) = h1β1 < 0.

(ii) Assume det(R̃) = 0. Then R23 = R32 = 1. It follows that (4.2) that ẏ2(t) +
ẏ3(t) = −θ2 and ẏ2(t)+ ẏ3(t) = −θ3. Thus, θ2 = θ3 ≤ 0, and consequently
θ2 − R23θ3 = 0 and θ3 − R32θ2 = 0. By Lemma 2,

θ1 − R13θ3 < 0, (4.5)

θ1 − R12θ2 < 0. (4.6)

Now ḟ (t) = h1 ż1(t), where

ż1(t) = θ1 + R12 ẏ2(t) + R13 ẏ3(t).

When R12 ≤ R13,

ż1(t) = θ1 + (R12 − R13)ẏ2(t) + R13(ẏ2(t) + ẏ3(t))

= θ1 − R13θ3 + (R12 − R13)ẏ2(t)

≤ θ1 − R13θ3 < 0,

where the last inequality follows (4.5). When R13 ≤ R12,

ż1(t) = θ1 + R12(ẏ2(t) + ẏ3(t)) + (R13 − R12)ẏ3(t)

= θ1 − R12θ2 + (R13 − R12)ẏ3(t)

≤ θ1 − R12θ2 < 0,

where the last inequality follows (4.6).
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