
Math Meth Oper Res (2010) 72:25–61
DOI 10.1007/s00186-010-0300-y

Optimal portfolio policies under bounded expected loss
and partial information

Jörn Sass · Ralf Wunderlich

Received: 21 July 2009 / Revised: 26 January 2010 / Published online: 17 February 2010
© Springer-Verlag 2010

Abstract In a market with partial information we consider the optimal selection of
portfolios for utility maximizing investors under joint budget and shortfall risk con-
straints. The shortfall risk is measured in terms of expected loss. Stock returns satisfy
a stochastic differential equation. Under general conditions on the corresponding drift
process we provide the optimal trading strategy using Malliavin calculus. We give
extensive numerical results in the case that the drift is modeled as a continuous-time
Markov chain with finitely many states. To deal with the problem of time-discreti-
zation when applying the results to market data, we propose a method to detect and
correct possible tracking errors.

Keywords Portfolio optimization · Utility maximization · Expected shortfall ·
Risk constraint · Tracking error

1 Introduction

In this paper we consider a financial market model which consists of a bank account
with stochastic interest rates and n stocks whose returns (Rt )t∈[0,T ] satisfy

Rt =
t∫

0

μs ds +
t∫

0

σs dWs,
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26 J. Sass, R. Wunderlich

where W = (Wt )t∈[0,T ] is an n-dimensional standard Brownian motion and σ =
(σt )t∈[0,T ] is the volatility process. We allow for a stochastic drift process μ =
(μt )t∈[0,T ] which may be independent of the driving Brownian motion. The inves-
tor’s objective is to maximize the expected utility of terminal wealth for a finite time
horizon T . We add two special features to this standard problem in mathematical
finance: We assume that only the stock returns can be observed (partial information)
and impose a constraint for the shortfall risk motivated by the extreme (risky) positions
which typically arise in these models.

In detail, the stochastic drift process μ leads to a model with partial information
since an investor can only observe the stock prices or returns, but neither the under-
lying Brownian motion nor the drift process directly. Then investment decisions have
to be based on the knowledge of the stock prices only. In this context there are two
popular models for the drift. The first uses some linear Gaussian dynamics (GD), see
e.g. Lakner (1998), Nagai and Peng (2002), while the second models the drift as a
continuous-time Markov chain with finitely many states. The latter model was pro-
posed in Elliott and Rishel (1994) and we refer to it as hidden Markov model (HMM).
It satisfies a lot of stylized facts observed in stock markets, cf. Ryden et al. (1998) for
more general regime switching models. Efficient algorithms for estimating the param-
eters of this model are available, cf. Hahn et al. (2007a) and the references therein. It
turns out that the optimal investment strategies depend on the filter—the conditional
expectation of the drift given the observation—and its dynamics. The filter for the first
model is called Kalman filter and for the second model HMM filter. The filters can be
described as solutions of one stochastic differential equation (SDE) and an ordinary
differential equation for the second moment in the Kalman case and of one SDE in
the HMM case. For more models that allow for finite dimensional filters we refer to
Sekine (2006) and the references therein.

To find the optimal terminal wealth in such a model with partial information is
quite straightforward after a change of measure to the risk neutral probability measure
which coincides with the reference measure for filtering. Then the market model can be
transformed into a complete one with full information and martingale representation
arguments guarantee existence and uniqueness of an optimal trading strategy. For GD
explicit solutions for the problem of optimizing the terminal wealth are provided e.g. in
Brendle (2006), Lakner (1998), Pham and Quenez (2001), Putschögl and Sass (2008).
Utility maximization under a HMM model is investigated e.g. in Hahn et al. (2007b),
Martinez et al. (2006), Rieder and Bäuerle (2005), Sass and Haussmann (2004). These
approaches are generalized in Björk et al. (2010). We allow for non-constant volatility,
cf. Hahn et al. (2007b), Haussmann and Sass (2004). So we start with a quite general
model for μ and σ and only in the second part we shall concentrate on the HMM with
constant σ to present explicit strategies and numerical examples.

When optimizing under partial information the optimal strategies are very risky
since they lead to extreme long and short positions. This can result in a poor perfor-
mance if we trade only daily, even bankruptcy might occur, cf. Putschögl and Sass
(2008), Sass and Haussmann (2004). On the other hand it is very convenient to use
a continuous-time model which allows to derive optimal policies explicitly. So we
have to look for continuous-time strategies which are more robust with respect to this
discretization. This can be done by using so-called convex constraints on the strategy
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see e.g. Sass (2007), dynamic risk constraints see Putschögl and Sass (2009) or static
constraints which we have used in Gabih et al. (2005, 2006, 2009) and which play the
key role in the present paper. For a broader picture and more references see Föllmer
et al. (2007). Static risk constraints are an appropriate tool if we want to control the
risk profile of the terminal wealth.

We investigate utility maximization under an additional constraint for the shortfall
risk. Imposing such a constraint is also motivated by the observation that without risk
constraint the distribution of the optimal terminal wealth often is quite skew: There is
a high probability for the terminal wealth falling short a prescribed benchmark. This
is an undesirable and unacceptable property e.g. from the viewpoint of a pension fund
manager. On the other hand, imposing a strict restriction to portfolio values above a
benchmark leads to a considerable decrease in the portfolio’s expected utility. Thus it
seems reasonable to allow for shortfall and restrict only some shortfall risk measure.

A very popular measure to quantify the shortfall risk is value at risk (VaR) which
takes the probability of a shortfall into account.

For utility maximization under bounded VaR it is known (see e.g. Basak and Shapiro
2001), that the losses may be larger than for the unconstrained optimization problem,
since the magnitude of the losses below the benchmark plays no role for the risk
measure. Therefore, we use the so-called expected loss criterion resulting from aver-
aging the magnitude of the losses. More precisely, for terminal portfolio value XT and
shortfall level q > 0 we consider the risk constraint

EQ[γ (Xπ
T − q)−] ≤ ε,

where γ is some discounting factor and Q a probability measure equivalent to the
reference measure P . If we drop the risk constraint (ε = ∞) , the utility maximization
problem is the well-known Merton problem while the limiting case ε = 0 corresponds
to the portfolio insurer problem, cf. Grossmann and Vila (1989), Grossmann and Zhou
(1996), Lakner and Nygren (2006). If ε > 0 and the risk constraint is binding, there
are two typical choices for Q. First Q = P̃ , where P̃ denotes the unique equivalent
martingale or risk neutral measure and second Q = P , the reference measure. These
two cases are discussed in detail in Sect. 3.

In Gabih et al. (2009) we study in detail the existence and uniqueness of the optimal
terminal wealth for the constrained utility maximization problem in a general com-
plete market model and give conditions under which the optimal Lagrange multipliers
exist and are unique. Here we show that a model with partial information satisfies
the conditions in Gabih et al. (2009) and then compute the optimal trading strategies
quite explicitly. A special feature of this paper is the extensive numerical part which
also illustrates the findings of Gabih et al. (2009). In addition we discuss an updating
procedure for the trading strategy for the case that the current wealth deviates from
the optimal wealth which happens quite often due to time discretization when apply-
ing the strategies. This updating is necessary, since under risk constraints the optimal
fraction invested in the stock also depends on the wealth, even for logarithmic and
power utility.

The paper is organized as follows. Section 2 gives a detailed description of the finan-
cial market model and of the basic filtering results which are used to transform the
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model with partial information into a complete market model. Section 3 formulates
the utility maximization problem under risk constraints and classifies several cases
arising for certain values of the bound ε and the measure Q. In Sect. 4 we give for a
quite general drift process explicit representations of the optimal terminal wealth and
the optimal trading strategies in terms of the filter for the martingale density and its
Malliavin derivative. For the HMM model in Sect. 5 we describe the dynamics of this
filter and its Malliavin derivative as solutions of SDEs and derive the optimal strat-
egies. Section 6 is devoted to comprehensive numerical experiments illustrating the
findings of the paper. We present efficient frontiers for visualizing the dependence of
the optimal expected utility on the bound ε for the shortfall risk and study the influence
of several parameters such as the benchmark q, the risk aversion parameter of the util-
ity function, and the measure Q. Moreover, we investigate the optimal terminal wealth
as a function of the conditional martingale density and study its probability density
function. Finally we are concerned with the problem of time-discretization which is
of great practical importance when the optimal strategies are applied to market data.
We propose a method for computing optimal strategies, where possible errors due to
the time-discretization are detected and corrected.

Notation The symbol� will denote transposition. For a vector v, Diag(v) is the diag-
onal matrix with diagonal v. For a matrix M, diag(M) is the vector consisting of
the diagonal of the matrix M . We use the symbol 1n for the n-dimensional vector
whose entries all equal 1. Moreover, F X = (F X

t )t∈[0,T ] stands for the filtration of
augmented σ -algebras generated by the F-adapted process X = (Xt )t∈[0,T ]. We write
x− for the negative part of x , i.e. x− = max {−x, 0}. Inequalities for random variables
are understood to hold almost surely.

2 A market model with partial information

In this section we introduce for terminal trading time T > 0 a market consisting of
one money market with interest rates rt ≥ 0, t ∈ [0, T ], and n stocks. The return
process R = (Rt )t∈[0,T ] of the stock prices is given by

Rt =
t∫

0

μs ds +
t∫

0

σs dWs, (2.1)

where W = (Wt )t∈[0,T ] is an n-dimensional standard Brownian motion on a suitable
filtered probability space (Ω,FT , (Ft )t∈[0,T ], P), where the filtration F = (Ft )t∈[0,T ]
satisfies the usual conditions. The n-dimensional drift process μ = (μt )t∈[0,T ], the
interest rates, and the n × n-dimensional volatility process σ = (σt )t∈[0,T ] are pro-
gressively measurable. Further, σt is non-singular for all t ∈ [0, T ]. The stock prices
S = (St )t∈[0,T ] are defined by d Si

t = Si
t d Ri

t with constant Si
0 > 0, and thus evolve

according to

123



Optimal portfolio policies 29

d Si
t = Si

t μ
i
t dt + Si

t

n∑
j=1

σ
i, j
t dW j

t , i = 1, . . . , n. (2.2)

We can identify investment in the money market with investment in a riskless
asset S0,

S0
t = exp

⎧⎨
⎩

t∫

0

rs ds

⎫⎬
⎭ , t ∈ [0, T ].

By βt = 1/S0
t , t ∈ [0, T ], we shall denote the corresponding discount factor.

Assumption 2.1 (i) The processes r, μ, σ satisfy

E

⎡
⎣

T∫

0

(
|rt | + ‖μt‖ + ‖σt‖2

)
dt

⎤
⎦ < ∞, (2.3)

where ‖σt‖ = (
∑n

i, j=1(σ
i, j
t )2)1/2, as well as

E

⎡
⎣

T∫

0

‖σ−1
t (μt − rt 1n)‖2 dt

⎤
⎦ < ∞. (2.4)

(ii) r and σ are adapted to F S (which is the augmented filtration generated by S).

Taking expectations in part (i) is a little stronger than required for existence of S0, S
and R. We need these to verify later that the same relations hold when replacing μt by
its conditional expectation given the observation. We assume that an investor can only
observe the stock and bond prices S and S0. This accounts for a realistic approach
since information about stock prices and interest rates is publicly available while μ

and W are not directly observable. Hence, the investor has only partial information
and the available information is given by the filtration F S,S0

which is the augmented
filtration generated by S and S0. In particular, trading strategies have to be adapted to
F S,S0

.
Part (ii) is now needed to transfer the model to an equivalent model with full infor-

mation. In general, this would require strong conditions on the filtration F S,S0
. Here,

we make the strong assumption that the interest rates r are F S-adapted. This implies
F S,S0 = F S . The second assumption—that σ is F S-adapted—is rather weak, since
we have (σtσ

�
t )i j dt = d[Si , S j ]t/(Si

t S j
t ) = d[Ri , R j ]t , where [ · ] denotes the cross-

variation. So by a continuity assumption like in Assumption 2.3 below it would follow
that σσ� is F S-adapted which would carry over to σ if we get σt as root of σtσ

�
t with

the same algebraic scheme for all t . However, we always have F S ⊆ F R since the
solution to (2.2) is Si

t = Si
0 exp

{
Ri

t − [Ri ]t
}
, where [Ri ] = [Ri , Ri ]. On the other
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hand, F R ⊆ F S follows under Assumption 2.1 (ii) from Ri
t = log(Si

t ) + [Ri ]t =
log(Si

t ) + ∫ t
0 (σsσ

�
s )i i ds. Hence we get

F S,S0 = F S = F R . (2.5)

The last equivalence is useful, since to employ standard filtering results we typically
work with R while in practice we observe S. Since only the information given by F S

is available, we have to compute conditional expectations given F S
t , the filters. We

shall denote the filter for μt by

μ̂t = E[μt | F S
t ], t ∈ [0, T ].

It exists due to (2.3). We define the innovation process by V0 = 0,

dVt = σ−1
t (Rt − μ̂t dt).

Then, V = (Vt )t∈[0,T ] is an F S-Brownian motion under P as can be seen by apply-
ing Lévy’s martingale characterization theorem for Brownian motion. Substituting in
(2.1), we now have

d Rt = μ̂t dt + σt dVt , (2.6)

where all processes are F S-adapted, hence observable. Note that this is only a different
representation under the same measure P; the process is the same as the one defined
in (2.1).

Starting with (2.6), we introduce the (conditional) market price of risk as ϑ̂t =
σ−1

t (μ̂t − rt 1n), t ∈ [0, T ]. As in the proof of Lemma 3.1 one can show that (2.3)
implies

E

⎡
⎣

T∫

0

‖ϑ̂t‖2dt

⎤
⎦ < ∞,

hence we can introduce the (conditional) density process ζ = (ζt )t∈[0,T ],

ζt = exp

⎧⎨
⎩−

t∫

0

ϑ̂�
s dWs − 1

2

t∫

0

‖ϑ̂s‖2ds

⎫⎬
⎭ , t ∈ [0, T ].

Assumption 2.2 E[ζT ] = 1.

Then, ζ is a martingale and we define an equivalent probability measure P̃—the risk
neutral measure—by

P̃(A) = E[ζT 1A], A ∈ F S
T .
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Girsanov’s theorem guarantees that W̃ = (W̃t )t∈[0,T ] with

W̃t = Vt +
t∫

0

ϑ̂s ds

is a Brownian motion under P̃ . We call ϑ̂ and ζ conditional market price of risk and
conditional density process, since these are—under suitable conditions—the condi-
tional expectations of the corresponding objects when we introduce the risk neutral
probability measure in the original formulation (2.1), cf. the introduction to Sect. 5.
Under P̃ ,

d Rt = rt 1ndt + σt dW̃t . (2.7)

This implies F W̃ ⊆ F S , see the proof of Proposition 2.4 below. To use martingale
representation under P̃ for F S-adapted processes, we also need the other inclusion.
This can be achieved by conditions on the dynamics of the volatility σ and the interest
rate r under P̃ using an F S-adapted process ξ which lead to a Markovian structure.

Assumption 2.3 Assume that the m-dimensional factor process ξ = (ξt )t∈[0,T ] sat-
isfies

dξt = ν(ξt )dt + τ(ξt )dW̃t , (2.8)

where ν and τ are R
m-valued, and that σt = σ̃ (ξt ), rt = r̃(ξt ). Further we demand

that ν, τ, r̃ , and σ̃ are measurable and satisfy the usual Lipschitz and linear growth
conditions.

Indeed, Assumption 2.3 now implies the following result which shows that the
observation filtration is a Brownian filtration and hence martingale representation
results can be used to find optimal trading strategies in Sect. 4.

Proposition 2.4 F S = F R = F W̃ .

Proof We have shown F R = F S in (2.5) above. By Assumption 2.1 (ii) and the defi-
nition of W̃ we have F W̃ ⊆ F S . On the other hand, the conditions of Assumption 2.3
guarantee that a strong solution (R, ξ) of the system of SDEs (2.7) and (2.8) exists,
in particular it follows that R is F W̃ -adapted, hence F S = F R ⊆ F W̃ . 	


We describe the self-financing trading of an investor by his initial capital x0 > 0
and his n-dimensional F S-adapted trading strategy π = (πt )t∈[0,T ] where π i

t is the
amount of money invested in stock i at time t . The corresponding wealth process
Xπ = (Xπ

t )t∈[0,T ] satisfies

d Xπ
t =

(
Xπ

t − π�
t 1n

)
rt dt + π�

t d Rt =
(

Xπ
t rt + π�

t (μ̂t − rt 1n)
)

dt + π�
t σt dVt .

(2.9)
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So for the discounted wealth process we find

d(βt Xπ
t ) = βtπ

�
t (μ̂t − rt 1n)dt + βtπ

�
t σt dVt = βtπ

�
t σt dW̃t . (2.10)

Since the interest rates are positive, βt is uniformly bounded. Hence it is enough for
(2.9) and (2.10) to be well defined that we require

T∫

0

(
‖π�

t (μ̂t − rt 1n)‖ + ‖π�
t σt‖2

)
dt < ∞. (2.11)

A trading strategy satisfying this condition and Xπ
t ≥ 0 for all t ∈ [0, T ] will be

called admissible. By A(x0) we denote the corresponding class of admissible trading
strategies for initial capital x0 > 0. Note that Xπ

T as well as βT Xπ
T are F S

T -measurable.

Remark 2.5 If all assumptions can be verified and the filter μ̂ can be computed, we
do not have to rely on the underlying model. In view of Proposition 2.4 which guar-
antees that martingale representation results under P̃ hold for F S-adapted processes,
the transformed model (2.6) is a complete market model with respect to F S . So we
can transfer corresponding results to our case as we will do in the next two sections.

Note that in general we have the strict inclusion FV
t ⊂ F W̃

t and only for special
dynamics of μ equality holds. But this imposes no problems for our setting, since for
martingale representation we will work under P̃ and thus only need F S = F W̃ .

3 Utility maximization under bounded shortfall risk

Following Remark 2.5 we will cite in this section results from Gabih et al. (2009) and
provide some more interpretation. That we can carry over their results is shown in the
following lemma.

Lemma 3.1 Conditions (4), (5) and Assumption 2.1 in Gabih et al. (2009) hold for
the model of Sect. 2.

Proof In our notation we have to substitute μ̂ for μ,F S for F , and ζ for Z in Gabih

et al. (2009). From condition (2.3) we get E[
T∫
0

|μi
t |dt] < ∞, i = 1, . . . , n, and a

Fubini argument implies

E

T∫

0

|μ̂i
t |dt =

T∫

0

E[|E[μi
t | F S

t ]|]dt ≤
T∫

0

E[E[|μi
t | | F S

t ]]dt = E

T∫

0

|μi
t |dt < ∞.

This yields Gabih et al. (2009, Eq. (4)). Similar, using condition (2.4), linearity of the
conditional expectation, Jensen’s inequality and the convexity of ‖ · ‖2 we get
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E

T∫

0

‖σ−1
t (μ̂t − rt 1n)‖2dt =

T∫

0

E
[
‖σ−1

t (E[μt | F S
t ] − rt 1n)‖2

]
dt

=
T∫

0

E
[
‖E[σ−1

t (μt − rt 1n) | F S
t ]‖2

]
dt

≤
T∫

0

E
[

E
[
‖σ−1

t (μt − rt 1n)‖2
∣∣∣F S

t

]]
dt

= E

⎡
⎣

T∫

0

‖σ−1
t (μt − rt 1n)‖2dt

⎤
⎦ < ∞,

where the finiteness follows from (2.4). This yields Gabih et al. (2009, Eq. (5)). For
Gabih et al. (2009, Assumption 2.1) we only have to observe that this is our Assumption
2.2. 	


We will impose further technical conditions which then correspond directly to the
conditions in Gabih et al. (2009) Next we introduce the optimization problem.

A utility function U : [0,∞) → R ∪ {−∞} is strictly increasing, strictly concave,
twice continuously differentiable and satisfies the Inada conditions

lim
x→∞ U ′(x) = 0 and lim

x→0
U ′(x) = ∞.

The inverse function of U ′ is denoted by I . The function I is defined on (0,∞),
continuously differentiable and strictly decreasing with limits

lim
x→∞ I (x) = 0 and lim

x→0
I (x) = ∞.

Given initial capital x0 > 0, any terminal wealth Xπ
T satisfies the so-called budget

constraint Ẽ[βT Xπ
T ] = E[βT ζT Xπ

T ] ≤ x0, because (βt Xπ
t )t∈[0,T ] is a P̃-supermar-

tingale due to (2.10) and the admissibility requirement Xπ
t ≥ 0 for all t ∈ [0, T ].

Here, Ẽ denotes the expectation w.r.t. the risk neutral measure P̃ .
As motivated in the introduction, for shortfall level q > 0 we measure the risk by

averaging the loss (Xπ
T − q)− w.r.t. some probability measure Q which is equivalent

to P . By Z Q we denote the Radon-Nikodym derivative of Q w.r.t. P . Further we
use a strictly positive, F S

T -measurable factor γ for discounting the loss and call the
non-negative number EQ[γ (Xπ

T − q)−] = E[γ Z Q(Xπ
T − q)−] expected loss.

For a given bound ε ≥ 0 the dynamic optimization problem under risk constraints
is

maximize E[U (Xπ
T )] for π ∈ A(x0)

subject to Ẽ[βT Xπ
T ] ≤ x0 (budget constraint),

EQ[γ (Xπ
T − q)−] ≤ ε (risk constraint).

(3.1)
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The dynamic portfolio optimization problem can be splitted into two problems—the
static and the representation problem. While the static problem is concerned with
the form of the optimal terminal wealth the representation problem consists in the
computation of the optimal trading strategy.

We shall first consider the static problem and use for convenience a shorter nota-
tion: We write simply XT for the F S

T -measurable terminal wealth Xπ
T , Z1 = βT ζT

and Z2 = γ ζ
Q
T , where ζ

Q
t = E[Z Q

t | F S
t ] is the filter for Z Q

t . Then the static problem
reads as

maximize E[U (XT )] for all F S
T -measurable XT ≥ 0

subject to E[Z1 XT ] ≤ x0 (budget constraint),
E[Z2(XT − q)−] ≤ ε (risk constraint).

(3.2)

As a technical assumption we impose the following condition.

Assumption 3.2 E[Z1 I (y Z1)] < ∞ for all y > 0.

There are two typical choices for Q. First we use =̧βT and Q = P̃ (i.e. Z1 = Z2),
then (3.2) reads as

max
XT ≥0

E[U (XT )] subject to E[Z1 XT ] ≤ x0 and E[Z1(XT − q)−] ≤ ε.

(3.3)

The risk measure E[Z1(XT − q)−] = Ẽ[βT (XT − q)−] is referred to as present
expected loss (PEL). It corresponds to the price of a derivative to hedge against the
shortfall. By paying ε now, one can hedge against the risk to fall short of q. This
criterion is called limited expected loss in Basak and Shapiro (2001) and analyzed
thoroughly showing that the distribution of the resulting optimal terminal wealth has
more desirable properties than a VaR based risk measure.

Remark 3.3 If an investor really splits his initial capital in x0 − ε which is invested
according to PEL to get terminal wealth X x0−ε

T and buys the corresponding option with
price ε and payout CT = (X x0−ε

T − q)−, then the combined payout corresponds to a
portfolio insurer. Therefore, maximizing expected utility of this total payout (including
CT ) yields the same terminal wealth as (4.1). This procedure is known as option based
portfolio insurance (OPPI), see El Karoui et al. (2005) and Prigent (2007, Chapter
9). But that is only possible for q E[Z1] ≤ x0, otherwise the budget constraint can-
not be fulfilled in the portfolio insurer problem. So PEL becomes interesting when
q E[Z1] > x0 which corresponds to a guaranteed level q which is higher (after dis-
counting) than the initial capital. So the investor won’t buy the option and use the price
ε only as a measure of the risk he is willing to take to reach at least level q.

It is also reasonable to average the possible losses using the real world measure P .
Therefore, another choice would be Q = P , i.e. Z2 = γ , and (3.2) becomes

max
XT ≥0

E[U (XT )] subject to E[Z1 XT ] ≤ x0 and E[γ (XT − q)−] ≤ ε.

(3.4)
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The risk measure E[γ (XT − q)−] is termed as future expected loss (FEL). It cor-
responds to the (discounted) amount we have to pay at T to cover the loss. Utility
maximization under bounded FEL has been studied for a Black Scholes model with
constant parameters in Gabih et al. (2005). In addition any other measure Q equivalent
to P might be used in (3.1).

Without risk constraint (ε = ∞), we face the Merton problem

max
XT ≥0

E[U (XT )] subject to E[Z1 XT ] ≤ x0. (3.5)

The solution of the Merton problem is given by X M
T = I (yM Z1), where yM > 0

solves E[Z1 I (y Z1)] = x0 uniquely. Let us denote the risk of the Merton portfolio by

ε := E[Z2(X M
T − q)−].

If we allow an expected loss ε ≥ ε, then X M
T would still be optimal with risk ε and

thus the risk constraint would not be binding. In this sense we can use ε as an upper
bound for ε. On the other hand there is no admissible solution of the problem, if we
choose ε too small to satisfy the risk constraint. So we need to find the smallest value
ε of the shortfall risk measure. Note that ε as well as ε depend on the initial capital
x0, the shortfall level q and the choice of γ and Q.

If q E[Z1] ≤ x0 the bound ε ≥ 0 can be chosen arbitrarily small since XT ≡ q sat-
isfies the budget constraint E[Z1 XT ] ≤ x0 and yields a risk measure of zero. Hence,
for q E[Z1] ≤ x0 we can set the minimal shortfall risk to ε = 0. Optimization problem
(3.2) for ε = 0 is known as the portfolio insurer problem

max
XT ≥0

E[U (XT )] subject to E[Z1 XT ] ≤ x0 and XT ≥ q. (3.6)

Its solution is given in Theorem 4.1 (iv).
In case of q E[Z1] > x0, where the portfolio insurer problem has no admissible

solution, there is a strictly positive minimal shortfall risk ε which can be found from
the solution of the following risk minimization problem

ε := inf
{

E[Z2(XT − q)−] : XT ≥ 0 F S
T -measurable with E[Z1 XT ] ≤ x0

}
.

(3.7)

For the complete solution of the above problem depending on the choice of Z1, Z2,
i.e. of the measures P, P̃ and Q and the discounting factors βT , γ , we refer to Gabih
et al. (2009, Theorem 4.1). For the sake of a shorter exposition, here we only give the
results for the two cases PEL and FEL. For FEL we assume a market model where the
distribution of Z1/γ is absolutely continuous as it is the case in Sects. 5 and 6. Then
it holds

ε =
{

εP := q E[Z1] − x0, for PEL (i.e. Z1 = Z2),

εF := q E[γ 1{yF M Z1>γ }] for FEL (i.e. Z2 = γ ),
(3.8)
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where yF M is the unique solution of q E[Z11{y Z1≤γ }] = x0. The corresponding wealth
is given for PEL by any XT = X P

T with values in [0, q] and E[Z1 X P
T ] = x0 and for

FEL uniquely by XT = X F
T := q1{yF M Z1≤γ }.

4 Optimal trading

In this section we present the form of the optimal terminal wealth which is the solution
of the static problem (3.2) and denoted by X∗

T . Moreover we derive the optimal trading
strategy π∗ = (π∗

t )t∈[0,T ] generating Xπ∗
T = X∗

T , i.e. we solve the dynamic portfolio
optimization problem (3.1).

The following theorem gives the form of the optimal terminal wealth X∗
T depending

on the bound of shortfall risk ε. This is Theorem 5.1 of Gabih et al. (2009). Part (iii)
corresponds to Basak and Shapiro (2001, Proposition 4) where it was shown under the
assumption that an optimal solution exists. The problem of existence and uniqueness
of the Lagrange multipliers y∗

1 , y∗
2 is tackled in Gabih et al. (2009). In part (iv) we

don’t cite the general result for arbitrary measure Q but restrict to the two cases PEL
and FEL. The different cases are similar to those derived in Gundel and Weber (2005,
Theorem 3.3) for risk measures based on strictly convex loss functions. We call the
risk constraint binding, if it holds with equality for the optimal terminal wealth.

Theorem 4.1 The optimal terminal wealth X∗
T of problem (3.2) satisfies:

(i) If ε ≥ ε, then X∗
T = X M

T . For ε > ε the risk constraint is not binding.
(ii) If 0 ≤ ε < ε, then there is no solution.

(iii) If ε < ε < ε, then the optimal terminal wealth is given by X∗
T = f (y∗

1 Z1, y∗
2 Z2)

where

f (x1, x2) =
⎧⎨
⎩

I (x1) for x1 ≤ U ′(q),

q for U ′(q) < x1 ≤ U ′(q) + x2,

I (x1 − x2) for x1 > U ′(q) + x2.

Here, y∗
1 , y∗

2 > 0 solve the following system of equations

E[Z1 f (y1 Z1, y2 Z2)] = x0

E[Z2( f (y1 Z1, y2 Z2) − q)−] = ε.

The risk constraint is binding.
(iv) Let ε = ε and q E[Z1] ≤ x0. Then it holds ε = 0 and

X∗
T = X P I

T = fP I (Z1; y P I )

is the optimal terminal wealth of the portfolio insurer problem (3.6), where for
q E[Z1] < x0

fP I (x; y) =
{

I (yx) for yx ∈ (0, U ′(q)],
q for yx ∈ (U ′(q),∞).

(4.1)
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Here, y P I > 0 solves E[Z1 fP I (Z1; y)] = x0 uniquely with y P I ↑ ∞ for
q ↑ x0/E[Z1]. For q E[Z1] = x0 it holds X∗

T = X P I
T = q and we set y P I = ∞.

Let ε = ε and q E[Z1] > x0. Then it holds
(a) for PEL, i.e. Z1 = Z2:

X∗
T = X P M

T = fP M (Z1; y P M )

where fP M (x; y) =
{

q for yx ≤ U ′(q),

I (yx) for yx > U ′(q),

and y P M > 0 is the unique solution of E[Z1 fP M (Z1; y)] = x0.
(b) for FEL, i.e. Z2 = γ , and an absolutely continuous distribution of Z1/γ :

X∗
T = X F M

T = q1{yF M Z1≤γ }
where yF M uniquely solves q E[Z11{y Z1≤γ }] = x0.

In the cases (i), (iii), (iv)(a) X∗
T is unique if E[|U (X∗

T )|] < ∞, in case (iv)(b) X∗
T is

always unique.
We shall derive optimal trading strategies for the most interesting case, i.e. we

assume ε ∈ (ε, ε). Then by Theorem 4.1 (iii) we have X∗
T = f (y∗

1 Z1, y∗
2 Z2), where

Z1 = βT ζT , Z2 = γ ζ
Q
T and y∗

1 , y∗
2 are the optimal unique parameters given by

E[Z1 X∗
T ] = x0, E[Z2(X∗

T − q)−] = ε.

For random variables Y ∈ D1,p ⊂ L p(P̃,F W̃
T ), p ∈ [1,∞), we introduce the Mal-

liavin derivatives DY = (Dt Y )t∈[0,T ] w.r.t. W̃ as introduced in Ocone and Karatzas
(1991). They introduce the Malliavin derivative as an explicit differential operator
for cylindrical functions of the Brownian motion. The domain D1,p of the Malliavin
derivative is then obtained as completion of the space of cylindrical functions with
respect to a certain norm ‖Y‖1,p := ‖Y‖p + ‖ ‖ DY‖L2(0,T )‖p, where ‖ · ‖p denotes

the norm in in L p(P̃,F W̃
T ). For details and suitable chain rules we also refer to Sass

and Haussmann (2004). For Y ∈ D1,1 Clark’s formula holds, cf. Karatzas et al. (1991):

Y = Ẽ[Y ] +
T∫

0

Ẽ[Dt Y | F W̃
t ]�dW̃t .

Note that we use the convention that for m-dimensional Y , the matrix Dt Y is n × m-
dimensional with (Dt Y )i, j = Di

t Y
j , where Di denotes the operator w.r.t. W̃ i .

Strategies can be computed by comparing martingale representation

βT X∗
T = x0 +

T∫

0

βt (π
∗
t )�σt dW̃t

and Clark’s formula for Y = βT X∗
T . This is the idea of Theorem 4.2 below which

provides conditions that this approach works. We cannot apply standard chain rules
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directly since f is not differentiable on the set {(z1, z2) : z1 = U ′(q) or z1 − z2 =
U ′(q)}. But similar as in Sect. 5.1 of Lakner and Nygren (2006) a chain rule can be
derived if we use the following piecewise derivatives. Theorem 4.2 is based on Gabih
et al. (2009, Theorem 8.1) using other conditions than e.g. Lakner and Nygren (2006,
Proposition 5.2). As substitute for the derivative of f (z1, z2) w.r.t. the first variable
we use

f1(z1, z2) =
⎧⎨
⎩

I ′(z1) for z1 ≤ U ′(q),

0 for U ′(q) < z1 ≤ U ′(q) + z2,

I ′(z1 − z2) for z1 > U ′(q) + z2,

and w.r.t. the second variable

f2(z1, z2) =
⎧⎨
⎩

0 for z1 ≤ U ′(q),

0 for U ′(q) < z1 ≤ U ′(q) + z2,

−I ′(z1 − z2) for z1 > U ′(q) + z2.

Moreover, we set

F1 = f1(y1 Z1, y2 Z2), F2 = f2(y1 Z1, y2 Z2).

Theorem 4.2 Suppose that the conditions on the coefficients r, μ, σ in Sect. 2 are
satisfied and that

(a) β−1
T is bounded,

(b) βT , Z1, Z2 ∈ D1,
p

p−1
and I ′(y1 Z1), I ′(y1 Z1 − y2 Z2)1{y1 Z1−y2 Z2>U ′(q)} ∈

L p(P̃) for some p ∈ (1, 2] and all y1 > 0, y2 ≥ 0,
(c) βT X∗

T ∈ L2(P̃).

Then an optimal trading strategy is given by

π∗
t = β−1

t (σ�
t )−1 Ẽ[(DtβT )X∗

T + y1βT (Dt Z1)F1 + y2βT (Dt Z2)F2 | F S
t ].

Proof Since by Proposition 2.4 F S = F W̃ , this follows directly from Gabih et al.
(2009, Theorem 8.1). This theorem is applicable because by the arguments in
Remark 2.5 and at the beginning of Sect. 3 we are in a complete market setting
with respect to F S . 	


We shall now provide the optimal terminal wealth for two important cases discussed
above. First we look at PEL, corresponding to a bound on the hedging price for the
shortfall.

Corollary 4.3 If Q = P̃ and =̧βT (i.e. Z2 = Z1) and the conditions of Theo-
rem 4.2 are satisfied we have for the PEL-optimal terminal wealth X∗

T = X P
T =

fP (Z1), where

123



Optimal portfolio policies 39

fP (z) = fP (z; y P
1 , y P

2 ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

I (y P
1 z) for z ≤ U ′(q)

y P
1

,

q for U ′(q)

y P
1

< z ≤ U ′(q)

y P
1 −y P

2
,

I ((y P
1 − y P

2 )z) for z >
U ′(q)

y P
1 −y P

2
,

and y P
1 > 0, y P

2 > 0 are given as the unique solution of

Ẽ[βT fP (Z1)] = x0, Ẽ[βT ( fP (Z1) − q)−] = ε.

The PEL-optimal trading strategy is given by

π P
t = β−1

t (σ�
t )−1 Ẽ[X P

T DtβT + βT f ′
P (Z1) Dt Z1 | F S

t ]
where f ′

P (z) = y P
1 I ′(y P

1 z)1{y P
1 z≤U ′(q)} + (y P

1 − y P
2 )I ′((y P

1 − y P
2 )z)

×1{(y P
1 −y P

2 )z>U ′(q)}.

Next we look at FEL, corresponding to putting a bound on the future expected
shortfall.

Corollary 4.4 If Q = P and γ = 1 (i.e. Z2 = 1) and the conditions of Theo-
rem 4.2 are satisfied, then it holds for the FEL-optimal terminal wealth X∗

T = X F
T =

fF (Z1), where

fF (z) = fF (z; yF
1 , yF

2 ) =
⎧⎨
⎩

I (yF
1 z) for yF

1 z ≤ U ′(q),

q for U ′(q) < yF
1 z ≤ U ′(q) + yF

2 ,

I (yF
1 z − yF

2 ) for yF
1 z > U ′(q) + yF

2 ,

and yF
1 > 0, yF

2 > 0 are given as the unique solution of

Ẽ[βT fF (Z1)] = x0, E[( fF (Z1) − q)−] = ε.

The FEL-optimal trading strategy is given by

π F
t = β−1

t (σ�
t )−1 Ẽ[X F

T DtβT + βT f ′
F (Z1) Dt Z1 | F S

t ]
where f ′

F (z) = yF
1 I ′(yF

1 z)1{yF
1 z≤U ′(q)} + yF

1 I ′(yF
1 z − yF

2 )1{yF
1 z>U ′(q)+yF

2 }.

For a general discount factor γ we simply had to substitute yF
2 γ for yF

2 in Corol-
lary 4.4. Then fF above had to be written as a function of z and γ .

To compute a strategy explicitly we have to determine the filters and therefore, have
to specify a model for μ. There are two typical examples for a process μ independent of
W , a continuous-time Markov chain or some linear Gaussian dynamics. Both models
allow for the computation of finite dimensional filters and thus closed form solutions
can be derived, cf. the introduction. In the next section we look at the Markov chain
example.
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5 A hidden Markov model for the drift

We look at a drift process given by μt = BYt , i.e. at returns

Rt =
t∫

0

B Ys ds + σ Wt , t ∈ [0, T ], (5.1)

where (Yt )t∈[0,T ] is a stationary, irreducible, continuous time Markov chain indepen-
dent of the n-dimensional Brownian motion W . Y has state space {e1, . . . , ed}, the
standard unit vectors in R

d . The columns of the state matrix B ∈ R
n×d contain the d

possible states of μt . Further Y is characterized by its rate matrix G ∈ R
d×d , where

λk = −Gkk = ∑d
l=1,l �=k Gkl is the rate of leaving ek and Gkl/λk is the probability

that the chain jumps to el when leaving ek . We assume a constant volatility matrix σ

and a money market with constant interest rate r . For the treatment (without shortfall
constraints) of non-constant r and σ we refer to Sass and Haussmann (2004) and Hahn
et al. (2007b), Haussmann and Sass (2004), respectively.

Due to the constant parameters r, σ, B and the boundedness of Y , Assumptions 2.1
and 2.3 hold. To verify Assumption 2.2 we first have to compute μ̂ which requires to
find the filter Ŷt for Yt ,

Ŷt = E[Yt | F S
t ], t ∈ [0, T ].

Note that μ̂t = BŶt . In view of (5.1) we are in the classical situation of HMM
filtering with signal Y and observation R, where we want to determine the filter
Ŷt = E[Yt

∣∣F R
t ] = E[Yt

∣∣F S
t ].

As pointed out in Remark 2.5, to compute the filters we have to rely on the underly-
ing model (2.1). For filtering one introduces a reference measure which corresponds
to the risk neutral probability measure used for optimization and replication. Doing
this for (2.1), we introduce the density process Z = (Zt )t∈[0,T ],

Zt = exp

⎧⎨
⎩−

t∫

0

ϑ�
s dWs − 1

2

t∫

0

‖ϑs‖2ds

⎫⎬
⎭ , ϑt = σ−1

t (μt − rt 1n),

which exists due to (2.4). Since Y is bounded and r, σ, B are constant, Z is a martingale.
Therefore, the reference measure P defined by

P(A) = E[ZT 1A], A ∈ FT

is a probability measure equivalent to P and Girsanov’s theorem guarantees that the
process W = (W t )t∈[0,T ] with

W t = Wt +
t∫

0

ϑs ds
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is a Brownian motion under P . The following theorem shows that indeed ζt =
E[Zt | F S

t ]. Therefore, the martingale property carries over to the conditional den-
sity ζ and thus Assumption 2.2 holds. Further, this shows that P is an extension of P̃ ,
i.e. P|F S

T
= P̃ . Since we also have

W t = Wt +
t∫

0

ϑs ds = Vt +
t∫

0

ϑ̂s ds = W̃t , t ∈ [0, T ],

we will write in the following W̃ and P̃ for W and P , respectively.
By Theorem 4 in Elliott (1993), Bayes’ law, and using 1�d Yt = 1 we get

Theorem 5.1 The filters Ŷt for Yt , ζt for Zt and the unnormalized filter for Yt ,
Et = Ẽ[Z−1

T Yt | F S
t ], satisfy Ŷt = ζt Et , ζ−1

t = 1�d Et , and

Et = E[Y0] +
t∫

0

G�Es ds +
t∫

0

Diag(Es)B�(σσ�)−1 d Rs, t ∈ [0, T ].

(5.2)

Furthermore, ζ−1
t = Ẽ[Z−1

t

∣∣F S
t ] and ζ−1

t = 1+
t∫

0

(BEs)
�(σσ�)−1 d Rs, t ∈ [0, T ].

We shall look at PEL (Q = P̃) and FEL with =̧1(Q = P). Then we only have to
compute the Malliavin derivative of ζT . This is done in Sass and Haussmann (2004,
Proposition 4.2, Lemma 4.4):

Proposition 5.2 For all p > 1 we have ζT ∈ D1,p and Et ∈ (D1,p)
d , t ∈ [0, T ], and

for s > t

DtζT = −ζ 2
T σ−1

⎛
⎝B Et +

T∫

t

(σ DtEu)B�(σσ�)−1d Ru

⎞
⎠ ,

σ DtEs = B Diag(Et ) +
s∫

t

(σ DtEu)G du +
s∫

t

(σ DtEu)Diag
(

B�(σσ�)−1d Ru

)
.

The main assertions of the following theorem are that the conditions of Theorem 4.2
are fulfilled or follow easily from the conditions, and that the strategy can be computed
based on the state of the unnormalized filter. Example 5.4 will show that all conditions
hold for logarithmic and power utility.

Theorem 5.3 Suppose ε ∈ (ε, ε) and that I (yζT ), I (yζT − y0)1{yζT −y0>U ′(q)} ∈
L2(P̃) and I ′(yζT ), I ′(yζT − y0)1{yζT −y0>U ′(q)} ∈ L p(P̃) for some p > 1 and all
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y > 0, y0 ≥ 0. Then the PEL- and FEL-optimal terminal wealth and the optimal
trading strategy are given as in Corollaries 4.3 and 4.4, respectively. In particular,
the optimal strategy reads

π
P/F
t = β−1

t (σ�)−1 Ẽ[β2
T f ′

P/F (βT ζT ) DtζT | Et ],

where fP (z) and fF (z) are defined in Corollaries 4.3 and 4.4, respectively, and the
derivatives are defined piecewise. Moreover, DtζT is given in Proposition 5.2.

Proof Due to the constant parameters r, σ, B and the boundedness of Y , Assump-
tions 2.1, 2.2, 2.3 and condition (a) of Theorem 4.2 hold. Now Z1 = βT ζT and
Z2 = βT ζT for PEL and Z2 = 1 for FEL. Thus Z1, Z2 ∈ D1,

p
1−p

for any p > 1

by Proposition 5.2, and by the conditions on I ′ in this theorem condition (b) of The-
orem 4.2 is satisfied. From the representation in Corollaries 4.3 and 4.4 we get that
0 ≤ X P/F

T = fP/F (βT ζT ) ≤ I (y βT ζT ) + q for suitable y > 0. Thus also (c) holds
and we can use the representations of the trading strategies in Corollaries 4.3, 4.4 which
can be simplified due to constant βT . Since F S

t ⊇ FE
t and ζT = (1�d ET )−1, exploiting

the Markov property of E , Theorem 5.1 implies that we can write the conditional
expectation w.r.t. Et . 	

Example 5.4 We consider logarithmic utility U (x) = log(x) and power utilityU (x) =
xα

α
− 1

α
, α < 1, α �= 0. Suppose α < 1 is fixed with α = 0 corresponding to loga-

rithmic utility. Then I (y) = y
1

α−1 , in particular I (x y) = I (x)I (y) which allows us
to verify the integrability conditions of Theorem 5.3 easily, and to derive for PEL and
FEL

X P/F
T = X P/F

t G P/F
t,T

Ẽ[βt,T G P/F
t,T | Et ]

, t ∈ [0, T ],

where βt,T = βT /βt and G P/F
t,T = fP/F (βT ζT )/I (y P/F

1 βtζt ), e.g.

G P
t,T =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

I (βt,T ζt,T ), βT ζT ≤ U ′(q)

y P
1

,

q/I (y P
1 βtζt ),

U ′(q)

y P
1

< βT ζT <
U ′(q)

y P
1 −y P

2
,

I ((1 − y P
2 /y P

1 )βt,T ζt,T ), βT ζT ≥ U ′(q)

y P
1 −y P

2
,

where ζt,T = ζT /ζt . A not always straightforward computation yields

π
P/F
t

X P/F
t

= (σσ�)−1

1 − α

⎛
⎝Ẽ[C P/F

t,T | Et , X P/F
t ] B Ŷt

+Ẽ

⎡
⎣C P/F

t,T

T∫

t

(σ DtEt,s)B�(σσ�)−1d Rs | Et , X P/F
t

⎤
⎦
⎞
⎠ ,
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where Et,s = Es ζt and the correction factors are given by

C P
t,T = βt,T ζt,T Gt,T

Ẽ[βt,T Gt,T | Et ]
− βt,T ζt,T

q

X P
t

1{
U ′(q)

y P
1

<βT ζT ≤ U ′(q)

y P
1 −y P

2

}

C F
t,T = βt,T ζt,T Gt,T

Ẽ[βt,T Gt,T | Et ]
− βt,T ζt,T

q

X F
t

1{
U ′(q)

yF
1

<βT ζT ≤ U ′(q)+yF
2

yF
1

}

+(1 − α)βt,T ζt,T (yF
1 βT ζT − yF

2 )−
2−α
1−α

yF
2

yF
1

1{
βT ζT >

U ′(q)+yF
2

yF
1

}.

Note that the conditional expectations are w.r.t. the σ -algebra generated by the unnor-
malized filter Et and the current optimal wealth X P/F

t which are known to the investor
at time t . This allows to use Monte Carlo methods for their computation.

Remark 5.5 The correction factor Ct,T replaces (Ẽ[ζ
1

α−1
t,T | F S

t ])−1ζ
α

α−1
t,T in Proposition

4.10 of Sass and Haussmann (2004). In particular this shows that the solutions coincide
for q → 0. For constant drift (d = 1, Ŷ = Y ≡ 1) we are in the classical Black Scholes
model with constant drift. The computation of the optimal trading strategy obtained
in Example 5.4 leads to the optimal trading strategy obtained for PEL in Basak and
Shapiro (2001, Proposition 5) and for FEL in Gabih et al. (2005, Proposition 9).

6 Numerical examples

In this section we illustrate the findings of the previous sections. These numerical
experiments are based on a financial market model where the drift follows a con-
tinuous-time Markov chain with d = 5 states, volatility σ is constant and the inter-
est rate r equals zero. For simulated stock prices we consider the maximization of
expected power utility under bounded expected loss. The complete setting is described
in Sects. 6.1 and 6.2.

Section 6.3 gives an overview of the numerical procedures we use to compute the
required filter, optimal terminal wealth and the optimal strategy based on discrete-time
observations of the stock prices. Section 6.4 is devoted to the description of the optimal
terminal wealth. We present efficient frontiers for visualizing the dependence of the
optimal expected utility on the bound ε for the shortfall risk and study the influence of
several parameters such as the benchmark q, the risk aversion parameter α of the utility
function, and the type of the risk measure (PEL, FEL). We compare the probability
density function of X P

T , its expectation and expected utility with the corresponding
results for the pure stock portfolio and the optimal portfolios for maximum and mini-
mum values for the risk bound ε, i.e. for ε = ε and ε = ε, respectively. The optimal
strategies generating the optimal terminal wealth are presented in Sect. 6.5 for two
simulated paths of the stock price. In Sect. 6.6 we propose a method for computing
optimal strategies, for which possible errors due to the time-discretization are detected
and corrected.
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Fig. 1 Drift μ, filter μ̂ and ergodic mean μ (top left), stationary distribution (top right), stock prices S
(bottom left), daily returns ΔRt and μt Δt for Δt = 1/250 (bottom right)

6.1 Parameters of the financial market

We consider a market consisting of a risk-free asset with interest rate r = 0 and one
stock (n = 1) with constant volatility σ = 0.25 and drift process μ modeled as a
continuous-time Markov chain, cf. Section 5, with d = 5 states and state matrix B,
rate matrix G given by

B = (0.9, 0.4, 0.1,−0.3,−0.8) and G =

⎛
⎜⎜⎜⎜⎝

−80 20 60 0 0
8 −40 28 4 0
2 8 −20 8 2
0 3 21 −30 6
0 0 45 15 −60

⎞
⎟⎟⎟⎟⎠ .

This Markov chain has stationary distribution 1
102 (3, 15, 60, 20, 4) and E[μt ] con-

verges for t → ∞ to its ergodic mean μ = 11
204 ≈ 0.054. The transition probabilities

are such that switching to the extreme states is less likely. For a time horizon of T = 1
year, consisting of M = 250 trading days, Fig. 1 shows a simulated path of the drift
process μ (top left) and the probabilities of the stationary distribution (top right). For
the investor the drift process is not observable since he only observes the daily stock
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prices (bottom left) or—equivalently—the daily returns (bottom right). The investor
estimates the unknown drift μt from the available stock prices resp. returns using the
filter

μ̂t = E[μt |F S
t ] = BŶt = BζtEt .

Here, we get the unnormalized filter Et solving SDE (5.2) using M time-steps. From
Et the filter ζt for the martingale density Zt can be obtained via ζt = (1�d Et )

−1 =
(E1

t + · · · + Ed
t )−1. The resulting filter μ̂ can be seen in the top left plot of Fig. 1.

Comparing μ̂ with the states of the drift we observe that μ̂ is rather close to the ergo-
dic mean μ (dashed line). However, the subsequent results indicate, that the investor
can benefit from this information contained in the filter by choosing an appropriate
investment strategy.

6.2 Parameters for the portfolio optimization

We consider an investor with initial capital x0 = 1 and utility function U which is
taken from the family of CRRA-utilities:

U (x) =
{

xα

α
for α ∈ (−∞, 1) \ {0} power utility

log x for α = 0 logarithmic utility.

Here, 1 − α is the Arrow Pratt index of relative risk aversion. The subsequent exam-
ples compare investors with different relative risk aversions, in particular we set α =
0.5, 0,−1 standing for risk aversion lower, the same, higher as for logarithmic utility.
We measure the risk that the terminal wealth falls short of benchmark q by present
and future expected loss PEL and FEL, respectively. Since we assume r = 0, it holds

βT = γ = 1, Z1 = βT ζT = ζT and for PEL Z2 = γ ζT = ζT (6.1)

while for FEL we have Z2 = 1. We consider two cases for the benchmark: q = 0.95
and q = 1.05. Note that for q = 0.95 portfolio insurance is possible since x0 ≥
E[Z1]q = q by (6.1). The minimal shortfall risk is ε = 0. For q = 1.05 > x0
there is no admissible solution for the portfolio insurer problem and we have a strictly
positive ε. Table 1 shows for the considered benchmarks q the bounds ε chosen in the
examples below and the minimal and maximal shortfall risks εP , εP and εF , εF for
PEL and FEL, respectively. Note, that according to (3.8) it holds for PEL ε = εP =
q − x0 = 0.05.

Using (6.1), it turns out that the optimal terminal wealth for the different optimiza-
tion problems can be written as a function f (ζT ) of the conditional martingale density
and of one or two Lagrange multipliers. In particular, by Corollaries 4.3 and 4.4

X P
T = fP (ζT ) = fP (ζT ; y P

1 , y P
2 ), and X F

T = fF (ζT ) = fF (ζT ; yF
1 , yF

2 ).
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Table 1 Parameters for the risk
constraints

Benchmark q 0.95 1.05
Bound ε 0.05 0.1
PEL Minimal risk ε = εP 0 0.05
PEL Maximal risk ε = εP 0.183 0.248
FEL Minimal risk ε = εF 0 0.031
PEL Maximal risk ε = εF 0.142 0.195

Moreover, we recall and introduce the following notation

X M
T = fM (ζT ) = fM (ζT ; yM ) = I (yMζT )

X P I
T = fP I (ζT ) = fP I (ζT ; y P I ) =

{
I (y P I ζT ) for y P I ζT ≤ U ′(q)

q for y P I ζT > U ′(q)

X P M
T = fP M (ζT ) = fP M (ζT ; y P M ) =

{
q for y P MζT ≤ U ′(q)

I (y P MζT ) for y P MζT > U ′(q)

X F M
T = fF M (ζT ) = fF M (yF MζT ) = q1{yF M ζT ≤1}.

The optimal terminal wealth X M
T for Merton problem is introduced in Sect. 3. X P I

T
denotes the portfolio insurers optimal terminal wealth for ε = 0 and x0 ≥ q while
X P M

T and X F M
T denote the PEL- and FEL-optimal terminal wealth for minimal risk

ε = ε for x0 < q, see Theorem 4.1 (iv). The parameters yM , y P I , y P M , yF M are the
unique solutions of the corresponding budget equations Ẽ[ f (ζT ; y)] = x0.

6.3 Numerical approximations

To determine PEL- and FEL-optimal terminal wealth in Corollaries 4.3, 4.4 we have to
solve the following system of equations to determine the optimal Lagrange multipliers
y∗

1 , y∗
2 :

g1(y1, y2) = x0 and g2(y1, y2) = ε (6.2)

where g1(y1, y2) = Ẽ[ fP/F (ζT ; y1, y2)] and g2(y1, y2) = Ẽ[ ( fP (ζT ; y1, y2) −
q)− ] for PEL while for FEL we have g2(y1, y2)= E[( fF (ζT ; y1, y2) − q)−] =
Ẽ[ζ−1

T ( fF (ζT ; y1, y2) − q)−]. The functions g1 and g2 of y1, y2 are nonlinear. In
Gabih et al. (2009, Sects. 6,7) we prove that under suitable conditions there exists
a unique solution (y∗

1 , y∗
2 ) of the Eq. (6.2). For the financial market model and

the utility functions used in this study these conditions for the uniqueness are ful-
filled. Moreover the above paper studies properties of the functions g1(y1, y2) and
g2(y1, y2), in particular of their partial derivatives. Based on these properties we
propose a nested Newton iteration for the numerical solution of the two equations,
see Gabih et al. (2009, Remark 7.4). For the other optimization problems, we find
X M

T , X P I
T , X P M

T , X F M
T by solving numerically (Newton iteration) the corresponding
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budget equations g1(y) = Ẽ[ f (ζT ; y)] = x0 to determine the optimal Lagrange
multipliers yM , y P I , y P M , yF M .

It turns out that the expectations defining the functions g1 and g2 cannot be evaluated
explicitly but have to be approximated by Monte-Carlo methods based on a sample
of N realizations of ζT . The same holds for the partial derivatives of g1 and g2 which
are needed for the Newton iteration. To this end we use the relation ζT = (1�d ET )−1

and generate N realizations of the unnormalized filter ET from N paths of the Wie-
ner process (W̃t )t∈[0,T ] by solving SDE (5.2) using d Rt = σdW̃t . The initial value
E0 = E[Y0] is computed w.r.t. the stationary distribution of the Markov chain. For the
solution we apply the Euler scheme with M time-steps and use robust filter techniques
to reduce discretization errors, see Clark (1978), James et al. (1996), Putschögl and
Sass (2008). The PEL- and FEL-optimal strategies π P

t , π F
t in Theorem 5.3 simplify

for r = 0 to

π
P/F
t = (σ�)−1 Ẽ[ f ′

P/F (ζT ) DtζT | Et ], (6.3)

where fP (z) = fP (z; y P
1 , y P

2 ) and fF (z) = fF (z; yF
1 , yF

2 ), respectively. We obtain
the optimal strategies π M

t , π P I
t , π P M

t for the Merton, the portfolio insurer problem
and the PEL-constrained optimization for minimal risk ε = εP for x0 < q, if we
replace in (6.3) fP/F (z) by fM (z; yM ), fP I (z; y P I ) and fP M (z; y P M ), respectively.
This can be proven by similar arguments as in Sects. 4 and 5. For FEL-constrained
optimization for minimal risk ε = εF representation (6.3) does not hold for the opti-
mal strategy π F M

t , since fF M (z; yF M ) is not continuous. There is a jump of size q at
z = 1/yF M .

The conditional expectation in (6.3) cannot be evaluated explicitly but has to be
approximated by a Monte-Carlo estimate. The aim is to compute at time t the optimal
strategy based on the observation of the stock prices up to time t . From (Su)u∈[0,t]
we get the unnormalized filter Et , which can be computed numerically as solution of
(5.2). By (6.3),

π
P/F
t = h P/F (t, Et ), where h P/F (t, x) = (σ�)−1 Ẽ[ f ′

P/F (ζT ) DtζT | Et = x].
(6.4)

For the Monte-Carlo estimate of the conditional expectation given Et = x we generate
N realizations of ζT and DtζT starting at t with Et = x . We denote them by ζ

t,x
T and

(DtζT )t,x . To this end we simulate N paths of W̃ under P̃ . From these we get N paths
of the unnormalized filter E t,x

s , s ∈ [t, T ], as solution of

E t,x
s = x+

s∫

t

G�E t,x
u du+

s∫

t

Diag(E t,x
u )(σ−1 B)�dW̃u, s ∈ [t, T ], (6.5)

which results from SDE (5.2) using d Rt = σdW̃t . From the terminal value E t,x
T we

get N realizations of the conditional martingale density via ζ
t,x
T = (1�d E t,x

T )−1.

123



48 J. Sass, R. Wunderlich

Observing d Rt = σdW̃t , the realizations for the Malliavin derivative (DtζT )t,x

can be obtained from the SDEs in Proposition 5.2 using the same N paths of W̃ . The
SDEs are discretized using the Euler scheme with M time steps. For the second SDE
describing the dynamics of the Malliavin derivative (DtEs)

t,x of the unnormalized
filter we apply robust filter techniques, see Putschögl and Sass (2008). Finally, given
Et = x the optimal strategy is given by

π
P/F
t = h P/F (t, x) = (σ�)−1 Ẽ[ f ′

P/F (ζT ) DtζT | Et = x]
= (σ�)−1 Ẽ[ f ′

P/F (ζ
t,x
T ) (DtζT )t,x ] (6.6)

and can be approximated using the sample mean of f ′
P/F (ζ

t,x
T ) (DtζT )t,x . The same

procedure can be applied for the evaluation of the optimal strategies π M
t , π P I

t , π P M
t .

6.4 Optimal terminal wealth

Next we illustrate properties of the PEL- and FEL-optimal terminal wealth. In order
to simplify the comparison of expected utilities for different parameters, such as the
bound ε for the risk contraint, the benchmark q and the exponent α of the power
utility, we consider the following efficiency measure, which has been introduced by
Rogers (2001). This measure is based on the comparison of a given portfolio with the
Merton-optimal portfolio. The efficiency Θ(XT ) of a given portfolio with terminal
wealth XT relative to the Merton portfolio is the amount of wealth at time 0 which
the investor of Merton-optimal portfolio would need to obtain the same maximized
expected utility at time T as the investor of the given portfolio who started at time 0
with unit wealth. Given the expected utilities E[U (XT )] and E[U (X M

T )] of the given
and the Merton-optimal portfolio and assuming power utility the efficiency is

Θ(XT ) =

⎧⎪⎨
⎪⎩
(

E[U (XT )]
E[U (X M

T )]

) 1
α

for α �= 0,

exp(E[U (XT )] − E[U (X M
T )]) for α = 0.

In order to study and visualize the efficiency of optimal portfolios under risk con-
straints and its dependence on the the bound ε we adopt the concept of efficient
frontiers. The “classical” efficient frontiers are known from the Markowitz portfolio
theory where the “return” of a portfolio is measured in terms of the expected terminal
wealth and the “risk” by its variance. Every admissible portfolio can be plotted in the
“risk-return space”, and the collection of all such possible portfolios defines a region in
this space. The curve along the upper edge of this region is known as efficient frontier.
It represents those portfolios which have the lowest risk for a given level of return.
Conversely, for a given amount of risk, the portfolio lying on the efficient frontier
offers the best possible return.

For our purposes we replace “return” by efficiency and “risk” by expected loss.
Given the bound ε for the expected loss (measured by PEL or FEL) the optimal port-
folio maximizes the expected utility E[U (XT )] and thus the efficiency Θ(XT ) among
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Fig. 2 Efficient frontier for PEL-optimal (top) and FEL-optimal (bottom) portfolios, power utility with
α = 0.5, benchmarks q = 0.95, 1, 1.05

all admissible portfolios whose shortfall risk does not exceed ε. Denoting this optimal
terminal wealth by εX∗

T , the efficient frontier plots the efficiency Θ( εX∗
T ) against ε.

For ε ≥ ε we haveΘ( εX∗
T ) = Θ(εX∗

T ) = Θ(X M
T ) = const. In case of ε < ε

there are no admissible portfolios and for ε = ε it holds εXT
∗ = X P M

T (PEL) or
εXT

∗ = X F M
T (FEL). Thus the efficient frontier can be drawn for ε ≥ ε only. Figure 2

shows efficient frontiers for the risk measures PEL and FEL. Each plot shows the
corresponding frontiers for power utility with parameter α = 0.5 and benchmarks
q = 0.95, 1 and 1.05. Here N = 107 realizations of ζT are used to estimate the expec-
tations in (6.2) for the computation of the optimal Lagrange multipliers y∗

1 , y∗
2 , yM

and to estimate E[U ( εX∗
T )] and E[U (X M

T )].
The points on and below the frontier correspond to admissible portfolios with risk

measure bounded by ε. The pure stock portfolio is represented by a marker for each
value of q. While the efficiency of the pure stock portfolio does not depend on the
benchmark q, the corresponding values for the risk measures increase with increasing
q. Thus the three markers are on a horizontal line. The higher we choose the benchmark
for fixed ε, the lower is the efficiency. For q ≤ x0 = 1 the minimal risk ε is zero since
portfolio insurance is possible. For q > x0 we have positive ε which is for q = 1.05 in
case of PEL εP = q − x0 = 0.05 and for FEL εF = q P(yF MζT > 1) ≈ 0.030. Note
that for each efficient frontier the values of ε and ε are visualized by vertical lines.
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Fig. 3 Efficient frontier for PEL-optimal (top) and FEL-optimal (bottom) portfolios, utility functions with
parameters α = 0.5, 0, −1 and benchmark q = 1.05

Figure 3 shows the corresponding efficient frontiers for fixed benchmark q = 1.05
and different utility functions (α = 0.5, 0,−1). Note that α = 0 corresponds to loga-
rithmic utility. For fixed ε we observe largest efficiencies for smallest α. Since X F M

T
equals zero with positive probability, efficiency Θ(X F M

T ) for α ≤ 0 is zero. The risk
of the pure stock portfolio does not depend on the parameter α. Thus the 3 markers
are on a vertical line.

Next, we have a closer look at the form and the distribution of the optimal terminal
wealth. For power utility with α = 0.5 and risk measured by PEL, we consider two
cases:

(A) q = 0.95 and ε = 0.05
(B) q = 1.05 and ε = 0.1.

In case (A) portfolio insurance is possible, i.e. the minimal shortfall risk is ε = 0 while
the maximal risk is ε ≈ 0.183. In case (B) we have strictly positive minimal shortfall
risk ε = q − x0 = 0.05, the maximal risk is ε ≈ 0.248, see Table 1.

Figure 4 shows for case (A) and (B) the function fP (z; y P
1 , y P

2 ) given in Corol-
lary 4.3 by which the PEL-optimal terminal wealth can be written as a function of the
conditional martingale density ζT , i.e. X P

T = fP (ζT ; y P
1 , y P

2 ). The optimal Lagrange
multipliers y P

1 , y P
2 are determined as described in Sect. 6.3:
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Fig. 4 Functions f (z) describing the form of the optimal terminal wealth by X∗ = f (ζT ), risk measure
PEL, power utility with α = 0.5; left: case (a), right: case (b)

(A) y P
1 ≈ 1.210 and y P

2 ≈ 0.374
(B) y P

1 ≈ 1.309 and y P
2 ≈ 0.446.

For comparison, Fig. 4 also shows the functions fM (z; yM ) = I (yM z) for the
Merton problem as well as fP I (z; y P I ) in case (A) and fP M (z; y P M ) in case (B)
for minimal shortfall risk ε = ε. For the corresponding Lagrange multipliers we find
yM ≈ 1.038, in case (A) y P I ≈ 1.355 and in case (B) y P M ≈ 0.785. The plots of
fP (z) show three different regions separated by zl = U ′(q)

y P
1

and zu = U ′(q)

y P
1 −y P

2
. The

region (0, zl ] of small values of the conditional martingale density ζT corresponds to
terminal wealth X P

T = I (y P
1 ζT ) ≥ q (good states). It exceeds the benchmark and its

form is similar to the Merton case where we have X M
T = I (yMζT ). For large values of

ζT in (zu,∞) we have X P
T = I ((y P

1 − y P
2 )ζT ) < q (bad states), i.e. the portfolio falls

short. Again the form of the terminal wealth corresponds to that of the Merton portfolio
but with multiplier y P

1 − y P
2 instead of yM . In the intermediate region between zl and

zu we have X P
T = q, i.e. the investor manages the portfolio such that the benchmark

q is reached exactly and thus prevents a shortfall.
Comparing with the Merton-optimal portfolio it can be observed that the PEL-opti-

mal terminal wealth is smaller in the good states but larger in the bad states. There
are less cases where the portfolio falls short and if the shortfall occurs, then there are
smaller losses. For the portfolio insurer problem in case (A), where q = 0.95 < x0,
we have X P I

T ≥ q in all states, i.e. no shortfall at all. It turns out that X P
T is larger than

or equal to X P I
T in the good and intermediate states but smaller in the bad states. For

case (B) where q = 1.05 > x0 the PM-optimal portfolio X P M
T for the minimal risk

(ε = ε = 0.05) never exceeds q. Only for large ζT the portfolio falls short and X P M
T

is strictly smaller than the benchmark but always larger than X P
T , where the shortfall

risk constraint is less restrictive.
Next we look at the distribution of the terminal wealth. For both cases (A) and (B)

Fig. 5 shows the probability density functions (for the absolutely continuous part) of
the distribution of the terminal wealth of the PEL-optimal portfolio. For comparison
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Fig. 5 Probability density functions for the terminal wealth of PEL-, Merton-, PI-/PM-optimal and pure
stock portfolio; power utility with α = 0.5; top: case (a), bottom: case (b)

Table 2 Expected terminal wealth, efficiency and PEL for PEL-, Merton-, PI-/PM-optimal and pure stock
portfolio; power utility with α = 0.5; top: case (A), bottom: case (B)

Expected terminal wealth Efficiency in % Present expected loss (PEL)
E[XT ] Θ(XT ) Ẽ[(XT − q)−]

q = 0.95
Risk constraint 1.092 97.9 0.050 = ε

Merton 1.178 100.0 0.183 = εP

Portfolio Insurer 1.046 95.4 0.050 = εP

Pure stock 1.058 96.5 0.074
q = 1.05

Risk constraint 1.075 97.3 0.100 = ε

Merton 1.178 100.0 0.248 = εP

Minimal risk (ε = εP ) 1.016 94.2 0.050 = εP = q−x0
Pure stock 1.058 96.5 0.129

we also plot the densities for the Merton-, the PI- resp. PM-optimal portfolios, and the
density for the pure stock portfolio where the investor invests all his money in the stock.

Table 2 gives the expected terminal wealth E[XT ], efficiency Θ(XT ), and the pres-
ent expected loss Ẽ[(XT − q)−] for the considered portfolios. The Merton strategy
generates (by definition) the maximum expected utility and efficiency of 100%. But
among the considered portfolios it also exhibits the largest shortfall risk. There is a
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large probability for values in the “shortfall region” [0, q) leading to large values for
PEL. On the other hand there are considerable tail probabilities leading to a high value
for the expected (utility of) terminal wealth.

Imposing the risk constraint, i.e bounding PEL by ε, results in a shift of probability
mass from that “shortfall region” as well as from the upper tail of the distribution to the
benchmark q. This atom at q carries a probability mass of size P(X P

T = q) = P(zl <

ζT ≤ zu) which is about 0.516 in case (A) and 0.529 in case (B), i.e. more than one
half of the total mass. In the density plot the atom is marked by a vertical line at q.
Another consequence is the decrease of the expectation for the terminal wealth and
its efficiency. However, it can be observed that the PEL-optimal portfolio outperforms
the pure stock portfolio w.r.t. both efficiency and PEL.

Decreasing the bound ε to the smallest possible value ε increases the probability
mass of the atom at q and further decreases efficiency. In case (A) portfolio insurance
is possible and we have ε = 0. Here, the PI-optimal portfolio never falls short and it
holds P(X P I

T > q) = 1− P(X P I
T = q) where the atom at q is P(X P I

T = q) ≈ 0.820.
For case (B) it holds ε = q − x0 = 0.05. Here the terminal wealth X P M

T does not
exceed the benchmark q. For the atom we find P(X P M

T = q) ≈ 0.822 and for the
shortfall probability we find P(X P M

T < q) = 1 − P(X P M
T = q) ≈ 0.178.

6.5 Optimal strategy

For illustrating properties of the optimal trading strategies we restrict to case (B) where
q = 1.05 > x0 and ε = 0.1 and consider two scenarios for the stock prices. Based
on the parameters in Sect. 6.1 we have simulated several paths of S and out of these
paths we have selected a “good path” and a “bad path” where the latter together with
the corresponding path of the drift and its filter can be seen in Fig. 1.

Figures 6 and 7 show in the bottom plots (among other curves) the paths of the
stock prices for S0 = x0 = 1. For the “good path” the pure stock and the Merton-opti-
mal portfolio end above the benchmark while for the “bad path” the opposite is true.
The top plots show the corresponding strategies in terms of fraction of wealth πt/Xt

invested in the stock. For the pure stock portfolio we have a buy-and-hold strategy,
i.e. this fraction equals 1. The Merton-, PEL- and PM-optimal strategies have been
computed by estimating for each time step the conditional expectation in (6.3) from
N =1,000 realizations of ζT and DtζT . Obviously trading according to the optimal
Merton strategy is quite risky and often requires extreme positions in the stock. For
example, following the optimal strategy requires that the investor has to borrow an
amount of four to six times the initial capital for investing in the risky stock.

For the “good path” we are faced with a considerable smaller terminal wealth com-
pared to the Merton-optimal portfolio but we reach nearly the terminal wealth of the
pure stock portfolio and we end above the benchmark. Bounding the shortfall risk
by imposing a risk constraint decreases the extreme positions of the Merton strategy.
However, if the PEL-optimal wealth X P

t is above the benchmark and especially when t
approaches T the PEL-optimal strategy is rather close to the Merton-strategy and thus
just as risky. Since the wealth is above the benchmark, shortfall seems to be “unlikely”
and this allows for riskier investments. The PM-optimal portfolio strategy is close to
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Fig. 6 “Good path”: strategies in terms of fraction of wealth πt /Xt (top) and wealth Xt (bottom) for the
PEL-, Merton-, PM-optimal and pure stock portfolio

the bond strategy. After the wealth X P M
t reaches the benchmark q at t ≈ 0.4 the

wealth stays at this level and the strategy turns over to the pure bond strategy.
For the “bad path” we also observe a decrease of the short positions for the PEL-

optimal strategy compared to the Merton-optimal strategy. Contrary to the “good path”
these differences are much stronger and do not vanish close to T . Moreover, it can be
seen that the PEL-optimal strategy finally approaches the pure bond strategy πt ≡ 0.
By this strategy the PEL-optimal wealth is driven exactly to the benchmark q. So this
strategy prevents the portfolio from falling short of q which is the case for the Mer-
ton-optimal as well as for the pure stock portfolio. Comparing the PM-optimal (for
ε = ε = 0.05) with the PEL-optimal strategy (for ε = 0.1) it can be observed, that
the PM-strategy is less risky. This strategy approaches the pure bond strategy earlier
and remains there until horizon time T while the wealth stays at the benchmark q.
Note that the PM-optimal wealth approaches for t → T a constant which is slightly
smaller than the benchmark q. This deviation results from discretization errors which
are investigated in the next section.

6.6 Updating

In practice and even in a simulation experiment we have to take into account that con-
trary to our model assumptions the portfolio cannot be readjusted continuously but
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Fig. 7 “Bad path”: strategies in terms of fraction of wealth πt /Xt (top) and wealth Xt (bottom) for the
PEL-, Merton-, PM-optimal and pure stock portfolio

only at M discrete trading times ti = iΔt, i = 0, . . . , M − 1,Δt = T/M . Moreover,
instead of the theoretical optimal strategy π∗

t we only know an approximation Aπ∗
t

since we have to approximate E and ζ , which we need for its computation, based on
discrete-time observations of the stock prices. Further, the conditional expectations we
need are evaluated using Monte-Carlo methods. Therefore, instead of the theoretical
optimal wealth X∗

ti resulting from the wealth Eq. (2.10), we have in practice the actual
wealth

AX∗
ti = x0 +

i−1∑
j=0

(Aπ∗
s j

)�ΔRs j instead of X∗
ti = x0 +

ti∫

0

(π∗
s )�d Rs

and are faced with a tracking error AX∗
ti − X∗

ti .

Remark 6.1 The examples in Sect. 6.5 show that optimal strategies based on a HMM
model for the drift can be very risky. There are extreme long and short positions in
the stocks. Indeed, imposing a risk constraint decreases these extreme positions if
we compare with the unconstrained (Merton) case but they can still be considerable.
Application of Aπ∗

t or even π∗
t with large absolute values may lead to serious devi-

ations AX∗
t − X∗

t (tracking errors) due to time discretization. Moreover, these errors
accumulate in time.
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Due to the tracking error, trading at t according to the optimal strategy π∗
t may no

longer be optimal since it depends implicitly on the wealth. Note that for risk con-
straints also the risky fraction π∗

t /X∗
t is wealth dependent, cf. Example 5.4. Therefore,

the application of π∗
t (or of Aπ∗

t ) may not generate the maximum expected utility of
terminal wealth and/or violate the risk constraint. So we are faced with the following
questions.
1. How can we detect tracking errors?
2. How can we correct or update the optimal strategy π∗

t if we detect a tracking
error?

To answer the first question we use an alternative representation for the theoretical
optimal wealth X∗

t . Since X∗
T = f (ζT ) we get with the same argument as in the proof

of Theorem 5.3 that X∗
t = Ẽ[X∗

T |F S
t ] = Ẽ[ f (ζT )|Et ], hence

X∗
t = g(t, Et ), where g(t, x) = Ẽ[ f (ζT ) | Et = x].

In the notation of Sect. 6.3 we can generate N realizations of ζ
t,x
T , i.e. of ζT given

Et = x , from N paths of the Wiener process (W̃u)u∈[0,T ] by solving SDE (6.5) numer-
ically. Then we approximate X∗

t by the sample mean of f (ζ
t,x
T ) which we denote by

NX∗
t .

Remark 6.2 Note, that for the computation of the approximation NX∗
t of the theoreti-

cal wealth X∗
t we do not need to know the optimal strategy π∗

t which would require
the rather time consuming computation of Malliavin derivatives DtζT . Thus, errors in
the approximation of the optimal strategy do not affect NX∗

t and reliable results can
be obtained faster.

A tracking error can be detected comparing the approximation NX∗
t of the theoret-

ical optimal wealth with the actual wealth AX∗
t . Given some threshold δ > 0 we use

a relative criterion and call at time t ∈ (0, T ] the deviation critical if |NX∗
t −AX∗

t |
NX∗

t
> δ.

The threshold δ controls the sensitivity of the detection procedure.
After detecting a critical tracking error we want to update or correct the portfolio

strategy. This leads to the second question. A natural idea for this updating is to set up
at time t a new optimization problem. The corresponding initial capital is the actual
wealth AX∗

t . This is the amount of money we would receive if we sell the portfolio. As
pointed out above, due to the deviation AX∗

t �= X∗
t an application of Aπ∗

t or even π∗
t

would typically not yield the same maximum expected utility E[U (X∗
T )] and satisfy

the risk constraint EQ[(X∗
T − q)−] ≤ ε. We propose a correction for which the risk

constraint holds with equality on average while we have to accept a smaller expected
utility. More precisely, we use as new bound for the risk

ε∗
t = EQ[(X∗

T − q)− | F S
t ]

for which EQ[ε∗
t ] = ε. This conditional shortfall risk is the conditional expectation

of the loss of the theoretical optimal terminal wealth X∗
T given the observed stock

prices up to time t . For PEL it can be rewritten as ε∗
t = Ẽ[( fP (ζT ) − q)− | Et ] and

for FEL as ε∗
t = Ẽ[ζ−1

T ( fF (ζT ) − q)− | Et ]. These conditional expectations w.r.t. P̃
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can be approximated quite accurately by Monte-Carlo estimates from a sample of N
realizations of ζ

t,x
T (as described before Remark 6.2 for NX∗

t and X∗
t ). We denote this

approximation by Nε∗
t .

Remark 6.3 In the PEL-case ε∗
t = Ẽ[(X P

T − q)− | F S
t ] can be considered as the price

at time t of an option paying the loss (X P
T −q)− at T . At time 0 the price of this option

equals ε, cf. Remark 3.3. Suppose an investor buys this option to insure the portfolio
against shortfall. If the investor at time t detects a tracking error and decides to update
the portfolio strategy by restarting the portfolio optimization, he can sell not only the
portfolio earning the actual wealth AX∗

t for the new initial capital. He can also sell
the option receiving ε∗

t and use this money for financing the purchase of a new option
paying at time T the loss of the updated portfolio.

Restarting the optimization means to solve the following optimization problem

maximize E[U (Xπ
T ) | F S

t ] for π ∈ At (
AX∗

t )

subject to Ẽ[Xπ
T | F S

t ] ≤ AX∗
t

EQ[(Xπ
T − q)− | F S

t ] ≤ Nε∗
t ,

where the admissibility set At (x) is defined as A in Sect. 2 but for processes starting
at time t and given Xt = x . The corresponding static problem leads to equations

Ẽ[ f (ζT ; yt
1, yt

2) | Et ] = AX∗
t and EQ[( f (ζT ; yt

1, yt
2) − q)− | Et ] = Nε∗

t (6.7)

for the updated optimal Lagrange multipliers yt
1, yt

2. With these updated Lagrange
multipliers we compute the corrected strategies as described in Sect. 6.3. We only
have to replace f (ζT ) = f (ζT ; y∗

1 , y∗
2 ) by f (ζT ; yt

1, yt
2) to get the updated form of

the optimal terminal wealth and to compute the optimal strategy according to (6.6).
We reset the theoretical optimal wealth X∗

t to the new initial capital AX∗
t and follow

the updated strategy until the next time t ′ > t when a tracking error is detected. Then
we repeat the updating steps described above. We denote the resulting strategy by δπ∗

t
and the wealth by δX∗

t .

Remark 6.4 If we replace in (6.7) the actual wealth AX∗
t and the approximation Nε∗

t by
their respective theoretical values X∗

t and ε∗
t then the resulting equations are fulfilled

for the optimal Lagrange multipliers y∗
1 , y∗

2 computed at time 0. Therefore, updating
yields yt

1 = y∗
1 and yt

2 = y∗
2 , i.e. the updating procedure is consistent with the optimal

strategy.

Remark 6.5 In case of AX∗
t < q it may happen that there is no admissible solution

of the above optimization problem because of the deviations of AX∗
t and Nε∗

t from
their respective theoretical values. Then the bound Nε∗

t for the risk is smaller than the
corresponding minimal risk εt of a portfolio starting at time t with initial capital AX∗

t .
For the theoretical values this is impossible, so we assume that the difference Nε∗

t − εt
is negative but close to zero. In this case one may follow the optimal strategy for the
risk minimizing case.
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Fig. 8 Top: PEL-optimal strategy with updating for threshold δ = 0.01 and without updating (δ = ∞);
bottom: corresponding wealth processes and theoretically optimal wealth

Figure 8 illustrates the updating procedure for an example with benchmark q =
1.05, bound ε = 0.1 for PEL, power utility with α = 0.5, for T = 1 year consisting
of M = 250 trading days. The top plot shows the approximation of the PEL-optimal
strategy Aπ P and the updated strategy δπ P for threshold δ = 0.01. The bottom plot
shows the actual wealth AX P together with the corresponding approximation NX P for
the theoretical optimal wealth X P and the updated wealth δX P .

For this example we have chosen a path of the stock prices which is at T below
its initial price S0 = 1 and in particular below the benchmark q = 1.05. In Fig. 8,
when t approaches T , the approximation Aπ P

t turns into the pure bond strategy πt ≡ 0
ensuring a theoretical terminal wealth X P

T = q and preventing a shortfall. An investor
who trades daily and readjusts the portfolio weights according to Aπ P does not gen-
erate the theoretical terminal wealth X P

T = q. Instead the investor’s portfolio incurs a
shortfall.

Contrary to Aπ P , for the updated strategy δπ P the terminal wealth (nearly) reaches
the benchmark q which is in this example the theoretical terminal wealth for the
original optimal Lagrange multipliers y P

1 , y P
2 . Note, that in general the updated actual

wealth does not reach the (not updated) theoretical optimal wealth, it can be larger as
well as smaller.
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Fig. 9 Estimates for the probability density functions of ∞X P
T , δX P

T for δ = 0.01 and X P
T

Finally, we want to investigate the impact of the updating procedure on the distri-
bution of the terminal wealth. For parameters as above we generate L = 2000 paths of
μ and W and simulate the resulting stock prices S and stock returns R which we use
as observations. For each of these L observation paths we compute the corresponding
filters and the terminal wealth δX P

T of portfolios following the PEL-optimal strategies

(i) without updating (δ = ∞)

(ii) with updating for threshold δ = 0.01.

In both cases we get a sample of L values for the terminal wealth δX P
T from which we

estimate mean value, efficiency, risk measure PEL, shortfall probability and the prob-
ability density function. These quantities we want to compare with the corresponding
theoretical values.

The distribution of the theoretical optimal terminal wealth X P
T is absolutely con-

tinuous on R \ {q} and contains an atom at the point {q}. This causes problems in
the density plots. Therefore, we use a histogram like representation for the interval
(q − c, q + c], where c = 0.01. Consistently we compute the shortfall probability as
P(X P

T < q − c).
Figure 9 compares the estimates for the probability density function of the terminal

wealth ∞X P
T without updating (δ = ∞) and the corresponding wealth δX P

T generated
by the updated strategy with the “theoretical” density of X P

T = fP (ζT ), obtained from
a sample of N = 107 realizations of ζT . Note, that we applied some linear compression
to the vertical axis above the level 1 (dotted line) in order to reach a better perception
of the densities in the non-peak regions.

In order to quantify the deviations of the estimated to the theoretical distribution we
compute the Kullback-Leibler distance based on a suitable discretization of the con-
sidered distributions using a partition of the range for the terminal wealth. For discrete
probability measures P and Q with positive probabilities p1, . . . , pm and q1, . . . , qm

this distance measure is defined as J (P, Q) =
m∑

k=1
(pi − qi ) log pi

qi
.

Table 3 gives estimates for expected terminal wealth, efficiency (relative to the
Merton portfolio), PEL and shortfall probability for applying the PEL-optimal strate-
gies with and without updating. The last row contains the corresponding estimates for
X P

T = fP (ζT ) using N = 107 realizations of ζT which we call “theoretical” values.
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Table 3 Expected terminal wealth, efficiency, risk measure PEL and shortfall probability for the PEL-
optimal portfolios with updating for threshold δ = 0.01, without updating (δ = ∞) and corresponding
theoretical values

Expected
terminal wealth

Efficiency
in %

Present expected
loss (PEL)

Shortfall
probability

Kullback-
Leibler distance

E[XT ] Θ(XT ) Ẽ[(XT − q)−] P(XT <q−c)

δ = ∞ 1.07 (0.02) 96.9 (1.4) 0.114 (0.007) 0.54 (0.01) 1.54
δ = 0.01 1.07 (0.02) 96.4 (1.4) 0.112 (0.007) 0.47 (0.01) 0.10
Theoretical 1.08 (0.00) 97.3 (0.0) 0.100 = ε 0.39 (0.00) 0.00

For assessing the estimation error we give in parentheses the tolerance values Δ of
asymptotic confidence intervals of the form [m −Δ, m +Δ] for error probability 5%.
Here m denotes the point estimate for the above expectations.

The density plot indicates, that without updating the distribution of the terminal
wealth ∞X P

T is considerably different from the theoretical distribution. Some of the
probability mass from the atom at the benchmark q is shifted to the shortfall region
(0, q). This increases the shortfall probability as well as the expected loss. Some other
part of the atom is shifted to the region (q,∞). This compensates partly the “loss” of
efficiency and expected terminal wealth resulting from the high probability for values
smaller than q. So these expectations as well as PEL are less affected by updating.
But updating clearly improves the approximation of the theoretical density. This can
be seen from the smaller value of the Kullback-Leibler distance and from the shortfall
probability which is much closer to the theoretical value than without updating.
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