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Abstract This note concerns controlled Markov chains on a denumerable sate space.
The performance of a control policy is measured by the risk-sensitive average crite-
rion, and it is assumed that (a) the simultaneous Doeblin condition holds, and (b) the
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tion is bounded below, it is established that the optimal average cost is characterized
by an optimality inequality, and it is to shown that, even for bounded costs, such an
inequality may be strict at every state. Also, for a nonnegative cost function with
compact support, the existence an uniqueness of bounded solutions of the optimal-
ity equation is proved, and an example is provided to show that such a conclusion
generally fails when the cost is negative at some state.
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48 R. Cavazos-Cadena

1 Introduction

This work concerns Markov decision chains with denumerable state space and com-
pact action sets. The performance of a control policy is measured by the risk-sensitive
average cost criterion associated with a constant risk-sensitivity coefficient λ > 0, and
the main objective of the paper is to provide conditions under which

(a) the (λ-sensitive) optimal average cost function is constant, and
(b) there exists a solution of an optimality equation or inequality, from which an

optimal stationary policy can be obtained.

Besides standard continuity assumptions, the framework under which these problems
are analyzed is determined by the following two requirements:

(i) The simultaneous Doeblin condition holds (Thomas 1980; Hernández-Lerma
1988), and

(ii) The whole state space is a communicating class under the action of each station-
ary policy.

In this context, it will be shown that the optimal average cost function is constant,
say g∗, and the main results of the paper are expressed in terms of the correspond-
ing relative value function hg∗(·), which will be formally introduced in Sect. 3, and
whose intuitive meaning can be described as follows: first, let C(·) be the one-step
cost structure, and define the relative cost function as C(·) − g∗. With this notation,
assuming that x is the initial state of the system, hg∗(x) is the λ-sensitive measure of
the minimum total relative cost incurred before the first visit to a fixed state z. In terms
of this idea, the main results of the paper, stated as Theorems 3.1 and 3.2 in Sect. 3,
can be described as follows:

(1) If the cost function is nonnegative and has compact support, then the pair (g∗, hg∗
(·)) is a solution of the λ-sensitive optimality equation, and

(2) If the cost function is bounded below—or, without loss of generality, a nonnega-
tive function—then the pair (g∗, hg∗(·)) is a solution of a λ-sensitive optimality
inequality.

In both cases, λ-optimal stationary policies can be obtained from the equation or
inequality in a standard way. On the other hand, explicit examples are given to show
that

(E1) If a cost function has compact support but takes a negative value, then the pair
(g∗.hg∗(·)) may not satisfy the optimality equation at any state, and

(E2) If C(·) is a general nonnegative function the optimality inequality may be strict
at every state, even if the cost function is bounded.

The analysis of stochastic systems endowed with the risk-sensitive average criterion
can be traced back, at least, to the seminal papers by Howard and Matheson (1972), Jac-
obson (1973) and Jaquette (1973, 1976). Particularly, in Howard and Matheson (1972)
finite Markov decision chains were studied under the communication assumption (ii)
described above and, using the Perron-Frobenius theory of positive matrices (Seneta
1980), the existence of solutions to the λ-sensitive optimality equation was estab-
lished. Recently, there has been an intensive work on stochastic system endowed with
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Optimality equations and inequalities for the risk-sensitive average criterion 49

the risk-sensitive average criterion; see, for instance, Fleming and McEneany (1995),
Di Masi and Stettner (2000, 2007), Borkar and Meyn (2002), Jaśkiewicz (2007) and
the references there in.

The motivation to study the solvability of the λ-sensitive average optimality equa-
tion (or inequality) under the assumptions (i) and (ii) above stems from the following
remarks. First, the risk neutral-average index has been successfully analyzed under
(diverse variants of) the simultaneous Doeblin condition (SDC) ensuring the existence
of an appropriate solution of the corresponding optimality equation, which yields that
the optimal average cost function is constant, as well as an optimal stationary policy
(Thomas 1980; Hernández-Lerma 1988; Arapostathis et al. 1993; Puterman 1994);
moreover, under mild requirements, the SDC is also necessary to have that, for each
bounded cost function, a bounded solution of the risk-neutral optimality equation exists
(Cavazos-Cadena 1988). Thus, at least at an initial stage, it seems natural to include the
simultaneous Doeblin condition as a working assumption to analyze the risk-sensitive
average index. However, in Cavazos-Cadena and Fernández-Gaucherand (1999), an
example was given to show that, even in a finite model, such a condition does not
guarantee that the λ-optimal average cost is constant, and in this case the optimal-
ity equation can not be solved; moreover, even when the risk-sensitive average cost
function is constant, the solvability of the optimality equation is not guaranteed under
the SDC (Cavazos-Cadena and Hernández-Hernández 2004). This behavior does not
occur when the state space is communicating with respect to each stationary policy
(Howard and Matheson 1972) so that it is also natural to include assumption (ii) above
within the basic framework.

On the other hand, the result (1) described above is an extension of the main
theorem in Howard and Matheson (1972), in that the existence of bounded solu-
tions of the λ-optimality equation is established in a model with denumerable state
space, while the result (2) is related to more recent work by Hernández-Hernández
and Marcus (1999) and Jaśkiewicz (2007), where the existence of a solution to an
optimality inequality was established. The results in these two papers were obtained
implementing the discounted approach in a similar way to that used by Sennot (1986,
1995) in the risk-neutral context. Thus, a family of optimal value functions corre-
sponding to a risk-sensitive discounted criterion was considered, and conditions were
imposed on the behavior of the family as the discount factor increases to 1. The required
conditions can be ensured if the cost function has a ‘penalized’ structure, in the sense
that it takes ‘large values’ outside appropriate compact sets (Borkar and Meyn 2002).
In contrast, although the present work assumes that the state space is denumerable, no
condition is imposed on any derived quantity, and the result (2) does not require any
special structure on the cost function beyond the nonnegativity or, more generally, the
existence of a lower bound.

The approach used in the paper relies on the analysis of stopping time problems
endowed with the risk-sensitive total cost criterion, and extends ideas in Cavazos-
Cadena and Fernández-Gaucherand (2002), were finite models were studied; indeed,
each relative value function considered below is the optimal index associated with
one stopping time problem. On the other hand, the key technical instrument in this
note is an auxiliary probability matrix associated with a solution to the risk-sensitive
(multiplicative) Poisson equation corresponding to a stationary policy. Such a matrix
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50 R. Cavazos-Cadena

is introduced in Sect. 5 and its properties allow to obtain the results concerning cost
functions with compact support and, from that point, the conclusions for the general
case are established via an approximation process.

The organization of the paper is as follows: first, in Sect. 2 the decision model is
formally described and the λ-sensitive average criterion, as well as the corresponding
optimality equation, are briefly discussed. Next, in Sect. 3 the idea of relative value
function is introduced and, after proving some of its basic properties, the main results
of the paper are stated as Theorems 3.1 and 3.2, which establish the results (1) and (2)
described above, respectively. The proofs of these theorems rely on the properties of
the relative value functions presented in the following two sections. Thus, Sect. 4 con-
cerns general properties, which are valid when the cost function C(·) is nonnegative,
while the results in Sect. 5 hold under the additional condition that C(·) has compact
support. After these preliminaries, the main results are finally proved in Sect. 6, and
the exposition concludes in Sect. 7 with an explicit example illustrating the facts (E1)
and (E2) discussed above.

Notation Throughout the remainder N stands for the set of nonnegative integers
whereas, for a topological space K, B(K) is the space of all real-valued and bounded
functions defined on K, that is, C : K → R belongs to B(K) if and only its supremum
norm ‖C‖ is finite, where ‖C‖ := supx∈K |C(x)|. On the other hand, for an event A
the corresponding indicator function is denoted by I [A] and, as usual, all relations
involving conditional expectations are supposed to hold almost surely with respect to
the underlying probability measure.

2 Decision model

Let M = (S, A, {A(x)}x∈S, C, P) be a Markov decision process (MDP), where the
state space S is a denumerable set endowed with the discrete topology, the action set
A is a metric space and, for each x ∈ S, A(x) ⊂ A is the nonempty and compact set of
admissible actions at x ; the class K of admissible pairs is given by K = {(x, a) | a ∈
A(x), x ∈ S} ⊂ S × A. On the other hand, C : S → R is the cost function and
P = [px y(·)] is the controlled transition law. This model M is interpreted as follows:
At each time t ∈ N the state of a dynamical system is observed, say Xt = x ∈ S, and
an action At = a ∈ A(x) is chosen. Then, a cost C(x, a) is incurred and, regardless
of the states observed and actions applied before time t , the state of the system at time
t + 1 will be Xt+1 = y ∈ S with probability px y(a), where

∑
y∈S px y(a) = 1; this

is the Markov property of the process.

Assumption 2.1 (i) For each (x, a) ∈ K, C(x, a) ≥ 0;
(ii) For each x, y ∈ S, the mappings a �→ C(x, a) and a �→ px y(a) are continuous

in a ∈ A(x).

Policies. For each t ∈ N the space Ht of histories up to time t is recursively determined
by H0 := S and Ht = K × Ht−1, t = 1, 2, 3, . . .; a generic element of Ht is denoted
by ht = (x0, a0, . . . , xt−1, at−1, xt ) where xi ∈ S and ai ∈ A(xi ). A policy is a
sequence π = {πt }, where each πt is a special stochastic kernel on A given Ht , that is,
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Optimality equations and inequalities for the risk-sensitive average criterion 51

for each ht ∈ Ht , πt (·|ht ) is a probability measure on the Borel class of A satisfying
πt (A(xt )|ht ) = 1, and for each Borel subset B ⊂ A, the mapping ht �→ πt (B|ht ) is
measurable; the number πt (B|ht ) is the probability of choosing action At within the
set B when the system is driven by π and ht is the observed history of the process up
to time t ; the class of all policies is denoted by P . Given the initial state x ∈ S and
the policy π ∈ P being used for choosing actions, the distribution of the state-action
process {(Xt , At )} is uniquely determined (Hernández-Lerma 1988; Arapostathis et
al. 1993; Puterman 1994) and is denoted by Pπ

x , while Eπ
x stands for the correspond-

ing expectation operator . Next, define F := ∏
x∈S A(x), so that F consists of all

functions f : S → A such that f (x) ∈ A(x) for each x ∈ S. A policy π is stationary
if there exists f ∈ F such that, under π , the action selected at each time t is given
by At = f (Xt ). The class of stationary policies is naturally identified with F and,
under the action of each stationary policy, the state process {Xt } is a Markov chain
with stationary transition mechanism.
Average performance index. As already mentioned, it is supposed that the controller
has constant risk sensitivity λ > 0, which means the the decision maker assesses
a random cost Y using the expectation of eλY ; the number E(Y ) := log(E[eλY ]/λ,
which satisfies eλE(Y ) = E[eλY ], is referred to as the certain equivalent of Y , and
the decision maker is indifferent between incurring the random cost Y or paying the
certain equivalent E(Y ) for sure. Next, given π ∈ P , x ∈ S and a positive integer
n, let JC,n(π, x) be the certain equivalent of the total cost

∑n−1
t=0 C(Xt , At ) incurred

before time n when the system is driven by π starting at X0 = x , that is,

JC,n(π, x) := 1

λ
log

(
Eπ

x

[
eλ

∑n−1
t=0 C(Xt ,At )

])
, (2.1)

and define the (limit superior) λ-sensitive average cost at state x under policy π by

JC (π, x) := lim sup
n→∞

1

n
JC,n(π, x); (2.2)

the λ-optimal average cost function J ∗
C (·) is specified by

J ∗
C (x) := inf

π∈P
JC (π, x), x ∈ S, (2.3)

and a policy π∗ ∈ P is λ-optimal if JC (π∗, x) = J ∗
C (x) for each x ∈ S. If the cost

function is bounded, it follows from these definitions that ‖J ∗
C (·)‖ ≤ ‖C‖ < ∞. To

analyze the case of general nonnegative costs, the following condition is enforced.

Assumption 2.2 For some state z ∈ S, J ∗
C (z) < ∞.

Remark 2.1 Replacing the limit superior by limit inferior in (2.1) the criterion
J̃C (π, x) := lim infn→∞ JC,n(π, x)/n is obtained. The corresponding optimal value
function is J̃ ∗

C (x) := infπ∈P J̃C (π, x), so that J̃ ∗
C (·) ≤ J ∗

C (·). Under the full set
of conditions imposed in this work, the limit superior and limit inferior λ-sensitive
average criteria render the same optimal value function.
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Optimality Equation. The optimality equation associated with the λ-sensitive average
cost criterion in (2.1)–(2.3) is

eλg+λh(x) = inf
a∈A(x)

⎡

⎣eλC(x,a)
∑

y∈S

px y(a)eλh(y)

⎤

⎦ , x ∈ S, (2.4)

where g is a real number and h : S → R is a given function.
The following verification criterion was established in Hernández-Hernández and

Marcus (1996).

Lemma 2.1 Given λ ∈ [0,∞) suppose that the pair (g, h(·)) ∈ R × B(S) satisfies
the λ-optimality Eq. (2.4). In this case, the assertions (i) and (ii) below hold:

(i) The λ-optimal average cost function J ∗
C (·) is constant and equal to g;

(ii) If the stationary policy f ∗ satisfies

eλg+λh(x) = eλC(x, f ∗(x))
∑

y∈S

px y( f ∗(x))eλh(y), x ∈ S, (2.5)

then f ∗ is λ-optimal and g = lim
n→∞

1

n
JC,n( f ∗, x), x ∈ S.

Remark 2.2 (i) Suppose that Assumption 2.1(ii) holds, let x ∈ S be arbitrary but
fixed, and let h : S → [−∞,∞] be a given function. In this context, Fatou’s
lemma yields that

a �→ eλC(x,a)
∑

y∈S

px y(a)eλh(y), a ∈ A(x),

is a lower semi-continuous function taking values in [0,∞] and, since A(x) is
a compact space, this mapping has a minimizer f ∗(x) ∈ A(x). Therefore, the
corresponding policy f ∗ ∈ F satisfies

inf
a∈A(x)

⎡

⎣eλC(x,a)
∑

y∈S

px y(a)eλh(y)

⎤

⎦

= eλC(x, f ∗(x))
∑

y∈S

px y( f ∗(x))eλh(y), x ∈ S,

so that the infimum can be replaced by minimum. Also, in the context of
Lemma 2.1, Assumption 2.1(ii) implies that a policy f ∗ satisfying (2.5) exists.

(ii) Suppose that (2.4) is satisfied, with h(·) ∈ B(S). In this case an induction
argument yields that the relation

enλg+λh(x) ≤ Eπ
x

[
eλ

∑n−1
t=0 C(Xt ,At )eλh(Xn)

]

≤ Eπ
x

[
eλ

∑n−1
t=0 C(Xt ,At )

]
eλ‖h‖ = eλJC,n(π,x)+λ‖h‖
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always holds, and then g ≤ lim infn→∞ JC,n(π, ·)/n = J̃C (π, ·); see Remark
2.1. Thus, g ≤ J̃ ∗

C (·) and then, since J̃ ∗
C (·) ≤ J ∗

C (·) and J ∗
C (·) = g—by Lemma

2.1—it follows that J̃ ∗
C (·) = J ∗

C (·) = g, that is, the limit superior and the limit
inferior average criterion render the same optimal value function.

(iii) Equation (2.5), to be solved for the pair (g, h(·)), will be referred to as the
Poisson equation associated with policy f ∗ ∈ F.

Conditions on the transition law. As already mentioned, the main objective of the
paper is to establish the existence of a solution (g, h(·)) of the optimality Eq. (2.4),
or a similar inequality, implying that (a) the optimal value function J ∗

C (·) is constant
and equal to g, and (b) a λ-optimal stationary policy f ∗ exists. These problems will
be analyzed under the ergodicity and communication conditions stated below, whose
formulations involve the following terminology.

Definition 2.1 (i) The hitting time corresponding to F ⊂ S is given by

TF := min{n ≥ 1 | Xn ∈ F}, (2.6)

where the minimum of the empty set is ∞; if F = {x} is a singleton, Tx ≡ T{x}.
(ii) The simultaneous Doeblin condition at state x—briefly, SDC(x)—is specified

as follows:

SDC(x): there exist N̂ (x) ∈ N \ {0} and ρ̂(x) ∈ (0, 1)

such that P f
y [Tx > N̂ (x)] ≤ ρ̂(x), y ∈ S, f ∈ F.

Assumption 2.3 For some z0 ∈ S, SDC(z0) holds.

Remark 2.3 Under Assumption 2.3, an induction argument using Definition 2.1(ii)
yields that every x ∈ S, f ∈ F and k ∈ N, P f

x [Tz0 > k N̂ (z0)] ≤ ρ̂(z0)
k , so that

P f
x [Tz0 > k] ≤ M̃(z0)ρ̃(z0)

k , where M̃(z0) := 1/ρ̂(z0) and ρ̃(z0) := ρ̂(z0)
1/N̂ (z0).

Therefore, E f
z0 [Tz0 ] = ∑∞

k=0 P f
x [Tz0 > k] ≤ M̃(z0)/(1 − ρ̃(z0)) < ∞, so that z0 is

positive recurrent with respect to the Markov chain induced by each f ∈ F.

Assumption 2.4 The state space S is communicating under the action of each sta-
tionary policy. More precisely, for each f ∈ F and x, y ∈ S, P f

x [Ty < ∞] > 0.

This section concludes with the following consequence of the two last assumptions
which will be useful later.

Lemma 2.2 Under Assumptions 2.1(ii), 2.3 and 2.4, the following assertions (i) and
(ii) below hold.

(i) For each y ∈ S there exists a positive integer N (y) and ρ(y) ∈ (0, 1) such that

Pπ
x [Ty > N (y)] ≤ ρ(y), x ∈ S, π ∈ P, (2.7)

so that, for each y ∈ S, SDC(y) holds; see Definition 2.1(ii).
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(ii) For each y ∈ S, supx∈S, π∈P Eπ
x [Ty] ≤ ρ(y)−1/(1 − ρ(y)1/N (y)) < ∞.

Proof First, using Assumption 2.3 select z0 ∈ S such that SDC(z0) holds, so that,
by Remark 2.3, for each f ∈ F the state z0 is positive recurrent with respect to the
Markov chain induced by f , which is communicating, by Assumption 2.4. It follows
that for each f ∈ F there exists a unique probability distribution µ f on the state space
S such that

µ f (x) > 0 and µ f (x) =
∑

v∈S

µ f (v)pv,x ( f (v)), x ∈ S; (2.8)

see, for instance, Loève (1980). Now, let y ∈ S be arbitrary but fixed, and let the
reward function Ry ∈ B(S) be given by

Ry(x) = 1, x ∈ S \ {y}, Ry(y) = 0. (2.9)

From the theory of risk-neutral average criterion (Thomas 1980; Hernández-Lerma
1988; Puterman 1994), Assumption 2.3 yields that there exists gy ∈ R and hy ∈ B(S)

such that the following optimality equation is satisfied:

gy + hy(x) = sup
a∈A(x)

[

Ry(x) +
∑

w∈S

px w(a)hy(w)

]

. (2.10)

Using that hy(·) is bounded, Assumption 2.1(ii) and the bounded convergence theorem
together yield that for each x ∈ S the term within brackets in (2.10) is a continuous
function of a ∈ A(x); since the action sets are compact, it follows that there exists
fy ∈ F such that gy + hy(x) = Ry(x) + ∑

w∈S px w( fy(x))hy(w) for each x ∈ S, a
fact that via (2.8) and (2.9) leads to

gy =
∑

x∈S

µ fy (x)Ry(x) =
∑

x∈S, x �=y

µ fy (x) = 1 − µ fy (y) < 1. (2.11)

Now let x ∈ S, π ∈ P and n ∈ N be arbitrary, and notice that (2.10) and the Markov
property together yield that the following relation holds Pπ

x -almost surely:

h(Xn)≥ Ry(Xn)−g+
∑

y

pXn y(An)h(y)= Ry(Xn)−g+Eπ
x [h(Xn+1)|Xs, As, s ≤n],

so that Eπ
x [h(Xn)] ≥ Eπ

x [Ry(Xn)− g +h(Xn+1)], an inequality that via an induction
argument leads to

‖hy‖ ≥ hy(x) ≥ Eπ
x

[
n∑

t=0

(Ry(Xt ) − gy) + hy(Xn+1)

]

≥ −gy + Eπ
x

[
n∑

t=1

(Ry(Xt ) − gy)

]

− ‖hy‖,
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and then, if n is positive,

2‖hy‖ + gy

n
+ gy ≥ 1

n
Eπ

x

[
n∑

t=1

Ry(Xt )

]

≥ 1

n
Eπ

x

[

I [Ty > n]
n∑

t=1

Ry(Xt )

]

.

Observing that Xt �= y if 1 ≤ t ≤ n < Ty , by Definition 2.1(i), it follows that∑n
t=1 Ry(Xt ) = n on [Ty > n] [see 2.9)], and the above display yields that

2‖hy‖ + gy

n
+ gy ≥ Pπ

x [Ty > n], x ∈ S, π ∈ P, n = 1, 2, 3, . . .

Selecting the positive integer N (y) in such a way that (2‖hy‖+gy)/N (y) < (1−gy)/2
it follows that

Pπ
x [Ty > N (y)] ≤ ρ(y) := 2‖hy‖ + gy

N (y)
+ gy <

1 + gy

2
< 1, x ∈ S, π ∈ P,

where the last inequality is due to (2.11). This establishes part (i), and the second part
can be proved paralleling the argument outlined in Remark 2.3. �

3 Main results

In this section the main results of this note are sated as Theorems 3.1 and 3.2 below.
Throughout the remainder Assumptions 2.1–2.4 are supposed to be valid even without
explicit reference and, to begin with, the idea of relative value function is introduced
and some of its basic properties are established.

Definition 3.1 Let z ∈ S be such that J ∗
C (z) is finite; such a state will be fixed through-

out the remainder of the paper—see Assumption 2.2.

(i) Given g ∈ R the corresponding relative value function hg : S → [−∞,∞] is
defined by

hg(x) := 1

λ
inf
π∈P

log
(

Eπ
x

[
eλ

∑Tz−1
t=0 (C(Xt ,At )−g)

])
, x ∈ S, (3.1)

where Tz is the hitting time in Definition 2.1(i).

(ii) The set G is given by

G := {g ∈ R| hg(z) ≤ 0}. (3.2)

Lemma 3.1 The relative value function hg(·) satisfies the following properties (i)–
(iii):

(i) If g > J ∗
C (z) then hg(z) < ∞, and

(ii) For each x ∈ S, the mapping g �→ hg(x) is decreasing and hg(z) → −∞ as
g → ∞.
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Consequently,
(iii) G is nonempty and G ⊂ [0,∞).

Proof (i) Let g > J ∗
C (z) be arbitrary but fixed. Next, select g0 ∈ (J ∗

C (z), g) and
notice that (2.1)–(2.3) together yield that, for some policy π0 ∈ P , the following
inequality holds:

lim sup
n→∞

1

nλ
log

(
Eπ0

z

[
eλ

∑n−1
t=0 C(Xt ,At )

])
< g0.

Therefore, there exists a positive integer N0 such that Eπ0

z [eλ
∑n−1

t=0 C(Xt ,At )] <

enλg0 for n ≥ N0, a relation that, since C(·, ·) is nonnegative, leads to

Eπ0

z

[
eλ

∑n−1
t=0 C(Xt ,At )

]
≤ Menλg0 , n ∈ N \ {0},

where M := Eπ0

z [eλ
∑N0−1

t=0 C(Xt ,At )] < ∞. Next, using that Tz is finite

Pπ0

z -almost surely, by Lemma 2.2(ii), notice that

Eπ0

z

[
eλ

∑Tz−1
t=0 (C(Xt ,At )−g)

]
=

∞∑

n=1

Eπ0

z

[
eλ

∑n−1
t=0 (C(Xt ,At )−g) I [Tz = n]

]

≤
∞∑

n=1

Eπ0

z

[
eλ

∑n−1
t=0 (C(Xt ,At )−g)

]

=
∞∑

n=1

Eπ0

z

[
eλ

∑n−1
t=0 C(Xt ,At )

]
e−nλg,

a fact that via the previous display leads to

Eπ0

z

[
eλ

∑Tz−1
t=0 (C(Xt ,At )−g)

]
≤

∞∑

n=1

Menλg0 e−nλg =
∞∑

n=1

Me−nλ(g−g0) < ∞;

recall that g > g0 for the last inequality. From this point, Definition 3.1(i) yields
that hg(z) < ∞.

(ii) Let x ∈ S and g ∈ R be arbitrary but fixed. Since Tz is always larger than or equal
to 1, it follows that for each δ > 0 the inequality

∑Tz−1
t=0 (C(Xt , At )−[g+δ]) ≤

∑Tz−1
t=0 (C(Xt , At ) − g) − δ always holds, so that

Eπ
x

[
eλ

∑Tz−1
t=0 (C(Xt ,At )−[g+δ])]

≤ Eπ
x

[
eλ

∑Tz−1
t=0 (C(Xt ,At )−g)

]
e−λδ, π ∈ P, δ > 0
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and the specification of hg(·) yields that

hg+δ(x) ≤ hg(x) − δ, δ > 0,

establishing that the mapping g �→ hg(x) is decreasing. Now, let g0 > J ∗
C (z)

be arbitrary, so that hg0(z) < ∞, by part (i). In this case, using the above dis-
play with z instead of x it follows that limg→∞ hg(z) = limδ→∞ hg0+δ(z) ≤
limδ→∞[hg0(z) − δ] = −∞.

(iii) Let g < 0 be arbitrary. Since Tz ≥ 1 and the cost function is nonnegative, it
follows that the inequality

Eπ
x

[
eλ

∑Tz−1
t=0 (C(Xt ,At )−g)

]
≥ e−λg

always holds, so that hg(x) ≥ −g > 0 for every x ∈ S, and then g �∈ G;
see Definition 3.1. Finally, G is nonempty, since the part (ii) and (3.2) together
yield that g ∈ G when g is large enough.

�
The main results of the paper are stated in the following two theorems. Set

g∗ := inf G ∈ [0,∞), (3.3)

where the inclusion is due to Lemma 3.1(iii), and notice that (3.2) and the previous
lemma together imply that

G = (g∗,∞) or G = [g∗,∞). (3.4)

In the following theorem the existence and uniqueness of a solution of the optimality
equation (2.4) is established when the cost function has compact support, and such a
solution is used to characterize the λ-optimality of a stationary policy.

Theorem 3.1 Suppose that Assumptions 2.1, 2.3 and 2.4 hold, and that the cost func-
tion has compact support, that is, there exists a finite set F ⊂ S such that

C(x, a) = 0, x ∈ S \ F, a ∈ A(x), (3.5)

In this case, the following assertions (i)–(v) are valid.

(i) g∗ ∈ G, hg∗(z) = 0, and hg∗ ∈ B(S); see Definition 3.1 and (3.3).
(ii) The pair (g∗, hg∗(·)) satisfies the optimality equation (2.4).

Consequently,
(iii) J ∗

C (·) = g∗, and
(iv) A policy f ∈ F is λ-optimal if, and only if,

eλg∗+λhg∗ (x) = eλC(x, f (x))
∑

y∈S

px y( f (x))eλhg∗ (y), x ∈ S, (3.6)

so that a λ-optimal policy certainly exists; see Remark 2.2.
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(v) If g ∈ R and h ∈ B(S) are such that the pair (g, h(·)) satisfies (2.4), then g = g∗
and h(·) = hg∗(·) + h(z).

Concerning the part (ii) of this theorem, an explicit example will be presented
in Sect. 7 showing that, if a cost function has compact support but takes a negative
value, then the pair (g∗, hg∗(·)) does not necessarily satisfy the optimality equation
(2.4). On the other hand, the part (v) of this result establishes the uniqueness of a pair
(g, h(·)) satisfying the optimality equation (2.4) as well as the conditions h(z) = 0
and h ∈ B(S). It is interesting to note that, as illustrated in the following example, if
the condition h ∈ B(S) is not required, then (2.4) may admit solutions (g, h(·)) where
g is not equal to the optimal average cost.

Example 3.1 Suppose that S = N, A = {0} and let p ∈ (0, 1) be fixed. Next, let the
transition law [px y(0)] ≡ [px y] be determined as follows:

px 0 := p, px x+1 := 1 − p, x ∈ N. (3.7)

Since the action space is a singleton, it is clear that Assumption 2.1 holds, and observ-
ing that Px [T0 > 1] = Px [X1 �= 0] = 1 − p ∈ (0, 1), it follows that the simultaneous
Doeblin condition holds at z = 0. On the other hand, observing that Px [X1 = 0] = p
and P0[Xx = x] = (1 − p)x > 0 for every x ∈ S, it is not difficult to see that
Px [Ty < ∞] ≥ Px [Ty ≤ y + 1] > 0 for every x, y ∈ S, so that Assumption 2.4
is also valid. Thus, setting C(·) = 0, all the conditions in Theorem 3.1 are satisfied
and the optimal average cost is null. Observe now that the optimality equation (2.4)
associated to C(·) = 0 becomes

eλg+λh(x) = peλh(0) + (1 − p)eλh(x+1), x ∈ S. (3.8)

Next, given g ≥ 0, a function Hg : S → [0,∞] will be recursively constructed such
that the pair (g, Hg(·)) satisfies the above Poisson equation: Set

Hg(0) := 0

and, assuming that Hg(n) ≥ 0 has been specified for some n ∈ N, observe that
eλg+λHg(n) − p ≥ 1 − p, and define

Hg(n + 1) := 1

λ
log

(
eλg+λHg(n) − p

1 − p

)

which is certainly a nonnegative number. From these two last displays it follows imme-
diately that the pair (g, Hg(·)) satisfies the Poisson equation (3.8). By Theorem 3.1(v),
Hg is unbounded for each g > 0.

In the following result the assumption of a compact support for the cost function
is dropped, and the main qualitative difference with respect to Theorem 3.1 is that,
instead of the optimality equation (2.4), it is asserted that the pair (g∗, hg∗(·)) satisfies
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an inequality which, as it will be shown by an explicit example in Sect. 7, may be
always strict.

Theorem 3.2 Suppose that Assumptions 2.1–2.4 hold. In this context, assertions (i)–
(iv) below are valid.

(i) The inclusion g∗ ∈ G holds and

J ∗
C (·) = g∗;

moreover,

lim inf
n→∞

1

n
JC,n(π, x) ≥ g∗, x ∈ S, π ∈ P. (3.9)

(ii) The relative value function hg∗(·) is bounded below and the pair (g∗, hg∗(·))
satisfies the following optimality inequality:

eλg∗+λhg∗ (x) ≥ min
a∈A(x)

⎡

⎣eλC(x,a)
∑

y∈S

px y(a)eλhg∗ (y)

⎤

⎦ , x ∈ S, (3.10)

Consequently,
(iii) There exists a policy f ∈ F satisfying

eλg∗+λhg∗ (x) ≥ eλC(x, f (x))
∑

y∈S

px y( f (x))eλhg∗ (y), x ∈ S, (3.11)

and each stationary policy satisfying this condition is λ-optimal.
(iv) If g ∈ R and h : S → R are such that

eλg+λh(x) ≥ min
a∈A(x)

⎡

⎣eλC(x,a)
∑

y∈S

px y(a)eλh(y)

⎤

⎦ , x ∈ S, (3.12)

then one of the following assertions (a) or (b) hold:
(a) g > g∗;
(b) g = g∗ and h(·) − h(z) ≥ hg∗(·).

Remark 3.1 (i) Using that the average criterion JC (π, ·) is additively homoge-
neous, that is,

JC+β(π, ·) = JC (π, ·) + β, π ∈ P, β ∈ R,

it is not difficult to verify that the conclusions in Theorem 3.2 remain valid if,
instead of the nonnegativity requirement in Assumption 2.1(i), it is supposed
that C(·, ·) is just bounded below.
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(ii) Relation (3.9) establishes that the limit inferior average cost index in Remark 2.1
satisfies J̃C (π, x) ≥ g∗, for each x ∈ S and π ∈ P; thus g∗ ≤ J̃ ∗

C (·) ≤ J ∗
C (·) =

g∗, and it follows that the limit superior an limit inferior average criteria have
the same optimal value function.

(iii) If a policy π is λ-optimal, that is JC (π, ·) = J ∗
C (·) [see (2.1)–(2.3)], then (3.9)

implies that limn→∞ JC,n(π, ·)/n = g∗, extending the conclusion in the second
part of Lemma 2.1. In particular, JC,n( f, ·)/n → g∗ when f ∈ F is as in (3.11).

The proofs of Theorems 3.1 and 3.2 are rather technical and will be presented after
the auxiliary results on the relative value functions presented in the following two
sections. Essentially, Sect. 4 concerns general properties, which are valid for arbitrary
nonnegative costs, while Sect. 5 is dedicated to analyze the case of a a cost function
C(·, ·) ≥ 0 with compact support.

4 Basic properties of the relative value functions

In this section some general properties of the relative value functions are established in
the following three lemmas, whose conclusions can be roughly described as follows:

(a) A relative value function hg is bounded below, it can be realized by using a station-
ary policy, and the dynamic programming equation satisfied by hg is determined;

(b) A sufficient criterion on a function H(·) is given so that it dominates a relative
value function hg(·), the finiteness of hg(·) for g ∈ G is established, and it is
shown that g∗ in (3.3) is an upper bound for the optimal average cost function
J ∗

C (·); finally,
(c) The inclusion g∗ ∈ G is proved.

Lemma 4.1 Let g ∈ R be arbitrary but fixed and suppose that Assumptions 2.1–2.4
hold. In this context, the following properties (i)–(iii) are satisfied by the relative value
function hg(·) in Definition 3.1.

(i) For each x ∈ S

hg(x) ≥ −N (z)g + log(1 − ρ(z))/λ =: Mg, (4.1)

where N (z) ∈ N \ {0} and ρ(z) ∈ (0, 1) are as in Lemma 2.2.
(ii) The function hg(·) satisfies the following dynamic programming equation:

eλhg(x) = inf
a∈A(x)

⎡

⎣eλ(C(x,a)−g)

⎛

⎝px z(a) +
∑

y∈S\{z}
px y(a)eλhg(y)

⎞

⎠

⎤

⎦ , x ∈ S.

(4.2)
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(iii) There exists a policy fg ∈ F such that

eλhg(x) = eλ(C(x, fg(x))−g)

⎛

⎝px z( fg(x)) +
∑

y∈S\{z}
px y( fg(x))eλhg(y)

⎞

⎠ , x ∈ S.

(4.3)

Proof (i) Let x ∈ S and π ∈ P be arbitrary and notice that

Eπ
z

[
eλ

∑Tz−1
t=0 (C(Xt ,At )−g)

]
≥ Eπ

z

[
eλ

∑Tz−1
t=0 (C(Xt ,At )−g) I [Tz ≤ N (z)]

]

≥ e−λN (z)g Pπ
z [Tz ≤ N (z)]

≥ e−λN (z)g(1 − ρ(z)),

where the condition C(·, ·) ≥ 0 in Assumption 2.1(i) was used to set the second
inequality and Lemma 2.2 was used in the last step. Now, the conclusion follows
combining the above display with Definition 3.1.

(ii) Let π ∈ P and x ∈ S be arbitrary. Using that [Tz = 1] = [X1 = z], the Markov
property yields that, for each a ∈ A(x),

Eπ
x

[
eλ

∑Tz−1
t=0 (C(Xt ,At )−g) I [Tz > 1]

∣
∣
∣ A0 = a, X1

]

= eλ(C(x,a)−g) I [X1 �= z]Eπ(x,a)

X1

[
eλ

∑Tz−1
t=0 (C(Xt ,At )−g)

]

≥ eλ(C(x,a)−g) I [X1 �= z]eλhg(X1),

where the shifted p olicy π(x,a) is determined by π
(x,a)
t (·|ht ) = πt+1(·|x, a, ht ),

and (3.1) was used to set the inequality. Thus,

Eπ
x

[
eλ

∑Tz−1
t=0 (C(Xt ,At )−g) I [Tz > 1]

∣
∣
∣ A0 = a

]

≥ eλ(C(x,a)−g)
∑

y∈S\{z}
px y(a)eλhg(y),

and combining this relation with

Eπ
x

[
eλ

∑Tz−1
t=0 (C(Xt ,At )−g) I [Tz = 1]

∣
∣
∣ A0 = a

]
= eλ(C(x,a)−g) px z(a)

it follows that

Eπ
x

[
eλ

∑Tz−1
t=0 (C(Xt ,At )−g)

∣
∣
∣ A0 = a

]

≥ eλ(C(x,a)−g)

⎛

⎝px z(a) +
∑

y∈S\{z}
px y(a)eλhg(y)

⎞

⎠

≥ inf
a∈A(x)

⎡

⎣eλ(C(x,a)−g)

⎛

⎝px z(a) +
∑

y∈S\{z}
px y(a)eλhg(y)

⎞

⎠

⎤

⎦ ;
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integrating with respect to the distribution of A0, it follows that

Eπ
x [eλ

∑Tz−1
t=0 (C(Xt ,At )−g)] is larger than or equal to the infimum in the above

display, a fact that yields

eλhg(x) ≥ inf
a∈A(x)

⎡

⎣eλ(C(x,a)−g)

⎛

⎝px z(a)+
∑

y∈S\{z}
px y(a)eλh(y)

⎞

⎠

⎤

⎦ , x ∈ S,

(4.4)

by Definition 3.1(i). To establish the reverse inequality, let ε > 0 be arbitrary
and notice that, for each y ∈ S, (3.1) yields that there exists a policy π y ∈ P
such that

Eπ y

y

[
eλ

∑Tz−1
t=0 (C(Xt ,At )−g)

]
≤ eλ(hg(y)+ε).

Next, for each f ∈ F, let the new policy γ f = {γ f
t } ∈ P be specified as fol-

lows: γ
f

0 ({ f (x)}|x) = 1 for each x ∈ S, while γ
f

t+1(·|ht+1) = π
x1
t (·|x1, . . . ,

at , xt+1) for each t ∈ N and ht+1 ∈ Ht+1. A controller choosing actions accord-
ing to γ f operates as follows: At time t = 0 the action applied is selected using
f and, after observing X1 = y, from time 1 onwards the actions are selected
using π y as if the precess had started again. Using the Markov property and
Definition 3.1(i) it is not difficult to see that

eλhg(x) ≤ Eγ f

y

[
eλ

∑Tz−1
t=0 (C(Xt ,At )−g)

]

= eλ(C(x, f (x))−g)

×
⎛

⎝px z( f (x)) +
∑

y∈S\{z}
px y( f (x))Eπ y

y

[
eλ

∑Tz−1
t=0 (C(Xt ,At )−g)

]
⎞

⎠ ,

and combining the two last displays it follows that, for each x ∈ S,

eλhg(x) ≤ eεeλ(C(x, f (x))−g)

⎛

⎝px z( f (x)) +
∑

y∈S\{z}
px y( f (x))eλhg(y)

⎞

⎠ ;

since ε > 0 and f ∈ F are arbitrary, this relation implies that

eλhg(x) ≤ inf
a∈A(x)

⎡

⎣eλ(C(x,a)−g)

⎛

⎝px z(a) +
∑

y∈S\{z}
px y(a)eλhg(y)

⎞

⎠

⎤

⎦ , x ∈ S,

a fact that, via (4.4), leads to (4.2).
(iii) From Assumption 2.1 the term within brackets in (4.2) has a a minimizer

fg(x) ∈ A(x), and (4.3) follows via (4.2); see Remark 2.2. �
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Lemma 4.2 Let H : S → (−∞,∞], f ∈ F and g ∈ R be such that the following
conditions (a) and (b) are satisfied:

(a) H(z) < ∞, and

(b) For each x ∈ S, eλH(x) ≥ eλ(C(x, f (x))−g)
(

px z( f (x)) + ∑
y∈S\{z} px y( f (x))

eλH(y)
)

.

In this framework the following assertions (i)–(iv) hold.

(i) H(·) is a finite function , and

(ii) eλH(x) ≥ E f
x

[
eλ

∑Tz−1
t=0 (C(Xt ,At )−g)

]
≥ eλhg(x) for each state x.

Consequently,
(iii) If g ∈ G, then the relative value function hg(·) is finite and

eλhg(x) = E
fg

x

[
eλ

∑Tz−1
t=0 (C(Xt ,At )−g)

]
, x ∈ S,

where the policy fg ∈ F is as in (4.3), and

(iv) g∗ ≥ J ∗
C (·).

Proof (i) Since H(·) > −∞, it is sufficient to show that H(·) < ∞. To achieve
this goal observe that, since H(z) is finite, the inequality in condition (b) yields
that

H(x) < ∞ and px y( f (x)) > 0 ⇒ H(y) < ∞.

Now, let y ∈ S be arbitrary and notice that Assumption 2.4 implies that there
exists a positive integer k as well as states x0, x1, . . . , xk such that x0 = z, xk =
y and

pxi−1 xi ( f (xi−1)) > 0, i = 1, 2, . . . , k.

Using that H(x0) = H(z) < ∞, these two last displays together lead to
H(y) = H(xk) < ∞, and then H(·) < ∞, since y ∈ S is arbitrary.

(ii) Recalling that At = f (Xt ) under the action of policy f , condition (b) and
Definition 2.1(i) together yield that

eλH(x) ≥ E f
x

[
eλ(C(X0,A0)−g) I [X1 = z]

+ eλ(C(X0,A0)−g)eλH(X1) I [X1 �= z]
]

= E f
x

[
eλ(C(X0,A0)−g) I [TZ = 1]

+ eλ(C(X0,A0)−g)eλH(X1) I [Tz >1]
]
, x ∈ S. (4.5)
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Next, observe that for every positive integer n and x ∈ S, the Markov property
and condition (b) together imply that

E f
x

[
I [Tz > n]eλ

∑n−1
t=0 (C(Xt ,At )−g)eλH(Xn)

∣
∣
∣ Xs , s ≤ n

]

= I [Tz > n]eλ
∑n−1

t=0 (C(Xt ,At )−g)eλH(Xn)

≥ I [Tz > n]eλ
∑n−1

t=0 (C(Xt ,At )−g)eλ(C(Xn ,An)−g)

⎛

⎝pXn z( f (Xn)) +
∑

y∈S\{z}
pXn y( f (Xn))eλH(y)

⎞

⎠

= I [Tz >n]eλ
∑n

t=0(C(Xt ,At )−g)E f
x

[
I [Xn+1 = z]+ I [Xn+1 �= z]eλH(Xn+1)

∣
∣
∣ Xs , s ≤n

]

= E f
x

[
eλ

∑n
t=0(C(Xt ,At )−g) I [Tz > n]I [Xn+1 = z]

∣
∣
∣ Xs , s ≤ n

]

+ E f
x

[
I [Tz > n]I [Xn+1 �= z]eλ

∑n
t=0(C(Xt ,At )−g)eλH(Xn+1)

∣
∣
∣ Xs , s ≤ n

]

= E f
x

[
eλ

∑n
t=0(C(Xt ,At )−g) I [Tz = n + 1]

∣
∣
∣ Xs , s ≤ n

]

+ E f
x

[
I [Tz > n + 1]eλ

∑n
t=0(C(Xt ,At )−g)eλH(Xn+1)

∣
∣
∣ Xs , s ≤ n

]
,

and then

E f
x

[
I [Tz > n]eλ

∑n−1
t=0 (C(Xt ,At )−g)eλH(Xn)

]

≥ E f
x

[
eλ

∑n
t=0(C(Xt ,At )−g) I [Tz = n + 1]

]

+E f
x

[
I [Tz > n + 1]eλ

∑n
t=0(C(Xt ,At )−g)eλH(Xn+1)

]
,

an inequality that, via an induction argument using (4.5), yields that for every
x ∈ S and n = 1, 2, 3, . . .

eλH(x) ≥
n∑

k=1

E f
x

[
I [Tz = k]eλ

∑k−1
t=0 (C(Xt ,At )−g)

]

+E f
x

[
I [Tz > n]eλ

∑n−1
t=0 (C(Xt ,At )−g)eλH(Xn)

]
,

and then

eλH(x) ≥ lim
n→∞

n∑

k=1

E f
x

[
I [Tz = k]eλ

∑k−1
t=0 (C(Xt ,At )−g)

]

=
∞∑

k=1

E f
x

[
I [Tz = k]eλ

∑k−1
t=0 (C(Xt ,At )−g)

]

= E f
x

[
eλ

∑Tz−1
t=0 (C(Xt ,At )−g)

]
≥ eλhg(x).
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where it was used that P f
x [Tz < ∞] = 1 to set the second equality, by Lemma

2.2(ii), and the second inequality follows from (3.1).
(iii) Let g ∈ G be arbitrary so that hg(z) ≤ 0, and let fg ∈ F be as in (4.3). In this

case conditions (a) and (b) hold with hg and fg instead of H and f , respectively,
and the conclusion follows from parts (i) and (ii).

(iv) Given g ∈ G, let policy fg ∈ F be such that (4.3) holds, and notice that
1 ≥ eλhg(z), since hg(z) ≤ 0, so that (4.3) immediately implies that eλhg(x) ≥
eC(x, fg(x))−g ∑

y∈S px yeλhg(y) for every state x . From this point, an induction
argument using the Markov property yields that, for each positive integer n and
x ∈ S,

eλng+λhg(x) ≥ E
fg

x

[
eλ

∑n−1
t=0 C(Xt ,At )+hg(Xn)

]
≥ eλJC,n( fg,x)+λMg

where (2.1) and the lower bound in (4.1) were used to set the second inequality.
Thus,

g + hg(x) − Mg

n
≥ 1

n
JC,n( fg, x)

and, since hg(·) is finite, via (2.2) and (2.3) this leads to g ≥ JC ( fg, ·) ≥ J ∗
C (·);

since g ∈ G is arbitrary, it follows that inf G = g∗ ≥ J ∗
C (·).

�
Lemma 4.3 With the notation in (3.3), g∗ ∈ G.

Proof Let {gk} ⊂ G be such that

gk ↘ g∗ as k ↗ ∞ (4.6)

and, applying Lemma 4.1 (iii), select a policy fgk ∈ F such that

eλhgk (x) = eλ(C(x, fgk (x))−gk )

⎛

⎝px z( fgk (x))+
∑

y∈S\{z}
px y( fgk (x))eλhgk (y)

⎞

⎠ , x ∈ S;

(4.7)

using the fact that F is a compact metric space, after taking a subsequence (if necessary)
it can be assumed that { fgk } converges to a policy f ∗ ∈ F:

lim
k→∞ fgk (x) = f ∗(x), x ∈ S. (4.8)

Next, observe that the monotonicity property in Lemma 3.1 and (4.6) together yield
that there exists a function H∗(·) defined on S such that

hg1(x) ≤ lim
k→∞ hgk (x) = H∗(x) ≤ hg∗(x), x ∈ S. (4.9)
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Since hg1(·) is bounded below, by Lemma 4.1, the first inequality implies that H∗(·) >

−∞ while using that gk ∈ G, so that hgk (z) ≤ 0, the above convergence yields
that

(a) H∗(z) ≤ 0.
On the other hand, taking limit as k goes to ∞ in both sides of (4.7), Assump-
tion 2.1(ii), (4.6), Fatou’s lemma and the two last displays together imply that

(b) eλH∗(x) ≥ eλ(C(x, f ∗(x))−g∗)

×
⎛

⎝px z( f ∗(x)) +
∑

y∈S\{z}
px y( f ∗(x))eλH∗(y)

⎞

⎠ , x ∈ S.

These two facts (a) and (b) show that the conditions in Lemma 4.2 are satisfied with H∗
and f ∗ instead of H and f , respectively, and it follows that H∗(·) is a finite function
as well as

eλH∗(x) ≥ E f ∗
x

[
eλ

∑Tz−1
t=0 (C(Xt ,At )−g∗)

]
≥ eλhg∗ (x), x ∈ S.

This relation and (4.9) together lead to H(·) = hg∗(·), and from this point the fact (a)
above yields that hg∗(z) ≤ 0, so that g∗ ∈ G; see (3.2). �

5 Nonnegative costs with compact support

In this section additional properties of the relative value functions are established under
the assumption that the cost function C(·, ·) ≥ 0 has compact support. In this context,
the main goals to be established can be described as follows: (a) The relative value
function hg∗(·) is bounded, and (b) the equality hg∗(z) = 0 holds; this latter property
is the backbone of the argument used in Sect. 6 to establish Theorem 3.1. Finally, the
exposition concludes with a result about (c) the uniqueness of solutions of the Poisson
equation associated with a stationary policy f ; see Remark 2.2(iii).

Lemma 5.1 Suppose that Assumptions 2.1, 2.3 and 2.4 hold, and that the cost func-
tion C has compact support, that is, the condition (3.5) holds for some finite set F. In
this case the relative value function hg∗(·) is bounded.

Proof Let the finite set F be as in (3.5) and without loss of generality assume that
z ∈ F , so that

Tz ≥ TF ; (5.1)

see Definition 2.1(i). Now, set

M∗ := 1 + max
y∈F

|hg∗(y)| (5.2)
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and notice that M∗ is finite, since F is a finite set and hg∗(·) is a finite function; see
Lemmas 4.2(iii) and 4.3. Next, it will be shown that

hg∗(x) ≤ M∗, x ∈ S \ F. (5.3)

To achieve this goal, let fg∗ ∈ F be as in Lemma 4.2(iii), so that

eλhg∗ (y) = E
fg∗
y

[
eλ

∑Tz−1
t=0 (C(Xt ,At )−g∗)

]
, y ∈ S, (5.4)

and let the initial state X0 = x ∈ S \ F be arbitrary but fixed. Since Xt /∈ F for
1 ≤ t < TF [see Definition 2.1(i)] and X0 = x /∈ F , condition (3.5) yields that the

following equalities hold P
fg∗

x -almost surely:

Tz−1∑

t=0

(C(Xt , At ) − g∗) = −g∗TF on the event [Tz = TF ]

and

Tz−1∑

t=0

(C(Xt , At ) − g∗) = −g∗TF +
Tz−1∑

t=TF

(C(Xt , At ) − g∗) on the event [Tz > TF ].

Thus, since g∗ ≥ 0 [see (3.3)],

E
fg∗

x

[
e
∑Tz−1

t=0 (C(Xt ,At )−g∗) I [Tz = TF ]
]

= E
fg∗

x

[
e−g∗TF I [Tz = TF ]

]

≤ P
fg∗

x [Tz = TF ], (5.5)

while, using that I [Tz > TF = k] = I [Xs /∈ F, 1 ≤ s < k, Xk ∈ F \{z}], the Markov
property yields that for every positive integer k

E
fg∗

x

[
e
∑Tz−1

t=0 (C(Xt ,At )−g∗) I [Tz > TF = k]|X1, . . . , Xk

]

= E
fg∗

x

[

e−g∗TF e
∑Tz−1

t=TF
(C(Xt ,At )−g∗)

I [Tz > TF = k]|X1, . . . , Xk

]

= e−g∗TF I [Tz > TF = k]E
fg∗
Xk

[
e
∑Tz−1

t=0 (C(Xt ,At )−g∗)
]

= e−g∗TF I [Tz > TF = k]eλhg∗ (Xk )

≤ I [Tz > TF = k]eλM∗

where (5.4) was used to set the third equality and, since Xk ∈ F on the event [TF = k],
the inequality follows from (5.2). Therefore, E

fg∗
x

[
e
∑Tz−1

t=0 (C(Xt ,At )−g∗) I [Tz > TF ]
]

≤
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P
fg∗

x [Tz > TF ]eλM∗
, and combining this with (5.1) and (5.5) it follows that

eλhg∗ (x) = E
fg∗

x

[
e
∑Tz−1

t=0 (C(Xt ,At )−g∗)
]
≤ P

fg∗
x [Tz =TF ]+P

fg∗
x [Tz > TF ]eλM∗ ≤eλM∗

,

where (5.4) was used to set the equality; this implies (5.3), since x is an arbitrary state
in S \ F . Combining (5.2) with (5.3) it follows that hg∗(·) ≤ M∗ < ∞, and the desired
conclusion is obtained recalling that hg∗(·) ≥ Mg∗ > −∞, by Lemma 4.1(i). �

The main result of this section is the following.

Theorem 5.1 Under the conditions in Lemma 5.1, hg∗(z) = 0.

The proof of this theorem relies on properties of the following matrix Q, which is
derived from a solution of the Poisson equation associated with a stationary policy;
see Remark 2.2(iii).

Definition 5.1 Let g ∈ R, f ∈ F and D, H : S → R be such that the following
Poisson equation holds:

eλH(x) = eλD(x)−λg
∑

y∈S

px y( f (x))eλH(y), x ∈ S. (5.6)

In this context, on the space S define the matrix Q( f, g, D, H) ≡ Q = [qx y]x,y∈S as
follows:

qx y := eλD(x)−λg px y( f (x))eλH(y)

eλH(x)
, x, y ∈ S. (5.7)

Remark 5.1 Notice that (5.6) and the specification (5.7) immediately yield that the
matrix Q is stochastic. The distribution of the state process {Xn} when Q is the one-
step transition matrix and X0 = x is the initial state is denoted by P Q

x , with E Q
x

standing for the corresponding expectation operator.

Lemma 5.2 In the context of Definition 5.1, suppose that H(·) ∈ B(S) and that
Assumption 2.3 holds. In this situation, the assertions (i)–(iii) below hold:

(i) D ∈ B(S).
(ii) For each y ∈ S, the matrix Q in (5.7) satisfies the simultaneous Doeblin con-

dition at y. More precisely, if N (y) ∈ N \ {0} and ρ(y) ∈ (0, 1) are as in (2.7),
then

P Q
x [Ty ≤ N (y)] ≥ 1 − ρ̃(y), x ∈ S,

where ρ̃(y) ∈ (0, 1) is determined by

1 − ρ̃(y) = (1 − ρ(y))e−λN (y)‖D(·)−g‖−2λ‖H‖ > 0, y ∈ S.
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(iii) For each ε ∈ (−∞,− log(ρ̃(y))/[λN (y)]) the function Hε : S → R defined by

Hε(y) = 0, and Hε(x) = 1

λ
log

(
E Q

x [eλεTy ]
)

, x ∈ S \ {y}, (5.8)

is bounded and satisfies the following Poisson equation:

eλHε(x) = eλε−λα(ε)Dy(x)
∑

w∈S

qx weλHε(w), x ∈ S, (5.9)

where

α(ε) = 1

λ
log

(
E Q

y [eλεTy ]
)

(5.10)

and Dy is the indicator function of point y, that is

Dy(x) = 0, if x ∈ S \ {y}, and Dy(y) = 1. (5.11)

Proof (i) From (5.6) it follows that e−λ‖H‖ ≤ eλH(x) ≤ eλD(x)−λgeλ‖H‖ and
eλ‖H‖ ≥ eλH(x) ≥ eλD(x)−λge−λ‖H‖ for every x ∈ S, so that ‖D‖≤2‖H‖+|g|.

(ii) From (5.7), for each integer k > 1 the following relations for the probability of
the event [Ty = k] with respect to P Q

x hold, where x = x0 and xk = y:

P Q
x [Ty = k] =

∑

xi �=y
i=1,2,...,k−1

k∏

i=1

qxi−1 xi

=
∑

xi �=y
i=1,2,...,k−1

k∏

i=1

eλD(xi−1)−λg pxi−1 xi ( f (xi−1))eλH(xi )

eλH(xi−1)

=
∑

xi �=y
i=1,2,...,k−1

(
k∏

i=1

eλD(xi−1)−λg

)

×
(

k∏

i=1

pxi−1 xi ( f (xi−1))

)
k∏

i=1

eλH(xi )

eλH(xi−1)

≥
∑

xi �=y
i=1,2,...,k−1

e−kλ‖D(·)−g‖
(

k∏

i=1

pxi−1 xi ( f (xi−1))

)
eλH(xk )

eλH(x0)

= e−kλ‖D(·)−g‖ eλH(y)

eλH(x)

∑

xi �=y
i=1,2,...,k−1

k∏

i=1

pxi−1 xi ( f (xi−1))
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and then

P Q
x [Ty = k] ≥ e−kλ‖D(·)−g‖−2λ‖H‖ P f

x [Ty = k]).

Also, it is not difficult to see that this inequality is also valid for k = 1, so that

P Q
x [Ty ≤ N (y)] =

N (y)∑

k=1

P Q
x [Ty = k]

≥
N (y)∑

k=1

e−kλ‖D(·)−g‖−2λ‖H‖ P f
x [Ty = k]

≥ e−N (y)λ‖D(·)−g‖−2λ‖H‖
N (y)∑

k=1

P f
x [Ty = k]

= e−N (y)λ‖D(·)−g‖−2λ‖H‖ P f
x [Ty ≤ N (y)]

and the conclusion follows from (2.7).
(iii) An induction argument using the previous part yields that P Q

x [Ty > k N (y)] ≤
ρ̃(y)k for each positive integer k and x ∈ S, and this leads to

P Q
x [Ty ≥ n] ≤ ρ̃(y)n/N (y)−1, n = 1, 2, 3, . . . , x ∈ S;

thus, if ε < − log(ρ̃(y))/[λN (y)], so that eλερ̃(y)1/N (y) < 1, then

E Q
x [eλεTy ] =

∞∑

n=1

eλεn Px [Ty = n]

≤
∞∑

n=1

eλεn Px [Ty ≥ n] ≤
∞∑

n=1

eλεnρ(y)n/N (y)−1 < ∞, x ∈ S,

and observing that the inequality E Q
x [eλεTy ] ≥ E Q

x [eλεTy I [Ty ≤ N (y)]] ≥
e−λ|ε|N (y)(1 − ρ̃(y)) is always valid, it follows that Hε(·) in (5.8) is bounded.
On the other hand, via the Markov property, a conditioning argument yields that
for each x ∈ S

E Q
x [eλεTy ] = eλε

⎛

⎝qx y +
∑

w �=y

qx w E Q
w [eλεTy ]

⎞

⎠ ,

an equality that together with (5.8) and (5.11) shows that the Poisson equation
(5.9) holds if x �= y. On the other hand, setting x = y the above display and
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(5.10) allow to write

eλα(ε) = eλε

⎛

⎝qy y +
∑

w �=y

qy w E Q
w [eλεTy ]

⎞

⎠ ,

that is

1 = eλε−λα(ε)

⎛

⎝qy y +
∑

w �=y

qy w E Q
w [eλεTy ]

⎞

⎠ ,

and a glance at (5.11) and (5.8) shows that the equality in (5.9) also holds for
x = y.

�

Proof of Theorem 5.1 Set

	 := −hg∗(z) ≥ 0, (5.12)

where, using that g∗ ∈ G—by Lemma 4.3—the inequality follows from (3.2). It will
be shown, by contradiction, that 	 is null.
Assume that 	 > 0. Recall that hg∗(·) is bounded, by Lemma 5.1, while Lemma
4.1(iii) yields that there exists a policy fg∗ ∈ F such that

eλhg∗ (x) =eλ(C(x, fg∗ (x))−g∗)

⎛

⎝px z( fg∗(x)) +
∑

y∈S\{z}
px y( fg∗(x))eλhg∗ (y)

⎞

⎠ , x ∈ S.

(5.13)

Now define the function H ∈ B(S) by

H(x) := hg∗(x) + 	Dz(x), x ∈ S, (5.14)

where Dz is the indicator function of point z; see (5.11); since

H(z) = 0, (5.15)

[see (5.12)] and H(x) = hg∗(x) for x �= z, it follows form (5.13) that

eλH(x) = eλ(C(x, fg∗ (x))−g∗) ∑

y∈S

px y( fg∗(x))eλH(y), x ∈ S \ {z}
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whereas using the the notation in (5.12), the equality in (5.13) with x = z is equivalent
to

eλH(z) = 1 = eλ(C(z, fg∗ (z))+	−g∗)

⎛

⎝pz z( fg∗(z)) +
∑

y∈S\{z}
pz y( fg∗(z))eλH(y)

⎞

⎠

= eλ(C(z, fg∗ (z))+	−g∗)

⎛

⎝pz z( fg∗(z))eλH(z) +
∑

y∈S\{z}
pz y( fg∗(z))eλH(y)

⎞

⎠ .

These two last displays lead to

eλH(x) = eλ(D(x)−g∗) ∑

y∈S

px y( fg∗(x))eλH(y), x ∈ S, (5.16)

where

D(x) = C(x, fg∗(x)) + 	Dz(x), x ∈ S. (5.17)

Therefore, defining the matrix [qx y] by

qx y := eλD(x)−λg∗
px y( fg∗(x))eλH(y)

eλH(x)
(5.18)

it follows from Lemma 5.2(iii) that for each ε > 0 small enough, there exists a bounded
function Hε such that

Hε(z) = 0 (5.19)

and

eλHε(x) = eλε−λα(ε)Dz(x)
∑

y∈S

qx yeλHε(y), x ∈ S, (5.20)

where α(ε) is given by (5.10) with y = z, so that α(ε) ↘ 0 as ε ↘ 0. Thus, without
loss of generality, it can be assumed that ε > 0 is chosen in such a way that

α(ε) < 	. (5.21)
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Combining (5.18) and (5.20) it follows that for each x ∈ S

eλHε(x) = eλε−λα(ε)Dz(x)
∑

y∈S

qx yeλHε(y)

= eλε−λα(ε)Dz(x)
∑

y∈S

eλD(x)−λg∗
px y( fg∗(x))eλH(y)

eλH(x)
eλHε(y)

= eλ[D(x)−α(ε)Dz(x)]−λ(g∗−ε)

eλH(x)

∑

y∈S

px y( fg∗(x))eλ[H(y)+Hε(y)]

and then

eλ[Hε(x)+H(x)] = eλ[D(x)−α(ε)Dz(x)]−λ(g∗−ε)
∑

y∈S

px y( fg∗(x))eλ[H(y)+Hε(y)];

observing that (5.17) and (5.21) together yield that D(x)−α(ε)Dz(x)=C(x, fg∗(x))+
	Dz(x) − α(ε)Dz(x) ≥ C(x, fg∗(x)), it follows that

eλ[Hε(x)+H(x)] ≥ eλC(x, fg∗ (x))−λ(g∗−ε)
∑

y∈S

px y( fg∗(x))eλ[H(y)+Hε(y)], x ∈ S.

Since Hε(z) + H(z) = 0, by (5.15) and (5.19), conditions (a) and (b) in Lemma
4.2 are valid with Hε + H , fg∗ and g∗ − ε instead of H , f and g, respectively, so
that conclusion (ii) of Lemma 4.2 yields that Hε(·) + H(·) ≥ hg∗−ε(·); in particular,
0 = Hε(z)+ H(z) ≥ hg∗−ε(z), so that g∗ −ε ∈ G, an inclusion that contradicts (3.3),
since ε > 0. Consequently, 	 = 0. �

The following result will be useful to establish the uniqueness of bounded solutions
of the λ-sensitive optimality equation (2.4).

Lemma 5.3 Suppose that Assumption 2.3 holds, and let f ∈ F, g ∈ R and H, H1 ∈
B(S) be such that

H(z) = H1(z) = 0.

Additionally, assume that for some functions D, D1 : S → R, the following Poisson
equations equations hold:

eλg+λH(x) = eλD(x)
∑

y∈S

px y( f (x))eλH(y) x ∈ S,

eλg+λH1(x) = eλD1(x)
∑

y∈S

px y( f (x))eλH1(y) x ∈ S.

In this context,

if D1(·) ≥ D(·), then D(·) = D1(·) and H(·) = H1(·).

123



74 R. Cavazos-Cadena

Proof Assume that D1(·) ≥ D(·) and let the stochastic matrix Q = [qx y] be as in
(5.7). Next, observe that for each x ∈ S

eλH1(x) = eλD1(x)−λg
∑

y∈S

px y( f (x))eλH1(y)

= eλH(x)eλD1(x)−λD(x)
∑

y∈S

eλD(x)−λg px y( f (x))eλH(y)

eλH(x)
eλH1(y)−H(y)

= eλH(x)eλD1(x)−λD(x)
∑

y∈S

qx yeλH1(y)−H(y)

and then

eλH1(x)−λH(x) =eλD1(x)−λD(x)
∑

y∈S

qx yeλH1(y)−H(y) ≥
∑

y∈S

qx yeλH1(y)−H(y), x ∈ S;

(5.22)

recall the D1(·) ≥ D(·) for the inequality. From this point an induction argument
yields that that the inequality eλH1(x)−λH(x) ≥ E Q

x [eλH1(Xn)−λH(xn)] always holds, so
that

eλH1(x)−λH(x) ≥ 1

n

n∑

t=1

E Q
x [eλH1(Xt )−λH(xt )]

≥ 1

n

n∑

t=1

E Q
x [eλH1(Xt )−λH(xt ) I [Xt ∈ F̃]], x ∈ S, n = 1, 2, 3,

where F̃ is a finite subset of S. Since the transition matrix Q = [qx y] satisfies the simul-
taneous Doeblin condition at each state y, by Lemma 5.2(ii), it follows that Q that it is
communicating and positive recurrent (see Remark 2.3), and then there exists a unique
probability distribution µ(·) on S such that µ(x) > 0 and

∑n
t=1 E Q

x [R(Xt )]/n →∑
y∈S µ(y)R(y) for every x ∈ S and R ∈ B(S). Therefore, the above display yields

that eλH1(x)−λH(x) ≥ ∑
y∈F̃ µ(y)eλH1(y)−λH(y) and, since x ∈ S and the finite set

F̃ ⊂ S are arbitrary, it follows that the relations

eλH1(x)−λH(x) ≥
∑

y∈S

µ(y)eλH1(y)−λH(y) ≥ inf
y∈S

eλH1(y)−λH(y)

hold for every x ∈ S. After taking the infimum with respect to x , this implies that

∑

y∈S

µ(y)eλH1(y)−λH(y) = inf
y∈S

eλH1(y)−λH(y),
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and then eλH1(·)−λH(·) is constant, since µ(·) > 0. Thus, H1(·) − H(·) = H1(z) −
H(z) = 0 which, via (5.22), yields that D1(·) − D(·) = 0. �

6 Proof of Theorems 3.1 and 3.2

In this section the main results of the paper stated in Sect. 3 will be finally established.

Proof of Theorem 3.1 Suppose that Assumptions 2.1, 2.3 and 2.4, as well as condition
(3.5) for some finite set F ⊂ S hold.

(i) The inclusion g∗ ∈ G was proved in Lemma 4.3, while the boundedness of
hg∗(·) and the equality hg∗(z) = 0 were established in Lemma 5.1 and Theo-
rem 5.1, respectively.

(ii) Since hg∗(z) = 0, the dynamic programming equation (4.2) applied to the case
g = g∗ is equivalent to

eλg∗+λhg∗ (x) = inf
a∈A(x)

⎡

⎣eλC(x,a)
∑

y∈S

px y(a)eλhg∗ (y)

⎤

⎦ x ∈ S,

so that the pair (g∗, hg∗(·)) satisfies the optimality equation (2.4).
(iii) Since hg∗(·) is bounded, the previous part and Lemma 2.1(i) together imply

that J ∗
C (·) = g∗.

(iv) It will be shown that f ∈ F is λ-optimal if and only if (3.6) holds.
Assume that f is λ-optimal, that is g∗ = JC ( f, ·). In this case, applying parts (i)
and (ii) above to the reduced MDP M f obtained by restricting the set of admis-
sible actions at each state x to { f (x)}, it follows that there exists a bounded
function h f (x) such that h f (z) = 0 and

eλg∗+λh f (x) = eλC(x, f (x))
∑

y∈S

px y( f (x))eλh f (y) x ∈ S.

On the other hand, from the optimality equation in part (ii) it follows that there
exists δ : S → [0,∞) such that

eλg∗+λhg∗ (x) = eλC(x, f (x))−λδ(x)
∑

y∈S

px y( f (x))eλhg∗ (y) x ∈ S. (6.1)

From this point, an application of Lemma 5.3 yields that δ(·) = 0, so that (3.6)
holds.
Assume that (3.6) is valid. In this situation the λ-optimality of f follows from
the second part of Lemma 2.1.

(v) Let g ∈ R and h ∈ B(S) be such that (2.4) holds. In this case g = g∗, by
Lemma 2.1(i), and there exists a policy f ∈ F such that

eλg∗+λh̃(x) = eλC(x, f (x))
∑

y∈S

px y( f (x))eλh̃(y) x ∈ S,
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where h̃(·) = h(·) − h(z); see Remark 2.2(i). For this policy f the optimal-
ity equation in part (ii) implies that (6.1) holds for some δ ≥ 0 and, since
hg∗(z) = h̃(z) = 0, via Lemma 5.3 the above display and (6.1) together imply
that h∗(·) = h̃(·) = h(·) − h(z). �

The results in Theorem 3.2 will be derived from Theorem 3.1 by approximating an
arbitrary nonnegative cost function by functions with compact support.

Proof of Theorem 3.2 Suppose that Assumptions 2.1–2.4 hold.

(i) Let {Fk} be a sequence of finite subsets of S such that

Fk ↗ S as k ↗ ∞, (6.2)

and define the sequence of cost functions {Ck : S → [0,∞)} as follows: for
each (x, a) ∈ K,

Ck(x, a) = C(x, a), x ∈ Fk, and Ck(x, a) = 0, x ∈ S \ Fk . (6.3)

so that optimal average cost associated with Ck is constant, say

J ∗
Ck

(·) = gk; (6.4)

see Theorem 3.1. Observe now that from (6.2) and (6.3) it follows that 0 ≤
Ck ↗ C , and then {J ∗

Ck
(·)} is an increasing sequence which is bounded above

by J ∗
C (·); see (2.1)–(2.3). Since J ∗

C (z0) is finite for some z0 ∈ S, by Assumption
2.2, from (6.4) it follows that there exists g̃ ∈ [0,∞) such that

lim
k→∞ gk = g̃ ≤ J ∗

C (·). (6.5)

Now, it is claimed that

g̃ ∈ G. (6.6)

Assuming that this assertion holds, the conclusions in part (i) can be obtained
as follows: The specification of g∗ in (3.3) and the above display together yield
that g̃ ≥ g∗; since g∗ ≥ J ∗

C (·), by Lemma 4.2(v), it follows that

g̃ ≥ g∗ ≥ J ∗
C (·),

relations that together with (6.5) lead to

J ∗
C (·) = lim

k→∞ gk = g∗ ∈ G.
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On the other hand, for each positive integers n and k, form the inequality C ≥ Ck

it follows that JC,n(π, x) ≥ JCk ,n(π, x) for every x ∈ S and π ∈ P , so that

lim inf
n→∞

1

n
JC,n(π, x) ≥ lim inf

n→∞
1

n
JCk ,n(π, x) ≥ gk,

where, using that the λ-optimality equation associated with Ck has a bounded
solution—by Theorem 3.1—the second inequality is due to Remark 2.2(ii);
letting k increase to ∞ it follows that

lim inf
n→∞

1

n
JC,n(π, x) ≥ g∗,

as stipulated in part (i). To conclude, the inclusion in (6.6) will be established.
Since Ck has compact support, from Theorem 3.1 it follows that there exist a
function hk ∈ B(S) and a policy fk ∈ F such that

hk(z) = 0 and eλgk+λhk (x) = eλC(x, fk (x))
∑

y∈S

px y( fk(x))eλhk (y), x ∈ S.

(6.7)

On the other hand, since F and [−∞,∞] are compact metric spaces, taking a
subsequence, if necessary, it can be assumed that there exists a policy f̃ ∈ F

and h̃ : S → [−∞,∞] such that, for each x ∈ S,

lim
k→∞ fk(x) = f̃ (x) ∈ A(x) and lim

k→∞ hk(x) = h̃(x) ∈ [−∞,∞],
where h̃(z) = 0.

Taking the limit inferior as k goes to ∞ in both sides of the equality in (6.7),
the above display and the convergence in (6.5) together imply, via Assumption
2.1(ii) and Fatou’s lemma, that

eλg̃+λh̃(x) ≥ eλC(x, f̃ (x))
∑

y∈S

px y( f̃ (x))eλh̃(y), x ∈ S;

since h̃(z) = 0, it follows from Lemma 4.2(ii) that 1 = eλh̃(z) ≥ eλhg̃(z), and
then hg̃(z) ≤ 0, that is, g̃ ∈ G; see (3.2).

(ii) By Lemma 4.1(i),

hg∗(·) ≥ Mg∗ = −N (z)g∗ + log(1 − ρ(z))/λ, (6.8)

where the notation is as in Lemma 2.2. On the other hand, since 1 ≥ ehg∗ (z)—
by the inclusion g∗ ∈ G in the part (i)—the inequality (3.10) follows from the
dynamic programming equation established in Lemma 4.1(ii).
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(iii) By Remark 2.2(ii), there exists a policy f ∈ F such that, for each x ∈ S, f (x)

minimizes the mapping

a �→ eλC(x,a)
∑

y∈S

px y(a)ehg∗ (y), a ∈ A(x),

and then

eλg∗+λhg∗ (x) ≥ eλC(x, f (x))
∑

y∈S

px y( f (x))ehg∗ (y), x ∈ S.

by the previous part. Now, let f be an arbitrary stationary policy satisfying this
relation. Using an induction argument, it follows that the inequality

enλg∗+λhg∗ (x) ≥ E f
x

[
eλ

∑n−1
t=0 C(Xt ,At )+λhg∗ (Xn)

]

always holds, and then (6.8) yields that

enλg∗+λhg∗ (x) ≥ E f
x

[
eλ

∑n−1
t=0 C(Xt ,At )

]
eλMg∗ = eλJC,n( f,x)+λMg∗ , x ∈ S;

see (2.1). Thus, g∗ + (hg∗(x)− Mg∗)/n ≥ JC,n( f, x)/n and, since hg∗ is finite,
(2.1), (2.3) and the part (i) together yield that J ∗

C (·) = g∗ ≥ JC ( f, ·) ≥ J ∗
C (·),

so that f is λ-optimal.
(iv) Let g ∈ R and h : S → R be such that (3.12) holds and, using Remark 2.2(i),

select a policy f ∈ F such that

eλg+λh(x) ≥ eλC(x, f (x))
∑

y∈S

px y( f (x))eλh(y), x ∈ S.

After multiplying both sides of this inequality by e−λg−λh(z) and setting

h̃(·) = h(·) − h(z),

it follows that

eλh̃(x) ≥ eλ(C(x, f (x))−g)
∑

y∈S

px y( f (x))eλh̃(y)

= eλ(C(x, f (x))−g)

⎛

⎝px zeλh̃(z) +
∑

y∈S\{z}
px y( f (x))eλh̃(y)

⎞

⎠

= eλ(C(x, f (x))−g)

⎛

⎝px z +
∑

y∈S\{z}
px y( f (x))eλh̃(y)

⎞

⎠ , x ∈ S.
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Since h̃(·) is a finite function, an application of Lemma 4.2(ii) yields that

h̃(x) ≥ hg(x), x ∈ S. (6.9)

In particular, 0 = h̃(z) ≥ hg(z), so that g ∈ G and then

g ≥ g∗;

see (3.2) and (3.3). These two last displays show that one of the following alter-
natives hold: (a) g > g∗, or (b) g = g∗ and h(·) − h(z) = h̃(·) ≥ hg∗(·),
completing the proof. �

7 An example on the optimality inequality and the optimality equation

As already mentioned, the main qualitative difference between Theorems 3.1 and 3.2
is that Theorem 3.1 ensures that the pair (g∗, hg∗(·)) satisfies the the optimality equa-
tion (2.4) when C(·, ·) ≥ 0 has compact support, while for a nonnegative cost function
satisfying Assumption 2.2, Theorem 3.2 asserts that the inequality (3.10) holds. The
objective of the section is to provide an example to show that,

(a) If the cost function is nonnegative but does not have compact support, then the
strict inequality in (3.10) may occur for each state x , even if C(·, ·) is bounded,
and

(b) If the cost function has compact support but assumes negative values, then the
λ-optimality equation (2.4) may fail at each state x , so that, in general, the nonneg-
ativity of the cost function is necessary to ensure that the conclusion of Theorem
3.1(iv) holds.

Example 7.1 On the state space S = N, consider the transition matrix P = [px y]
determined by

px x+1 :=
(

x + 1

x + 2

)2

p, px 0 := 1 − px x+1, x = 0, 1, 2, 3, . . . (7.1)

where

p ∈ (0, 1)

is fixed. If C : S → R is bounded function, then the triple (S, P, C) is naturally iden-
tified with an MDP in which the action set A is a singleton, and Assumptions 2.1 and
2.2 automatically hold. Since

Px [T0 = 1] = 1 −
(

x + 1

x + 2

)2

p > 1 − p > 0,
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the simultaneous Doeblin condition at

z = 0

is valid, and combining this fact with

P0[X1 = 0] = 1 − P0[X1 = 1] = 1 − p/4

P0[Xn = n] = P0[Xk = k, k = 1, 2, . . . n]
=

n∏

k=1

pk−1 k =
n∏

k=1

[(
k

k + 1

)2

p

]

= pn

(n + 1)2 , n =1, 2, 3, . . . , (7.2)

it is not difficult to see that Assumption 2.4 is also verified.

For the model in Example 7.1, (3.10) becomes

eλg∗+λhg∗ (x) ≥ eλC(x)
[

px 0eλhg∗ (x) + px x+1eλhg∗ (x+1)
]
, x ∈ S, (7.3)

and in the following proposition a bounded cost function will be specified so that the
strict inequality always occurs in this relation.

Proposition 7.1 In the context of Example 7.1

(i) E0
[
e− log(p)(T0−1)

] ∈ (1,∞).
(ii) Set

α := log(E0

[
e− log(p)(T0−1)

]
∈ (0,∞), (7.4)

where the inclusion follows from part(i), and define C ∈ B(S) by

C(z) = C(0) := 0, C(x) := − log(p) + 2α

λ
, x ∈ S \ {0}. (7.5)

In this framework,

g∗ = 2α

λ
and hg∗(z) = hg∗(0) = −α

λ
< 0. (7.6)

Consequently,
(iii) For the cost function in (7.5), the strict inequality holds in (7.3) for each

x ∈ S.
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Proof (i) For each n ∈ N, Definition 2.1(i) and the specification of the transition law
together yield that P0[T0 > n] = P0[Xn = n]. Using that

P0[T = n] = P0[T0 > n − 1] − P0[T0 > n] = P0[Xn−1 = n − 1] − P0[Xn = n]

for a positive integer n, it follows that

P0[T0 = n] = pn−1

n2

[

1 −
(

n

n + 1

)2

p

]

, n = 1, 2, 3, . . . ; (7.7)

see (7.2). Observe now that E0
[
e− log(p)(T0−1)

]
> 1, since P0[T0 = 1] < 1 and

− log(p) > 0. To show that the expectation is finite, notice that P0[T0 < ∞] = 1, by
Remark 2.3, so that

E0

[
e− log(p)(T0−1)

]
=

∞∑

n=1

e− log(p)(n−1) P0[T0 = n]

=
∞∑

n=1

1

pn−1 P0[T0 = n]

=
∞∑

n=1

1

n2

[

1 −
(

n

n + 1

)2

p

]

< ∞. (7.8)

(ii) Given g ∈ R write

g = 2α + t

λ
. (7.9)

Since Xn �= 0 for 1 ≤ n < T0, using (7.5) it follows that

λ

T0−1∑

n=1

(C(Xn) − g) = λ

T0−1∑

n=1

(− log(p) + 2α

λ
− 2α + t

λ

)

= −(T0 − 1)[log(p) + t].

Thus,

X0 = 0 ⇒ λ

T0−1∑

n=0

(C(Xn) − g) = −λg − (T0 − 1)[log(p) + t]

and then

eλhg(0) = E0

[

eλ
∑T0−1

n=0 (C(Xn)−g)

]

= E0

[
e−λg−(T0−1)[log(p)+t]] = e−λg E0

[
e−(T0−1)[log(p)+t]]
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= e−λg
∞∑

n=1

e−(n−1)[log(p)+t] P0[T0 = n]

= e−λg
∞∑

n=1

e−(n−1)[log(p)+t] pn−1

n2

[

1 −
(

n

n + 1

)2

p

]

= e−λg
∞∑

n=1

e−(n−1)t

n2

[

1 −
(

n

n + 1

)2

p

]

. (7.10)

This relation and (7.9) show that

hg(0) < ∞ ⇐⇒ t ≥ 0 ⇐⇒ g ≥ 2α

λ
,

and, since t = 0 corresponds to g = 2α/λ, via (7.4) and (7.8), from (7.10) it follows
that

g = 2α

λ
⇒ eλhg(0) = e−2α

∞∑

n=1

1

n2

[

1 −
(

n

n + 1

)2

p

]

= e−2α E0

[
e− log(p)(T0−1)

]
= e−2αeα = e−α < 1,

and (7.6) follows from these two last displays.
(iii) For the present example the relative value function is determined by

eλhg∗ (x) = E0

[

eλ
∑T0−1

t=0 (C(Xt )−g∗)
]

, (7.11)

and Lemma 4.1(ii) yields that

eλhg∗ (x) = eλ(C(x)−g∗)
[

px 0 + px x+1eλhg∗ (x+1)
]
, x ∈ S;

since hg∗(0) < 0 and px 0 > 0 for each x ∈ S, by the previous part and (7.1),
respectively, it follows that

eλhg∗ (x) > eλ(C(x)−g∗)
[

px 0eλhg∗ (0) + px x+1eλhg∗ (x+1)
]
, x ∈ S, (7.12)

completing the proof. �
Now, using the notation in (7.4)–(7.6) define the cost function C1 : S → R by

C1(x) := 0, x ∈ S \ {0}, and C1(z) = C1(0) := log(p) − 2α

λ
≡ β < 0,

(7.13)
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so that

C1(·) = C(·) + β, (7.14)

and then

g∗
1 = J ∗

C1
(·) = J ∗

C (·) + β = g∗ + β. (7.15)

Therefore, C1(·)− g∗
1 = C(·)− g∗ and the relative value function h1

g∗
1

associated with

C1 and g∗
1 satisfies e

λh1
g∗
1
(x) = Ex [eλ

∑T0−1
t=0 (C1(Xt )−g∗

1 )] = Ex [eλ
∑T0−1

t=0 (C(Xt )−g∗)] =
eλhg∗ (x); see (7.11). Thus,

h1
g∗

1
(·) = hg∗(·). (7.16)

Using the cost function C1 above, via Proposition 7.1 it is shown below that the
λ-optimality Equation (2.4) does not necessarily hold if the cost function takes a
negative value, and all the other conditions in Theorem 3.1 hold.

Proposition 7.2 In the context of Example 7.1, let the function C1(·) be as in (7.13),
so that C1 has compact support and takes a negative value. In this case, the optimal
average cost g∗

1 = J ∗
C1

(·), and the relative value function h1
g∗

1
(·) associated with C1(·)

and g∗
1 , satisfy the following relation:

e
λg∗

1+λh1
g∗
1
(x)

> eλC1(x)

[

px 0e
λh1

g∗
1
(0) + px x+1e

λh1
g∗
1
(x+1)

]

, x ∈ S. (7.17)

Proof Using (7.14)–(7.16), it follows that the above relation is equivalent to the
inequality (7.12) established in Proposition 7.1. �
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