
Math Meth Oper Res (2009) 70:567–596
DOI 10.1007/s00186-009-0284-7

ORIGINAL ARTICLE

Optimal control of Markovian jump processes
with partial information and applications to a parallel
queueing model

Ulrich Rieder · Jens Winter

Received: 28 October 2008 / Accepted: 27 January 2009 / Published online: 19 February 2009
© Springer-Verlag 2009

Abstract We consider a stochastic control problem over an infinite horizon where
the state process is influenced by an unobservable environment process. In particular,
the Hidden-Markov-model and the Bayesian model are included. This model under
partial information is transformed into an equivalent one with complete information
by using the well-known filter technique. In particular, the optimal controls and the
value functions of the original and the transformed problem are the same. An explicit
representation of the filter process which is a piecewise-deterministic process, is also
given. Then we propose two solution techniques for the transformed model. First,
a generalized verification technique (with a generalized Hamilton–Jacobi–Bellman
equation) is formulated where the strict differentiability of the value function is weaken
to local Lipschitz continuity. Second, we present a discrete-time Markovian decision
model by which we are able to compute an optimal control of our given problem. In
this context we are also able to state a general existence result for optimal controls.
The power of both solution techniques is finally demonstrated for a parallel queue-
ing model with unknown service rates. In particular, the filter process is discussed in
detail, the value function is explicitly computed and the optimal control is completely
characterized in the symmetric case.
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568 U. Rieder, J. Winter

1 Introduction

Technological advances, especially in the information technology sector, over the last
few years led to a more complex relationship between different systems. To under-
stand the dependencies between systems requires large amount of resources and is
hence expensive. Thus very often decisions (in optimization problems) are made on
a lack of information. Practitioners deal with this lack of information mostly by their
experience. They estimate the unknown parameters somehow and apply a reasonable
strategy in order to minimize some cost functionals. But in general, they do not know
if their suggested control is optimal. Very often they do not even know how well their
policy works compared to the optimal one. In the last few years several optimization
problems with incomplete information were studied mathematically and explicit solu-
tions were obtained for some of them, in particular in finance applications (Bäuerle
and Rieder 2007).

In this paper, we consider an optimization problem where the expected discounted
cost over an infinite horizon should be minimized. The state process which is a
Markovian jump process, is influenced by an unobservable environment process
and hence the optimization problem has incomplete information (Sect. 2). Hidden-
Markov-models and Bayesian models are special cases (Elliott et al. 1997). By using
the well-known filter technique (Brémaud 1981; Liptser and Shiryayev 2004), we are
able to define an equivalent stochastic control problem under complete information
(Sect. 3). For this new model we discuss in Sect. 4 two solution procedures. The first
one is an extension of the classical verification technique (with the Hamilton–Jacobi–
Bellman equation). In the classical approach the strict differentiability of the value
function is needed, which is a very strong condition. With Clarke’s gradient (Clarke
1983) we weaken this assumption to local Lipschitz continuity which is fulfilled for
our value function, since it is concave. The second approach uses the piecewise-deter-
ministic behaviour of the filter process. The decision time points can be reduced to
the jump points and then a control function up to the next time has to be chosen. A
discrete-time Markovian Decision Problem (MDP) can be formulated. Solving this
discrete-time MDP, we are able to compute an optimal control of the given optimi-
zation problem. Moreover, we are able to state a general existence result for optimal
controls. Finally, we illustrate in Sect. 5 the power of both procedures for a paral-
lel queueing model. In particular, we compute the value function and characterize the
optimal control if the service rates are symmetric. Some interesting properties, e.g. the
certainty equivalence principle and the stay-on-the-winner property, are also shown.
Further investigations on this topic can be found in Winter (2008).

2 The model

On a given probability space (�,F , P) we consider a stochastic process (Xt , Zt ) char-
acterized in (1) and (2). Denote by F X,Z

t := σ(Xs, Zs, s ≤ t), F X
t := σ(Xs, s ≤ t)

andF Z
t := σ(Zs, s ≤ t) the corresponding right-continuous and complete σ -algebras.

(Zt ) takes values in a finite state space SZ := {e1, . . . , em} where ek is the kth unit
vector of R

m . Assuming the intensity for a jump from ek into el is given by q Z
kl we get
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Optimal control of Markovian jump processes 569

the following semi-martingale representation (Brémaud 1981; Rogers and Williams
2003)

d Zt = Q Z Zt dt + d M Z
t (1)

where (Q Z ) is the transpose of the generator matrix of (Zt ) and M Z
t is a

F Z
t -martingale. We will call the process (Zt ) the environment process. The so-called

state process (Xt ) takes values in the finite set SX :={e1, . . . , en}. Xt :=(X1
t , . . . , Xn

t )

depends on Zt , in particular the intensity for a jump of (Xt ) from ei into e j is given
by q X

i j (k) if Zt = ek . Note that we do not exclude common jumps of X and Z .
Similar to (1) we use the following representation

d Xt = Q X (Zt )Xt dt + d M X,Z
t (2)

with a F X,Z
t -martingale M X,Z

t . The state process Xt is observable, whereas the envi-
ronment process Zt is not observable. Hence the information given at time t is modelled
by F X

t .

Remark 1 In Winter (2008) we assumed that only groups of states of (Xt ) are observ-
able and introduced a so-called information structure. An information structure is a
partition of SX . Then we are able to define an observation process (Yt ) and to gen-
eralize the construction above. Such models arise for example in inventory models
(Bensoussan et al. 2003 ). Moreover, we discuss several properties of an information
structure in view of the following optimization problem.

Assume now that q X
i j (u, k) depends on a control parameter u ∈ U with U ⊂ R

d

(d ∈ N) compact and convex such that q X
i j (u, k) is continuous in u. We call a control

process u = (ut ) with ut : [0,∞) → U admissible if

(A)

⎧
⎨

⎩

(ut ) is a càdlàg process
ut is F X

t -predictable for all t ≥ 0
ut ∈ U for all t ≥ 0.

We define the set of admissible controls by

U := {u = (ut ) | u satisfies (A)} .

Each control process u = (ut ) determines a state process (Xu
t ). In the following we

omit the dependency of Xt on u if it is obvious from the context. Since the control
process has not be Markovian, (Xt ) is not a Markov process. But since the intensity
q X

i j (u, k) for the next jump depends only on the current state and the current control,
(Xt ) is called Markovian Jump Process. We assume that the initial distribution of Z0
is given by µ, i.e. Z0 ∼ µ, and the initial state X0 is given by x0. Both, µ and x0 are
given and fixed. Then we are able to introduce the following optimization problem:
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570 U. Rieder, J. Winter

(P)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

E
[∫∞

0 e−βt c(Xt , Zt , ut )dt
] → min

d Zt = Q Z Zt + d M Z
t , Z0 ∼ µ

d Xt = Q X (ut , Zt )Xt dt + d M X,Z
t , X0 = x0

u ∈ U

where β > 0 is the discount rate and c : SX × SZ × U → [0,∞) is a given cost
function, continuous in u, such that

E

⎡

⎣

∞∫

0

e−βt c(Xt , Zt , ut )dt

⎤

⎦ < ∞.

Since the environment process (Zt ) is not observable, problem (P) is a stochastic
control problem with partial information and hence not solvable directly. We define in
the next section an equivalent stochastic control problem with complete information.

3 The transformation

Define the conditional probability pk
t := P(Zt = ek | F X

t ) with pk
0 := µk, k =

1, . . . , m, and pt := (p1
t , . . . , pm

t ) ∈ �m . Note that pt depends on the control pro-
cess u through the state process X = (Xu

t ). It is well-known (Brémaud 1981) that the
F X

t -intensity of (Xt ) is given by

q X
i j (u, p) :=

m∑

k=1

q X
i j (u, k)pk

and thus we find a semi-martingale representation for (Xt ) with respect to F X
t as

d Xt = Q X (ut , pt )dt + d M X
t .

Theorem 1 Let u = (ut ) ∈ U . Then, pt is the unique solution of the filter equation

dpt = b(ut , Xt , pt )dt +
n∑

i=1

n∑

j=1

�i j (ut , pt−)Xi
t−d N X

t (i, j), p0 = µ (3)

with

b(u, x, p) :=
⎛

⎝Q Z −
n∑

i=1

n∑

j=1

�i j (u, p)xi q
X
i j (u, p)

⎞

⎠ p

�i j (u, p) := 1

q X
i j (u, p)

⎛

⎜
⎝

q X
i j (u, 1)p1

...

q X
i j (u, m)pm

⎞

⎟
⎠ − p.

N X
t (i, j) counts the jumps of X from ei to e j up to time t.
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Optimal control of Markovian jump processes 571

Proof First, we know by Brémaud (1981) that dpt = Q Z pt dt + d Mt , where Mt is a
F X

t -martingale. Hence it admits an unique representation d Mt = φt d M X
t . Since X is

completely characterized by N X
t (i, j) we compute Zt N X

t (i, j) and pt N X
t (i, j) with

the help of Itô’s formula and the quadratic covariation

[Z , X ](t) =
∑

0<s≤t

m∑

k=1

m∑

l=1

n∑

i=1

n∑

j=1

δkl
i j (e j − ei )(el − ek)�N Z

s (k, l)Xi
s−

where δkl
i j = 1 if a jump of Z from ek into el induces a jump of X from ei into e j and

N Z
t (k, l) counts the jumps of Z from ek into el up to time t . Since the expectation of

these both expression has to be equal we get � by comparison of coefficients. 	

Again, the filter process (pt ) depends on the control process (ut ) through the inten-

sities q X
i j

(u, k).
Define

(P̃)

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

E
[∫∞

0 e−βt c(Xt , pt , ut )dt
] → min

dpt = b(ut , Xt , pt )dt +
n∑

i=1

n∑

j=1
�i j (ut , pt−)Xi

t−d N X
t (i, j), p0 = µ

d Xt = Q X (ut , pt )Xt dt + d M X
t , X0 = x0

u ∈ U

with c(x, p, u) := ∑m
k=1 c(x, ek, u)pk . All components in (P̃) are measurable with

respect to (F X
t ), hence (P̃) is a stochastic control problem with complete informa-

tion. The process (Xt , pt ) is piecewise-deterministic, and its state space is given by
SX × �m . We denote by J (x, p; u) the expected discounted cost under a control u if
X0 = x and p0 = p, and by

J (x, p) := inf
u∈U

J (x, p; u), (x, p) ∈ SX × �m,

the minimal cost function. The connection between (P) and (P̃) is given in the next
theorem.

Theorem 2 (a) It holds: E
[∫∞

0 e−βt c(Xt , Zt , ut )dt
]=E

[∫∞
0 e−βt c(Xt , pt , ut )dt

]

for all u ∈ U .
(b) The optimal values and the optimal controls of (P) and (P̃) are equal, in

particular

value(P) = J (x0, µ).

Proof (a) Let u = (ut ) ∈ U . It is sufficient to prove that

E[c(Xt , Zt , ut )] = E[c(Xt , pt , ut )] ∀t ≥ 0.
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572 U. Rieder, J. Winter

From the definition we get immediately

E

[
c(Xt , Zt , ut ) | F X

t

]
= c(Xt , pt , ut )

and hence the statement.
(b) follows from (a). 	


The following will be useful in Sect. 4.

Proposition 1 The value function p �→ J (x, p) is concave, x ∈ SX .

Proof It is clear that J (x, p; u) = ∑m
k=1 J (x, ek; u)pk ; hence p �→ J (x, p; u) is

linear. Then we conclude:

J (x, λp + (1 − λ)p) = inf
u∈U

{λJ (x, p; u) + (1 − λ)J (x, q; u)}
≥ λJ (x, p) + (1 − λ)J (x, q).

	

Note that p �→ J (x, p) is locally Lipschitz continuous by Proposition 1.

4 Two solution procedures

In this section we present two procedures for solving the stochastic control problem
(P̃). The power of these both procedures is illustrated in Sect. 5 for a queueing model.

4.1 Solution via a generalized Hamilton–Jacobi–Bellman equation

For a locally Lipschitz continuous function f : R
m → R define the upper derivative

at x (in direction y) by

f 0(x; y) := lim sup
z→x
ε→0

f (z + εy) − f (z)

ε
.

Replacing lim sup by lim inf, the lower derivative f0(x; y) is defined. The Clarke
gradient of f at x is given by

∂ f (x) :=
{
ξ ∈ R

d | f 0(x; y) ≥ ξ y for all y ∈ R
d
}

,

which is a nonempty, convex and compact subset of R
d . We want to understand ξ as a

row vector. If f (x) is differentiable at x with gradient ∇ f (x) then ∂ f (x) = {∇ f (x)}.
It holds

f 0(x; y) = max
ξ∈∂ f (x)

ξ y and f0(x; y) = min
ξ∈∂ f (x)

ξ y. (4)
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Optimal control of Markovian jump processes 573

Using the local Lipschitz continuity we conclude that f is differentiable almost every-
where and we can find for every x ∈ R

d a sequence (xn) with xn ∈ R
d such that xn

converges to x and f is differentiable at xn for all n ∈ N. Hence ∂ f (x) can be written
as the closed convex hull of existing limits of sequences of the derivatives ∇ f (xn),
i.e.

∂ f (x) = co
{

lim
n→∞ ∇ f (xn) | lim

n→∞ xn = x
}

.

A locally Lipschitz continuous function f is called regular at x if the ordinary direc-
tional derivative

f ′(x; y) := lim
ε→0

f (x + εy) − f (x)

ε

exists for all y and f 0(x; y) = f ′(x; y). Every concave function f (which is even
locally Lipschitz) is regular (see Clarke (1983) for more details).

The Hamiltonian is defined by

Hv(x, p, u, ξ)

:= c(x, p, u) + ξb(u, x, p) +
n∑

j=1

(
v(e j , p + �x j (u, p)) − v(x, p)

)
q X

x j (u, p)

for (x, p) ∈ SX × �m , u ∈ U and ξ ∈ R
m . In what follows, ∂pv(x, p) is the Clarke

gradient of v with respect to p.
Next we prove that the value function of (P̃) is a solution of the generalized Ham-

ilton–Jacobi–Bellman (HJB) equation:

βv(x, p) = inf
ξ∈∂pv(x,p)

u∈U

Hv(x, p, u, ξ), (x, p) ∈ SX × �m . (5)

Theorem 3 The value function J (x, p) is a solution of the generalized HJB-equa-
tion (5).

Proof Denote by Tn the jump times of X . Note that Tn is also a jump time of (pt ).
Due to the local Lipschitz continuity there exists for all 0 =: T0 < T1 < T2 < · · · a
function D(e−βs J (Xs, ps)) such that

e−βTi − J (XTi −, pTi −) − e−βTi−1 J (XTi−1 , pTi−1) =
Ti −∫

Ti−1

D
(
e−βs J (Xs, ps)

)
ds.
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574 U. Rieder, J. Winter

The function D
(
e−βs J (Xs, ps)

)
may be chosen as the derivative of e−βs J (Xs, ps)

with respect to s, which exists almost everywhere on [0,∞). Hence

D
(
e−βs J (Xs, ps)

) = e−βs (−β J (Xs, ps) + Jp(Xs, ps)b(us, Xs, ps)
)
.

Extending this consideration over the jump time points Tn we can write

e−βt J (Xt , pt )

= J (X0, p0) +
t∫

0

D
(
e−βs J (Xs, ps)

)
ds

+
t∫

0

e−βs
n∑

j=1

(
J (e j , ps− + �Xs− j (us, ps−)) − J (Xs−, ps−)

)
d N X

s (Xs−, e j ).

Denote by τ the first jump time point after time t then we obtain from the Bellman
equation for all u ∈ U[t, τ ) and t̂ > t

e−βt J (x, p)

≤ E

⎡

⎢
⎣

τ∧t̂∫

t

e−βsc(Xs, ps, us)ds + e−β(τ∧t̂) J (Xτ∧t̂ , pτ∧t̂ ) | Xt = x, pt = p

⎤

⎥
⎦

= E

⎡

⎢
⎣

τ∧t̂∫

t

e−βsc(Xs, ps, us)ds + e−βt J (Xt , pt ) +
τ∧t̂∫

t

D
(
e−βs J (Xs, ps)

)
ds

+
τ∧t̂∫

t

e−βs
n∑

j=1

(
J
(
e j , ps− + �Xs− j (us, ps−)

) − J (Xs−, ps−)
)

· d N X
s (Xs−, e j ) | Xt = x, pt = p

⎤

⎥
⎦ .

Hence

0 ≤ E

⎡

⎢
⎣

τ∧t̂∫

t

e−βs H̃ J (Xs, ps, us, Jp)ds | Xt = x, pt = p

⎤

⎥
⎦
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Optimal control of Markovian jump processes 575

where H̃ J (x, p, u, ξ) := H J (x, p, u, ξ)−β J (x, p). Using ũs ≡ u for s ∈ [t, t +ε),
ε > 0 we conclude

0 ≤ lim
t̂↓t

E

⎡

⎢
⎣

1

t̂ − t

τ∧t̂∫

t

e−βs H̃ J (Xs, ps, ũs, Jp)ds | Xt = x, pt = p

⎤

⎥
⎦

= lim
t̂↓t

E

⎡

⎢
⎣

1

t̂ − t

t̂∫

t

e−βs H̃ J (Xs, ps, ũs, Jp)ds | Xt = x, pt = p

⎤

⎥
⎦ · P(t̂ < τ)

+ lim
t̂↓t

E

⎡

⎣
1

t̂ − t

τ∫

t

e−βs H̃ J (Xs, ps, ũs, Jp)ds | Xt = x, pt = p

⎤

⎦ · P(t̂ ≥ τ).

For α ≥ sup
k,i

sup
u∈U

∑
j �=i q X

i j (u, k) we get

P(t̂ ≥ τ) ≤ 1 − e−α(t̂−t) → 0 for t̂ ↓ t.

Thus we obtain at points p where J (x, p) is differentiable (with respect to p) that

0 ≤ e−βt H̃ J (Xt , pt , ũt , Jp) = e−βt H̃ J (x, p, u, Jp),

hence

0 ≤ inf
u∈U

H̃ J (x, p, u, Jp).

At points p where J (x, p) is not differentiable at p the generalized gradient can be
written as

∂p J (x, p) = co
{

lim
n→∞ ∇ J (x, ptn ) | ptn → pt = p

}

= co
{

lim
n→∞ ∇ J (x, ptn ) | tn → t

}
.

In particular, every ξ ∈∂p J (x, p) is a convex combination of ξm = limn→∞∇ J (x, ptm
n
)

for sequences tm
n → t , along which J (x, p) is differentiable. Since p �→ J (x, p) is

locally Lipschitz continuous we obtain with the chain rule that

0 ≤ e−βt

⎛

⎝c(x, p, u) − β J (x, p) + ξmb(u, x, p)

+
n∑

j=1

(
J
(
e j , p + �x j (u, p)

) − J (x, p)
)

q X
x j (u, p)

⎞

⎠ .
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Dividing by e−βt and remembering that ξ is a convex combination of ξm we conclude

0 ≤ c(x, p, u) − β J (x, p) + ξb(u, x, p)

+
n∑

j=1

(
J (e j , p + �x j (u, p)) − J (x, p)

)
q X

x j (u, p)

and therefore we get

0 ≤ inf
ξ∈∂p J (x,p)

u∈U

H̃ J (x, p, u, ξ).

On the other hand for ε > 0 and 0 < t < t̂ < ∞ with t − t̂ > 0 small enough there
exists a strategy uε with corresponding state process (Xt , pt ) such that

e−βt J (x, p) + ε(t̂ − t)

≥ E

⎡

⎢
⎣

τ∧t̂∫

t

e−βsc(Xs, ps, uε
s )ds + e−β(τ∧t̂) J (Xτ∧t̂ , pτ∧t̂ ) | Xt = x, pt = p

⎤

⎥
⎦ .

As before we obtain

ε ≥ E

⎡

⎢
⎣

1

t̂ − t

τ∧t̂∫

t

e−βs H̃ J (Xs, ps, uε
s , ξ)ds | Xt = x, pt = p

⎤

⎥
⎦

≥ E

⎡

⎢
⎣

1

t̂ − t

τ∧t̂∫

t

e−βs inf
us∈U

H̃ J (Xs, ps, us, ξ)ds | Xt = x, pt = p

⎤

⎥
⎦

= E

⎡

⎢
⎣

1

t̂ − t

τ∧t̂∫

t

e−βs H̃ J (Xs, ps, u∗
s , ξ)ds | Xt = x, pt = p

⎤

⎥
⎦

where the existence of u∗
s is guaranteed since u �→ H J (x, p, u, ξ) is continuous and

U compact. If J (x, p) is differentiable at p we get as above

ε ≥ lim
t̂↓t

E

⎡

⎢
⎣

1

t̂ − t

τ∧t̂∫

t

e−βs H̃ J (Xs, ps, u∗
s , Jp)ds | Xt = x, pt = p

⎤

⎥
⎦

= e−βt H̃ J (x, p, u∗
t , Jp) = e−βt inf

u∈U
H̃ J (x, p, u, Jp)
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and finally, since ε is arbitrarily,

0 ≥ inf
u∈U

H̃ J (x, p, u, Jp).

If J (x, p) is not differentiable at p we get that every ξ ∈ ∂p J (x, p) is a convex com-
bination of ξm . With the same computations and with the help of the approximating
sequence tm

n as above it follows

0 ≥ inf
ξ∈∂p J (x,p)

u∈U

H̃ J (x, p, u, ξ).

Altogether we have shown that

β J (x, p) = inf
ξ∈∂p J (x,p)

u∈U

H J (x, p, u, ξ), (x, p) ∈ SX × �m,

which proves the statement. 	


Now we are in a position to formulate a generalized verification technique for
computing optimal controls.

Theorem 4 If there exists u∗ = (u∗
t ) ∈ U with corresponding state process (X∗

t , p∗
t )

such that for almost all t ≥ 0 a process ξ∗
t ∈ ∂p J (X∗

t , p∗
t ) exists such that

β J (X∗
t , p∗

t ) = H J (X∗
t , p∗

t , u∗
t , ξ

∗
t )

then u∗ = (u∗
t ) is an optimal control for (P̃), and moreover, J (x, p) is the unique

locally Lipschitz and regular (in p) solution of the HJB-equation (5).

Proof Due to the concavity of p �→ J (x, p), J (x, p) is locally Lipschitz and regular.
Then we get:

∂

∂t
J (X∗

t , p∗
t ) = lim

ε→0

J (X∗
t , p∗

t−ε) − J (X∗
t , p∗

t )

−ε

= lim
ε→0

J (X∗
t , p∗

t − ε · b(u∗
t , X∗

t , p∗
t )) − J (X∗

t , p∗
t )

−ε

= −J 0(X∗
t , p∗

t ;−b(u∗
t , X∗

t , p∗
t ))

≤ −ξt
(−b(u∗

t , X∗
t , p∗

t )
) ∀ξt ∈ ∂p J (Xt , pt )

= ξt b(u∗
t , X∗

t , p∗
t )
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578 U. Rieder, J. Winter

where the third equality is true due to the regularity and the inequality due to the
properties of Clarke derivatives. In particular, for ξ∗

t it holds that

∂

∂t
J (X∗

t , p∗
t ) ≤ ξ∗

t b(u∗
t , X∗

t , p∗
t )

= β J (X∗
t , p∗

t ) − c(X∗
t , p∗

t , u∗
t )

−
n∑

j=1

(
J (e j , p∗

t−+�X∗
t− j (u

∗
t , p∗

t−))− J (X∗
t−, p∗

t−)
)

q X
X∗

t− j (u
∗
t , p∗

t−)

and

∂

∂t

(
e−βt J (X∗

t , p∗
t )
) = e−βt (−β J (X∗

t , p∗
t ) + ξ∗

t b(u∗
t , X∗

t , p∗
t )
)
,

and by integration from 0 to t we get

e−βt J (X∗
t , p∗

t ) ≤ J (x, p) −
t∫

0

e−βsc(X∗
s , p∗

s , u∗
s )ds

+
t∫

0

e−βs
n∑

j=1

(
J (e j , p∗

s− + �X∗
s− j (u

∗
s , p∗

s−)) − J (X∗
s−, p∗

s−)
)

·
(

d N X
s (X∗

s−, e j ) − q X
X∗

s− j (u
∗
s , p∗

s−)ds
)

.

Letting t → ∞ then e−βt J (X∗
t , p∗

t ) → 0 and taking expectation we obtain

J (x, p) ≥ E

⎡

⎣

∞∫

0

e−βt c(X∗
t , p∗

t , u∗
t )dt

⎤

⎦ .

This proves the optimality of u∗. Next we have to prove the uniqueness. Let J̃ (x, p) be
another locally Lipschitz and regular solution of the HJB-equation. By interchanging
J̃ (x, p) and J (x, p) in the proof above we conclude, that J̃ (x, p) ≥ J (x, p). On the
other hand we get as in the proof of Theorem 3 that

e−βt J̃ (Xt , pt )

= J̃ (x, p) +
t∫

0

D
(

e−βs J̃ (Xs, ps)
)

ds

+
t∫

0

e−βs
n∑

j=1

(
J̃ (e j , ps− + �Xs− j (us, ps−)) − J̃ (Xs−, ps−)

)
d N X

s (Xs−, e j ).
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At those points p where J̃ (x, p) is differentiable we know from the HJB-equation
that

D
(

e−βs J̃ (Xs, ps)
)

≥ e−βs

⎛

⎝ − c (Xs, ps, us)

−
n∑

j=1

(
J̃
(
e j , ps− + �Xs− j (us, ps−)

) − J̃ (Xs−, ps−)
)

q X
Xs− j (us, ps−)

⎞

⎠

and since J̃ (x, p) is differentiable almost everywhere we conclude by integration from
0 to t that

e−βt J̃ (Xt , pt ) ≥ J̃ (x, p) −
t∫

0

e−βsc(Xs, ps, us)ds

+
t∫

0

e−βs
n∑

j=1

(
J̃
(
e j , ps− + �Xs− j (us, ps−)

) − J̃ (Xs−, ps−)
)

·
(

d N X
s (Xs−, e j ) − q X

Xs− j (us, ps−)ds
)

.

Letting t → ∞ and taking expectation we finally get

J̃ (x, p) ≤ E

⎡

⎣

∞∫

0

e−βsc(Xs, ps, us)ds

⎤

⎦ ,

since the second integral is a martingale. This inequality holds for all u ∈ U , hence
J̃ (x, p) ≤ J (x, p). 	


4.2 Solution via a discrete-time Markov decision problem

Since (Xt , pt ) is a piecewise-deterministic process, we are able to solve the stochas-
tic control problem (P̃) by a discrete-time Markov Decision Problem (MDP). Based
on the post-jump state an action a = (at ) with a : [0,∞) → U has to be chosen
(depending on the time t elapsed since the last jump).

Define

α := max
i,k

max
u∈U

∑

j �=i

q X
i j (u, k).

Then the uniformized state process (Xt ) is characterized by its jump times Tn with
Tn+1 − Tn ∼ exp(α) and its (uniformized) transition probability
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pX
i j (u, k) =

⎧
⎨

⎩

q X
i j (u,k)

α
i �= j

1 − q X
i (u,k)

α
i = j

with q X
i (u, k) := ∑

j �=i q X
i j (u, k). The process (pt ) jumps if and only if (Xt ) jumps

and then its jump size is determined by �i j (u, p). Between two jumps under an action
a = (at ) the process (pt ) evolves according to the (deterministic) differential equa-
tion dpt = b(at , x, pt )dt, XTn = x . For t ∈ [Tn, Tn+1) and XTn = x it holds that
pt = φa

t−Tn
(x, pTn ) where φa

t (x, p) is the unique solution of

dpt = b(at , x, pt )dt, p0 = p.

The (uniformized) discrete-time MDP (S, A, D, q, r, δ) is then defined by

S := SX × �m

A := {a : [0,∞) → U | measurable}

q ((x, p), a, (y, B)) :=
∞∫

0

e−αt q X
xy

(
at , φ

a
t (x, p)

)
1
{
φa

t (x, p)

+�xy
(
at , φ

a
t (x, p)

) ∈ B
}

dt, x �= y

q ((x, p), a, (x, B)) := 1 −
∑

y �=x

q ((x, p), a, (y, B))

c(x, p, a) :=
∞∫

0

αe−αt

⎛

⎝

t∫

0

e−βsc
(
x, φa

s (x, p), as
)

ds

⎞

⎠ dt

δ := α

α + β
< 1.

A sequence π = ( fn) ∈ F∞ where fn ∈ F := { f : S → A measurable} is called a
(Markov) strategy. The expected cost of such a strategy π = ( f0, f1, . . .) is defined
by

Vπ (x, p) := Eπ

[ ∞∑

n=0

δn c
(
XTn , pTn , fn

(
XTn , pTn

)) | X0 = x, p0 = p

]

where the expectation is taken with respect to Pπ which is defined by the transition
probabilities q and a strategy π . The expectation is well-defined. The value function
of the discrete-time MDP is denoted by

V (x, p) := inf
π∈F∞ Vπ (x, p), (x, p) ∈ S.
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Define for v ∈ B := {v : S → R+ | measurable} the well-known operators

(Lv)(x, p, a) := c̄(x, p, a) + δ

∫

�m

∑

y∈SX

v(y, ρ)q ((x, p), a, (y, dρ))

=
∞∫

0

e−(α+β)t

⎧
⎨

⎩
c
(
x, φa

t (x, p), at
)+v

(
x, φa

t (x, p)
)(
α−q X

x

(
at , φ

a
t (x, p)

))

+
∑

y �=x

v
(
y, φa

t (x, p) + �xy
(
at , φ

a
t (x, p)

))
q X

xy

(
at , φ

a
t (x, p)

)

⎫
⎬

⎭
dt

(T v)(x, p) := inf
a∈A

(Lv)(x, p, a), (x, p) ∈ S.

The relation between (P̃) and the introduced MDP is shown in the following theorem.

Theorem 5 (a) J (x, p) = V (x, p).
(b) If π∗ = ( fn) ∈ F∞ is optimal for the MDP, then u∗ = (u∗

t ) ∈ U with

u∗
t := fn(X∗

Tn
, p∗

Tn
)(t − Tn) for t ∈ [Tn, Tn+1)

is optimal for (P̃) and hence also for (P).

Proof (a) Let u = (ut ) be a Markovian control, i.e. there exists a strategy π = ( fn)

with fn ∈ F such that

ut = fn(XTn , pTn )(t − Tn) for t ∈ [Tn, Tn+1).

Then we obtain

J (x, p; u) = E

⎡

⎣

∞∫

0

e−βt c (Xt , pt , ut ) dt

⎤

⎦

= E

⎡

⎢
⎣

∞∑

n=0

Tn+1∫

Tn

e−βt c (Xt , pt , ut ) dt

⎤

⎥
⎦

=
∞∑

n=0

E

⎡

⎢
⎣e−βTn E

⎧
⎪⎨

⎪⎩

Tn+1−Tn∫

0

e−βt c
(
Xt+Tn , pt+Tn , ut+Tn

)
dt | XTn , pTn

⎫
⎪⎬

⎪⎭

⎤

⎥
⎦

=
∞∑

n=0

Eπ

[
n∏

k=1

e−β(Tk−Tk−1)c
(
XTn , pTn , fn(XTn , pTn )

)
]

=
∞∑

n=0

Eπ

[
δnc(XTn , pTn , fn(XTn , pTn ))

]
.
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Hence

J (x, p; u) = Vπ (x, p). (6)

Now, let u = (ut ) ∈ U be arbitrary. Then there exists a sequence ( fn) with
fn : Sn+1 → A such that

ut = fn(XT0 , pT0 , . . . , XTn , pTn )(t − Tn) for t ∈ [Tn, Tn+1).

Due to the Markovian structure of the state process, we obtain (see Bertsekas and
Shreve 1978, p. 216)

J (x, p) = inf
u Markovian

J (x, p; u) = V (x, p).

(b) follows from (a) and (6). 	

To state an existence result for an optimal policy for the MDP (and hence for (P̃)

and (P)) we have to extend deterministic controls to relaxed controls r ∈ R where

R := {r : [0,∞) → P(U ) | measurable} .

For a relaxed control r = (rt ) ∈ R define

r t :=
∫

U

u rt (du) ∈ U.

Instead of choosing at each time point t a fixed control parameter u ∈ U we randomize
now over the set of possible values in U . The case of deterministic controls is always
included by choosing the Dirac-measure on U . Because of the relaxation we have to
consider our state process (Xt , pt ) now with respect to relaxed controls. We define for
a relaxed control r = (rt ) the corresponding state process (Xr

t , pr
t ) by its (relaxed)

intensities

q X
i j (r, k) :=

∫

U

q X
i j (u, k)r(du).

φr
t (x, p) is the unique solution of

dpt = b(r t , x, pt )dt, p0 = p.

Note that the drift component is not relaxed. Hence we conclude

φr
t (x, p) = φr

t (x, p). (7)
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The jump times are again exp(α)-distributed and the jump size of (pt ) under a relaxed
control is given by

�i j (r, p) :=
∫

U

�i j (u, p)r(du).

The process (Xr
t , pr

t ) is well-defined (Davis 1993). Finally, the cost rate under a relaxed
control r is given by

c(x, p, r) :=
∫

U

c(x, p, u)r(du).

Proposition 2 (a) R is compact.
(b) (p, r) �→ φr

t (x, p) is continuous on �m × R.

Proof (a) Davis (1993, Proposition 43.3).
(b) Let rn → r and pn → p and let φ

rn
t (x, pn) and φr

t (x, p) be the unique solutions
of

dpt = b(rn
t , x, pt )dt, p0 = pn and dpt = b(r t , x, pt )dt, p0 = p.

Then

|φrn
t (x, pn) − φr

t (x, p)|

≤ |pn − p| +
t∫

0

∣
∣b(rn

s , x, φrn
s ) − b(rn

s , x, φr
s )
∣
∣ ds

+
t∫

0

∣
∣b(rn

s , x, φr
s ) − b(rs, x, φr

s )
∣
∣ ds

≤ |pn − p| +
t∫

0

L|φrn
s − φr

s |ds +
t∫

0

∣
∣b(rn

s , x, φr
s ) − b(rs, x, φr

s )
∣
∣ ds

where the last inequality is true due to the Lipschitz continuity of p �→ b(r, x, p).
Since rn → r and pn → p the statement follows if the second integral tends to
0. Remember that b(r, x, p) is continuous in r , and p �→ b(r, x, p) − b(r̃ , x, p)

is Lipschitz continuous on the compact set �m and bilinear-quadratic. Therefore
the maximum point p∗(r) is a continuous function of r and we conclude that

|b(r, x, p) − b(r̃ , x, p)| ≤ |h(r, x) − h(r̃ , x)|
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for a continuous function h(·, x). Hence we are able to apply the Grönwall-
inequality and obtain

∣
∣
∣φ

rn

s − φr
s

∣
∣
∣ ≤ eLs

∣
∣pn − p

∣
∣ + eLs

s∫

0

e−Lt
∣
∣h(rn

t , x) − h(rt , x)
∣
∣ dt.

Therefore, |φrn

s − φr
s | → 0 and finally |φrn

t (x, pn) − φr
t (x, p)| → 0. 	


Using results of MDP-theory we are in a position to state the following main exis-
tence result.

Theorem 6

(a) There exists an optimal stationary relaxed strategy π∗ = ( f ∗, f ∗, . . .) for the
MDP, i.e. f ∗(x, p) ∈ R and Vπ∗ = V .

(b) If u �→ F(x, p, u) is convex, where

F(x, p, u) := c(x, p, u) +
∑

y �=x

V (y, p + �xy(u, p))q X
xy(u, p)

+ V (x, p)

⎛

⎝α −
∑

y �=x

q X
xy(u, p)

⎞

⎠

then

π∗ =
(

f
∗
, f

∗
, . . .

)

is an optimal stationary deterministic strategy for the MDP, where

f
∗
(x, p) :=

∫

U

u f ∗(x, p)(du) ∈ A.

Proof (a) It is sufficient to prove that there exists f ∗ with

(LV )(x, p, f ∗(x, p)) = inf
r∈R

(LV )(x, p, r).

We know from Proposition 2 that R is compact. Since r �→ φr
t (x, p), r �→

q X
i j (r, p) and r �→ c(x, p, r) are continuous and p �→ V (x, p) is concave, we

conclude that

r �→ (LV )(x, p, r)

is continuous. Hence there exists a measurable minimizer f ∗(x, p).

123



Optimal control of Markovian jump processes 585

(b) Since U is convex, f
∗
(x, p)(t) ∈ U for all t ≥ 0. It holds

T V (x, p) = inf
a∈A

(LV )(x, p, a) ≥ inf
r∈R

(LV )(x, p, r).

On the other hand we get in view of (7)

(LV )(x, p, r) =
∞∫

0

∫

U

e−(α+β)t F
(
φr

t (x, p), x, u
)

r(du)dt

=
∞∫

0

∫

U

e−(α+β)t F
(
φr

t (x, p), x, u
)

r(du)dt

≥
∞∫

0

e−(α+β)t F
(
φr

t (x, p), x, r
)

dt = (LV )(x, p, r)

and

inf
r∈R

(LV )(x, p, r) ≥ inf
r∈R

(LV )(x, p, r) = inf
a∈A

(LV )(x, p, a) = T V (x, p).

In total, T V (x, p) = inf
r∈R

(LV )(x, p, r). Therefore,

T V (x, p) = (LV )(x, p, f ∗(x, p)) ≥ (LV )(x, p, f
∗
(x, p)) ≥ T V (x, p).

Since f
∗
(x, p) is a measurable minimizer, the stationary deterministic strategy

( f
∗
, f

∗
, . . .) is optimal for the MDP. 	


The following existence result follows from Theorems 5 and 6. The function u �→
F(x, p, u) is convex if the following conditions are satisfied:

(C)

⎧
⎪⎨

⎪⎩

u �→ c(x, p, u) is convex

u �→ q X
i j (u, p) is linear

�i j (u, p) is independent of u.

Theorem 7 Assume (C). Then there exists an optimal control process for (P̃) and
hence also for (P).

5 A parallel queueing model

Queueing models appear in different and various fields, for example in data flow of
the internet, in machinery productions or in call centers. They are treated carefully in
several publications and also over the last years with the restriction of partial informa-
tion (Altman et al. 2003; Honhon and Seshadri 2007; Lin and Ross 2003). But most of
them are not able to characterize the optimal control completely, whereas we can do.
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Fig. 1 Parallel queueing model

We consider now a parallel queueing model (Fig. 1) described as follows. There are
two queues with infinite buffer, where customers arrive at queue k corresponding to
a Poisson process with arrival rate λk , k = 1, 2. Additionally, one server is available,
who has to decide at each time point t which of the two queues (to be more precisely:
which one of the first customers waiting in each queue) is served. The service time of a
customer in queue 1 is exp(µ)-distributed, in queue 2 exp(ν)-distributed. We assume
that arrivals and service times are independent. For each waiting customer a cost at rate
ck , k = 1, 2, occurs and we want to find a service strategy for the server minimizing
the expected discounted waiting costs over an infinite horizon.

It is well-known that in the case of complete information the µc-rule is optimal
(Asmussen 2003). That means under c1µ ≥ c2ν it is optimal to serve queue 1 if there
is a customer waiting, if not then serve queue 2.

We assume now that the service rates are Bayesian. This means in the context of the
previous sections Zt = (Z1

t , Z2
t ) with Z1

t ∈ {µ1, µ2}, Z2
t ∈ {ν1, ν2} with Q Z ≡ 0,

P(Z1
0 = µ1) = p0, P(Z2

0 = ν1) = q0. This situation may occur if two types of
customers are in the system and the server can not differ which group is waiting in
which queue.

The server now can spend his service capacity simultaneously to both queues.
Therefore the control set U is defined by U = [0, 1] in contrast to the pure service
restriction in the classical complete information model. There we have seen that it is
never optimal to split service. We interpret u ∈ U as the service rate spent to queue 1.
Hence the service rate 1 − u is spent to queue 2.

The extension of the theory developed in Sects. 2, 3 and 4 to countable state spaces
is straightforward if the generator of the two-dimensional Markovian jump process
Xt = (X1

t , X2
t ) is conservative. We understand Xk

t as the number of customers waiting
in queue k. Hence SX = N0 × N0 with x = (x1, x2) ∈ SX .

Define the filter process for the both service rates by pt := P(Z1
t = µ1|F X

t ) and
by qt := P(Z2

t = ν1|F X
t ). We will consider in the following only pt . The results can

be analogously derived for qt .
The F X

t -generator of (Xt ) is given by Q X(u, p, q)=(q X
i j (u, p, q)) with q X

xy(u, p, q)

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

µ(p)u1(x1 > 0) (y1, y2)=(x1 − 1, x2)

ν(q)(1 − u)1(x2 > 0) (y1, y2)=(x1, x2 − 1)

λ1 (y1, y2)=(x1 + 1, x2)

λ2 (y1, y2)=(x1, x2 + 1)

−λ1 − λ2 − µ(p)u1(x1 > 0) − ν(q)(1 − u)1(x2 > 0) y=x
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where µ(p) := µ1 p + µ2(1 − p) is the estimated service rate (the conditional mean)
at queue 1, analogously ν(q) := ν1q + ν2(1 − q).

5.1 The filter process

Lemma 1 The filter process (pt ) is the unique solution of

dpt = ut
(
µ2 − µ1

)
pt (1 − pt )1

(
X1

t > 0
)

dt + �1(pt−)d N 1
t

(
X1

t−, X1
t− − 1

)

(8)

where the jump-size �1(p) is given by

�1(p) = 1

µ(p)
µ1 p − p.

Note that �1(p) is independent of the control u = (ut ).

Proof The assertions are a direct consequence of Theorem 1. 	

We see that pt jumps if and only if new information about the unknown service

rate is available. This is the case if and only if the service of a customer in queue 1 is
finished. In this case the new estimate pt is proportional to the possible intensities µ1
and µ2 with respect to the pre-jump-estimate pt−, that means

pt = pt− + �1(pt−) = 1

µ(pt−)
µ1 pt−.

We omit in the following 1(X1
t > 0) since it is obvious that new information is only

available through service, which is reasonable only if customers are waiting in queue 1.
Between the jumps pt is described by the deterministic part of (8)

dpt = ut (µ2 − µ1)pt (1 − pt )dt

and can be calculated explicitly.

Lemma 2 Denote by Tn the nth jump time of (pt ). For t ∈ [Tn, Tn+1) and pTn = p,
it holds that pt = φu

t−Tn
(p) where

φu
t (p) = p exp{(µ2 − µ1)

∫ t
0 usds}

p exp{(µ2 − µ1)
∫ t

0 usds} − p + 1
. (9)

Remark 2 (1) If p = 1 then φu
t (p) ≡ 1. On the other hand if p = 0 then φu

t (p) ≡ 0.

If we have complete information about Z1
t , then the estimator does not change

between the jumps. It will be constant over time and the complete information is
not destroyed.
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(2) If only queue 2 is served for s ∈ [t, t+h] then φu
s (p) ≡ φu

t (p) for all s ∈ [t, t+h].
Thus the estimator pt is updated only if queue 1 is served.

(3) pt is independent of the length of the queues Xt = (X1
t , X2

t ) as long as X1
t > 0.

We assume now without loss of generality

µ1 < µ2. (10)

This assumptions induces that service under µ2 tends to an earlier completion than
under µ1. We investigate next the behaviour of φu

t (p) in dependence of t and p.

Lemma 3 (a) t �→ φu
t (p) is monotone increasing for all p ∈ [0, 1].

(b) t �→ φu
t (p) is Lipschitz continuous for all p ∈ [0, 1].

(c) p �→ φu
t (p) is monotone increasing for all t ≥ 0.

(d) p �→ φu
t (p) is concave for all t ≥ 0.

(e) p �→ φu
t (p) is Lipschitz continuous, uniformly in u for all t ≥ 0.

Proof (a)–(d) follow directly by differentiation.
(e) We first note that for the denominator of φu

t (p) in (9) holds, that

p exp

⎧
⎨

⎩
(µ2 − µ1)

t∫

0

usds

⎫
⎬

⎭
− p + 1 ≥ 1

and we conclude with p1, p2 ∈ [0, 1]:

|φu
t (p1) − φu

t (p2)| ≤
∣
∣
∣
∣
∣
∣
(p1 − p2) exp

⎧
⎨

⎩
(µ2 − µ1)

t∫

0

usds

⎫
⎬

⎭

∣
∣
∣
∣
∣
∣

≤ exp {(µ2 − µ1)t} |p1 − p2|.

	

By part (a) if us > 0 for s ∈ [t, t + h] we have strong monotonicity for p ∈ (0, 1).

But if us ≡ 0 then φu
s (p) is constant in [t, t + h]. In other words: if one serves queue

1, then the parameter µ1 becomes more likely. This is reasonable since µ2 > µ1. The
greater the prior probability p, the greater is the estimate φu

t (p).
After we have discussed the behaviour of pt between the jumps we analyze now

the jump behaviour of pt (where the jump-size is independent of the control). It can
be proven that a jump reduces the probability that µ1 is the true parameter.

Lemma 4

(a) p + �1(p) = 1
µ(p)

µ1 p < p for p ∈ (0, 1); in particular �1(p) < 0.

(b) p �→ p + �1(p) is monotone increasing on (0, 1).

(c) p �→ φu
t (p) + �1(φ

u
t (p)) is Lipschitz continuous.

Proof (a)–(b) follow directly from the form of �1(p).
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(c) Since µ(p) ≥ µ1 and

µ
(
φu

t (p2)
)
φu

t (p1) − µ
(
φu

t (p1)
)
φu

t (p2) = µ2
(
φu

t (p1) − φu
t (p2)

)

we conclude

∣
∣φu

t (p1) + �1(φ
u
t (p1)) − φu

t (p2) − �1(φ
u
t (p2))

∣
∣

=
∣
∣
∣
∣
∣

µ1φ
u
t (p1)

µ
(
φu

t (p1)
) − µ1φ

u
t (p2)

µ
(
φu

t (p2)
)

∣
∣
∣
∣
∣

= µ1

∣
∣
∣
∣
∣

µ
(
φu

t (p2)
)
φu

t (p1) − µ
(
φu

t (p1)
)
φu

t (p2)

µ
(
φu

t (p1)
)
µ
(
φu

t (p2)
)

∣
∣
∣
∣
∣

≤ µ2

µ1

∣
∣φu

t (p1) − φu
t (p2)

∣
∣ .

	

Note that �1(0) = �1(1) = 0. Thus if we have complete information before a

jump, we have complete information after a jump or in other words: new information
(due to jumps) gives no update. But if p ∈ (0, 1) the estimator is updated due to a
finished service. If µ1 = 0 we have pt = pt− +�1(pt−) = 1

µ(pt−)
µ1 pt− = 0. Hence

after a jump (which is impossible under the hypothesis Z1
t = µ1 = 0) the conditional

probability pt ≡ 0 for all t .
From (b) we obtain: the greater the prior probability pt−, the greater the posterior

probability pt after a jump. In particular we saw in the proof that under the hypothesis
Z1

t = µ1 = 0 the function p �→ p + �1(p) is constant.

5.2 General statements

Since the cost function c(x, p, u) := c1x1+c2x2 is independent of u and the intensities
are linear in u we conclude immediately from Theorem 7 the existence of an optimal
deterministic control. Before characterizing the optimal control more precisely, we
compute the value function J (x, p, q) = V (x, p, q).

Theorem 8 Let x = (x1, x2) ∈ N
2. The value function is given by

J (x, p, q) = c1x1 + c2x2

β
+ c1λ1 + c2λ2

β2 + g(p, q) (11)

where g(p, q) is the unique solution of
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g(p, q)

= inf
a∈A

⎧
⎨

⎩

∞∫

0

e−(α+β)t
{(

g
(
φa

t (p) + �1(φ
a
t (p)), ϕa

t (q)
) − g

(
φa

t (p), ϕa
t (q)

) − c1

β

)

×µ(φa
t (p))at +

(

g
(
φa

t (p), ϕa
t (q) + �2(ϕ

a
t (q))

) − g
(
φa

t (p), ϕa
t (q)

) − c2

β

)

× ν(ϕa
t (q))(1 − at ) + g(φa

t (p), ϕa
t (q))α

}

dt

⎫
⎬

⎭
.

ϕa
t (q) is the analogon to φa

t (p) for qt .

Proof By induction on n we prove for Jn(x, p, q) := T Jn−1(x, p, q) (with J0 := 0)
that

Jn(x, p, q) = (c1x1 + c2x2) Kn + (c1λ1 + c2λ2) Ln−1 + gn−1(p, q).

Here, Kn := 1
α+β

∑n−1
k=0(

α
α+β

)k , Ln+1 := 1
α+β

(Kn+1 + αLn) (with L0 := 0) and
further gn+1(p, q) := Agn(p, q) (with g0 := 0), where Ag(p, q) denotes the right
hand side of the characterization of g(p, q) in the theorem. Since the value iterations
holds, i.e. J (x, p, q) = limn→∞ Jn(x, p, q), the statement follows. 	


We see that the value function has a separation property and is also increasing in
the number of waiting customers x1 and x2. Formula (11) has the following interpreta-
tion: The first term are the discounted costs for waiting customers, the second one are
the expected discounted costs due to new arrivals and the third one are the expected
reduced costs due to the finished service of a waiting customer.

Corollary 1 Denote by J C (x) the value functions of the complete information model.
Then it holds:

0 ≥ J C (x) − J (x, p, q) = −c1µ

β2 − g(p, q).

Proof The value function for the complete information model reads due to Theorem 8
as

J C (x) = c1x1 + c2x2

β
+ c1λ1 + c2λ2

β2 − c1µ

β2 .

Since every control of the partial information model is admissible for the complete
information model, we get J (x, p, q) ≥ J C (x). 	


Let us now study the optimal control process in more detail. From Theorem 3 we
know that the value function J (x, p, q) is a solution of the generalized HJB-equation
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given by

βv(x, p, q) = inf
ξp∈∂pv(x,p,q)

ξq∈∂qv(x,p,q)
u∈[0,1]

Hv(x, p, q, u, ξp, ξq) (12)

where the generalized Hamiltonian for x ∈ N
2 is defined as

Hv(x, p, q, u, ξp, ξq) := c1x1 + c2x2

+ ξp(µ2 − µ1)p(1 − p)u + ξq(ν2 − ν1)q(1 − q)(1 − u)

+ (v (x1 + 1, x2, p, q) − v (x1, x2, p, q)) λ1

+ (v (x1, x2 + 1, p, q) − v (x1, x2, p, q)) λ2

+ (v (x1 − 1, x2, p + �1(p), q) − v (x1, x2, p, q)) µ(p)u

+ (v (x1, x2−1, p, q+�2(q))−v (x1, x2, p, q)) ν(q)(1−u).

By Theorem 4 it is sufficient to compute the minimum points (u∗, ξ∗
p, ξ∗

q ) of the
generalized Hamiltonian. We note first that u �→ Hv(·, u) is linear. Consequently the
minimum point will be (if it is unique) equal to 0 or 1. Hence the optimal control will
serve one queue exclusively. If the minimum point u∗ is not unique, i.e. in cases where
Hv(·, u) does not depend on u or Hv(·, 0) = Hv(·, 1), we choose u∗ in such a way
that pt and qt keep constant between the jumps.

Theorem 9 There exists an optimal control u∗ =(u∗
t )∈U with u∗

t =u∗(X∗
t−, p∗

t−, q∗
t−)

where

u∗(x, p, q) =

⎧
⎪⎨

⎪⎩

0 x1 = 0

1 x2 = 0

u∗(p, q) x ∈ N
2.

In particular, if the minimum point of (12) is unique, only one queue is served exclu-
sively, i.e. u∗(p, q) ∈ {0, 1}.

Proof It is clear that it is never optimal to serve an empty queue, hence we only have
to consider the case x ∈ N

2. For this we apply the Verification Theorem 4. If we can
prove that there exists a minimum point (u∗, ξ∗

p, ξ∗
q ) of the generalized Hamiltonian,

then the statement follows. Due to the linearity of H J (x, p, q, u, ξp, ξq) in u and by
using

F(x, p, q) := c1x1 + c2x2 + (J (x1 + 1, x2, p, q) − J (x1, x2, p, q)) λ1

+ (J (x1, x2 + 1, p, q) − J (x1, x2, p, q)) λ2
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the HJB-equation can be written as

β J (x, p, q) − F(x, p, q)

= min

{

inf
ξp∈∂p J (x,p,q)

{
ξp(µ2 − µ1)p(1 − p)

+ (J (x1 − 1, x2, p + �1(p), q) − J (x1, x2, p, q)) µ(p)
}
,

inf
ξq∈∂q J (x,p,q)

{
ξq(ν2 − ν1)q(1 − q)

+ (J (x1, x2 − 1, p, q + �2(q)) − J (x1, x2, p, q)) ν(q)
}
}

= min
{

J0,p(x, p, q; 1)(µ2 − µ1)p(1 − p)

+ (J (x1 − 1, x2, p + �1(p), q) − J (x1, x2, p, q)) µ(p),

J0,q(x, p, q; 1)(ν2 − ν1)q(1 − q)

+ (J (x1, x2 − 1, p, q + �2(q)) − J (x1, x2, p, q)) ν(q)
}

where we used (4) and the definition of the lower Clarke derivative J0,p(x, p, q; 1)

with respect to p. Since J (x, p, q) is regular in p we conclude that J0,p(x, p, q; 1)

exists and is equal to the right derivative. Analogously for J0,q(x, p, q; 1). 	


5.3 The symmetric case

Assume now that µ1 = ν2, µ2 = ν1 and c1 = c2 = 1. Additionally we assume that
if Z1

t = µ1, then Z2
t = µ2 and vice versa. This will be called the symmetric case. In

particular, we assume again µ2 > µ1 and hence we see that if the true value Z1
t = µ1

then queue 1 is the “bad” queue and an optimal controller prefers according to the
cµ-rule always queue 2. If on the other hand Z1

t = µ2 then the optimal decision is
vice versa.

Since we are in the symmetric case it is sufficient to consider only the filter process

pt := P

(
Z1

t = µ1 | F X
t

)
= P

(
Z2

t = µ2 | F X
t

)

which is the solution of

dpt = (µ2 − µ1)(2ut − 1)pt (1 − pt )dt

+�1(pt−)d N 1
t

(
X1

t−, X1
t− − 1

)
+ �2(pt−)d N 2

t

(
X2

t−, X2
t− − 1

)

with

�1(p) := 1

µ(p)
µ1 p − p and �2(p) := 1

µ(1 − p)
µ2 p − p.
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Here we set again µ(p) := µ1 p+µ2(1− p). From this stochastic differential equation
we see that between the jump times Tn and Tn+1

pt = φu
t−Tn

(pTn ) is

⎧
⎨

⎩

monotone increasing
constant

monotone decreasing

⎫
⎬

⎭
if ut

⎧
⎨

⎩

>

=
<

⎫
⎬

⎭

1

2
.

The interpretation of this result is as in Sect. 5.1. But now the filter process depends on
both queues. The completion of a service in both queues leads to jumps and therefore
to updates of the filter process. Since µ2 > µ1 it follows

�1(p) ≤ 0 and �2(p) ≥ 0. (13)

By Theorem 8 the value function is given by

J (x, p) = x1 + x2

β
+ λ1 + λ2

β2 + g(p)

where g(p) is the unique solution of

g(p) = inf
a∈A

⎧
⎨

⎩

∞∫

0

e−(α+β)t
{(

g
(
φa

t (p)+�1(φ
a
t (p))

)−g
(
φa

t (p)
)− 1

β

)

µ
(
φa

t (p)
)

at

+
(

g
(
φa

t (p) + �2
(
φa

t (p)
)) − g

(
φa

t (p)
) − 1

β

)

µ
(
1 − φa

t (p)
)
(1 − at )

+g(φa
t (p))α

}

dt

⎫
⎬

⎭
.

Obviously it holds

g(p) = g(1 − p).

The function p �→ g(p) is also concave, monotone increasing for p < 1
2 and decreas-

ing for p > 1
2 . Therefore we get for an element ξ of the generalized Clarke gradient

∂pg(p) = co
{
lim supn→∞ ∇g(pn) | limn→∞ pn = p

}
that ξ ≥ 0 if p < 1

2 , ξ ≤ 0
for p > 1

2 and {0} ∈ ∂pg( 1
2 ). Additionally we have

∂pg(p) = −∂pg(1 − p),

hence ∂pg( 1
2 ) is a symmetric interval (with respect to 0). The following Theorem

shows that the optimal control is also “symmetric”.

Theorem 10 For the existing optimal control from Theorem 9 it holds: u∗(p)=1 −
u∗(1 − p).
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Proof From the proof of Theorem 3 we conclude that the value function J (x, p)

and the optimal control (u∗
t ) with corresponding state process (X∗

t , p∗
t ) fulfils the

generalized HJB-equation for almost all t ≥ 0. For x ∈ N
2 and with Theorem 8 this

can be written as

inf
ξ∈∂p g(p∗

t )
Hg

(
p∗

t , u∗(p∗
t−), ξ

) = 0,

where

Hg(p, u, ξ) :=
(

g(p + �1(p)) − g(p) − 1

β

)

µ(p)u

+
(

g(p + �2(p)) − g(p) − 1

β

)

µ(1 − p)(1 − u)

+ξ(p) · (µ2 − µ1)p(1 − p)(2u − 1) − βg(p)

=: v(p)u + w(p).

Due to p − �1(1 − p) = p + �2(p) and the symmetry of g(p) and ∂pg(p) we
conclude that

Hg(1 − p, u, ξ) = −v(p)u + w̃(p).

By the linearity of Hg(p, u, ξ) in u and the symmetry of the coefficients v(p) of u it
follows that if u∗(p) = 1 is a minimum point of u �→ Hg(p, u, ξ), then u∗(1− p) = 0
is a minimum point of u �→ Hg(1 − p, u, ξ). Analogously for u∗(p) = 0. If p = 1

2
we will see later that 0 and 1 are minimum points of the generalized Hamiltonian.
Thus u∗ ( 1

2

) = 1
2 can be chosen as optimal decision. Hence the statement is proven.

	

The next theorem states that it is always optimal to serve the queue where the better

service rate is assumed. It shows the optimality of a threshold-strategy with threshold
p∗ = 1

2 . In other words the certainty equivalence principle for the cµ-rule holds true,
since

µ(p) ≥ µ(1 − p) ⇐⇒ p ≤ 1

2
.

Theorem 11 Let (u∗
t ) ∈ U be the existing optimal control from Theorem 9. Then

u∗(p) is given by

u∗(p) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 p < 1
2

1
2 p = 1

2

0 p > 1
2 .

In particular, u∗(p) is a threshold control with threshold p∗ = 1
2 .
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Proof Choose ξ∗ as the lower derivative of g(p) for p < 1
2 (see the proof of

Theorem 9). Due to the separation property of the value function J (x, p) we only
have to compute the minimum points of the Hamiltonian Hg(p, ·, ξ∗). For this we
have to show that

v(p)

⎧
⎨

⎩

<0 p < 1
2

=0 p = 1
2

(see the proof of Theorem 10). Define

h(p) := 2ξ∗(µ2 − µ1)p(1 − p) − µ(p)

β
+ µ(1 − p)

β
.

Then

v(p)=
[(

g

(
µ1 p

µ(p)

)

−g(p)

)

µ(p)−
(

g

(
µ2 p

µ(1 − p)

)

−g(p)

)

µ(1 − p) + h(p)

]

u.

It holds that h(p) < 0 for p < 1
2 . Since p �→ g(p) is concave, we know that

g(p) ≥ p − p1

p2 − p1
g(p2) + p2 − p

p2 − p1
g(p1)

for all 0 ≤ p1 ≤ p ≤ p2 ≤ 1, p2 �= p1. Choosing now p1 := µ1 p
µ(p)

and p2 := µ2 p
µ(1−p)

,
we conclude

(p2 − p1)g(p)µ(p)µ(1 − p) = (µ2 pµ(p) − µ1 pµ(1 − p)) g(p)

≥ (µ(p)p − µ1 p) µ(1 − p)g

(
µ2 p

µ(1 − p)

)

+(µ2 p − µ(1 − p)p)µ(p)g

(
µ1 p

µ(p)

)

and after rearranging terms

0 ≥
[(

g

(
µ1 p

µ(p)

)

− g(p)

)

µ(p) −
(

g

(
µ2 p

µ(1 − p)

)

− g(p)

)

µ(1 − p)

]

×(µ2 − µ1)(1 − p).

Since (µ2 − µ1)(1 − p) > 0 it follows that v(p) < 0 for p < 1
2 .

If p = 1
2 then (u∗, ξ∗) = (1, g0

p(
1
2 ; 1)) and (u∗, ξ∗) = (0, g0,p(

1
2 ; 1)) are min-

imum points of the Hamiltonian. Hence both allocations are optimal. We choose
u∗ ( 1

2

) = 1
2 which is a minimum point with corresponding gradient ξ∗= 1

2 (g0,p(
1
2 ; 1)+

g0
p(

1
2 ; 1)) = 0 ∈ ∂pg( 1

2 ). In this case, the filter p∗
t remains constant (= 1

2 ) between
the jumps. 	
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596 U. Rieder, J. Winter

Remark 3 From the proof we conclude the so-called stay-on-a-winner property: If the
server finishes the service of a customer at queue k, then the server will continue serv-
ing queue k (assuming queue k is not empty). The stay-on-a-winner property follows
directly from (13) and Theorem 11. A similar results was obtained in Donchev (1998)
and Donchev (1999) in the context of bandit problems.
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