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Abstract This work is concerned with controlled Markov chains with finite state
and action spaces. It is assumed that the decision maker has an arbitrary but constant
risk sensitivity coefficient, and that the performance of a control policy is measured by
the long-run average cost criterion. Within this framework, the existence of solutions
of the corresponding risk-sensitive optimality equation for arbitrary cost function is
characterized in terms of communication properties of the transition law.
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1 Introduction

This note concerns Markov decision chains with finite state and action spaces. It is
assumed that the controller grades a random cost through the utility function with con-
stant risk sensitivity coefficient λ, and the performance of a control policy is measured
by the corresponding (long-run) risk-sensitive average cost criterion. In his context,
the main objective of this note is the following:
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542 R. Cavazos-Cadena

To determine necessary and sufficient conditions on the transition law so that, for arbi-
trary cost function, the corresponding risk-sensitive average cost optimality equation
has a solution.

The results on this problem are stated in Theorems 3.1–3.3 below and can be roughly
described as follows:

(i) Given λ �= 0, a solution of the corresponding risk-sensitive average cost opti-
mality equation exists for arbitrary cost function if, and only if, a certain strong
form of the simultaneous Doeblin condition holds, whose precise formulation
depends on the sign of λ, and

(ii) Regardless of the sign of λ �= 0, the conditions guaranteeing that the risk-
sensitive average optimality equation has a solution for each cost function are
(substantially) stronger than the corresponding requirements for the risk-neutral
case λ = 0.

The interest on stochastic systems endowed with the risk-sensitive average criterion
can be traced back, at least, to the seminal papers by Howard and Matheson (1972),
Jacobson (1973) and Jaquette (1973, 1976). Particularly, in Howard and Matheson
(1972) finite communicating models were considered and, using the Perron-Frobe-
nius theory of positive matrices (Seneta 1980), the existence of solutions to the (risk-
averse) optimality equation was established; a different approach to this problem,
based on the risk-sensitive total cost criterion, was presented in Cavazos-Cadena and
Fernández-Gaucherand (2002). Recently, there has been an intensive work on sto-
chastic system endowed with the risk-sensitive average criterion; see, for instance,
Fleming and McEneany (1995), Di Masi and Stettner (2000, 2007), Jaśkiewicz (2007)
and the references there in. On the other hand, it is known that the risk-neutral average
cost optimality equation admits a solution under (diverse variants of) the simultaneous
Doeblin condition (Thomas 1980; Puterman 1994); however, in Cavazos-Cadena and
Fernández-Gaucherand (1999), a simple example was given to show that such a con-
dition is not sufficient to ensure the existence of solutions to the optimality equation
in the risk-sensitive case, a fact that provides the motivation to study the problem
considered in this work.

The analysis in this note relies heavily on the discounted approach, which involves
a family {Tα | α ∈ (0, 1)} of contractive (discounted) operators whose fixed points
{Vα} are used to obtain approximate solutions to the average cost optimality equation,
a classical idea that has been widely used; see, for instance, Hernández-Lerma (1988),
Arapstathis et al. (1993), or Puterman (1994) for the risk-neutral case, and Cavazos-
Cadena and Hernández-Hernández (2003), Cavazos-Cadena (2003), or Jaśkiewicz
(2007) for the risk-sensitive case.

The organization of the paper is as follows: firstly, in Sect. 2 the decision model
is formally described, and the average criteria analyzed in this work, as well as the
corresponding optimality equations, are introduced. Next, in Sect. 3 the results on
the conditions characterizing the solvability of the average cost optimality equation
are stated as Theorems 3.1–3.3, which concern the risk-averse, risk-neutral and risk-
seeking criteria, respectively; also, the conditions involved in each case—which are
expressed in terms of accessibility properties of closed sets in the sense of Defini-
tion 3.1—are briefly discussed and compared. Then, in Sect. 4 the family {Tα} of
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Necessary and sufficient conditions for the optimality equation 543

contractive operators involved in the discounted approach is introduced, and the basic
results on this method are stated as Lemmas 4.1 and 4.2, which are finally used in
Sect. 5 to provide a proof of Theorems 3.1–3.3.

Notation. The set of all nonnegative integers is denoted by N and, for a finite set K,

#(K) := number of elements of K,

whereas the space of real valued functions defined on K is denoted by B(K); the
maximum norm of C ∈ B(K) is given by ‖C‖ := maxx∈K |C(x)|. If A is an event,
the corresponding indicator function is denoted by I [A] and, as usual, all relations
involving conditional expectations are supposed to hold almost surely with respect to
the underlying probability measure.

2 Decision model

Throughout the remainder M = (S, A, {A(x)}x∈S, C, P) is a Markov decision pro-
cess (MDP), where the state space S and the action set A are finite sets endowed with the
discrete topology while, for each x ∈ S, A(x) ⊂ A is the nonempty set of admissible
actions at x ; the class K of admissible pairs is given by K = {(x, a) | a ∈ A(x), x ∈ S}.
On the other hand, C ∈ B(K) is the cost function and P = [px y(·)] is the controlled
transition law. This model M is interpreted as follows: At each time t ∈ N the state of
a dynamical system is observed, say Xt = x ∈ S, and an action At = a ∈ A(x) is cho-
sen. Then, a cost C(x, a) is incurred and the state at time t + 1 will be Xt+1 = y ∈ S
with probability px y(a), where

∑
y∈S px y(a) = 1.

Policies. For each t ∈ N, the space Ht of possible histories up to time t is given
H0 := S and Ht := K × Ht−1, t ≥ 1. A generic element of Ht is denoted by
ht = (x0, a0, . . . , xi , ai , . . . , xt ), where ai ∈ A(xi ). A policy π = {πt } is a special
sequence of stochastic kernels: For each t ∈ Ht and ht ∈ Ht , πt (·|ht ) is a probabil-
ity measure on A concentrated on A(xt ). Under the action of policy π , the control
At applied at time t belongs to B ⊂ A with probability πt (B|ht ) where ht is the
observed history of the process up to time t ; the class of all policies is denoted by
P . Given the policy π ∈ P being used for choosing actions and the initial state
X0 = x , the distribution of the state-action process {(Xt , At )} is uniquely determined
(Hernández-Lerma 1988; Arapstathis et al. 1993; Puterman 1994); such a distribution
is denoted by Pπ

x , while Eπ
x stands for the corresponding expectation operator. Next,

define F := ∏
x∈S A(x), so that F consists of all functions f : S → A such that

f (x) ∈ A(x) for each x ∈ S. A policy π is Markovian if there exists a sequence
( f0, f1, f2, . . .) ∈ ∏

t∈N
F such that πt (·|ht ) is always concentrated at ft (xt ), and in

this case π and the corresponding sequence ( f0, f1, f2, . . .) are naturally identified;
the class of Markovian policies is denoted by PM . A policy π = ( f0, f2, f2 . . .) ∈ PM

is stationary if f = ft for all t , and the class of stationary policies and F are identified,
so that, with this convention, F ⊂ PM ⊂ P .
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Utility Functions. For each λ ∈ R, the utility function corresponding to the constant
risk sensitivity λ is the function Uλ : R → R specified as follows: For each x ∈ R

Uλ(x) =
{

sign(λ)eλx , if λ �= 0,

x, if λ = 0.
(2.1)

Given a random cost Y , the certain equivalent of Y with respect to Uλ(·) is denoted
by E[λ, Y ] and is implicitly defined by

Uλ(E[λ, Y ]) = E[Uλ(Y )], (2.2)

so that a decision maker with risk sensitivity λ—assessing a random cost according
to the expectation of Uλ(Y )— is indifferent between paying the certain equivalent
E[λ, Y ] for sure, or incurring the random cost Y . Combining the above displays the
following expression is obtained:

E[λ, Y ] =
⎧
⎨

⎩

1

λ
log

(
E[eλY ]

)
, λ �= 0,

E[Y ], λ = 0,
(2.3)

and from Jensen’s inequality it follows that E[λ, Y ] > E[Y ] = E[0, Y ] if λ > 0,
whereas E[λ, Y ] < E[Y ] when λ < 0. A controller assessing a random cost Y via the
expectation of Uλ(Y ) is referred to as risk-averse if λ > 0, and as risk-seeking when
λ < 0; if λ = 0 the decision maker is risk-neutral. Notice that for r, λ ∈ R

E[λ, Y + r ] = E[λ, Y ] + r. (2.4)

Average Performance Criteria. Assume that the controller has risk sensitivity λ, and
given π ∈ P , x ∈ S and a positive integer n, let JC,n(λ, π, x) be the certain equivalent
of the total cost

∑n−1
t=1 C(Xt , At ) incurred before time n when the system is driven by

π starting at X0 = x , that is,

Uλ

(
JC,n(λ, π, x)

) = Eπ
x

[

Uλ

(
n−1∑

t=0

C(Xt , At )

)]

; (2.5)

more explicitly,

JC,n(λ, π, x) :=
⎧
⎨

⎩

1

λ
log

(
Eπ

x

[
eλ

∑n−1
t=0 C(Xt ,At )

])
, if λ �= 0,

Eπ
x

[∑n−1
t=0 C(Xt , At )

]
, when λ = 0;

(2.6)

see (2.3). With this notation, the long-run λ-sensitive average cost at state x under
policy π is given by

JC (λ, π, x) := lim sup
n→∞

1

n
JC,n(λ, π, x), (2.7)
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whereas

J ∗
C (λ, x) := inf

π∈P
JC (λ, π, x) (2.8)

is the optimal λ-sensitive average cost at x ; a policy π∗ ∈ P is λ-optimal if JC (λ,

π∗, x) = J ∗
C (λ, x) for each x ∈ S.

Optimality Equations. For each λ ∈ R, the optimality equation corresponding to the
average criterion in (2.7) and (2.8) is given by

Uλ(g + h(x)) = min
a∈A(x)

⎡

⎣
∑

y∈S

px y(a)Uλ(C(x, a) + h(y))

⎤

⎦ , x ∈ S, (2.9)

where g is a real number and h : S → R is a given function. Assume now that this
equation is satisfied by the pair (g, h(·)) ∈ R × B(S), and notice that the finiteness of
the action set implies that there exists f ∗ ∈ F such that

Uλ(g + h(x)) =
∑

y∈S

px y( f ∗(x))Uλ(C(x, f ∗(x)) + h(y)), x ∈ S. (2.10)

Combining the specification of the utility function Uλ(·) with the Markov property, an
induction argument using the above displays yields that the following relations hold
for every positive integer n, π ∈ P and x ∈ S:

Uλ(ng + h(x)) ≤ Eπ
x

[

Uλ

(
n−1∑

t=0

C(Xt , At ) + h(Xn)

)]

,

and

Uλ(ng + h(x)) = E f ∗
x

[

Uλ

(
n−1∑

t=0

C(Xt , At ) + h(Xn)

)]

.

Using that Uλ(·) is strictly increasing it follows that

Uλ(ng + h(x)) ≤ Eπ
x

[

Uλ

(
n−1∑

t=0

C(Xt , At ) + ‖h‖)
)]

= Uλ(JC,n(λ, π, x) + ‖h‖),

and

Uλ(ng + h(x)) ≥ E f ∗
x

[

Uλ

(
n−1∑

t=0

C(Xt , At )−‖h‖)
)]

= Uλ(JC,n(λ, f ∗, x)−‖h‖),
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where (2.2), (2.4) and (2.5) were combined to set the equalities. Therefore,

g ≤ 1

n
JC,n(λ, π, x) + ‖h‖ − h(x)

n
and g ≥ 1

n
JC,n(λ, f ∗, x) − ‖h‖ − h(x)

n
,

relations that together with (2.7) and (2.8) lead to the following verification result
(Hernández-Lerma 1988; Puterman 1994; Hernández-Hernández and Marcus 1996).

Lemma 2.1 Given λ ∈ R, suppose that the pair (g, h(·)) ∈ R × B(S) satisfies the
λ-optimality equation (2.9). In this case, assertions (i)–(iii) below hold:

(i) The λ-optimal average cost function J ∗
C (λ, ·) is constant and equal to g;

(ii) The stationary policy f ∗ in (2.10) is λ-optimal, i. e., JC (λ, f ∗, x) = g for each
x ∈ S.
Moreover,

(iii) For each x ∈ S, g = lim
n→∞

1

n
JC,n(λ, f ∗, x).

The Problem. In the risk-neutral case λ = 0, the optimality equation (2.9) becomes

g + h(x) = min
a∈A(x)

⎡

⎣C(x, a) +
∑

y∈S

px y(a)h(y)

⎤

⎦ , x ∈ S (2.11)

(see 2.1), and it is known that if the transition law satisfies (some variant of) the simul-
taneous Doeblin condition (Thomas 1980), then for each C ∈ B(S) there exists a pair
(gC , hC (·)) ≡ (g, h(·)) satisfying the above equality. However, if λ �= 0, an explicit
example was given in Cavazos-Cadena and Fernández-Gaucherand (1999), showing
that the simultaneous Doeblin condition does not ensure the existence of a solution
to (2.9), a fact that provides the motivation to analyze the following problem: Given
λ ∈ R, determine necessary and sufficient conditions on the transition law so that, for
each C ∈ B(K), there exists a pair (gC , hC (·)) ≡ (g, h(·)) ∈ R × B(S) satisfying the
λ-optimality equation (2.9). The results on this problem are stated in the following
section.

3 Solvability of the optimality equations

In this section necessary and sufficient conditions on the transition law will be pro-
vided to ensure that the λ-optimality equation has a solution for arbitrary C ∈ B(K).
For each λ ∈ R, consider the following conditions Cλ

i , i = 1, 2.

Cλ
1: For each C ∈ B(S) there exists gC ≡ g and hC (·) ≡ h(·) : S → R such that the

λ-optimality equation (2.9) holds.
Cλ

2: For each C ∈ B(K), the λ-optimal average cost function J ∗
C (λ, ·) is constant; see

(2.8).

These conditions will be related to communication properties of the transition law
involving the following ideas of closed sets and first arrival time.
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Necessary and sufficient conditions for the optimality equation 547

Definition 3.1 (i) Let f ∈ F be an arbitrary stationary policy. A nonempty set
K ⊂ S is f -closed if

x ∈ K and px y( f (x)) > 0 ⇒ y ∈ K .

(ii) A nonempty set W ⊂ S is M-closed if

x ∈ W and px y(a)) > 0 for some a ∈ A(x) ⇒ y ∈ W .

(iii) If U ⊂ S is an arbitrary set, the first arrival time to set U is defined by

TU := min{n ≥ 1 | Xn ∈ U },

where the minimum of the empty set is ∞.

The existence of solutions of the λ-optimality equation will be characterized in
terms of the accessibility properties of closed sets. To state the result in the risk-averse
case consider the following condition:

C1
3: If K �= S is f -closed for some f ∈ F, then there exists fK ∈ F such that

P fK
x [TK ≤ #(S\K )] = 1, x ∈ S\K . (3.1)

The following result is an extension of Theorem 2.1 in Cavazos-Cadena and Hernán-
dez-Hernández (2008), where the case of an uncontrolled chain was analyzed.

Theorem 3.1 Let λ > 0 be arbitrary but fixed. In this case conditions Cλ
1 , Cλ

2 and C1
3

are equivalent.

According to this theorem, the risk-averse λ-optimality equation has a solution for
each C ∈ B(K) if, and only if, each proper f -closed set K is visited in at most #(S\K )

steps when the system starting outside K is driven by an appropriate stationary pol-
icy (possibly depending on K ). This latter condition is substantially stronger than
the following requirement which, as stated below, characterizes the solvability of the
risk-neutral optimality equation.

C0
3: If K �= S is f -closed for some f ∈ F, then there exists fK ∈ F such that

P fK
x [TK < ∞] = 1, x ∈ S\K . (3.2)

Theorem 3.2 Conditions C0
1, C0

2 and C0
3 are equivalent.

The result on the solvability of the risk-seeking optimality equation is expressed in
terms of the following condition involving M-closed sets.

C−1
3 : If W �= S is an M-closed set, then

P f
x [TW ≤ #(S\W )] = 1, x ∈ S\W, f ∈ F. (3.3)
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Theorem 3.3 If λ < 0, then conditions Cλ
1 , Cλ

2 and C−1
3 are equivalent.

The above theorems will be proved after establishing the necessary technical tools
in the following section. Each one of the conditions Ci

3, i = −1, 0, 1 is a variant of
the simultaneous Doeblin condition (Thomas 1980), and in the remainder of the sec-
tion the relations among them are briefly analyzed. The discussion uses the following
simple result.

Lemma 3.1 Let K be a subset of the state space satisfying ∅ �= K �= S.

(i) Suppose that the following property holds:

For each x ∈ S\K there exists a πx ∈ PM such that Pπx
x [TK < ∞] > 0.

(3.4)

Under this condition there exists a policy f ∈ F such that

P f
x [TK ] < ∞ x ∈ S\K . (3.5)

(ii) Define the set W by

W := {x ∈ S\K | Pπ
x [TK = ∞] = 1 for all π ∈ PM }. (3.6)

In this case

x ∈ W and px y(a) > 0 for some a ∈ A(x) ⇒ y ∈ W ;

particularly, if W �= ∅ then W is M-closed (see Definition 3.1(ii)).

Proof (i) Suppose that (3.4) holds and, for each positive integer r , set

K̃r := {x ∈ S\K | Pπ
x [TK = r ] > 0 for some π ∈ PM }, (3.7)

a specification that together with (3.4) yields that

S\K =
⋃

r≥1

K̃r . (3.8)

Now, define the disjoint sets Kr as follows:

K1 := K̃1, Kr := K̃r\
r−1⋃

s=1

K̃s, r = 2, 3, . . . (3.9)

and notice that

r⋃

s=1

Ks =
r⋃

s=1

K̃s (3.10)
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Necessary and sufficient conditions for the optimality equation 549

for each r , so that S\K = ⋃
r≥1 Kr , by (3.8). Since the sets Ki are disjoint and S\K

is finite, it follows that there exists a positive integer R such that

S\K =
R⋃

s=1

Ks . (3.11)

Next, define a policy f ∈ F as follows:

(a) If x ∈ K , set f (x) := f ∗(x), where f ∗ ∈ F is arbitrary but fixed.
(b) If x ∈ Kr where 1 ≤ r ≤ R, first notice that x ∈ K̃r , by (3.9), so that there exists

a policy

πx = ( fx 0, fx 1, fx 2, . . .) ∈ PM (3.12)

satisfying

Pπx
x [TK = r ] > 0; (3.13)

see (3.7). With this notation, set

f (x) := fx 0(x), x ∈ Kr . (3.14)

It will be proved that this policy f satisfies (3.5). As a first step in this direction it
will be shown, by induction, that for s = 1, 2, . . . , R

P f
x [TK ≤ s] > 0, x ∈ Ks . (3.15)

To achieve this goal, let x ∈ K1 be arbitrary and notice that (3.13) and (3.14) with
r = 1 together yield that

∑

y∈K

px y( f (x)) =
∑

y∈K

px y( fx 0(x)) = Pπx
x [X1 ∈ K ] = Pπx

x [TK = 1] > 0

so that (3.15) holds for s = 1. Suppose now that (3.15) is valid for s ≤ r − 1, where
the positive integer r satisfies 1 < r ≤ R. Let x ∈ Kr be arbitrary, and let the policy
πx be as in (3.12) and (3.13); setting π = ( fx 1, fx 2, . . .) ∈ PM , the Markov property
and Definition 3.1(iii) together yield

0 < Pπx
x [TK = r ] =

∑

y∈S\K

px y( fx 0(x))Pπ
y [TK = r − 1],

and then there exists y ∈ S\K such that px y( fx 0(x)) > 0 and Pπ
y [TK = r − 1] > 0.

It follows from (3.7) that

y ∈ K̃r−1 ⊂ K1 ∪ · · · ∪ Kr−1 and px y( f (x)) = px y( fx 0(x)) > 0;
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see (3.10) and (3.14). From the inclusions in this statement the induction hypothesis
yields that P f

y [TK ≤ r − 1] > 0, and then P f
x [TK ≤ r ] ≥ P f

x [X1 = y, TK ≤ r ] =
px y( f (x))P f

y [TK ≤ r − 1] > 0; since x ∈ Kr is arbitrary, this shows that (3.15)
holds for s = r , completing the induction argument. Notice now that, since S is finite,
(3.11) and (3.15) together imply that ρ := miny∈S\K P f

y [TK ≤ R] > 0, and then

P f
x [TK > R] ≤ 1 − ρ < 1, x ∈ S\K .

On the other hand, for each integer t ≥ 2 and x ∈ S\K , Definition 3.1(iii) yields that

P f
x [TK > t R] = P f

x [Xi ∈ S\K , i = 1, 2, . . . , R, TK > t R]
=

∑

y∈S\K

P f
x [Xi ∈ S\K , 1 ≤ i < R, X R = y, TK > t R]

=
∑

y∈S\K

P f
x [Xi ∈ S\K , 1 ≤ i < R, X R = y]P f

y [TK > (t − 1)R]

≤ max
y∈S\K

{P f
y [TK > (t − 1)R]}

×
∑

y∈S\K

P f
x [Xi ∈ S\K , 1 ≤ i < R, X R = y]

= max
y∈S\K

{P f
y [TK > (t − 1)R]}P f

x [TK > R],

where the Markov property was used to set the third equality. Combining these two
last displays it follows that

max
x∈S\K

P f
x [TK > t R] ≤ (1 − ρ)t , t = 1, 2, . . . ,

a relation that immediately leads to (3.5).
(ii) Let x ∈ W and a ∈ A(x) be arbitrary and select f ∗ ∈ F satisfying f ∗(x) = a.
Given a policy π = ( f0, f2, . . .) ∈ PM , let π∗ be the Markovian policy that at time
t = 0 chooses actions according to f ∗, whereas from time 1 onwards π∗ selects actions
using π as if the process had started again: formally, π∗ = ( f ∗

0 , f ∗
1 , . . .) ∈ PM is

given by f ∗
0 = f ∗, and f ∗

t = ft−1 for t ≥ 1. Since x ∈ W , (3.6) and the Markov
property together yield that

1= Pπ∗
x [TK = ∞]=

∑

y∈S\K

px y( f ∗(x))Pπ
y [TK = ∞]=

∑

y∈S\K

px y(a)Pπ
y [TK = ∞].

Consequently, Pπ
y [TK = ∞] = 1 if px y(a) > 0, and since π ∈ PM is arbitrary, from

(3.6) it follows that x ∈ W and px y(a) > 0 ⇒ y ∈ W . ��
The relations among the conditions Ci

3, i = 1, 0,−1 are discussed in the lemma
and the two examples below
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Lemma 3.2 (i) C1
3 ⇒ C0

3;
(ii) C−1

3 ⇒ C0
3.

Proof (i) As already noted, this part follows immediately from the statement of
conditions C1

3 and C0
3; see (3.1) and (3.2).

(ii) Assume that C−1
3 holds. To establish C0

3, let f̃ ∈ F and the f̃ -closed set K �= S

be arbitrary. From Definition 3.1 it follows that K is nonempty and P f̃
z [Xn ∈

K ] = 1 for each z ∈ K and n ∈ N, so that

P f̃
z [TK = 1] = 1 = P f̃

z [TS\K = ∞], z ∈ K . (3.16)

Now, let W be the set in (3.6). It will be shown that

W = ∅, (3.17)

a relation that immediately leads to the desired conclusion. In fact, (3.6) and the above
display together imply that condition (3.4) holds, so that there exists a policy f ∈ F

such that P f
x [TK < ∞] = 1 for every x ∈ S\K , by Lemma 3.1(i), and then C0

3 holds.
To conclude the argument (3.17) will be established by contradiction. Assume that
W �= ∅, so that W is an M-closed set, by Lemma 3.1(ii), and notice that the first
equality in (3.16) and (3.6) together imply that K ∩ W = ∅, so that

TS\K ≤ TW ,

by Definition 3.1(iii). Recalling that C−1
3 is in force, it follows from condition (3.3)

that P f̃
z [TW < ∞] = 1 for each z ∈ K ⊂ S\W which together with the above display

leads to

P f̃
z [TS\K < ∞] = 1, z ∈ K ,

a relation that contradicts (3.16). It follows that W is empty, completing the proof. ��
It is not difficult to see that the condition C0

3 does not imply Ci
3, i = 1,−1; see, for

instance Example 3.1 in Cavazos-Cadena and Fernández-Gaucherand (1999). On the
other hand, in the following examples it is shown that no general implication exists
between C1

3 and C−1
3 .

Example 3.1 Let the state space and the action set be given by S = {0, 1, 2} and
A = {0, 1}, respectively, set A(x) = {0, 1} for x = 0, 1, and A(2) = {0}, and define
the transition law P = [px y(·)] as follows:

p0 0(0) = 1 = p1 1(0) = p2 1(0)

and

px y(1) = 1/2, x, y ∈ {0, 1}.
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In this context it will be shown that C−1
3 is valid but C1

3 fails.
C−1

3 holds: From the above specifications it follows that there is exactly one proper
M-closed subset of S, namely, W1 = {0, 1}. Since S\W1 = {2} and A(2) = {0},
using that p2 1(0) = 1 it follows that (3.3) occurs with W1 instead of W .
C1

3 fails: If f ∗ ∈ F is such that f ∗(0) = 0 it follows that K = {0} is f ∗-closed, since
p0 0(0) = 1. Now, if f ∈ F and n is a positive integer, using that p1 1(0) = 1 and
p1 1(1) = 1/2, it follows that, for each n = 1, 2, 3, . . ., P f

1 [TK ≤ n] = 0 if f (1) = 0

and P f
1 [TK ≤ n] = 1 − 1/2n < 1 if f (1) = 1, so that (3.1) fails.

Example 3.2 As before, let the state space and the action set be given by S = {0, 1, 2}
and A = {0, 1}, respectively, but now set A(x) = {0} for x = 0, 1 and A(2) = A.
Next, define the transition law P = [px y(·)] as follows:

p0 1(0) = 1 = p1 0(0) = p2 1(0), and p2 2(1) = p2 1(1) = 1/2

As it will be shown below, in this framework C1
3 is valid but C−1

3 fails.
C1

3 holds: For each f ∗ ∈ F there is exactly one proper f ∗-closed set, namely, K =
{0, 1}. Since p2 1(0) = 1, if f ∈ F is such that f (2) = 0, it follows that (3.1) holds
with fK = f , so that C1

3 holds.
C−1

3 fails: The set W = {0, 1} is M-closed, whereas if f ∈ F is such that f (2) = 1,
using that p2 2(2) = 1/2, it follows that P2[TW ≤ n] = 1−1/2n < 1 for each positive
integer n, so that (3.3) does not hold.

4 Technical tools

This section contains the auxiliary results that will be used to prove Theorems 3.1–3.3.
The necessary preliminaries concern the (discounted) operators on B(S) introduced
below where, hereafter, C ∈ B(S) and λ ∈ R are arbitrary but fixed.

Definition 4.1 Given α ∈ (0, 1) define the operator Tα : B(S) → B(S) as follows:
For each V ∈ B(S) and x ∈ S, Tα[V ](x) is implicitly determined by

Uλ(Tα[V ](x)) = min
a∈A(x)

∑

y∈S

px y(a)Uλ(C(x, a) + αV (y)), x ∈ S. (4.1)

Notice that Tα[W ](x) is the minimum certain equivalent of the random cost
C(X0, A0) + αV (X1) that can be achieved when the initial state is X0 = x ; with
this in mind, via (2.4) it is not difficult to see that

Tα[V + r ] = Tα[V ] + αr, r ∈ R, V ∈ B(S).

Now, let V, Ṽ ∈ B(S) be arbitrary and notice that, using that Uλ(·) is strictly increas-
ing, from (4.1) it follows that Tα is a monotone operator, that is,

Tα[Ṽ ] ≥ Tα[V ] if Ṽ ≥ V , (4.2)
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and combining these two last displays with the relation −‖Ṽ − V ‖ + V ≤ Ṽ ≤
V + ‖Ṽ − V ‖ it follows that −α‖Ṽ − V ‖ + Tα[V ] ≤ Tα[Ṽ ] ≤ Tα[V ] + α‖Ṽ − V ‖,
that is,

‖Tα[Ṽ ] − Tα[V ]‖ ≤ α‖Ṽ − V ‖, (4.3)

so that Tα is a contractive operator. Consequently, since B(S) endowed with the max-
imum norm is a Banach space, there exists a unique function Vα ∈ B(S) satisfying
Tα[Vα] = Vα , that is,

Uλ(Vα(x)) = min
a∈A(x)

∑

y∈S

px y(a)Uλ(C(x, a) + αVα(y)), x ∈ S, (4.4)

and then, recalling that the action set is finite, from this equation it follows that for
each α ∈ (0, 1) there exists a policy fα ∈ F such that

Uλ(Vα(x)) =
∑

y∈S

px y( fα(x))Uλ(C(x, fα(x)) + αVα(y)), x ∈ S. (4.5)

Notice that (4.3) with Vα and 0 instead of Ṽ and V , respectively, implies that ‖Vα‖ −
‖Tα[0]‖ ≤ ‖Vα − Tα[0]‖ = ‖Tα[Vα] − Tα[0]‖ ≤ α‖Vα − 0‖ = α‖Vα‖, and then
(1 − α)‖Vα‖ ≤ ‖Tα[0]‖; since Tα[0](x) = mina∈A(x) C(x, a) for each x ∈ S, by
Definition 4.1, it follows that ‖Tα[0]‖ ≤ ‖C‖, so that

(1 − α)‖Vα‖ ≤ ‖C‖. (4.6)

Next, the fixed point Vα will be used to construct approximate solutions to the
optimality equation (2.9).

Definition 4.2 Given α ∈ (0, 1), let xα, x+
α ∈ S be points where the function Vα(·) ∈

B(S) attains its extreme values:

Vα(xα) = min
x∈S

Vα(x), and Vα(x+
α ) = max

x∈S
Vα(x); (4.7)

notice that the finiteness of S guarantees the existence of such points. With this nota-
tion, gα, g+

α ∈ R and hα, h+
α ∈ B(S) are specified as follows:

gα := (1 − α)Vα(xα), g+
α := (1 − α)Vα(x+

α ), (4.8)

while

hα(x) := Vα(x) − Vα(xα) and h+
α (x) := Vα(x) − Vα(x+

α ), x ∈ S. (4.9)
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Combining this Definition with (4.4) and (4.5) direct calculations using (2.1) yield
that the following equalities hold for each state x and α ∈ (0, 1):

Uλ(gα + hα(x)) = min
a∈A(x)

∑

y∈S

px y(a)Uλ(C(x, a) + αhα(y)); (4.10)

Uλ(g
+
α + h+

α (x)) = min
a∈A(x)

∑

y∈S

px y(a)Uλ(C(x, a) + αh+
α (y)), (4.11)

as well as

Uλ(gα + hα(x)) =
∑

y∈S

px y( fα(x))Uλ(C(x, fα(x)) + αhα(y)) (4.12)

and

Uλ(g
+
α + h+

α (x)) =
∑

y∈S

px y( fα(x))Uλ(C(x, fα(x)) + αh+
α (y)). (4.13)

On the other hand, since the sate space S and the class F of stationary policies are
finite sets, from the inclusions xα, x+

α ∈ S and fα ∈ F it follows that there exists a
sequence {αk} ⊂ (0, 1) and (x∗, x+∗ , f ∗) ∈ S × S × F satisfying

αk ↗ 1 as k ↗ ∞, (4.14)

as well as

fαk = f ∗, xαk = x∗ and x+
αk

= x+∗ , k ∈ N. (4.15)

Also, observe that (4.6)–(4.9) together yield that the following assertions hold for
every k:

g+
αk

, gαk ∈ [ −‖C‖, ‖C‖ ],
hαk (x) ∈ [0,∞), and h+

αk
(x) ∈ (−∞, 0], x ∈ S. (4.16)

Since [−‖C‖, ‖C‖], [0,∞] and [−∞, 0] are compact metric spaces, taking a subse-
quence of {αk}, if necessary, it can be supposed that there exist real numbers g∗ and g+∗
as well as functions h∗(·) and h+∗ (·) defined on S such that the following statements
hold:

lim
k→∞ gαk = g∗ ∈ [−‖C‖, ‖C‖ ], lim

k→∞ g+
αk

= g+∗ ∈ [−‖C‖, ‖C‖ ], (4.17)

and

lim
k→∞ hαk (x) = h∗(x) ∈ [0,∞], lim

k→∞ h+
αk

(x) = h+∗ (x) ∈ [−∞, 0], x ∈ S,

(4.18)
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where, via (4.9) and (4.15),

h∗(x∗) = 0 = h+∗ (x+∗ ). (4.19)

Defining the sets H∗,H+∗ ⊂ S by

H∗ := {x ∈ S | h∗(x) < ∞} and H+∗ := {x ∈ S | h+∗ (x) > −∞}, (4.20)

the basic result of the discounted approach to the average criterion can be stated as
follows.

Lemma 4.1 (i) If H∗ = S, then the pair (g∗, h∗(·)) in (4.17) and (4.18) satisfies
the λ-optimality equation (2.9).
Similarly,

(ii) If H+∗ = S, then (g+∗ , h+∗ (·)) is a solution of the λ-optimality equation.

Proof Suppose that H∗ = S, so that the function h∗(·) is finite; see (4.18) and (4.20).
In this case, replacing α by αk in (4.10) and taking the limit as k goes to ∞ in both
sides of the resulting equality, the finiteness of the state and action spaces and the
convergences in (4.18) together yield that (g∗, h∗(·)) satisfies the λ-optimality equa-
tion (2.9). This establishes the first part, while the second one can be obtained along
similar lines. ��

The application of this lemma to the proof of Theorems 3.1–3.3 relies on the fol-
lowing simple result involving the ideas in Definition 3.1.

Lemma 4.2 Let {αk} ⊂ (0, 1) be such that (4.14)–(4.18) hold and let H∗ and H+∗ be
the sets in (4.20). In this context, statements (i) and (ii) below are valid:

(i) If λ ≥ 0, then the set H∗ is f ∗-closed, where f ∗ is the stationary policy in (4.15).
(ii) If λ < 0 then H+∗ is M-closed.

Proof To begin with, notice that the sets H∗ and H+∗ are nonempty, by (4.19) and
(4.20).

(i) Let λ ≥ 0 be arbitrary, so that

Uλ(∞) := lim
x→∞ Uλ(x) = ∞; (4.21)

see (2.1). Now let x, y ∈ S be arbitrary, and notice that replacing α by αk in
(4.12) and using the first equality in (4.15) it follows that

Uλ(gαk + hαk (x)) =
∑

z∈S

px z( f ∗(x))Uλ(C(x, f ∗(x)) + αkhαk (z)),
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so that

Uλ(gαk + hαk (x)) =
∑

z∈S\{y}
px z( f ∗(x))Uλ(C(x, f ∗(x)) + αkhαk (z))

+px y( f ∗(x))Uλ(C(x, f ∗(x)) + αkhαk (y))

≥
∑

z∈S\{y}
px z( f ∗(x))Uλ(C(x, f ∗(x)))

+px y( f ∗(x))Uλ(C(x, f ∗(x)) + αkhαk (y)),

where, using that Uλ(·) is strictly increasing, the inequality stems from the fact
that hαk (·) ≥ 0; see (4.16). Thus,

Uλ(gαk + hαk (x)) ≥ (1 − px y( f ∗(x))Uλ(C(x, f ∗(x)))

+px y( f ∗(x))Uλ(C(x, f ∗(x)) + αkhαk (y))

and taking the limit as k goes to ∞, the first convergences in (4.17) and (4.18)
together lead to

Uλ(g∗ + h∗(x)) ≥ (1 − px y( f ∗(x))Uλ(C(x, f ∗(x)))

+px y( f ∗(x))Uλ(C(x, f ∗(x)) + h∗(y)).

Suppose now that x ∈ H∗. In this case h∗(x) is finite and the above inequal-
ity yields that px y( f ∗(x))Uλ(C(x, f ∗(x)) + h∗(y)) < ∞, so that, via (4.21),
px y( f ∗(x)) > 0 implies that h∗(y) < ∞, that is, y ∈ H∗, showing that H∗ is
f ∗-closed; see (4.20) and Definition 3.1(i).

(ii) Assume that λ < 0. In this case it follows from (2.1) that

Uλ(−∞) := lim
x→−∞ Uλ(x) = −∞. (4.22)

Next, let x, y ∈ S and a ∈ A(x) be arbitrary, and notice that (4.11) with αk

instead of α yields that

Uλ(g
+
αk

+h+
αk

(x)) ≤
∑

z∈S

px z(a)Uλ(C(x, a) + αkh+
αk

(z))

≤ px y(a)Uλ(C(x, a)+αkh+
αk

(y)) +
∑

z∈S\{y}
px z(a)Uλ(C(x, a))

= px y(a)Uλ(C(x, a)+αkh+
αk

(y))+(1−px y(a))Uλ(C(x, a)),

where the relation h+
αk

(·) ≤ 0 was used to set the inequality. From this point, the
second convergences in (4.17) and (4.18) yield that

Uλ(g
+∗ + h+∗ (x))≤(1 − px y(a))Uλ(C(x, a)) + px y(a)Uλ(C(x, a) + h+∗ (y))

123



Necessary and sufficient conditions for the optimality equation 557

so that

If px y(a) > 0, then

Uλ(C(x, a) + h+∗ (y)) = −∞ ⇒ Uλ(g
+∗ + h+∗ (x)) = −∞;

observing that if c is a finite number then Uλ(c + w) = −∞ if and only if
w = −∞ (see 4.22), from the above display it follows that

h+∗ (x)) > −∞ and px y(a) > 0 ⇒ h+∗ (y)) > −∞,

establishing that H+∗ is M-closed; see (4.20) and Definition 3.1(ii). ��

5 Proof of Theorems 3.1–3.3

In this section the above preliminaries will be used to establish the theorems stated in
Sect. 3, which can be summarized in a single statement as follows: For each λ ∈ R

Cλ
1 ⇒ Cλ

2 ⇒ Csign(λ)

3 ⇒ Cλ
1,

where sign(0) = 0, sign(λ) = 1 if λ > 0 and sign(λ) = −1 if λ < 0. Since the
first implication has been already proved in Lemma 2.1(i), without any additional
comment each one of the proofs below consists in establishing that Cλ

2 ⇒ Csign(λ)

3

and Csign(λ)

3 ⇒ Cλ
1. However, although the arguments have the same structure, due to

the differences among the conditions Ck
3, k = −1, 0, 1, the specific details depend

heavily on sign(λ).

Proof of Theorem 3.1 Let λ > 0 be arbitrary but fixed.
Cλ

2 ⇒ C1
3: Assume that for each C ∈ B(S) theλ-optimal average cost function J ∗

C (λ, ·)
is constant. To establish C1

3 let K �= S be an f -closed set for some f ∈ F, so that K is
nonempty, by Definition 3.1(i). Define the sequence {Kt } of subsets of S as follows:

K0 := K ,

Kt+1 :=
⎧
⎨

⎩
x ∈ S\

⋃

0≤m≤t

Km

∣
∣
∣
∣
∣
∣

∑

y∈K0∪···∪Kt

px y(a)=1 for some a ∈ A(x)

⎫
⎬

⎭
, t ∈ N.

(5.1)

Thus, the sets Kt are disjoint, and the finiteness of S yields that there exists r ∈ N

such that

Kr+1 = ∅, and Kt �= ∅, 0 ≤ t ≤ r. (5.2)

Setting

K̃ = K0 ∪ · · · ∪ Kr , (5.3)
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it will be shown, by contradiction, that

S = K̃ . (5.4)

To achieve this goal, assume that S\K̃ �= ∅. Since Kr+1 is empty, (5.1) and (5.3)
together yield that

∑

y∈S\K̃

px y(a) > 0, x ∈ S\K̃ , a ∈ A(x),

and then the finiteness of S and A implies that

min
x∈S\K̃ , a∈A(x)

∑

y∈S\K̃

px y(a) =: ρ > 0. (5.5)

Next, it will be shown by induction that, for each positive integer n

Pπ
x [TK̃ > n] ≥ ρn, x ∈ S\K̃ , π ∈ P, (5.6)

an assertion that for n = 1 is equivalent to (5.5). Assume that this statement holds for
n = m and let x, y ∈ S\K̃ , a ∈ A(x) and π ∈ P be arbitrary but fixed. Define the
new policy π̃ = {π̃t } by π̃t (·|ht ) = πt+1(·|x, a, ht ) for each t and ht ∈ Ht , and notice
that combining Definition 3.1(iii) and (5.5) with the Markov property it follows that

Pπ
x

[
TK̃ > m + 1

∣
∣ A0 = a, X1 = y

]

= Eπ
x

[
I [Xt /∈ K̃ , 1 ≤ t ≤ m+1]

∣
∣
∣ A0 = a, X1 = y

]

= I [X1 = y]E π̃
y

[
I [Xt /∈ K̃ , 1 ≤ t ≤ m]

]

= I [X1 = y]P π̃
y

[
TK̃ ≥ m

]

≥ I [X1 = y]ρm,

where the inequality is due to the induction hypothesis. Therefore, recalling that x, y
belong to S\K̃ , via (5.5) it follows that

Pπ
x

[
TK̃ > m + 1

] ≥ ρm
∑

y∈S\K̃

px y(a) ≥ ρm+1,

so that (5.6) also holds for n = m + 1, completing the induction argument. Next,
define C̃ ∈ B(S)(⊂ B(K)) as follows:

C̃(x) := 1 − log(ρ)/λ, x ∈ S\K̃ , C̃(x) := 0, x ∈ K̃ , (5.7)

and observe that C̃ ≥ 0, so that J ∗
C̃
(λ, ·) ≥ 0. Since K = K0 ⊂ K̃ and K is f -closed,

from (2.6) and (2.7) the above specification of C̃ yields that JC̃ (λ, f, x) = 0 if x

123



Necessary and sufficient conditions for the optimality equation 559

belongs to K , so that

J ∗
C̃
(λ, x) = 0, x ∈ K , (5.8)

while if x ∈ S\K̃ and π ∈ P are arbitrary, (2.6), (5.6) and (5.7) together yield that
for each positive integer n

JC̃,n(λ, π, x) = 1

λ
log

(
Eπ

x

[
eλ

∑n−1
t=0 C̃(Xt ,At )

])

≥ 1

λ
log

(
Eπ

x

[
eλ

∑n−1
t=0 C̃(Xt ,At ) I [TK̃ > n]

])

= 1

λ
log

(
Eπ

x

[
eλn(1−log(ρ)/λ) I [TK̃ > n]

])

≥ 1

λ
log

(
eλn(1−log(ρ)/λ)ρn

)
= n,

so that

J ∗
C̃
(λ, x) ≥ 1, x ∈ S\K̃ ;

see (2.7) and (2.8). Combining this fact with (5.8) it follows that J ∗
C̃
(λ, ·) is not con-

stant, which is a contradiction since Cλ
2 is in force. Thus, (5.4) holds and it follows

that

S = K0 ∪ · · · ∪ Kr , (5.9)

where r ∈ N is as in (5.2); since K0 = K is a proper subset of S it follows that r is
positive, and recalling that Kt is nonempty for 1 ≤ t ≤ r (see 5.2),

r ≤ #(S\K0) = #(S\K ). (5.10)

Now, for each x ∈ S define the set AK (x) as follows:

AK (x) := A(x), x ∈ K0 = K ,

AK (x) :=
⎧
⎨

⎩
a ∈ A(x) |

∑

y∈K0∪···∪Kt−1

px y(a) = 1

⎫
⎬

⎭
, x ∈ Kt , t = 1, 2, . . . , r,

and notice that the sets AK (x) are nonempty, by (5.1) and (5.2). If fK ∈∏
x∈S AK (x)⊂

F is arbitrary, it follows that

P fK
x [X1 ∈ K ] = 1, x ∈ K1, P fK

x [X1 ∈ K ∪ K1 ∪ · · · ∪ Kt−1] = 1,

x ∈ Kt , 1 < t ≤ r,
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relations that combining Definition 3.1(iii) with a simple conditioning argument yield
that

P fK
x [TK ≤ t] = 1, x ∈ Kt , t = 1, 2, . . . , r

and, via (5.9) and (5.10), this implies that P fK
x [TK ≤ #(S\K )] = 1 for x ∈ S\K ,

establishing C1
3.

C1
3 ⇒ Cλ

1. Suppose that C1
3 holds and let C ∈ B(K) be arbitrary but fixed. If K �= S

is an f -closed set for some f ∈ F, with the notation in Sect. 4 it will be shown that
for each α ∈ (0, 1)

hα(x) ≤ 2‖C‖N + max
y∈K

hα(y), x ∈ S, where N = #(S\K ). (5.11)

To verify this assertion let fK ∈ F be as in (3.1) and define the new stationary policy
f ∗
K as follows: f ∗

K (x) = fK (x) if x ∈ S\K , and f ∗
K (x) = f (x) for x ∈ K . It fol-

lows that, starting at x ∈ S\K , TK has the same distribution with respect to P fK
x and

P
f ∗
K

x , so that P
f ∗
K

x [TK ≤ N ] = P
f ∗
K

x

[⋃N
i=1[Xi ∈ K ]

]
= 1 and then, since f ∗

K and f

coincide on K and this set is f -closed, it is not difficult to see that

P
f ∗
K

x [X N ∈ K ] = 1, x ∈ S. (5.12)

Notice now that (2.1) and (4.10) together yield that the inequality

eλhα(x) ≤ E
f ∗
K

x

[
eλ(C(X0,A0)−gα)eλαhα(X1)

]

always holds, and then eλhα(x) ≤ e2λ‖C‖E
f ∗
K

x
[
eλhα(X1)

]
for each x ∈ S; see (4.6) and

(4.8), and recall that hα(·) ≥ 0. From this point it follows that

eλhα(x) ≤ e2λ‖C‖N E
f ∗
K

x

[
eλhα(X N )

]
, x ∈ S,

a fact that using (5.12) leads to (5.11). Replacing α by αk in (5.11) and taking the limit
as k goes to ∞, the finiteness of the state space implies that

h∗(x) ≤ 2‖C‖#(S\K ) + max
y∈K

h∗(y), x ∈ S;

see (4.18). Also, notice that the above statement is certainly true if K = S. Recalling
that the set H∗ in (4.20) is f ∗-closed, by Lemma 4.2(i), the above relation with H∗
instead of K yields that h∗(x) < ∞ for every x ∈ S, that is, H∗ = S, a fact that implies
that the λ-optimality equation has a solution, by Lemma 4.1(i); since C ∈ B(K) was
arbitrary in this argument, it follows that Cλ

1 holds. ��
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Proof of Theorem 3.2 C0
2 ⇒ C0

3: Assume that the risk-neutral optimal average cost
function J ∗

C (0, ·) is constant for each C ∈ B(K) and let K �= S be an f̃ -closed set for
some f̃ ∈ F, so that

1 = P f̃
x [TK = 1] = P f̃

x [Xn ∈ K , n = 1, 2, 3, . . .], x ∈ K .

Next, let W be the set in (3.6) and notice that the above display yields that K and
W are disjoint. Suppose now that W is nonempty. In this case W is M-closed, by
Lemma 3.1(ii), so that

Pπ
x [Xn ∈ W, n = 1, 2, 3, . . .] = 1, x ∈ W, π ∈ P,

and defining C̃ ∈ B(S) by C̃(x) = 1 for x ∈ W and C̃(x) = 0 if x ∈ S\W , from
(2.6) and the two displays above it follows that, for each positive integer n, the fol-
lowing assertions (a) and (b) hold: (a) JC̃,n(0, f̃ , x) = 0 if x ∈ K ⊂ S\W , and
(b) JC̃,n(0, π, x) = 1 for x ∈ W and π ∈ P . Thus, J ∗

C̃
(0, x) = 1 if x ∈ W and

J ∗
C̃
(0, x) = 0 for x ∈ K , so that J ∗

C̃
(0, ·) is not constant, which is a contradiction.

Therefore, W in (3.6) is the empty set; this yields that condition (3.4) occurs, and then
there exists a policy f ∈ F satisfying P f

x [TK < ∞] = 1 for each x ∈ S\K , by
Lemma 3.1(i), establishing C0

3.
C0

3 ⇒ C0
1: Assume that C0

3 holds, let K �= S be an f -closed set and select a policy
fK ∈ F such that (3.2) holds. In this case, there exists a positive integer RK such
that maxx∈S\K P fK

x [TK ≥ RK ] =: ρK < 1. As in the proof of Lemma 3.1, it fol-

lows from the Markov property that P fK
x [TK ≥ t RK ] ≤ ρt

K for each x ∈ S\K and
t = 1, 2, 3, . . ., so that

E fK
x [TK ] ≤ RK

1 − ρK
< ∞, x ∈ S\K . (5.13)

With the notation in Sect. 4 it will be shown that, for each α ∈ (0, 1),

hα(x) ≤ 2‖C‖ RK

1 − ρK
+ max

y∈K
hα(y), x ∈ S\K . (5.14)

To achieve this goal notice that (2.1) and (4.10) with λ = 0 together imply that the
inequality gα + hα(x) ≤ C(x, fK (x)) + α

∑
y∈S px y( fK (x))hα(y) always holds.

Recalling that hα(·) ≥ 0 (see 4.7 and 4.9) a glance at (4.6) and (4.8) leads to

hα(x) ≤ 2‖C‖ + E fK
x [hα(X1)] , x ∈ S. (5.15)
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It will be proved, by induction, that for each positive integer n

hα(x) ≤ 2‖C‖
n−1∑

t=0

P fK
x [TK > t] + E fK

x
[
hα(XTK )I [TK ≤ n]]

+E fK
x [hα(Xn)I [TK > n]] , x ∈ S. (5.16)

For n = 1 this statement is equivalent to (5.15), since TK is always ≥ 1. Assume that
this claim holds for n = m and notice that (5.15) and the Markov property together
yield

E fK
x [hα(Xm)I [TK > m]|X1, . . . , Xm]
= I [TK > m]hα(Xm)

≤ I [TK > m]{2‖C‖ + E fK
Xm

[hα(Xm+1)]}
= 2‖C‖I [TK > m] + E fK

x [hα(Xm+1)I [TK > m]|X1, . . . , Xm]

so that

E fK
x [hα(Xm)I [TK > m]] ≤ 2‖C‖P fK

x ][TK > m] + E fK
x [hα(Xm+1)I [TK > m]]

= 2‖C‖P fK
x ][TK >m] + E fK

x [hα(Xm+1)I [TK = m + 1]]
+E fK

x [hα(Xm+1)I [TK > m + 1]]

and together with the induction hypothesis, this yields that (5.16) is also valid for
n = m + 1. Taking the limit as n goes to ∞ in (5.16), it follows from (5.13) that for
each x ∈ S\K ,

hα(x) ≤ 2‖C‖
∞∑

t=0

P fK
x [TK > t] + E fK

x
[
hα(XTK )

]

= 2‖C‖E fK
x [TK ] + E fK

x
[
hα(XTK )

] ≤ 2‖C‖ RK

1 − ρK
+ E fK

x
[
hα(XTK )

]

and (5.14) follows, since XTK ∈ K on the event [TK < ∞] and P fK
x [TK < ∞] = 1.

Replacing α by αk in (5.14) and taking the limit as k → ∞ in both sides of the
resulting inequality, it follows that

h∗(x) ≤ 2‖C‖ RK

1 − ρK
+ max

y∈K
h∗(y), x ∈ S\K ; (5.17)

see (4.18). This relation implies that the f ∗-closed set H∗ in (4.20) is equal to S.
Indeed, if H∗ is a proper subset of S, then setting K = H∗ the right-hand side of the
above inequality is finite, whereas the left-hand side is ∞ if x ∈ S\H∗, so that the con-
dition S �= H∗ leads to a contradiction. Therefore, H∗ = S and then the 0-optimality
equation has a solution, by Lemma 4.1, establishing C0

1. ��
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Proof of Theorem 3.3 Let λ < 0 and C ∈ B(K) be arbitrary but fixed.
Cλ

2 ⇒ C−1
3 : To establish C−1

3 let K �= S be an M-closed set and define the sequence
{Kt } of disjoint subsets of S as follows:

K0 := K ,

Kt+1 :=
⎧
⎨

⎩
x ∈ S\

⋃

0≤m≤t

Km

∣
∣
∣
∣
∣
∣

∑

y∈K0∪···∪Kt

px y(a)=1 for all a ∈ A(x)

⎫
⎬

⎭
, t ∈ N;

(5.18)

since S is finite it follows that there exists r ∈ N such that

Kr+1 = ∅, and Kt �= ∅, 0 ≤ t ≤ r, (5.19)

and it will be shown, by contradiction, that

S = K̃ , (5.20)

where

K̃ = K0 ∪ · · · ∪ Kr ; (5.21)

using that K0 = K is M-closed, from (5.18) it is not difficult to see that K̃ is
also M-closed. Moreover, the above definition of the sets Ki yields that Pπ

x [X1 ∈
K0 ∪· · ·∪ Ki−1] = 1 for every π ∈ P , x ∈ Ki and i > 1, whereas Pπ

x [X1 ∈ K0] = 1
if x ∈ K1; since K0 = K , these relations immediately yield that, for every policy π ,

Pπ
x [TK ≤ i] = 1, x ∈ K1 ∪ · · · ∪ Ki , i = 1, 2 . . . , r. (5.22)

Assume that S\K̃ �= ∅ and notice that, since Kr+1 is empty, (5.18) and (5.21) together
yield that for each x ∈ S\K̃ , there exists ax ∈ A(x) such that

∑
y∈S\K̃ px y(ax ) > 0.

Let f be a stationary policy such that f (x) = ax for each x ∈ S\K̃ , and notice that
the previous inequality yields that

min
x∈S\K̃

P f
x [TK̃ > 1] = min

x∈S\K̃

∑

y∈S\K̃

px y(ax ) =: ρ > 0, (5.23)

and an induction argument leads to

P f
x [TK̃ > n] ≥ ρn, x ∈ S\K̃ , n = 1, 2, 3, . . . ; (5.24)

see the proof of Theorem 3.1. Next, define C̃ ∈ B(S) as follows:

C̃(x) := −1 − log(ρ)/λ, x ∈ S\K̃ , C̃(x) := 0, x ∈ K̃ , (5.25)
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and observe that C̃ ≤ 0, so that J ∗
C̃
(λ, ·) ≤ 0. Since K̃ is M-closed, from (2.6) and

(2.7) the above specification of C̃ yields that JC̃ (λ, π, x) = 0 for x ∈ K̃ and π ∈ P ,
so that

J ∗
C̃
(λ, x) = 0, x ∈ K̃ , (5.26)

while if x ∈ S\K̃ and f is as in (5.24),

Eπ
x

[
eλ

∑n−1
t=0 C̃(Xt ,At )

]
≥ Eπ

x

[
eλ

∑n−1
t=0 (−1−ρ/λ) I [TK̃ > n]

]

= e−nλρ−n Pπ
x

[
TK̃ > n]] ≥ e−nλ

and then, recalling that λ is negative,

JC̃,n(λ, f, x) = 1

λ
log

(
Eπ

x

[
eλ

∑n−1
t=0 C̃(Xt ,At )

])
≤ −n,

and it follows that

J ∗
C̃
(λ, x) ≤ −1, x ∈ S\K̃ ;

see (2.7) and (2.8). Combining this fact with (5.26) it follows that J ∗
C̃
(λ, ·) is not con-

stant, which is a contradiction since Cλ
3 is in force. Thus, (5.20) holds and it follows

that

S = K0 ∪ · · · ∪ Kr ,

where r ∈ N is as in (5.19); since K0 = K is a proper subset of S it follows that r is
positive, and recalling that Kt is nonempty for 1 ≤ t ≤ r (see 5.19),

r ≤ #(S\K0) = #(S\K ).

Combining these two last displays with (5.22), it follows that Pπ
x [TK ≤ #(S\K )] = 1

for each x ∈ S\K and π ∈ P , so that C−1
3 certainly holds.

C−1
3 ⇒ Cλ

1: Suppose that C−1
3 is valid and let C ∈ B(K) be arbitrary but fixed. Now

let K be an M-closed set with K �= S. Given α ∈ (0, 1), let fα ∈ F be as in (4.13),
so that

eλg+
α +λh+

α (x) = eλC(x,a)
∑

y∈S

px y( fα(x))eλαh+
α (y)

for all x ∈ S; see (2.1). Since h+∗ (·) ≤ 0 (see 4.7 and 4.9) and λ is negative, using
(4.6) and (4.8) the above relation yields that for each x ∈ S,

eλh+
α (x) ≤ e−2λ‖C‖ ∑

y∈S

px y( fα(x))eλh+
α (y) = E fα

x

[
e−2λ‖C‖+λh+

α (X1)
]
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a fact that immediately leads to

eλh+
α (x) ≤ e−2nλ‖C‖E fα

x

[
eλh+

α (Xn)
]
, x ∈ S, n = 1, 2, 3, . . . . (5.27)

On the other hand, since K �= S is M-closed and C−1
3 is in force, P fα

x [TK ≤ N ] = 1

if x ∈ S\K , where N = #(S\K ); consequently, P fα
x [X N ∈ K ] = 1, since once the set

K is reached, the system does not leave K . Therefore, the above display with n = N
yields that eλh+

α (x) ≤ e−2Nλ‖C‖eλ miny∈K h+
α (y) for x ∈ S\K , and then the negativity

of λ leads to h+
α (x) ≥ −2‖C‖N + miny∈K h+

α (y). Replacing α by αk and taking the
limit as k goes to ∞, it follows that

h+∗ (x) ≥ −2‖C‖#(S\K ) + min
y∈K

h+∗ (y), x ∈ S\K ,

a relation that implies that the M-closed set H+∗ in (4.20) coincides with S. Indeed,
if H+∗ �= S then, setting K = H+∗ in the above display, the right-hand side of the
inequality is finite, whereas the left-hand side is −∞ when x ∈ S\H∗∗. This con-
tradiction shows that H+∗ = S, and then the λ-optimality equation has solution, by
Lemma 4.1(ii), showing that Cλ

1 holds. ��
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