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Abstract The class of Construct and Charge (CC-) rules for minimum cost
spanning tree (mcst) situations is considered. CC-rules are defined starting from the
notion of charge systems, which specify particular allocation protocols rooted on the
Kruskal algorithm for computing an mcst. These protocols can be easily implemented
in practical network situations (for instance, in supply transportation networks), are
flexible to changes in the network situation and meet the requirement of continuous
monitoring by the agents involved. Special charge systems, that we call conservative,
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lead to a subclass of CC-rules that coincides with the class of obligation rules for mcst
situations.

Keywords Cost allocation · Minimum cost spanning tree games · Cost monotonicity

1 Introduction

Supply contracts are devoted to the explicit specification of relationships between part-
ners within supply chains and networks. Various aspects dealing with supply contracts
can be considered (Voß and Schneidereit 2002). For example, the supply contract can
include clauses on how the delivery is performed including transport mode selection
and the definition of penalties for modifications or late arrivals. Minimum cost span-
ning tree (mcst) situations (Bird 1976) may be useful to answer realistic questions
regarding the implementation of clauses in supply contracts concerning transportation
networks and the related cost allocation problem (Voß and Schneidereit 2002; Sharkey
1995).

An mcst situation arises when there is a group of agents (e.g. customer nodes of
a supply chain) N = {1, 2, . . . , n} who all want to be connected with a source 0,
directly or via other agents, and where connections are costly. To such mcst situations
correspond two problems: to construct an mcst which connects all the agents with the
source and to divide the cost of constructing this mcst among the agents. Given an mcst
situation with a group of agents, Bird (1976) introduced a corresponding cooperative
cost game (known as mcst game), where the players are the agents and the worth of
a coalition is the minimal cost of connecting this coalition to the source via edges
between members of the coalition.

To construct an mcst two methods are mainly used: the Prim algorithm (Prim 1957)
and the Kruskal algorithm (Kruskal 1956). Both algorithms determine an mcst where
exactly one edge is constructed in every step of the algorithm. The total number of
steps equals n. To divide the cost of an mcst among the agents, both algorithms are
suitable to define cost allocation protocols which charge the agents with “fractions” of
the cost of each edge constructed in each step of the procedure. Construct and Charge
rules, formally introduced in Sect. 4, rely on this idea of allocation protocol. In this
paper, the Kruskal algorithm is central. This algorithm works in the following way:
in the first step an edge between two nodes in N ∪ {0} of minimal cost is formed.
In every subsequent step, a new edge of minimal cost is formed, under the constraint
that no cycles are formed. In summary, a sequence of edges is produced and after n
steps an mcst appears. Since some edges may have the same cost, different mcsts may
be selected by the Kruskal algorithm, depending on the ordering of the edges with
respect to their increasing costs which has been considered in the Kruskal algorithm.

Construct and Charge rules are defined using the Kruskal algorithm and have been
studied already in Feltkamp et al. (1994b) for minimum cost spanning extension (mcse)
situations. These mcse situations are generalized mcst situations in which some net-
work can be present initially, which has to be extended to a network connecting every
player to the source. Feltkamp et al. (1994b) proved that the allocations provided by
Construct and Charge rules are in the core of the game corresponding to an mcse
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situation (in case no network is present initially, an mcse situation is an mcst situation,
and the game is the corresponding mcst game).

In this paper we study and characterize a subclass of Construct and Charge rules
for mcst situations, which we call ‘conservative Construct and Charge’ rules. An in-
teresting feature of such rules is that different feasible orderings of the edges lead to
the same cost allocations. In Theorem 3, it is shown that the subclass of conservative
Construct and Charge rules coincides with the class of Obligations rules (Tijs et al.
2006a). Two interesting properties for Obligation rules are stability, i.e. they provide
cost allocations that are in the core of the corresponding mcst game, and cost mono-
tonicity, i.e. if some connection costs go up, then no agents will pay less. Stability
is an important characteristic for cost allocation protocols applied to supply trans-
portation networks, since it is a necessary condition for any subset of customers not
to secede and build their own competing transportation sub-network. But, increasing
of transportation costs may occur, and, consequently, other incentives to cooperation
are demanded. For instance, supply contracts must take into consideration clauses
for having various transport possibilities enabling, e.g., expedited delivery in cases of
necessary adjustments in the lead times (Voß and Schneidereit 2002) with correspon-
ding increasing of transportation costs. In this case, cost monotonicity ensures that no
customers are motivated to delay the lead times, since according to a cost monotonic
allocation protocol no customer will pay less.

We also show that the ERO-rule introduced in Feltkamp et al. (1994b), and rebap-
tized as the P-value (Branzei et al. 2004), is a conservative Construct and Charge
rule and, consequently, does not depend on the mcst selected and provides a unique
cost allocation for each mcst situation. Differently, the Proportional rule introduced
in Feltkamp et al. (1994a) is a Construct and Charge rule but it is not conservative,
and may provide different cost allocations on the same mcst situation, depending on
the feasible orderings of the edges with respect to increasing costs. In addition, the
Proportional rule does not satisfy monotonicity requirements.

We start introducing some basic notions in the next section. In Sect. 3 the definition
of a charge system is introduced, specific examples are given and some basic properties
are studied. In Sect. 4 conservative charge systems are introduced and a related concept
of potential is discussed. Based on charge systems and orderings of the edges with
respect to increasing costs, the definition of a Construct and Charge rule for mcst
situations is given in Sect. 5, together with some examples and properties for such
rules. In Sect. 6 the connection with Obligation rules is studied.

2 Preliminaries and notations

An (undirected) graph is a pair 〈V, E〉, where V is a set of vertices or nodes and E is
a set of edges e of the form {i, j} with i, j ∈ V , i �= j . The complete graph on a set
V of vertices is the graph 〈V, EV 〉, where EV = {{i, j}|i, j ∈ V and i �= j}.

This paper deals with mcst situations, i.e. situations where a set N = {1, . . . , n} of
agents is willing to be connected as cheap as possible to a source (i.e. a supplier of a
service) denoted by 0, based on a given weight (or cost) system of connection. In the
sequel we use also the notation N ′ = N ∪ {0}, and w for the weight function, i.e. a
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map which assigns to each edge e ∈ EN ′ a nonnegative number w(e) representing
the weight or cost of edge e. We denote an mcst situation with set of users N , source
0, and weight function w by 〈N ′, w〉 (or simply w). Further, we denote by W N ′

the
set of all mcst situations 〈N ′, w〉 (or w) with node set N ′. Most of the notation on
mcst situations and related cooperative games is in line with that used in our papers
(Branzei et al. 2004; Tijs et al. 2006a,b). In the following we recall briefly some basic
notions and notation.

A path between i and j in a graph 〈N ′, E〉 is a sequence of nodes i = i0, i1, . . . , ik =
j , k ≥ 1, such that all the edges {is, is+1} ∈ E , for each s ∈ {0, . . . , k −1}, are distinct
edges. A cycle in 〈N ′, E〉 is a path from i to i for some i ∈ N ′.

Two nodes i, j ∈ N ′ are connected in 〈N ′, E〉 if i = j or if there exists a path
between i and j in E . A connected component of N ′ in a graph 〈N ′, E〉 is a maximal
subset of N ′ with the property that any two nodes in this subset are connected in
〈N ′, E〉.

The cost of a network � ⊆ EN ′ is w(�) = ∑
e∈� w(e). A network � is a spanning

network on S′ = S ∪ {0}, with S ⊆ N , if for every e ∈ � we have e ∈ ES′ and for
every i ∈ S there is a path in 〈S′, �〉 from i to the source. For any mcst situation
w ∈ W N ′

it is possible to determine at least one spanning tree on N ′, i.e. a spanning
network without cycles on N ′, of minimum cost; each spanning tree of minimum cost
is called an mcst for N ′ in w or, shorter, an mcst for w.

Next, we recall some basic game theoretical notions. A cooperative cost game (or
simply a cost game) is a pair (N , c), where N denotes the finite set of players and
c : 2N → R the characteristic function, with c(∅) = 0 (here 2N denotes the power
set of player set N ). Often we identify a cost game (N , c) with the corresponding
characteristic function c. A group of players T ⊆ N is called a coalition and c(T ) is
called the cost of this coalition. The class of all cost games with N as set of players is
denoted by GN .

A particular set, possibly empty, of cost allocations of a cost game (N , c) is the
core of c, which is defined as follows:

core(c) = {x ∈ R
N |

∑

i∈S

xi ≤ c(S) ∀S ∈ 2N \ {∅};
∑

i∈N

xi = c(N )}.

Let 〈N ′, w〉 be an mcst situation. The mcst game (N , cw) (or simply cw) corres-
ponding to 〈N ′, w〉, introduced by Bird (1976), is defined by

cw(S) = min{w(�)|� is a spanning network on S′}

for every S ∈ 2N \{∅}, with the convention that cw(∅) = 0.
We call a map F : W N ′ → R

N assigning to every mcst situation w a unique
cost allocation in R

N a solution. A solution F is a cost monotonic solution if for all
mcst situations w,w′ ∈ W N ′

such that w(ē) ≤ w′(ē) for one edge ē ∈ EN ′ and
w(e) = w′(e) for each e ∈ EN ′ \ {ē}, it holds that F(w) ≤ F(w′). We mention that
our notion of cost monotonicity is different (see Tijs et al. 2006a) from that introduced
and studied by Dutta and Kar (2004). A solution F is efficient if

∑
i∈N Fi (w) = w(�)

for each w ∈ W N ′
, where � is a minimum cost spanning network on N ′ for w.
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Fig. 1 A spanning tree on
N ′ = {0, 1, 2, 3, 4}

3 Charge systems

To introduce charge systems we need some additional notations. Let N = {1, . . . , n}
and �(N ) = {x ∈ R

N+| ∑i∈N xi = 1}. We denote by EN ′ the set of n-vectors of edges
which form a spanning tree on N ′, i.e.

EN ′ = {(a1, . . . , an) ∈ (EN ′)n|{a1, . . . , an} is a spanning network on N ′}.

Note that the number of edges which form a spanning tree on N ′ is n.
Given an element a = (a1, . . . , an) ∈ (EN ′)n , we denote by a| j the restriction of a

to the first j components, that is a| j = (a1, . . . , a j ) for each j ∈ N . Further, for each
j ∈ N , we denote by �(a| j ) the partition of N ′ such that

�(a| j ) = {T ⊆ N ′|T is a connected component in 〈N ′, {a1, . . . , a j }〉}.

Example 1 Consider the spanning tree depicted in Fig. 1 on N ′ = {0, 1, 2, 3, 4}.
Vectors a = ({2, 3}, {0, 1}, {3, 4}, {0, 3}) and b = ({3, 4}, {2, 3}, {0, 1}, {0, 3}) are

elements of E{0,1,2,3,4}. Note that a|3 = ({2, 3}, {0, 1}, {3, 4}) and b|3 = ({3, 4}, {2, 3},
{0, 1}) implying that �(a|3) = �(b|3) = {{0, 1}, {2, 3, 4}}.

Summing up, each element a ∈ EN ′ tells the “history” of the spanning network
formation, that is adding the edge a j to the already formed graph a| j−1, for each
j ∈ N . Note that when the first edge a1 is formed, the already formed graph is
〈N ′,∅〉; so, �(a|0) is the singleton partition of N ′.

Now, let θ ∈ �(N ′), where �(N ′) is the family of partitions of N ′, and let T ⊆ N ′.
If T is a subset of a certain element of the partition θ , we denote this element as S(θ, T ).

Definition 1 A charge system C on N is a set of functions C = {C1, . . . , Cn} with
C j : {a| j |a ∈ EN ′ } → �(N ) for each j ∈ N satisfying the following properties:
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(Connection property): C j
i (a| j ) = 0 for each i ∈ S(�(a| j−1), {0}),

each j ∈ N ,

and each a = (a1, . . . , an) ∈ EN ′ ;
(Involvement property): C j

i (a| j ) = 0 for each i ∈ N \ S(�(a| j ), a j )

each j ∈ N ,

and each a = (a1, . . . , an) ∈ EN ′ ;
(Total aggregation property):

∑n
j=1 C j

i (a| j ) = 1 for each i ∈ N ,

and each a = (a1, . . . , an) ∈ EN ′ .

A charge system specifies how to charge agents during the construction of a span-
ning tree. Let a ∈ EN ′ . First, the cost of each edge a j , for each j ∈ N , should be totally
charged among agents as soon as a j is formed. This requirement makes a charge sys-
tem promptly adaptable to modified situations, where edges are formed according to
different orders (for instance, due to a change in the route of transportation).

The connection property says that agents already connected to the source in a| j−1
should not be charged anymore. This property accounts for the fact that there is no
interest for agents already connected to the source in contributing to the construction
of other edges in the network.

The involvement property specifies that only agents who are connected to nodes
in a j in the graph a| j (i.e. agents involved in forming a j ) should be charged with
fractions of the cost of a j . This property is particularly valuable in supply transporta-
tion networks, because the continuous control on the charge procedure is simpler for
customers which are directly involved in the construction of the edges.

The total aggregation property says that when the construction of the spanning
network corresponding to a is completed, each agent has been charged for a total
amount of fractions equal to 1. This property is a natural a priori requirement of
fairness in a charge system, since it guarantees that all agents have duties on the same
amount of total fractions of edges of an mcst.

The charge systems in Examples 2 and 3 will play a role in Sect. 5 to define special
Construct and Charge rules. The intuition behind the charge system of Example 2 is to
charge each agent in a connected component according to his ‘remaining obligation
(RO)’. At the start the RO is 1 for every agent. If in some step of the algorithm the
connected component of an agent i is linked to some other connected component,
then agent i is charged according to the following rule: if i is linked to a component
containing the source, then i is charged by his RO (leaving a RO of 0 for this agent);
otherwise, if i is linked to a component not containing the source, then i is charged half
of his RO (leaving a RO that is half of his RO in the previous step). The charge system
of Example 3 charges the agents involved in forming the edge a j , for each j ∈ N ,
taking into account the cardinality of their connected components in the graphs a| j−1
and a| j . As a result of this procedure, at each stage j ∈ N , agents in the same connected
component have the same RO.

Example 2 Consider the charge system C̃ = {C̃1, . . . , C̃n} on N such that for each
a = (a1, . . . , an) ∈ EN ′ and for each i, j ∈ N
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C̃ j
i (a| j ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2r j

i if i ∈ S(�(a| j ), a j )

and 0 /∈ S(�(a| j ), a j ),

r j
i if {0, i} ⊆ S(�(a| j ), a j )

and 0 /∈ S(�(a| j−1), {i}),

0 otherwise,

(1)

where the remaining obligation r j is defined as

r j
i = 1 −

j−1∑

k=1

C̃k
i (a|k) (2)

for each j ∈ N , j > 1, and r1
i = 1 for each i ∈ N .

The involvement property and the connection property of functions C̃1, . . . , C̃n

are a direct consequence of relation (1). For the total aggregation property of func-
tions C̃1, . . . , C̃n , first note that, by relation (2), for each i, j ∈ N such that i ∈
S(�(a| j ), a j ) and 0 /∈ S(�(a| j ), a j ), the quantity

∑ j
k=1 C̃k

i (a|k) < 1.
Then, by relation (1) the total aggregation property follows immediately.
In order to prove that function C̃ j , j ∈ N , takes values in �(N ), we first note by

relations (1) that C̃ j
i ≥ 0, for all i, j ∈ N . Second, we prove by induction to j that

the sum
∑

i∈N C̃ j
i (a| j ) = 1 for each j ∈ N .

If j = 1 we have that
∑

i∈N C̃1
i (a|1) = ∑

i∈a1,i �=0 C̃1
i (a|1) = 1.

Now, let j ∈ {2, . . . , n} and suppose that
∑

i∈N C̃k
i (a|k) = 1 for every k ∈

{1, . . . , j − 1}. Let z ∈ a j be one of the two nodes of edge a j such that 0 /∈
S(�(a| j−1), {z}) and let Kz ⊆ {1, . . . , j − 1} be the set of indices k such that
ak is contained in S(�(a| j−1), {z}), in formula Kz = {k ∈ {1, . . . , j − 1}|ak ⊆
S(�(a| j−1), {z}). Note that |Kz | = |S(�(a| j−1), {z})| − 1, since |Kz | edges are nee-
ded to construct a spanning tree on S(�(a| j−1), {z}). We have

∑

i∈S(�(a| j−1),{z})

j−1∑

k=1

C̃k
i (a|k)

=
j−1∑

k=1

∑

i∈S(�(a| j−1),{z})
C̃k

i (a|k)

=
∑

k∈Kz

∑

i∈S(�(a| j−1),{z})
C̃k

i (a|k)

=
∑

k∈Kz

∑

i∈N

C̃k
i (a|k) = |Kz|, (3)

where the second equality follows from the involvement property which specifies that
C̃k

i (a|k) = 0 for each i ∈ S(�(a| j−1), {z}) and k ∈ {1, . . . , j − 1} \ Kz ; the third

123



188 S. Moretti et al.

equality follows from the involvement property which specifies that C̃k
i (a|k) = 0 for

each i ∈ N \ S(�(a| j−1), {z}) and k ∈ Kz ; finally, the last equality follows from the
induction hypothesis. When edge a j is constructed, a new partition of nodes �(a| j )

forms. By the connection property, only nodes which were not yet connected to 0 in
�(a| j−1) are charged. Then, we distinguish two cases:

case 1) a j = {u, v} ∈ EN ′ , 0 /∈ S(�(a| j ), {u}), 0 /∈ S(�(a| j ), {v}). We have

∑

i∈N

C̃ j
i (a| j )

=
∑

i∈S(�(a| j−1),{u})

1

2
r j

i +
∑

i∈S(�(a| j−1),{v})

1

2
r j

i

=
∑

i∈S(�(a| j−1),{u})

1

2

⎛

⎝1 −
j−1∑

k=1

C̃k
i (a|k)

⎞

⎠

+
∑

i∈S(�(a| j−1),{v})

1

2

⎛

⎝1 −
j−1∑

k=1

C̃k
i (a|k)

⎞

⎠

= 1

2

(|S(�(a| j−1), {u})| − |Ku |) + 1

2

(|S(�(a| j−1), {v})| − |Kv|
)

= 1

2

(|S(�(a| j−1), {u})| − |S(�(a| j−1), {u})| + 1
)

+1

2

(|S(�(a| j−1), {v})| − |S(�(a| j−1), {v})| + 1
) = 1.

where the first equality follows by relation (1) and the involvement property, and the
third equality from relation (3).
case 2) a j = {u, v} ∈ EN ′ , 0 /∈ S(�(a| j ), {u}), 0 ∈ S(�(a| j ), {v}). We have

∑

i∈N

C̃ j
i (a| j )

=
∑

i∈S(�(a| j−1),{u})
r j

i

=
∑

i∈S(�(a| j−1),{u})

⎛

⎝1 −
j−1∑

k=1

C̃k
i (a|k)

⎞

⎠

= (|S(�(a| j−1), {u})| − |Ku |)
= (|S(�(a| j−1), {u})| − |S(�(a| j−1), {u})| + 1

) = 1,

where the first equality follows by relation (1) and the involvement property, and the
third equality from relation (3).
We may conclude that C̃1, . . . , C̃n constitute a charge system.
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Example 3 Consider the set of functions Ĉ = {Ĉ1, . . . , Ĉn} on N such that for each
a = (a1, . . . , an) ∈ EN ′ and for each j ∈ N

Ĉ j
i (a| j ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

1
|S(�(a| j−1),{i})| − 1

|S(�(a| j ),{i})| if 0 /∈ S(�(a| j ), a j )

1
|S(�(a| j−1),{i})| if {0, i} ⊆ S(�(a| j ), a j )

and 0 /∈ S(�(a| j−1), {i}),

0 otherwise,

(4)

for each i ∈ N .
In order to check that the functions Ĉ1, . . . , Ĉn constitute a charge system, we first

show that functions Ĉ1, . . . , Ĉn take values in �(N ). Note that for each j ∈ N such
that a j = {u, v} ∈ EN ′ and 0 /∈ S(�(a| j ), a j ) we have that

∑

i∈N

Ĉ j
i (a| j )

=
∑

i∈S(�(a| j−1),{u})

1

|S(�(a| j−1), {u})| − 1

|S(�(a| j ), {u})|

+
∑

i∈S(�(a| j−1),{v})

1

|S(�(a| j−1), {v})| − 1

|S(�(a| j ), {v})|

=
∑

i∈S(�(a| j−1),{u})

1

|S(�(a| j−1), {u})| +
∑

i∈S(�(a| j−1),{v})

1

|S(�(a| j−1), {v})|

−
∑

i∈S(�(a| j ),a j )

1

|S(�(a| j ), a j )| = 1 + 1 − 1 = 1.

Differently, for each j ∈ N such that 0 ∈ S(�(a| j ), a j ) we have that

∑
i∈N Ĉ j

i (a| j ) = ∑
i∈S(�(a| j−1),{m}) 1

|S(�(a| j−1),{m})| = 1,

where m ∈ S(�(a| j ), a j ) is such that 0 /∈ S(�(a| j−1), {m}).
The connection property of functions Ĉ1, . . . , Ĉn directly follows by relation (4) .
To prove that Ĉ1, . . . , Ĉn satisfy the involvement property we note that if for

i, j ∈ N we have that i /∈ S(�(a| j ), a j ), then it follows that S(�(a| j−1), {i}) =
S(�(a| j ), {i}), since nothing is changed in the connected component of agent i from

stage j − 1 to stage j . Consequently, by relation (4), we have that Ĉ j
i (a| j ) = 0.

Finally, to prove that functions Ĉ1, . . . , Ĉn satisfy the total aggregation property,
first note that for each i ∈ N , we have that

∑n
j=1 Ĉ j

i (a| j ) = ∑k
j=1 Ĉ j

i (a| j ), where
k ∈ N is such that {0, i} ⊆ S(�(a|k), ak) and 0 /∈ S(�(a|k−1), {i}). Consequently,
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for k = 1, by relation (4) we have that

1∑

j=1

Ĉ j
i (a| j ) = 1

|S(�(a|0), {i})| = 1.

For k > 1 we have that

k∑

j=1

Ĉ j
i (a| j ) =

⎛

⎝
k−1∑

j=1

1

|S(�(a| j−1), {i})| − 1

|S(�(a| j ), {i})|

⎞

⎠ + 1

|S(�(a|k−1), {i})|

= 1

|S(�(a|0), {i})| − 1

|S(�(a|k−1), {i})| + 1

|S(�(a|k−1), {i})| = 1

|S(�(a|0), {i})| = 1.

Next example illustrates a numerical application of the charge systems introduced
in Examples 2 and 3.

Example 4 Consider the spanning tree depicted in Fig. 1 of Example 1 and consider
the charge systems C̃ and Ĉ, respectively introduced in Example 2 and Example 3. In
Tables 1 and 2 we show the respective charge systems corresponding to a and b of
Example 1.

4 Conservative charge systems

In this section, special charge systems, which we call conservative, will play a role.
Consider a charge system C = {C1, . . . , Cn} on N . We define the aggregate contribu-
tion of the charge system C on a| j , for each j ∈ N and for each a = (a1, . . . , an) ∈ EN ′ ,
as the n-vector AC(a| j ) calculated via the following formula

AC(a| j ) =
j∑

k=1

Ck(a|k). (5)

Definition 2 Let C = {C1, . . . , Cn} be a charge system on N . We call C a conservative
charge system if for all j ∈ N and for each pair a, b ∈ EN ′ , with �(a| j ) = �(b| j )

we have that
AC(a| j ) = AC(b| j ). (6)

The peculiarity of conservative charge systems is that they preserve the aggregate
contribution from the network construction history, i.e. the aggregate contribution
corresponding to a| j , for a ∈ EN ′ and j ∈ N , is only dependent on the partition of N ′
induced by the connected components in 〈N ′, {a1, . . . , a j }〉.
Example 5 It is easy to check that the charge system C̃ of Example 2 is not conser-

vative. Consider, for instance, AC̃(a|3) and AC̃(b|3) in Example 1. As we noted
in Example 1, �(a|3) = �(b|3) but, from Table 1 in Example 4, we have that

AC̃(a|3) = (1, 3
4 , 3

4 , 1
2 )t �= (1, 1

2 , 3
4 , 3

4 )t = AC̃(b|3).
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Table 1 The charge system of
Example 2 for a and b of
Example 1

j 1 2 3 4

C̃ j (a| j ) (0, 1
2 , 1

2 , 0)t (1, 0, 0, 0)t (0, 1
4 , 1

4 , 1
2 )t (0, 1

4 , 1
4 , 1

2 )t

C̃ j (b| j ) (0, 0, 1
2 , 1

2 )t (0, 1
2 , 1

4 , 1
4 )t (1, 0, 0, 0)t (0, 1

2 , 1
4 , 1

4 )t

Table 2 The charge system of
Example 3 for a and b of
Example 1

j 1 2 3 4

Ĉ j (a| j ) (0, 1
2 , 1

2 , 0)t (1, 0, 0, 0)t (0, 1
6 , 1

6 , 2
3 )t (0, 1

3 , 1
3 , 1

3 , )t

Ĉ j (b| j ) (0, 0, 1
2 , 1

2 )t (0, 2
3 , 1

6 , 1
6 )t (1, 0, 0, 0)t (0, 1

3 , 1
3 , 1

3 )t

Now, consider the charge system Ĉ introduced in Example 3. For each i, j ∈ N
and each a ∈ EN ′ we have that

AĈ
i (a| j ) =

⎧
⎨

⎩

1 − 1
|S(�(a| j ),{i})| if 0 /∈ S(�(a| j ), {i})

1 otherwise.

Note that AĈ
i (a| j ) is only dependent on the partition of N ′ induced by the connected

components in 〈N ′, {a1, . . . , a j }〉, for each i, j ∈ N , i.e. Ĉ is a conservative charge
system.

Now, let C be a conservative charge system on N . We introduce the notion of
potential with respect to C, denoted by PC , which is a function on 2N ′ \ {∅} with
values in R

N .

Definition 3 Let C = {C1, . . . , Cn} be a conservative charge system on N . For each
S ∈ 2N ′ \ {∅}, consider an element a = (a1, . . . , an) ∈ EN ′ such that �(a| j ) =
{S, {i}i∈N ′\S}, with j ∈ N .

We define the potential of S with respect to the conservative charge system C as
the unique1 aggregate contribution corresponding to the partition {S, {i}i∈N ′\S}, in
formula

PC(S) := AC(a| j ).

The name of potential is inspired from physics where each conservative vector field
has a potential. In a connection situation, an intuitive interpretation of the potential
PC(S), S ∈ 2N ′ \ {∅}, is as the level of “connection work” done by nodes in N when
{S, {i}i∈N ′\S} is the current set of connected components and the conservative charge
system C is used. Note that at the beginning of the connection process, when no edges
are formed and all the connected components are singletons, the level of connection

1 Let a = (a1, . . . , an), b = (b1, . . . , bn) ∈ EN ′ , and S ∈ 2N ′ \ {∅} be such that �(a| j ) = �(b| j ) =
{S, {i}i∈N ′\S}, with j ∈ N . Recall that by Definition 2, we have AC(a| j ) = AC(b| j ). So, the aggregate
contribution corresponding to {S, {i}i∈N ′\S} is unique.
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work performed by nodes should be zero. This motivates us to use the convention that
PC

i ({ j}) = PC
i ({0}) = 0 for all i, j ∈ N .

Other elementary properties of PC : 2N ′ \ {∅} → R
N+ are collected in the following

lemma, which will play a role in Sect. 6 to prove Theorem 1.

Lemma 1 Let C = {C1, . . . , Cn} be a conservative charge system on N, let PC be
the potential w.r.t. C and let S ∈ 2N ′ \ {∅}. Then,

(c.1) if 0 ∈ S then PC(S) = eS\{0};
(c.2)

∑
i∈S\{0} PC

i (S) = ∑
i∈N PC

i (S) = |S| − 1;

(c.3) if S ⊆ T ⊆ N ′, then PC(S) ≤ PC(T ).

[Here eS\{0} ∈ R
N+ is such that eS\{0}

i = 1 for each i ∈ S \ {0} and eS\{0}
i = 0 for each

i ∈ N \ S.]

Proof (c.1) Let a = (a1, . . . , an) ∈ EN ′ and j ∈ N be such that �(a| j ) =
{S, {i}i∈N ′\S}. Then, for each i ∈ N ∩ S

PC
i (S) = AC

i (a| j ) =
j∑

k=1
Ck

i (a|k) = 1 −
n∑

k= j+1
Ck

i (a|k) = 1,

where the third equality follows from the total aggregation property of C and the
fourth equality follows from the connection property ofC. From the involvement
property, we have PC

i (S) = 0 for each i ∈ N \ S, which finally proves property
(c.1).

(c.2) If 0 ∈ S then property (c.2) follows directly from property (c.1).
Now, consider the case 0 /∈ S. Let a = (a1, . . . , an) ∈ EN ′ and j ∈ N be such
that �(a| j ) = {S, {i}i∈N ′\S}. First, note that since 0 /∈ S, j = |S| − 1. Then,

∑

i∈S
PC

i (S) = ∑

i∈S
AC

i (a| j ) = ∑

i∈S

j∑

k=1
Ck

i (a|k)

=
j∑

k=1

∑

i∈S
Ck

i (a|k) =
j∑

k=1
1 = |S| − 1,

where the fourth equality follows from the involvement property. By the in-
volvement property it follows too that PC

i (S) = 0 for each i ∈ N \ S, which
finally proves property (c.2).

(c.3) Let a = (a1, . . . , an) ∈ EN ′ and j, l ∈ N with l ≥ j be such that �(a| j ) =
{S, {i}i∈N ′\S} and �(a|l) = {T, {i}i∈N ′\T }. Then,

PC(S) = AC(a| j ) =
j∑

k=1
Ck(a|k)

≤
j∑

k=1
Ck(a|k) +

l∑

k= j+1
Ck(a|k)

=
l∑

k=1
Ck(a|k) = AC(a|l) = PC(T ),

which concludes the proof of property (c.3). ��
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Proposition 1 Let C = {C1, . . . , Cn} be a conservative charge system on N. Let
a = (a1, . . . , an) ∈ EN ′ and j ∈ N be such that �(a| j ) = {S1, S2, . . . , Sm}, with
S1, S2, . . . , Sm ⊂ N ′ and m ≤ n. Then,

AC(a| j ) =
m∑

r=1

PC(Sr ).

Proof Let r ∈ {1, 2, . . . , m}. Determine br (1), . . . , br (pr ) ∈ {1, . . . , j} such that
�(abr (1), abr (2), . . . , abr (pr )) = {Sr , {i}i∈N ′\Sr } where pr = |Sr | − 1.

Then, for each i ∈ N \ Sr , by the involvement property of C

PC
i (Sr ) = AC

i (abr (1), abr (2), . . . , abr (pr )) = 0,

whereas for each i ∈ N ∩ Sr

PC
i (Sr ) = AC

i (abr (1), abr (2), . . . , abr (pr ))

= AC
i (abr (1), . . . , abr (pr ), (as)s∈{1,..., j}\{br (1),...,br (pr )})

= AC
i (a1, a2, . . . , a j ) = AC

i (a| j ),

where the second equality follows from the involvement property in the edge
sequence (abr (1), abr (2), . . . , abr ( j)) and the third equality follows from the fact that C
is conservative. Consequently,

∑m
r=1 PC(Sr ) = AC(a| j ). ��

5 Construct and charge rules

We first recall some notions and results from Branzei et al. (2004) and Tijs et al.
(2006a). We define the set �EN ′ of linear orders on EN ′ as the set of all bijections
σ : {1, . . . , |EN ′ |} → EN ′ , where |EN ′ | is the cardinality of the set EN ′ . For each
mcst situation 〈N ′, w〉 there exists at least one linear order σ ∈ �EN ′ such that
w(σ(1)) ≤ w(σ(2)) ≤ · · · ≤ w(σ(|EN ′ |)).

For any σ ∈ �EN ′ we define the set

K σ = {w ∈ R
EN ′
+ | w(σ(1)) ≤ w(σ(2)) ≤ · · · ≤ w(σ(|EN ′ |))}.

The set K σ is a cone in R
EN ′
+ , which we call the Kruskal cone with respect to σ .

Let w ∈ W N ′
and let σ ∈ �EN ′ be such that w ∈ K σ . We can consider a sequence

of precisely |EN ′ | + 1 graphs 〈N ′, Fσ,0〉, 〈N ′, Fσ,1〉, . . . , 〈N ′, Fσ,|EN ′ |〉 such that
Fσ,0 = ∅, Fσ,k = Fσ,k−1 ∪ {σ(k)} for each k ∈ {1, . . . , |EN ′ |}.

For each graph 〈N ′, Fσ,k〉, with k ∈ {0, 1, . . . , |EN ′ |}, let πσ,k be the partition of
N ′ consisting of the connected components of N ′ in 〈N ′, Fσ,k〉.
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Fig. 2 An mcst situation with
three agents

Remark 1 For each k ∈ {1, . . . , |EN ′ |}, πσ,k is either equal to πσ,k−1 or obtained
from πσ,k−1 by taking the union of two elements of πσ,k−1.

Now we define recursively the function ρσ : N ′ → {0, 1, . . . , |EN ′ |} by

• ρσ (0) = 0
• ρσ ( j) = min{k ∈ {ρσ ( j − 1) + 1, . . . , |EN ′ |}|πσ,k �= πσ,ρσ ( j−1)}
for each j ∈ N .

Note that πσ,ρσ (i) �= πσ,ρσ ( j) for each i, j ∈ N with i �= j , and σ(ρσ (1)), . . . ,

σ (ρσ (n)) correspond to the n accepted edges in the Kruskal procedure based on the
ordering σ .

Example 6 Consider the mcst situation 〈N ′, w〉 with N ′ = {0, 1, 2, 3} and w as de-
picted in Fig. 2. Note that w ∈ K σ , with σ(1) = {1, 2}, σ(2) = {1, 3}, σ(3) = {2, 3},
σ(4) = {1, 0}, σ(5) = {2, 0}, σ(6) = {3, 0}.

The sequence of seven graphs 〈N ′, Fσ,k〉 and the corresponding sequence of parti-
tions πσ,k are shown in the following table

k Fσ,k πσ,k

0 ∅ {{0}, {1}, {2}, {3}}
1 {{1, 2}} {{0}, {1, 2}, {3}}
2 {{1, 2}, {1, 3}} {{0}, {1, 2, 3}}
3 {{1, 2}, {1, 3}, {2, 3}} {{0}, {1, 2, 3}}
4 {{1, 2}, {1, 3}, {2, 3}, {1, 0}} {N ′}
5 {{1, 2}, {1, 3}, {2, 3}, {1, 0}, {2, 0}} {N ′}
6 {{1, 2}, {1, 3}, {2, 3}, {1, 0}, {2, 0}, {3, 0}} {N ′}

Then ρσ (0) = 0, ρσ (1) = 1, ρσ (2) = 2, ρσ (3) = 4.

Definition 4 Let C = {C1, . . . , Cn} be a charge system on N . Let σ ∈ �EN ′ and let
K σ be the Kruskal cone w.r.t. σ . The Construct and Charge (CC-) rule w.r.t. C and σ
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is the map χC,σ : K σ → R
N given by

χC,σ (w) =
n∑

r=1

w(σ(ρσ (r)))Cr (σ (ρσ (1)), . . . , σ (ρσ (r))). (7)

for each mcst situation w in the cone K σ . If C is conservative, we say that χC,σ is a
conservative CC-rule.

Note that the CC-rule χ C̃,σ , where C̃ is the charge system of Example 2, corresponds
to the Proportional rule introduced in Feltkamp et al. (1994a). Moreover, the P-value

(Branzei et al. 2004; Feltkamp et al. 1994b) is a CC-rule. In fact χ Ĉ,σ (w) = P(w)

for each mcst situation w in the cone K σ , where Ĉ is the charge system of Example 3.
The following example illustrates these two CC-rules.

Example 7 Consider the mcst situation 〈N ′, w〉 with N ′ = {0, 1, 2, 3} and w as de-
picted in Fig. 2. Let σ be as in Example 6 and σ ′(1) = {1, 3}, σ ′(2) = {1, 2},
σ ′(3) = {2, 3}, σ ′(4) = {1, 0}, σ ′(5) = {2, 0}, σ ′(6) = {3, 0}. Now, we apply Defini-
tion 4 to the charge systems introduced in Examples 2 and 3 to calculate the allocations
provided by the corresponding CC-rules on 〈N ′, w〉.

The charge system C̃ of Example 2 leads to

χ C̃,σ ′
(w)

= 12 ∗ ( 1
2 , 0, 1

2 )t + 12 ∗ ( 1
4 , 1

2 , 1
4 )t + 24 ∗ ( 1

4 , 1
2 , 1

4 )t

= (15, 18, 15)t

and

χ C̃,σ (w)

= 12 ∗ ( 1
2 , 1

2 , 0)t + 12 ∗ ( 1
4 , 1

4 , 1
2 )t + 24 ∗ ( 1

4 , 1
4 , 1

2 )t

= (15, 15, 18)t .

Note that χ C̃,σ (w) �= χ C̃,σ ′
(w).

The charge system Ĉ of Example 3 leads to

χ Ĉ,σ ′
(w)

= 12 ∗ ( 1
2 , 0, 1

2 )t + 12 ∗ ( 1
6 , 2

3 , 1
6 )t + 24 ∗ ( 1

3 , 1
3 , 1

3 )t

= (16, 16, 16)t

and

χ Ĉ,σ (w)

= 12 ∗ ( 1
2 , 1

2 , 0)t + 12 ∗ ( 1
6 , 1

6 , 2
3 )t + 24 ∗ ( 1

3 , 1
3 , 1

3 )t

= (16, 16, 16)t .

Note that χ Ĉ,σ (w) = χ Ĉ,σ ′
(w).
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From Examples 5 and 7 it seems that conservative CC-rules do not depend on the
mcst obtained from the Kruskal algorithm, while CC-rules which are not conservative
do depend on the selected mcst. In next section, we show that this holds in general.

6 Conservative CC-rules and Obligation rules

The main results in this section are derived from the relation between Obligation rules
(Tijs et al. 2006a) and conservative CC-rules.

We first recall some definitions from Tijs et al. (2006a). A function o : 2N \ {∅} →
R

N+ is called an obligation function if the following two properties hold for each
S ∈ 2N \ {∅}:
o.1) o(S) ∈ �(S),
o.2) for each T ∈ 2N \ {∅} with S ⊆ T : oi (S) ≥ oi (T ) for all i ∈ S,

where the sub-simplex �(S) of �(N ) = {x ∈ R
N+| ∑i∈N xi = 1} is given by �(S) =

{x ∈ �(N )|∑i∈S xi = 1}.
Given an obligation function o, the obligation map ô : �(N ′) → R

N is defined by

ô(θ) =
∑

S∈θ,0/∈S

o(S) (8)

for each θ ∈ �(N ′), with the convention ôi (θ) = 0 for each i ∈ N and θ = {N ′}.
Let ô be an obligation map on �(N ′) and let σ, σ ′ ∈ �EN ′ . The map φσ,ô : K σ →

R
N defined for each w ∈ K σ by

φσ,ô(w) =
|EN ′ |∑

r=1

w(σ(r))
(

ô(πσ,r−1) − ô(πσ,r )
)

(9)

or, alternatively, by

φσ,ô(w) =
n∑

r=1

w(σ(ρσ (r)))
(

ô(πσ,ρσ (r−1)) − ô(πσ,ρσ (r))
)

(10)

is used in Tijs et al. (2006a) to prove that

φσ,ô(w) = φσ ′,ô(w) (11)

for all w ∈ K σ ∩K σ ′
, leading to the notion of Obligation rule as the map φô : W N ′ →

R
N defined by

φô(w) = φσ,ô(w) (12)

for each w ∈ W N ′
, where σ ∈ �EN ′ is such that w ∈ K σ .

The following proposition shows that obligation maps may be used to define charge
systems.
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Proposition 2 Let ô be an obligation map on �(N ′) and let C = {C1, . . . , Cn} be a
set of functions, such that

C j (a| j ) = ô(�(a| j−1)) − ô(�(a| j )) (13)

for each a ∈ EN ′ and j ∈ N. Then, C is a charge system.

Proof It is easy to see, via relation (8), that C satisfies the connection property and the
involvement property. By relation (13), we have

n∑

j=1
C j

i (a| j )

=
n∑

j=1
ôi (�(a| j−1)) − ôi (�(a| j ))

= ôi (�(a|0)) − ôi (�(a|n)) = 1 − 0

(14)

for each i ∈ N , which proves that C satisfies the total aggregation property as well.
As a consequence, C is a charge system on N . ��

To study whether a given charge system may be obtained as a difference of obliga-
tion maps it makes sense to introduce for charge systems the following property.

Definition 5 Let C = {C1, . . . , Cn} be a charge system on N . We say that C has the
obligation property if there exists an obligation map ô on �(N ′) such that

C j (a| j ) = ô(�(a| j−1)) − ô(�(a| j )) (15)

for each a ∈ EN ′ and j ∈ N .

Remark 2 Let χC,σ be a CC-rule w.r.t. a charge system C with the obligation property
and an ordering σ ∈ K σ . Let ô be an obligation map on �(N ′) such that relation (15)
holds on C. Then, by relation (10) we have

φσ,ô(w) =
n∑

r=1

w(σ(ρσ (r)))
(

ô(πσ,ρσ (r−1)) − ô(πσ,ρσ (r))
)

(16)

=
n∑

r=1

w(σ(ρσ (r)))Cr (σ (ρσ (1)), . . . , σ (ρσ (r))) = χC,σ (w),

for all σ ∈ �EN ′ and w ∈ K σ .

In the following theorem, we give a sufficient condition for charge systems to satisfy
the obligation property.

Theorem 1 Let C = {C1, . . . , Cn} be a conservative charge system on N. Then C
has the obligation property.
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Proof Let PC(S) be the potential of S with respect to the conservative charge system
C for each S ∈ 2N \ {∅}. Consider the map oC : 2N \ {∅} → R

N+ defined by

oC(S) = eS − PC(S) (17)

for each S ∈ 2N \ {∅}, where eS ∈ R
N+ is such that eS

i = 1 for each i ∈ S and eS
i = 0

for each i ∈ N \ S. Note that for each j ∈ N , we have

ôC(�(a| j−1)) − ôC(�(a| j ))

=
∑

S∈�(a| j−1),0/∈S

oC(S) −
∑

S∈�(a| j ),0/∈S

oC(S)

=
∑

S∈�(a| j−1),0/∈S

(
eS − PC(S)

)
−

∑

S∈�(a| j ),0/∈S

(
eS − PC(S)

)

=
∑

S∈�(a| j−1)

(
eS\{0} − PC(S)

)
−

∑

S∈�(a| j )

(
eS\{0} − PC(S)

)

=
∑

S∈�(a| j )

PC(S) −
∑

S∈�(a| j−1)

PC(S)

+
∑

S∈�(a| j−1)

eS\{0} −
∑

S∈�(a| j )

eS\{0}

=
∑

S∈�(a| j )

PC(S) −
∑

S∈�(a| j−1)

PC(S)

= AC(a| j ) − AC(a| j−1)

=
j∑

k=1

Ck(a|k) −
j−1∑

k=1

Ck(a|k) = C j (a| j ),

where the third equality follows from Lemma 1. (c.1), the fifth equality follows from
the fact that

∑
S∈θ eS\{0} = eN for each θ ∈ �(N ′) and the sixth equality from

Proposition 1.
We want to prove that oC is an obligation function, i.e. oC satisfies the properties

(o.1) and (o.2).
By definition, it follows directly that oC

i (S) = 0 for each i ∈ N \ S, and oC
i (S) ≥ 0

for each i ∈ S and for each S ∈ 2N \ {∅}. Moreover, from condition (c.2) in Lemma 1,
it follows that

∑

i∈N

oC
i (S) =

∑

i∈S

(
1 − PC

i (S)
)

= |S| − (|S| − 1) = 1,

for each S ∈ 2N \ {∅}, implying that condition (o.1) holds.
Finally, by condition (c.3) in Lemma 1, we have that for each S ⊆ T ⊆ N , S �= ∅,

and each i ∈ S
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oC
i (S) = 1 − PC

i (S) ≥ 1 − PC
i (T ) = oC

i (T ), (18)

which proves that condition (o.2) holds, too. ��
Remark 3 Since the P-value (Branzei et al. 2004) and the Pτ -values, with τ ∈ �N ,
introduced in Norde et al. (2004) and studied in Branzei et al. (2004), are Obligation
rules, one can obtain the corresponding charge systems using relation (13). It is easy

to check, for example, that χ Ĉ , where Ĉ is the charge system of Example 3, is in fact
the P-value, since Ĉ is obtained by relation (13) for the obligation maps which define
the P-value (see Tijs et al. 2006a).

Next theorem answers the question introduced at the end of Sect. 5, i.e. conservative
CC-rules do not depend on the mcst obtained from Kruskal algorithm.

Theorem 2 Let C = {C1, . . . , Cn} be a charge system on N. The following statements
are equivalent:

(i) χC,σ1(w) = χC,σ2(w) for all σ1, σ2 ∈ �EN ′ and w ∈ K σ1 ∩ K σ2 .
(ii) C is conservative.

Proof First, we prove the implication (i)⇒(ii).
Suppose that (i) holds and C is not conservative. Then, we can find a j ∈ N

and a pair a = (a1, . . . , an), b = (b1, . . . , bn) ∈ EN ′ , with �(a| j ) = �(b| j ) and
AC(a| j ) �= AC(b| j ).

Suppose �(a| j ) = {S1, S2, . . . , Sm} and take w ∈ W N ′
such that

w({i, j}) =
⎧
⎨

⎩

0 if there exists r ∈ {1, . . . , m} s.t. i, j ∈ Sr ,

1 otherwise,

for each {i, j} ∈ EN ′ . Let σ1 ∈ �EN ′ be such that σ1(ρ
σ1(k)) = ak for each

k ∈ {1, . . . , j} and σ1(ρ
σ1(l)) = dl for each l ∈ { j + 1, . . . , n}, with (a1, . . . , a j ,

d j+1, . . . , dn) ∈ EN ′ .
Let σ2 ∈ �EN ′ be such that σ2(ρ

σ2(k)) = bk for each k ∈ {1, . . . , j} and
σ2(ρ

σ2(l)) = dl for each l ∈ { j + 1, . . . , n}, with (b1, . . . , b j , d j+1, . . . , dn) ∈ EN ′ .
In addition, σ1 and σ2 can be chosen such that w ∈ K σ1 ∩ K σ2 . We have

χC,σ1(w)

=
j∑

r=1

w(ar )C
r (a|r ) +

n∑

r= j+1

w(dr )C
r (a1, . . . , a j , d j+1, . . . , dr )

=
n∑

r= j+1

Cr (a1, . . . , a j , d j+1, . . . , dr )

= eN −
j∑

r=1

Cr (a|r )

= eN − AC(a| j ),
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where the third equality follows from the total aggregation property.
Similarly,

χC,σ2(w) = eN −
j∑

r=1

Cr (b|r ) = eN − AC(b| j ).

So, χC,σ1(w) �= χC,σ2(w), which yields a contradiction with the fact that (i) holds.
Now, we prove the implication (ii)⇒(i).
From Theorem 1, we have that a conservative charge system has the obligation

property. Consequently, there exists an obligation map ô on �(N ′) such that

C j (a| j ) = ô(�(a| j−1)) − ô(�(a| j ))

for each a ∈ EN ′ and j ∈ N . Then, by relation (16), for all σ ∈ �EN ′ and w ∈ K σ

we have φσ,ô(w) = χC,σ (w), where φσ,ô is the map introduced by (10) and χC,σ is
the CC-rule w.r.t. C and σ . As a consequence, by relation (11) we have χC,σ1(w) =
φσ1,ô(w) = φσ2,ô(w) = χC,σ2(w) for all σ1, σ2 ∈ �EN ′ and w ∈ K σ1 ∩ K σ2 , which
concludes the proof. ��

Next theorem is the main result of this section.

Theorem 3 For each charge system C = {C1, . . . , Cn} on N the following statements
are equivalent:

(i) C is a conservative charge system;
(ii) C satisfies the obligation property.

Proof (i)⇒(ii). By Theorem 1, if C is a conservative charge system then C satisfies
the obligation property.

(ii)⇒(i). If C satisfies the obligation property, then by relation (16) there exists
an obligation map ô on �(N ′) such that χC,σ (w) = φσ,ô(w) for all σ ∈ �EN ′ and

w ∈ K σ , where φσ,ô is the map introduced by (10) and χC,σ is the CC-rule w.r.t. C
and σ . By relation (11) we have χC,σ1(w) = φσ1,ô(w) = φσ2,ô(w) = χC,σ2(w) for
all σ1, σ2 ∈ �EN ′ and w ∈ K σ1 ∩ K σ2 . Consequently, by Theorem 2, we have that C
is conservative. ��

From Remark 2 and Theorem 3 we conclude that the class of conservative CC-
rules coincides with the class of Obligation rules, and Tijs et al. (2006a) proved that
Obligation rules are cost monotonic rules.

By Theorem 2, we have that non-conservative CC-rules may provide different cost
allocations, which depend on the mcst obtained from Kruskal algorithm. So, non-
conservative CC-rules are multi-solutions for mcst situations (Tijs et al. 2006b). Note
that the definition of cost monotonicity studied in the present paper applies to solutions
for mcst situations. For mcst situations, Tijs et al. (2006b) introduced a concept of cost
monotonicity for multi-solutions which generalizes the concept of cost monotonicity
for solutions. However, cost monotonicity for multi-solutions is not satisfied in general
by non-conservative CC-rules, as it is shown in Example 8, dealing with specific mcst
situations where the optimal tree is unique.
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Fig. 3 Two mcst situations w (left side) and w′ (right side)

Example 8 Consider the mcst situation 〈N ′, w〉 with N ′ = {0, 1, 2, 3} and w as
depicted in Fig. 3 (left side). Note that there exists a unique σ ∈ �N ′ with w ∈ K σ ,
where σ is such that σ(1) = {1, 2}, σ(2) = {1, 3}, σ(3) = {2, 3}, σ(4) = {1, 0},
σ(5) = {2, 0}, σ(6) = {3, 0}.

We apply Definition 4 to the charge systems C̃ introduced in Example 2 to calculate
the allocations provided by the corresponding CC-rules on 〈N ′, w〉. We have

χ C̃,σ (w)

= 12 ∗
(

1

2
,

1

2
, 0

)t

+ 16 ∗
(

1

4
,

1

4
,

1

2

)t

+ 24 ∗
(

1

4
,

1

4
,

1

2

)t

= (16, 16, 20)t .

Now, consider the mcst situation 〈N ′, w′〉 with w′ as depicted in Fig. 3 (right side),
where w′(e) = w(e) for all e ∈ EN ′ \{1, 2} and w′({1, 2}) > w({1, 2}). Note that also
for this mcst situation there exists a unique σ ′ ∈ �N ′ with w′ ∈ K σ , where σ ′ is such
that σ ′(1) = {1, 3}, σ ′(2) = {1, 2}, σ ′(3) = {2, 3}, σ ′(4) = {1, 0}, σ ′(5) = {2, 0},
σ ′(6) = {3, 0}. We have

χ C̃,σ ′
(w′)

= 16 ∗
(

1

2
, 0,

1

2

)t

+ 18 ∗
(

1

4
,

1

2
,

1

4

)t

+ 24 ∗
(

1

4
,

1

2
,

1

4

)t

= (18.5, 21, 18.5)t .

Agent 3 is better off in w′, where the cost of edge {1, 2} is larger.
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