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Abstract A target is hidden in one of several possible locations, and the objective
is to find the target as fast as possible. One common measure of effectiveness for
the search process is the expected time of the search. This type of search optimiza-
tion problem has been addressed and solved in the literature for the case where the
searcher has imperfect sensitivity (possible false negative results), but perfect speci-
ficity (no false positive detections). In this paper, which is motivated by recent military
and homeland security search situations, we extend the results to the case where the
search is subject to false positive detections.

Keywords Discrete search · Imperfect specificity · uniformly optimal

1 Introduction

Discrete search problems have been out of vogue for over two decades. However,
recent defense problems, such as searching for a hostage hidden in a city (e.g., rel-
atively recent events in the Gaza strip) or detecting improvised explosive devices
(IED) in Iraq, have underscored the need for efficient and effective search methods
for detecting targets of various types.

We consider a surveillance system, the purpose of which is to find a target that is
hidden in one out of n possible locations. The target location is uncertain but there
is some prior information that is quantified in a prior probability distribution. The
surveillance system comprises a sensor and a verification team. The sensor, which
searches sequentially the n locations, is imperfect and therefore its cues are subject to

M. Kress (B) · K. Y. Lin · R. Szechtman
Operations Research Department,
Naval Postgraduate School, Monterey,
CA 93943, USA
e-mail: mkress@nps.edu

123



540 M. Kress et al.

errors. The verification team, which makes no errors, investigates positive detections
by the imperfect sensor and verifies if they are true or false. Such a search process
takes time, and the objective is to find a search policy that minimizes the expected
search time until the target is found or optimizes some other measures of effectiveness
(MOEs) such as the probability of detection.

Discrete search problems of the type mentioned above are not new. Optimal where-
about is studied in Ahlswede and Wegener (1987) and Kadane (1971). Chew (1967)
considers an optimal search with stopping rule where all search outcomes are inde-
pendent, conditional on the location of the searched object and the search policy. In
another paper Chew (1973) considers a discrete search, where the target may not be
present in one of the searched cells and the problem is when to stop the search. Sim-
ilar problems are discussed in Pollock (1971). Wegener (1980) investigates a search
process where the search time of a cell depends on the number of searches so far.
A minimum cost search problem–similar to the one presented above–is discussed in
Ross (1983), where only one search mode is considered and the sensor has perfect
specificity. Other discrete search problems are studied in Black (2004), Matula (1964),
Wegener (1980) and Song and Teneketzis (2004). Stone (1975) gives a comprehensive
and detailed analysis of both maximum probability and minimum cost search models.
All of the aforementioned references assume that the sensor has perfect specificity, that
is, if it records a detection, the target is found. Our model relaxes this assumption and
extends classical discrete search theory to incorporate false-positive errors, which are
realistic phenomena in many defense and homeland security situations. While some
authors (e.g., Danskin 1962) have considered the effect of false positive detections in
the presence of decoys, to the best of our knowledge, our model is the first direct gener-
alization of the classical discrete search problem. Incorporating imperfect specificity
necessitates the introduction of an investigation stage following a detection.

The specific contributions of this paper are:

• We show that a greedy policy is optimal when each positive detection by the search
sensor is followed by an investigation by the verification team.

• We derive the expected time of the search under the above conditions.
• If the verification time is significantly longer than the search time, an alternative

MOE is the probability that the first detection is a true one. We show that a greedy
policy is optimal for this MOE, too.

• Under certain realistic search conditions, we show that the greedy search rule is
also uniformly optimal.

The paper is organized as follows. In Sect. 2, we introduce notation and formu-
late the problem. In Sect. 3, we prove the optimality of a certain greedy rule for the
minimum-cost search problem. In Sect. 4, we examine two special cases of the model
and show that a greedy rule is optimal also for probability oriented objectives. Sect. 5
gives a summary of the results and briefly discusses future research.

2 Operational motivation, statement of the problem and notation

The operational setting of our model can be demonstrated by the following scenario.
A hostage is hidden in a place (e.g., house) located in one of n possible area cells
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Fig. 1 A city is divided into 15 ACs, and a search in AC 11 yields a detection at a specific address

(AC) (e.g., city blocks). See Fig. 1. The objective is to locate the hostage as quickly as
possible. An imperfect sensor searches the ACs one at a time. Following a detection,
which identifies a place in the AC (e.g., an address of a house) where the hostage may
be, a ground verification and rescue team is sent to that place to verify the detection
and, if positive, rescue the hostage. There are three possible types of detection.

1. Perfect Detection: The sensor identifies correctly the place (address) where the
hostage is kept.

2. Partial Detection: The sensor correctly identifies the AC where the hostage is
held, but incorrectly identifies the specific place of captivity.

3. False Detection: The hostage is not hidden in the AC where the sensor has recorded
a detection.

If the ground team is sent to a wrong address in a certain AC, it continues searching
the rest of the AC and if the hostage is hidden there (the case of partial detection) he
will be found by the team. If the hostage is not hidden in that AC (the case of false
detection), the AC is declared to be cleared and therefore removed from further search
by the sensor.

Let θ be the parameter that describes the AC where the target is hidden; that is,
θ = i when AC i contains the target. Given the prior probability mass function (p.m.f.)
of θ , π : {1, . . . , n} → [0, 1], we write πi = P(θ = i).

Recall that the sensor is imperfect. Let pi = P( Sensor indicates detection
in AC i | θ = i); that is, pi is the probability that the sensor identifies correctly

the AC where the hostage is hidden. Let ri = P(Sensor indicates detection and
identifies correctly the place in AC i | θ = i). Clearly, ri ≤ pi , and pi − ri

is the probability that the sensor identified the wrong place in the AC where the
hostage is hidden. Finally, let qi = P(Sensor indicates detection in AC i | θ �= i);
1 − qi is the specificity of the sensor in AC i . We assume throughout that pi ≥ qi

without loss of generality, because we can reverse the cue of the sensor if
qi > pi .

Given a prior p.m.f. π , we select an action a(π) ∈ {1, . . . , n} that indicates the AC
to be searched next. An action a(π) �= θ results in one of two possible outcomes: a
no detection or a false detection. Following either of these outcomes, posterior proba-
bilities are obtained and the prior p.m.f. of θ is updated. In the case of a no detection,
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the posterior p.m.f., �−a (π) = (�−a,1, . . . ,�
−
a,n)(π), is given by

�−a, j (π) =

⎧
⎪⎨

⎪⎩

(1− pa)πa

1− paπa − qa(1− πa)
, if j = a;

(1− qa)π j

1− paπa − qa(1− πa)
, if j �= a.

(1)

Considering the case of a false detection, the posterior p.m.f., denoted by �+a (π) =
(�+a,1, . . . ,�

+
a,n)(π), is

�+a, j (π) =
{

0 if j = a;
π j

1− πa
if j �= a.

(2)

In either case, no detection or false detection, we update the prior π by �−a (π) and
�+a (π), respectively. This way a sequence of priors is obtained until a true detection
occurs.

The time it takes the sensor to search AC i is ci . In case of perfect detection, the
rescue team completes the rescue mission in C (1)

i time units. In case of partial detec-

tion, the length of the rescue mission is C (2)
i > C (1)

i . In case of false detection, the
comprehensive verification time by the ground team in AC i before it is declared to be
clear is C (3)

i . The objective function of the searcher is to minimize the expected total
time it takes to rescue the hostage.

To formulate the optimal search policy, first note that the total time it takes to rescue
the hostage can be broken into two parts:

1. Search Time: The time spent to locate the AC in which the hostage is hidden,
including the comprehensive verification time C (3)

i spent in a wrong AC follow-
ing a false detection.

2. Rescue Time: The time it takes to find and rescue the hostage after locating the
AC in which the hostage is hidden, either by perfect or partial detection.

Recall that θ denotes the AC that contains the hostage. Conditional on θ = i , the
rescue time takes on values C (1)

i or C (2)
i depending on whether the detection in AC i

is perfect or partial. Therefore, the conditional expected rescue time is equal to

ri

pi
C (1)

i +
pi − ri

pi
C (2)

i .

Because at the beginning of the search, there is probability πi that the hostage is hidden
in AC i , the expected total rescue time is

n∑

i=1

πi

(
ri

pi
C (1)

i +
pi − ri

pi
C (2)

i

)

, (3)

which is a constant, invariant to the search policy. It follows that we can formulate
an equivalent objective function, which is to minimize the expected search time until
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correctly detecting the AC in which the hostage is hidden, either by a perfect or partial
detection.

Note that in this equivalent objective function, the parameters ri , C (1)
i , and C (2)

i ,
which only concern the rescue operation, but do not affect the search time, do not
appear. In other words, the optimal policy is invariant with respect to these param-
eters. Throughout the rest of the paper, we use the equivalent modified objective
function, and let Ci = C (3)

i to simplify the notation. In addition, hereafter we use the
terms search and look interchangeably and the hostage is called target.

3 The optimal search policy

A search policy σ is a sequence of actions adapted to the sequence of priors; in our
case each action depends only on the latest prior p.m.f. π . Let Tσ (π) be the expected
search time until detecting the correct AC, if the prior p.m.f. is π and the searcher
follows search policy σ . Given two policies σ1 and σ2, we write σ1 �π σ2 when
Tσ1(π) ≤ Tσ2(π).

The main result of this paper is presented in the next theorem.

Theorem 3.1 Given a prior p.m.f. π for θ , the optimal search policy follows a greedy
rule where the AC to search next is one having the maximal value of

piπi

ci + qi Ci
, i = 1, 2, . . . , n.

We call the search policy in Theorem 3.1 the greedy rule, because each time we
search in the AC that has the maximal ratio between the probability of finding the hos-
tage and the expected (wasted) cost due to a false detection. Theorem 3.1 generalizes
the case of perfect specificity, where the qi ’s all equal zero; see, for example, (Ross
1983; Stone 1975).

To facilitate the proof of Theorem 3.1, we introduce two alternatives to express a
feasible policy. First, let

(
a1, a2, a3, a4, . . .

G, G, G, G, . . .

)

denote a feasible policy such that the searcher first follows the order a1, a2, . . . , until
the first detection takes place. If the first detection correctly locates the target (either
perfect detection or partial detection), then the problem ends. If the first detection is a
false detection, then the searcher switches to the greedy rule thereafter. Second, let

(
a1, a2, a3, a4, . . .

b, G, G, G, . . .

)

denote a policy similar to the previous one, with the exception that if the first search
in AC a1 results in a false detection, then the searcher is required to search in AC b
immediately before switching to the greedy rule.
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Lemma 3.1 Consider two policies

δ1 =
(

i, j, a3, a4, . . .

j, G, G, G, . . .

)

and

δ2 =
(

j, i, a3, a4, . . .

i, G, G, G, . . .

)

.

For any π , δ1 �π δ2, that is, the expected search time with policy δ1 is shorter than
with policy δ1, if and only if

piπi

ci + qi Ci
≥ p jπ j

c j + q j C j
.

Proof Let

δ̂ =
(

a3, a4, . . .

G, G, . . .

)

.

By conditioning on the location of the target, we can write

Tδ1(π) = ci + πi

[
(1− pi )

(
c j + q j

(
C j + TG(�+j �−i (π))

)

+ (1− q j )Tδ̂
(�−j �−i (π))

)]

+ π j

[
qi

(
Ci + c j + (1− p j )TG(�−j �+i (π))

)

+ (1− qi )
(

c j + (1− p j )Tδ̂
(�−j �−i (π))

)]

+ (1− πi − π j )
[
qi

(
Ci + c j + q j (C j + TG(�+j �+i (π)))

+ (1− q j )TG(�−j �+i (π))
)

+ (1− qi )
(

c j + q j (C j + TG(�+j �−i (π)))+ (1− q j )Tδ̂
(�−j �−i (π))

)]
,

where TG(·) denotes the expected search time with the greedy rule. Interchanging the
indices i and j we get an expression for Tδ2(π). Because �−j �−i (π) = �−i �−j (π),

�+j �−i (π) = �−i �+j (π), and �−j �+i (π) = �+i �−j (π), taking the difference we
have that

Tδ1(π)− Tδ2(π) = −πi pi (c j + q j C j )+ π j p j (ci + qi Ci ).

From the last equation the result follows immediately. ��
We next present the proof of Theorem 3.1.
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Proof of Theorem 3.1 The proof is based on induction on the number of ACs. The
theorem is trivially true for n = 1.

Suppose that the greedy rule is optimal if there are n − 1 or fewer ACs. Next we
show that it is also optimal when there are n ACs. Without loss of generality let

p1π1

c1 + q1C1
= max

i=1,...,n

piπi

ci + qi Ci
. (4)

We consider a class of search policies in which AC 1 is searched only following τ − 1
no-detection searches elsewhere; that is, ai �= 1 for i = 1, . . . , τ − 1 and aτ = 1. Let
�τ denote the set of these policies. We first deal with the case τ <∞. Let

ζ1 =
(

1, a1, a2, . . .

G, G, G, . . .

)

,

ζ2 =
(

a1, 1, a2, . . .

G, G, G, . . .

)

,

...

ζτ =
(

a1, a2, . . . , aτ−1, 1, aτ+1, . . .

G, G, . . . , G, G, G, . . .

)

.

From Eq. (4), the induction hypothesis, and Lemma 3.1 we have

ζ1 �π

(
1, a1, a2, . . .

a1, G, G, . . .

)

�π ζ2.

Hence, ζ1 �π ζ2. Repeating this argument we can see that ζ1 �π ζ2 �π · · · �π ζτ .
In particular, this implies that ζ1 �π ζτ . In other words, we show that for any policy
in �τ , with τ <∞, we can find a better policy that starts with AC 1.

Our previous argument shows that (Tζτ ) is a nondecreasing real sequence, so that
Tζ1 ≤ Tζ∞ . Hence, for any policy in �∞ the expected search time does not increase
by starting the search on AC 1. Consequently, it is optimal to first search in AC 1. ��

To carry out the optimal policy in practice, we first use the following algorithm to
generate the search order if all the searches thus far resulted in no detection.

1. Set m = 1.
2. Choose a such that

paπa

ca + qaCa
= max

j

p jπ j

c j + q j C j
,

and let em = a.

123



546 M. Kress et al.

3. Update π as follows:

πa ← (1− pa)πa

1− paπa − qa(1− πa)
,

π j ← (1− qa)π j

1− paπa − qa(1− πa)
, j �= a.

4. Let m ← m + 1, and go to 2.

Let e = {em}∞m=1 denote the search order generated by this algorithm. If following
the optimal policy the first m searches all resulted in no detection, then it is optimal
to next search AC em+1. Now suppose that the first m − 1 searches resulted in no
detection, and the mth search in AC a (em = a) results in a false detection. To see
how we can use e to find which AC to search next, note that the ratio of the posterior
probabilities �−a, j (π)/�−a,k(π), j �= a and k �= a, remains unchanged, regardless of
the search outcome in AC a. Therefore, according to Theorem 3.1, whether the mth
search in AC a results in no detection or in a false detection, the relative positions
for all the ACs other than a in e remain unchanged. Consequently, with the optimal
policy, we simply continue to follow e by skipping those ACs that have gone through
a comprehensive verification due to a false detection.

4 Special cases

In this section, we examine two special cases of the search model, which represent
two extreme cases of the search scenario: one where the investigation process is risky
and extremely long compared to the search time, and the other when the effect of the
investigation time is negligible.

4.1 Risky and very long investigation process

Suppose that sending out ground units to investigate a detection is a risky and com-
plex operation that may take a very long time compared to the search time, that is,
Ci � ci , i = 1, . . . , n. In this case, the objective would be to minimize the chance of
false positive detections, and consequently, the MOE would be the probability that the
first detection is a true one. The optimal policy in this case is greedy, too, as shown in
the following theorem.

Theorem 4.1 Given a prior p.m.f. π for θ , the optimal search policy that maximizes
the probability that the first detection is a true one, follows a greedy rule where the
AC to search next is one having the maximal value of

piπi

qi
, i = 1, 2, . . . , n.

Proof Because the objective is to maximize the probability that the first detection is
a true detection, a feasible policy is a sequence of ACs, such that the searcher follows
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this sequence until a detection occurs. Consider two policies δ1 = (i, j, a3, a4, . . .)

and δ2 = ( j, i, a3, a4, . . .), and let δ̂ = (a3, a4, . . .).
Let Vδ(π) denote the probability that the first detection is a true detection, if the

prior p.m.f. is π and the searcher follows search policy δ. By conditioning on the
location of the target, we can write

Vδ1(π) = πi

(
pi + (1− pi )(1− q j )V

δ̂
(�−j �−i (π))

)

+ π j

(
(1− qi )p j + (1− qi )(1− p j )V

δ̂
(�−j �−i (π))

)

+ (1− πi − π j )(1− qi )(1− q j )V
δ̂
(�−j �−i (π)).

Interchanging the indices i and j we get an expression for Vδ2(π). Because �−j �−i
(π) = �−i �−j (π), taking the difference we have that

Vδ1(π)− Vδ2(π) = πi pi q j − π j p j qi .

Therefore, Vδ1(π) ≥ Vδ2(π) if and only if piπi/qi ≥ p jπ j/q j . The rest of the proof
follows the steps as in Theorem 3.1 because we can always find a better policy than δ,
if δ does not start with the AC that has the maximal value of piπi/qi , i = 1, . . . , n. ��

Note that the greedy rule of Theorem 4.1 is also a special case of Theorem 3.1 when
Ci = C, i = 1, . . . , n, and C → ∞. In other words, if Ci = C � ci , i = 1, . . . , n,
then the greedy rule of Theorem 4.1 also minimizes the expected time to detection.

4.2 Uniform search time, no effect of investigation time

Suppose that while the investigative sensor performs its investigation, the search sen-
sor can proceed in searching other ACs. However, we assume that due to operational
constraints and the high risk associated with the investigation operation, a verification
team can be sent out to investigate an AC only upon a detection cue by the sensor.
Given an infinite capacity of investigating resources, the problem is to find the search
policy that minimizes the number of searches until the correct AC is detected by the
search sensor (which will be immediately followed by an investigation that will con-
firm the detection). This scenario can be represented by our model by letting ci = 1
and Ci = 0 for i = 1, . . . , n.

In this situation, the greedy search policy given in Sect. 3 not only minimizes the
expected number of looks until the target is detected, but it is also uniformly optimal.
A discrete search policy is said to be uniformly optimal (see e.g., Stone 1975, p. 104)
if it maximizes the probability of detecting the correct AC for any given number of
available looks. Stone (1975) showed this result for the case when the specificity of
the sensor is perfect, that is, qi = 0, i = 1, . . . , n. We extend this result to the case
where qi ≥ 0.

Theorem 4.2 If ci = 1 and Ci = 0 for i = 1, . . . , n, then the greedy rule in
Theorem 3.1 is uniformly optimal.
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Proof Let π = (π1, π2, . . . , πn) denote the prior p.m.f. of the target’s location, where
πi = P(θ = i), i = 1, . . . , n. Without loss of generality, suppose

π1 p1 = max
j=1,...,n

π j p j . (5)

First note that the theorem is trivially true if the searcher is allowed only one look.
Suppose there are k ≥ 2 looks available and consider two searchers A and B with

the same prior p.m.f. π = (π1, . . . , πn). Recall that A’s policy can be represented by
a sequence of actions σ = (a1, a2, . . . , ak), where ai (·) maps the updated p.m.f. of
the target’s location to the AC for A’s i th look. Suppose A does not start in AC 1; that
is, a1(π) �= 1. To prove the theorem, we will show that B can do at least as well as A
by first searching in AC 1. The theorem then follows due to Eq. (5).

To do so, consider the following policy for B: First search in AC 1. If the search
results in a true detection, then the search ends; otherwise, instead of updating the
p.m.f. of the target’s location, let B keep the original prior p.m.f. π . Starting from the
second look, continue the search with a1, a2, . . . , and update the p.m.f. of the target’s
location according to Eqs. (1) and (2) along the way. The search under a1, a2, . . . con-
tinues until B is instructed by a1, a2, . . . to search in AC 1 for the first time (besides the
very first look in AC 1). At that point, do not search in AC 1; instead, update the p.m.f.
of the target’s location according to the outcome from the very first search in AC 1.
Say am instructs B to search in AC 1 for the first time, then starting in the (m + 1)st
look let B follow am+1, am+2, . . . , ak throughout the rest of the search.

In order to show that the probability of B finding the target in k looks is no less than
that of A, we couple the location of the target θ and the search outcomes for the two
searchers, such that A’s lth look in AC i yields the same outcome as B’s lth look in AC
i , for l = 1, 2, . . ., and i = 1, . . . , n. By doing so, we can see that with probability
π1 p1, B finds the target in his first look. If B continues after the first look, then in each
sample path, A’s i th look and its outcome will be identical to B’s (i + 1)st look and its
outcome, i = 1, 2, . . . , as long as A has not yet searched in AC 1. When A searches
in AC 1 for the first time, either A finds the target (in which case B finds the target in
his very first search because of stochastic coupling), or thereafter both searchers will
look at the same ACs throughout the search process.

To compare the probability that each searcher can find the target within k looks, we
consider two cases:

1. Searcher A searches in AC 1 on or before his kth look: In this case, B finds the
target within k looks if and only if A does, so the probability of finding the target
within k looks is identical for both searchers.

2. Searcher A never searches in AC 1 during his first k looks: In this case, with prob-
ability π1 p1 B finds the target, and A does not. The only situation where A finds
the target within k looks and B does not is if A finds it on his kth look in, say,
AC i . Because AC i may have been searched a few times during A’s first k − 1
looks, the probability that A finds the target on the kth look is bounded by πi pi .
Therefore, the probability that A finds the target, but not B, is bounded by

max
i=2,...,n

πi pi ≤ π1 p1,
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where the inequality follows from Eq. (5). Therefore, the probability of B finding
the target within k looks is at least as large as that of A.

The preceding discussion shows that for k ≥ 1, there exists a feasible policy that
starts with AC 1 and maximizes the probability that the target will be found within k
looks. Hence, the greedy rule is uniformly optimal. ��

5 Summary and conclusions

In this note we extend previous results concerning discrete searches to the case where
the searcher has imperfect specificity. In that case, the imperfect searcher is coupled
with a perfect, time-consuming, investigating agent that verifies detection cues by the
searcher. A simple greedy rule is developed, which is proven to be optimal when the
objective is to minimize the expected time to detection. The expected search time of
this greedy search is calculated and some numerical analysis is provided. For certain
situations, it is shown that the greedy rule maximizes a probability objective and is
uniformly optimal. Note, however, that we assume, as in previous works on this topic,
that the time of a transition from one AC to another is zero. In many situations (e.g.,
unmanned aerial vehicle searching a road for IEDs) this may not be the case and travel
time must be accounted for explicitly. Incorporating travel time in this search model
leads to more complex dynamic programming settings that will be explored in future
research.
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