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Abstract Several generalizations of the Hahn–Banach extension theorem to
K -convex multifunctions were stated recently in the literature. In this note we provide
an easy direct proof for the multifunction version of the Hahn–Banach–Kantorovich
theorem and show that in a quite general situation it can be obtained from existing
results. Then we derive the Yang extension theorem using a similar proof as well
as a stronger version of it using a classical separation theorem. Moreover, we give
counterexamples to several extension theorems stated in the literature.

Keywords Hahn–Banach–Kantorovich extension theorem · Yang extension
theorem · K -convex multifunction · Intrinsic core

1 Introduction

It is well known the importance of the Hahn–Banach theorem in Functional Analy-
sis. It was not a surprise that the generalization of this theorem to the case when R

is replaced by an ordered linear space having the least upper bound property, the so
called Hahn–Banach–Kantorovich theorem, interested many mathematicians. In the
last period working with set-valued functions instead of functions became an important
tool in analysis, mainly in non-smooth analysis. In this context the interest for hav-
ing versions of the Hahn–Banach–Kantorovich theorem with the sublinear or convex
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494 C. Zălinescu

operators replaced by convex processes or convex multifunctions increased. On the
other hand, in R the logic propositions α ≤ β and α �> β are equivalent, which is not
the case when the order relation ≤ on the linear space Z is defined by a convex cone K
with non-empty algebraic interior. So having extension results not only for the relation
≤, but also for the relation �> is natural (and maybe more useful). The scope of this
paper is to discuss Hahn–Banach type extension theorems involving multifunctions.
We point out that several recent results concerning extension theorems of Kantorovich
type for convex and affine (like) multifunctions follow easily from known (now clas-
sic) results; for this we extend slightly the version of the Hahn–Banach–Kantorovich
theorem for multifunctions. Then we reinforce the conclusion of Yang’s Hahn–Banach
type theorem (Yang 1992) providing two proofs.

In the sequel X , Y , Z are real linear spaces. The class of linear operators from X
into Z is denoted by L(X, Z); we set X ′ := L(X,R). We consider K ⊂ Z a proper
(i.e. {0} �= K �= Z ), convex cone containing 0. The cone K induces a partial order
on Z , denoted ≤K or simply ≤ if there is no risk of confusion. So, for z1, z2 ∈ Z one
has z1 ≤ z2 (or equivalently z2 ≥ z1) if z2 − z1 ∈ K . We denote by Ai the algebraic
interior (or core) of A ⊂ X and by i A the relative algebraic interior (or intrinsic core)
of A, that is i A is the algebraic interior of A with respect to the affine hull aff A of A.
Recall that for A a convex set one has

a ∈ i A ⇔ [∀x ∈ A, ∃λ ∈ P : (1 + λ)a − λx ∈ A], (1)

where P := ]0,∞[ ⊂ R. When K0 := K i �= ∅, we use z1 < z2 (or z2 > z1)
when z2 − z1 ∈ K0, and z1 �< z2 (or z2 �> z1) if z2 − z1 /∈ K0. We extend Z
to Z• := Z ∪ {−∞,+∞}, ±∞ /∈ Z , and consider that −∞ ≤ z ≤ +∞ (even
−∞ < z < +∞ if K0 �= ∅) for all z ∈ Z ; moreover, z + (±∞) := ±∞, 0 · (+∞) :=
+∞, 0 · (−∞) := 0, t · (±∞) := ±∞ for all z ∈ Z and t ∈ P. For a function
f : X → Z•, its domain is dom f := {x ∈ X | f (x) ∈ Z} and its epigraph is
epi f := {(x, z) ∈ X × Z | f (x) ≤ z}; f is proper if dom f �= ∅ and it does not
take the value −∞, while f is convex if epi f is convex. We say that f : X → Z•
is sublinear if f is proper, f (0) = 0, f (t x) = t f (x) and f (x + x ′) ≤ f (x)+ f (x ′)
for all x, x ′ ∈ X and t ∈ P; hence epi f is a convex cone containing the origin when
f is sublinear.

In the sequel we identify a multifunction � : E ⇒ F (that is, a function � : E →
2F ) with its graph gph� := {(x, y) ∈ E × F | y ∈ �(x)}. So, several times in the
sequel, having a subset A of E × F we interpret A as the graph of a multifunction
from E to F , and so A(x) := {y ∈ F | (x, y) ∈ A}. Of course, for the multifunction
� : E ⇒ F we have dom � = PE (�) and Im � = PF (�), where PE : E × F → E ,
PE (x, y) := x and similarly for PF . The multifunction � : X ⇒ Z is said to be
K –convex if its epigraph epi� := gph� + ({0} × K ) is convex, that is, the graph of
the multifunction �K : X ⇒ Z defined by �K (x) := �(x)+ K is convex. Of course,
for A, B ⊂ X , x ∈ X , � ⊂ R and α ∈ R we set A + B := {a + b | a ∈ A, b ∈ B},
x + A := {x} + A, �A := {λx | λ ∈ �, a ∈ A} and αA := {α}A (so A + ∅ =
∅ + A = ∅, α∅ = ∅).
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Hahn–Banach extension theorems for multifunctions revisited 495

2 The Hahn–Banach–Kantorovich theorem

In this section the proper convex cone K ⊂ Z is pointed (i.e. K ∩ (−K ) = {0}) and
(Z , K ) has the least upper bound property, i.e. every non-empty and upper bounded
set has a least upper bound; of course, in this situation every non-empty and lower
bounded set has a greatest lower bound. If the non-empty set B ⊂ Z is bounded from
below (resp. above), we denote by inf B (sup B) the greatest lower (resp. least upper)
bound of B; if B is not bounded below (resp. above) we set inf B := −∞ (resp.
sup B := +∞). We also use the notation inf ∅ := +∞ and sup ∅ := −∞.

We first give an extension theorem for convex multifunctions. As we shall see below,
the result is equivalent to the classical Hahn–Banach–Kantorovich theorem when the
relative algebraic interior of the domain of the involved multifunction is non-empty.

Theorem 1 Let � : X ⇒ Z be a K –convex multifunction, X0 ⊂ X a linear sub-
space and T0 ∈ L(X0, Z). Suppose that 0 ∈ i (dom � − X0) and T0x ≤ z for all
(x, z) ∈ � ∩ (X0 × Z). Then there exists T ∈ L(X, Z) such that T

∣
∣X0 = T0 and

T x ≤ z for all (x, z) ∈ �.

Proof Consider X := aff (dom � − X0). Because 0 ∈ i (dom � − X0), X is a linear
space.

The case X = X . Hence 0 ∈ (dom � − X0)
i . Note that if X1 is a linear subspace

of X such that X0 ⊂ X1, then 0 ∈ (dom � − X1)
i , too. Also note that it is sufficient

to show that, if x ∈ X \ X0 then there exists T1 : X1 → Z , with X1 := X0 +Rx , such
that T1

∣
∣X1 = T0 and T1x ≤ z for all (x, z) ∈ � ∩ (X1 × Z). If so, by using Zorn’s

lemma, as in the standard proof of the Hahn–Banach theorem, one gets a maximal T
defined on the entire space X .

Let x and X1 be as above. Since 0 ∈ (dom � − X0)
i , there exists λ ∈ P such that

±λx ∈ dom �−X0, and so there exist x1 ∈ X0 and z1 ∈ Z such that (x1+λx, z1) ∈ �
and x2 ∈ X0 and z2 ∈ Z such that (x2 − λx, z2) ∈ �. Set A := epi�. It follows that
the sets

B1 :=
{

z1 − T0x1

λ1

∣
∣
∣
∣

x1 ∈ X0, z1 ∈ Z , λ1 ∈ P : (x1 + λ1x, z1) ∈ A

}

= {z1 − T0x1 | x1 ∈ X0, z1 ∈ Z : (x1 + x, z1) ∈ PA},

and

B2 :=
{

T0x2 − z2

λ2

∣
∣
∣
∣

x2 ∈ X0, z2 ∈ Z , λ2 ∈ P : (x2 − λ2x, z2) ∈ A

}

= {T0x2 − z2 | x2 ∈ X0, z2 ∈ Z : (x2 − x, z2) ∈ PA},

are non-empty (and convex) sets. Moreover,

∀ b1 ∈ B1,∀b2 ∈ B2 : b1 ≥ b2.

Indeed, let b1 ∈ B1 and b2 ∈ B2; then b1 = z1−T0x1 and b2 = T0x2−z2 with x1, x2 ∈
X0, z1, z2 ∈ Z and (x1 + x, z1), (x2 − x, z2) ∈ PA. It follows that (x1 + x2, z1 + z2) ∈
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496 C. Zălinescu

PA (because this set is a convex cone), and x1 + x2 ∈ X0. From the hypothesis, we
have that T0(x1 + x2) ≤ z1 + z2, which is equivalent to b2 ≤ b1. It follows that B2 is
bounded from above, B1 is bounded from below, and sup B2 ≤ inf B1. Taking z ∈ Z
such that sup B2 ≤ z ≤ inf B1, and defining T1 by T1(x + λx) := T0x + λz (for
x ∈ X0 and λ ∈ R), we have that T1 : X1 → Z is linear, T1

∣
∣X0 = T0 and T1x ≤ z for

all (x, z) ∈ �∩ (X1 × Z). Let us prove the last assertion. So, take (x, z) ∈ � such that
x := x0 +λx with x0 ∈ X0 and λ ∈ R. If λ = 0 then (x, z) = (x0, z) ∈ �∩ (X0 × Z),
and so T1x = T0x0 ≤ z. If λ < 0 then λ2 := −λ > 0 and T1x = T0x0 − λ2z. Setting
b2 := λ−1

2 (T0x0 − z) we have that b2 ∈ B2. But

T1x ≤ z ⇐⇒ T0x0 − λ2z ≤ z ⇐⇒ T0x0 − z

λ2
≤ z ⇐⇒ b2 ≤ z.

Hence our assertion is true in this case by the choice of z. The case λ > 0 is proven
similarly.

The case X �= X . Of course, dom � ⊂ X . Taking x0 ∈ X0 ∩ dom �, we have that
X0 = x0 − X0 ⊂ X . Applying the first case we find T : X → Z a linear operator such
that T

∣
∣X0 = T0 and T x ≤ z for all (x, z) ∈ � ⊂ X × Z . Taking Y a linear subspace

of X such that X = X ⊕ Y (that is X = X + Y and X ∩ Y = {0}) and T : X → Z
defined by T (x + y) := T (x) for x ∈ X , y ∈ Y , T verifies the conclusion. ��
Remark 1 In the proof of Theorem 1 we used only the fact that P· epi� is a convex
cone and not that epi� itself is convex.

Note that it is possible to have convex sets A, B ⊂ X with i A or i B empty but
i (A − B) non-empty. For this take A := B := �+2 or A := {

(xn)n≥1 ∈ �2 | x1 = x2
}

and B := �+2 (in the second case A is a linear space, and so i A = A). The fact
that i (�+2 ) = ∅ follows from the equality �2 = �+2 − �+2 ; hence aff �+2 = �2, and so
i (�+2 ) = (�+2 )i = ∅. Related to operations with the intrinsic core we mention the fol-
lowing result which is well known in finite dimensional spaces. We provide its proof
for reader’s convenience.

Lemma 2 (i) Let A ⊂ X be a convex set and T ∈ L(X,Y ). If i A is non-empty
then i (T (A)) = T (i A).

(ii) Let A ⊂ X and B ⊂ Y be non-empty sets. Then i (A × B) = i A × i B.
(iii) Let A,C ⊂ X be convex sets such that i A and i C are non-empty. Then i (A −

C) = i A − i C.

Proof (i) Let first a ∈ i A and take z ∈ T (A); then z = T x with x ∈ A. Because
a ∈ i A, by (1) there exists λ > 0 such that (1 + λ)a − λx ∈ A. It follows that
(1+λ)T a−λz ∈ T (A). Since T (A) is convex, using again (1), we get T a ∈ i (T (A)).
Conversely, fix a ∈ i A and take z ∈ i (T (A)). By (2) we get λ > 0 such that
z′ := (1 + λ)z − λT a ∈ T (A), and so z′ = T x ′ with x ′ ∈ A. Then z = T x ′′ with
x ′′ := 1

1+λ x ′ + λ
1+λa. Since A is convex, a ∈ i A, x ′ ∈ A and 1/(1 + λ) ∈ ]0, 1[ we

have that x ′′ ∈ i A, and so z ∈ T (i A).
(ii) It is clear (and known) that aff(A × B) = aff A × aff B. Doing a translation

we may assume that 0 ∈ A and 0 ∈ B. In this way, replacing if necessary X by aff A
and Y by aff B, the conclusion reduces to (A × B)i = Ai × Bi , which is immediate.
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Hahn–Banach extension theorems for multifunctions revisited 497

(iii) Consider T ∈ L(X × X, X) defined by T (x, x ′) := x + x ′. Applying (ii) to A
and C , then (i) to T and A × C we get the conclusion. ��
Corollary 3 Let p : X → Z• be a sublinear operator, X0 be a linear subspace of
X and T0 ∈ L(X0, Z). Suppose that T0x ≤ p(x) for every x ∈ X0. If X0 + dom p
is a linear subspace of X then there exists T ∈ L(X, Z) such that T

∣
∣X0 = T0 and

T x ≤ p(x) for every x ∈ X.

Proof Because dom p is a convex cone, the condition X0 +dom p is a linear subspace
is equivalent to 0 ∈ i (dom p − X0). In Theorem 1 take gph� = epi p; of course, the
hypotheses of the theorem hold, so that there exists T ∈ L(X, Z) such that T

∣
∣X0 = T0

and (x, y) ∈ � implies T x ≤ y. Taking y = p(x), the conclusion follows. ��
When dom p = X the preceding corollary is the well-known Kantorovich’ general-

ization of the Hahn–Banach extension theorem. Corollary 3 is equivalent to Theorem
3(3) in Malivert et al. (1978), which, at its turn covers Theorem 3(1) in Malivert et
al. (1978). It is possible to state a version of Theorem 1 which, when applied to the
epigraph of a sublinear operator, yields Theorem 3(2) in Malivert et al. (1978).

We emphasize the importance of the condition “X0 + dom p is a linear subspace
of X” in Corollary 3. Without this condition the conclusion of Corollary 3 could be
false even for Z = R and dim X < ∞; see Simons (1968) and Anger and Lembcke
(1974) for interesting (counter) examples.

Before stating the next result recall that the subdifferential ∂ f (x0) of the proper
operator f : X → Z• at x0 ∈ dom f is the set of those T ∈ L(X, Z) such that

∀ x ∈ X : T x − T x0 ≤ f (x)− f (x0).

Corollary 4 Let f : X → Z• be a proper convex operator and consider x0 ∈
i (dom f ). Then ∂ f (x0) is non-empty.

Proof Consider g : X → Z•, g(x) = f (x0 + x)− f (x0). Then g is a convex operator
with 0 ∈ i (dom g). Consider now gph� = epi g, X0 = {0} and T0(0) := 0; � is a
convex multifunction. As dom � = dom g, we have that 0 ∈ i (dom � − X0), and of
course (x, z) ∈ � ∩ (X0 × Z) implies T0x = 0 ≤ z. Applying Theorem 1 we get
T ∈ L(X, Z) such that T x ≤ z for every (x, z) ∈ �. In particular, if x ∈ dom f then
(x − x0, f (x) − f (x0)) ∈ epi g, whence T (x − x0) ≤ f (x) − f (x0). The proof is
complete. ��

Note that Corollary 4 can be viewed as a particular case of the next result; just take
g : X → Z• defined by g(x0) := − f (x0) and g(x) := +∞ for x ∈ X \ {x0}. The
next result is the sandwich theorem proved by Zowe (1978, Theorem 3.1) (see also
Zălinescu 1983, Corollary 2.6).

Corollary 5 Let f , g : X → Z• be proper convex operators. Suppose that 0 ∈
i (dom f − dom g) and that f (x) ≥ −g(x) for all x ∈ dom f ∩ dom g. Then there
exists T ∈ L(X, Z) and z0 ∈ Z such that

∀ x ∈ X : −g(x) ≤ T x + z0 ≤ f (x).
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498 C. Zălinescu

Proof Consider � : X ⇒ Z with

gph� := {(x, z) ∈ X × Z | f (x) ≤ z} + {(−x ′, z′) ∈ X × Z | g(x ′) ≤ z′}.

Then � is convex and dom � = dom f − dom g. The hypotheses of Theorem 1 hold
for X0 = {0} and T0(0) := 0. Indeed, if (0, z) ∈ � then (0, z) = (x, z′) + (−x, z′′),
with f (x) ≤ z′ and g(x) ≤ z′′; it follows that T0(0) = 0 ≤ f (x)+g(x) ≤ z′+z′′ = z.
Therefore, there exists T ∈ L(X, Z) such that T x ≤ z for (x, z) ∈ �. In particular,
for x1 ∈ dom f and x2 ∈ dom g we get T (x1 − x2) ≤ f (x1) + g(x2), which yields
−g(x2)− T x2 ≤ f (x1)− T x1 for all x1 ∈ dom f and x2 ∈ dom g. It follows that

sup
x2∈dom g

(−g(x2)− T x2) ≤ inf
x1∈dom f

( f (x1)− T x1).

Taking z0 between these two values, we get the desired conclusion. ��
Note that Theorem 1 follows from Corollary 5 when i (dom �) is non-empty. Indeed,

in this case there exists x0 ∈ X0∩i (dom �). Setting f (x) := inf{z | (x, z) ∈ �} ∈ Z•,
T0(x0) ≤ f (x0) < +∞, and so f (x0) ∈ Z . Using Proposition 1.5(i) in Zălinescu
(1983) we get f (x) ∈ Z for every x ∈ dom �. (Indeed, take x ∈ dom �. Since
x0 ∈ i (dom �), there exists x ′ ∈ dom � and λ ∈ ]0, 1[ such that x0 = (1 −λ)x ′ +λx .
Take z′ ∈ Z with (x ′, z′) ∈ �. Then for every z with (x, z) ∈ � we have (x0, (1 −
λ)z′ + λz) ∈ �, and so z ≥ λ−1( f (x0) − (1 − λ)z′).) Taking g(x) := −T0x for
x ∈ X0, g(x) := +∞ for x ∈ X \ X0 and applying Corollary 5 we get the conclusion
of Theorem 1.

The preceding discussion shows that only the case when the intrinsic core of dom �

is empty in Theorem 1 is not covered by known results (however see Malivert et al.
1978, Theorem 3). It is worth of observing that under the hypotheses of Theorem 1 we
have that f (x) := inf {z | (x, z) ∈ �} ∈ Z for every x ∈ dom � and T0x ≤ f (x) for
every x ∈ X0 ∩ dom �. For this use the conclusion of Theorem 1. However a direct
proof is not so obvious as that in the case X0 ∩ i (dom �) �= ∅.

Recently several papers appeared which deal with the Hahn–Banach extension the-
orem for multifunctions; we envisage mainly Peng et al. (2005a,b), where instead
of Z one uses a topological linear space Y ordered by the pointed convex cone K
such that (Y, K ) has the least upper bound property. For example, Theorem 3.1 in
Peng et al. (2005b) follows immediately from Theorem 1, applying this for Z := Y ,
� = epi F − (0, y0) and T0 = h − y0 where y0 := h(0); because in Theorem 3.1
of Peng et al. (2005b) X0 ∩ (dom F)i �= ∅, as seen above, this result follows from
the Hahn–Banach–Kantorovich theorem; note that the topology of Y is not used at
all. Note also that it is not possible to deduce Theorems 2 and 3 in Chen and Craven
(1990) from Theorem 3.1 of Peng et al. (2005b)) (as claimed in Peng et al. 2005b,
Remark 3.1(a)) because the affine mapping provided by Theorem 3.1 in Peng et al.
(2005b) is not continuous (see Remark 3).

Let us point out the following consequence of Theorem 1. Similar to Definition 1.3
in Peng et al. (2005a), we say that H : X ⇒ Z is affinelike if there exist T ∈ L(X, Z)
and a non-empty convex set M ⊂ Y such that H(x) = T (x)+ M for every x ∈ X .
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Hahn–Banach extension theorems for multifunctions revisited 499

Corollary 6 Let F : X ⇒ Z be a convex multifunction, X0 ⊂ X a linear subspace
and H0 : X0 ⇒ Z an affinelike multifunction. Suppose that 0 ∈ i (dom F − X0)

and F(x) − H0(x) ⊂ K for every x ∈ X0 ∩ dom F. Then there exists H : X ⇒ Z
an affinelike multifunction such that H

∣
∣X0 = H0 and F(x) − H(x) ⊂ K for every

x ∈ X ∩ dom F.

Proof Let T0 ∈ L(X0, Z) and M ⊂ Y a non-empty convex set such that H0(x) =
T0(x)+ M for every x ∈ X0. Consider � : X ⇒ Z with

gph� := {(x, z − m + k) | z ∈ F(x),m ∈ M, k ∈ K } = epi F − {0} × M.

One obtains immediately that � is convex, dom � = dom F and T0(x) ≤ z for all
(x, z) ∈ �∩(X0 × Z). Applying Theorem 1 we get T ∈ L(X, Z) such that T |X0 = T0
and T (x) ≤ z for all (x, z) ∈ �. Setting H(x) := T (x)+ M , the conclusion follows.

��
Asking, furthermore, X and Z to be topological vector spaces and the operator T in

the definition of an affinelike multifunction to be in L(X, Z), that is, T : X → Z be
linear and continuous, the statement of the preceding corollary becomes Theorem 2.1
in Peng et al. (2005a). However, we have the following remark concerning Theorem
2.1 in Peng et al. (2005a).

Remark 2 (i) The conclusion of in Theorem 2.1 in Peng et al. (2005a) can be false
even if M = {0} and Y = R. For this take Y = R, K = R+, X a nontrivial
separated topological vector space with topological dual X∗ reducing to {0},
X0 = {0}, H(0) = {0}, F(x) = {ϕ(x)} for x ∈ C := X , where ϕ : X → R is
a non-null linear functional. It is clear that X0 ∩ core C = X0 ∩ X = {0} and
F(x) − H(x) = {ϕ(x)} = {0} ⊂ K for x ∈ X0 = {0}. The conclusion has to
be the existence of f ∈ X∗ and ∅ �= M ⊂ R such that for L(x) := f (x)+ M
to have L(x) = H(x) for every x ∈ X0 ∩ C and F(x) − L(x) ⊂ K for every
x ∈ C . This means that L(0) = M = H(0) = {0} and ϕ(x) − f (x) ≥ 0 for
every x ∈ X . Of course, the last relation yields the contradiction 0 �= ϕ = f ∈
X∗ = {0}.

(ii) The proof of Theorem 2.1 in Peng et al. 2005a is not convincing even for the
algebraic case. Indeed, the set Y must be exactly the set M in the definition of
the affinelikeness of H .

Remark 3 Taking Y, K , X, X0, ϕ as in Remark 2(i) and F = ϕ we have a counterex-
ample for Theorems 2 and 3 in Chen and Craven (1990).

We do not treat here the continuous versions of the preceding results. This can be
done as in Sect. 4 of Zălinescu (1983).

3 Yang’s generalization of the Hahn–Banach theorem

In this section the proper (that is, {0} �= K �= Z ) convex cone K has non-empty
algebraic interior K i . Of course 0 /∈ K i , K + K i = K i + K i = K i and PK i = K i .
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500 C. Zălinescu

Theorem 7 Let � : X ⇒ Z be a K –convex multifunction, X0 ⊂ X a linear sub-
space and T0 ∈ L(X0, Z). Suppose that 0 ∈ i (dom � − X0) and T0x �> z for all
(x, z) ∈ � ∩ (X0 × Z). Then there exists T ∈ L(X, Z) such that T

∣
∣X0 = T0 and

T x �> z for all (x, z) ∈ �.

Proof As in the proof of Theorem 1, assume first that 0 ∈ (dom � − X0)
i . Let B1 and

B2 be defined as in the proof of Theorem 1. These sets are non-empty. We claim that

(B1 + K i ) ∩ (B2 − K i ) = ∅.

In the contrary case there exist k1, k2 ∈ K i , x1, x2 ∈ X0, z1, z2 ∈ Z such that
(x1 + x, z1), (x2 − x, z2) ∈ PA and k1 + z1 − T0x1 = T0x2 − z2 − k2, whence
T0(x1 + x2) > z1 + z2. But (x1 + x2, z1 + z2) ∈ PA and x1 + x2 ∈ X0, contradicting
the hypothesis.

Assume that (B1 + K i )∪ (B2 − K i ) = Z . Then B1 ⊂ B1 + K i and B2 ⊂ B2 − K i .
Indeed, if b1 ∈ B1 \ (B1 + K i ), then b1 ∈ B2 − K i , whence b1 = b2 − k, with
b2 ∈ B2 and k ∈ K i . In this situation we get the contradiction b1 + k/2 = b2 − k/2 ∈
(B1 + K i ) ∩ (B2 − K i ) = ∅. Fix now b1 ∈ B1 and b2 ∈ B2 and consider

γ := sup{γ ∈ [0, 1] | (1 − t)b1 + tb2 ∈ B1 + K i ∀ t ∈ [0, γ ]}.

Set b := (1 − γ )b1 + γ b2 and suppose first that b ∈ B1 + K i ; of course, in this
situation γ < 1. Then b = b1 + k, with b1 ∈ B1 and k ∈ K i . Since k ∈ K i , there
exists δ ∈ P such that k + µ(b2 − b1) ∈ K i for µ ∈ [−δ, δ]. It follows that

b + µ(b2 − b1) = b1 + k + µ(b2 − b1) ∈ B1 + K i ∀µ ∈ [−δ, δ].

Taking µ = min{δ, 1 − γ }, we get

[

1 − (γ + t)
]

b1 + (γ + t)b2 ∈ B1 + K i ∀ t ∈ [0, µ],

contradicting the choice of γ . Suppose now that b ∈ B2 − K i ; of course γ > 0. In
this situation b = b2 − k, with b2 ∈ B2 and k ∈ K i . Since k ∈ K i , there exists δ ∈ P

such that k + µ(b2 − b1) ∈ K i for µ ∈ [−δ, δ]. It follows that

b − µ(b2 − b1) = b2 − k − µ(b2 − b1) ∈ B2 − K i ∀µ ∈ [−δ, δ].

Taking µ = min{δ, γ }, we get the contradiction

[

1 − (γ − µ)
]

b1 + (γ − µ)b2 ∈ B1 + K i .

Therefore (B1 + K i ) ∪ (B2 − K i ) �= Z . Taking z ∈ Z \ [

(B1 + K i ) ∪ (B2 − K i )
]

and X1 = X0 + Rx , then defining T1 by T1(x + t x) = T0x + t z, T1 : X1 → Z is a
prolongation of T0 and (x, z) ∈ � ∩ (X1 × Z) implies T1x �> z.

Continuing by the standard argument, we obtain a maximal linear operator T which
is the desired operator.
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When aff (dom � − X0) �= X , proceeding as in the second case of the proof of
Theorem 1 we get the desired conclusion. ��
Remark 4 In the proof of Theorem 7 we used only the fact that P· epi� is a convex
cone and not that epi� itself is convex.

Corollary 8 Let p : X → Z• be a sublinear operator, X0 be a linear subspace of X
and T0 ∈ L(X0, Z). Suppose that T0x �> p(x) for every x ∈ X0. If X0 + dom p is a
linear subspace then there exists T ∈ L(X, Z) such that T

∣
∣X0 = T0 and T x �> p(x)

for every x ∈ X.

Proof In Theorem 7 take � : X ⇒ Z with gph� = epi p; of course, the hypotheses
of the theorem hold, so that there exists T ∈ L(X, Z) such that T

∣
∣X0 = T0 and

(x, y) ∈ � implies T x �> y. Taking y = p(x), the conclusion follows. ��
Before stating the next result recall that the weak subdifferential ∂w f (x0) of the

proper operator f : X → Z• at x0 ∈ dom f is the set of those T ∈ L(X, Z) such that

∀ x ∈ X : T x − T x0 �> f (x)− f (x0).

Corollary 9 Let f : X → Z• be a proper convex operator and consider x0 ∈
i (dom f ). Then ∂w f (x0) is non-empty.

Proof Take g(x) = f (x0 + x) − f (x), gph� = epi g, X0 = {0} and T0 := 0 ∈
L(X0, Z). Of course, if (x, z) ∈ � ∩ (X0 × Z), then x = 0 and z ∈ K , whence
T0x �> z. Using the preceding theorem we obtain T ∈ L(X, Z) such that T x �> z for
(x, z) ∈ �. Taking x ∈ dom f , we have that (x − x0, f (x) − f (x0)) ∈ �, so that
T (x − x0) �> f (x)− f (x0). ��
Corollary 10 Let f, g : X → Z• be proper convex operators. Suppose that 0 ∈
i (dom f − dom g) and that f (x)+ g(x) �< 0 for all x ∈ dom f ∩ dom g. Then there
exists T ∈ L(X, Z) such that

∀ x1 ∈ dom f,∀ x2 ∈ dom g : f (x1)− T x1 �< −g(x2)− T x2.

Proof Consider � : X ⇒ Z with

gph� := {(x, z) ∈ X × Z | f (x) ≤ z} + {(−x ′, z′) ∈ X × Z | g(x ′) ≤ z′}.

Then � is convex and dom � = dom f − dom g. Take X0 = {0} and T0 := 0 ∈
L(X0, Z). The hypotheses of the preceding theorem hold. Indeed, if (0, z) ∈ � then
(0, z) = (x, z′)+(−x, z′′), with f (x) ≤ z′ and g(x) ≤ z′′; assuming that 0 = T0(0) >
z, from f (x)+ g(x) ≤ z′ + z′′ = z and the known relation K + K i = K i we get the
contradiction f (x)+g(x) < 0. Hence T0(0) �> z. Therefore, there exists T ∈ L(X, Z)
such that T x �> z for (x, z) ∈ �. In particular, for x1 ∈ dom f and x2 ∈ dom g we
get T (x1 − x2) �> f (x1)+ g(x2), which yields −g(x2)− T x2 �> f (x1)− T x1 for all
x1 ∈ dom f and x2 ∈ dom g. ��

123



502 C. Zălinescu

Note that applying Corollary 10 for f = p and g(x) = −T0x for x ∈ X0, g(x) =
+∞ for x /∈ X0, where p : X → Z• is a sublinear operator and T0 ∈ L(X0, Z) we
get a weaker variant of Corollary 8.

As mentioned by Yang (1992, Lemma 1), Wang (1986) obtained Theorem 7 for
X0 = {0}, T0 = 0 and � a K –convex multifunction with (epi�)i �= ∅ and 0 ∈
(

�−1(z0)
)i

for some z0 ∈ Z (compare also with Lemma 12), that is, a separation
theorem; based on results in Wang (1986), Yang (1992, Theorem 1) obtained a weaker
form of Theorem 7: the interiority hypothesis is stronger [more precisely, (epi�)i �= ∅
and X0 ∩ (dom �)i �= ∅ instead of 0 ∈ i (dom � − X0)] and the conclusion is weaker
[more precisely 0 �< (T − T0)(x) �< 0 for all x ∈ X0 instead of T

∣
∣X0 = T0]. Of

course, applying Theorem 7 we can obtain other results of Yang (1992) under weaker
interiority conditions.

As in the case Z = R, the extension theorems can be used for separating convex sets
in product spaces. For example, from Theorem 7 we can deduce the next separation
result.

Proposition 11 Let A, B ⊂ X×Z be convex sets. Assume that 0 ∈ i (PX (A)−PX (B))
and z1 �< z2 for all x ∈ PX (A)∩ PX (B) and z1 ∈ A(x), z2 ∈ B(x). Then there exists
T ∈ L(X, Z) such that

z1 − T x1 �< z2 − T x2 ∀(x1, z1) ∈ A,∀(x2, z2) ∈ B. (2)

Proof Consider the set C := A− B ⊂ X × Z . Then PX (C) = PX (A)− PX (B) and if
(0, z) ∈ C then z = z1 − z2 with z1 ∈ A(x), z2 ∈ B(x) for some x ∈ PX (A)∩ PX (B);
hence z �< 0. Taking X0 := {0} and T0(0) := 0, we can apply Theorem 7 for
gph� := C and T0. Therefore, there exists T ∈ L(X, Z) such that z �< T x for every
(x, z) ∈ C . Hence (2) holds. ��

Note that Thierfelder (1991a,b) says that A and B are separable by an affine map-
ping if there exist T ∈ L(X, Z) and z0 ∈ Z such that

z1 − T x1 �< z0 �< z2 − T x2 ∀(x1, z1) ∈ A,∀(x2, z2) ∈ B. (3)

One can ask which is the relationship between (2) and (3). Setting A0 := {z1 −
T x1 | (x1, z1) ∈ A}, B0 := {z2 − T x2 | (x2, z2) ∈ B}, condition (2) becomes
B0 ∩ (A0 + K i ) = ∅, or equivalently, (B0 − K i )∩ (A0 + K i ) = ∅, while condition (3)
becomes z0 /∈ (B0 − K i )∪ (A0 + K i ). So, it is quite clear that (3) does not imply (2).
(One can take X := R, Z := R

2, K := R
2+, A := {(0, (−1,−1))}, B := {(0, (1, 1))},

T := 0 and z0 := (−2, 2).)
However, when A, B ⊂ X × Z are convex and K i �= ∅ (which is the case in

Proposition 11) we have that (2) implies (3). Indeed, taking A0 and B0 as above we
have seen that condition (2) becomes B0 ∩ (A0 + K i ) = ∅. Since A0 and B0 are
convex sets and A0 + K i is algebraically open, by the classic (algebraic) separation
theorem we get z∗ ∈ Z ′, z∗ �= 0, and γ ∈ R such that 〈b, z∗〉 ≤ γ ≤ 〈a + k, z∗〉 for
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all a ∈ A0, b ∈ B0, k ∈ K i . It follows that

〈

k, z∗〉 > 0 ∀ k ∈ K i and
〈

z1 − T x1, z∗〉 ≥ γ ≥ 〈

z2 − T x2, z∗〉 ∀(x1, z1) ∈ A,∀(x2, z2) ∈ B.

Taking z0 ∈ Z such that 〈z0, z∗〉 = γ we have that (3) holds.
The previous discussion shows that (2) is more adequate as separation property

than (3). Another argument is the fact that taking x1 = x2 in (2) we recover a part of
the hypothesis of Proposition 11, which is not the case for (3).

However, using directly the classic separation theorem we obtain a stronger conclu-
sion than that of Theorem 7 under the same hypotheses. To prove this we need the next
lemma which is probably known; in fact assertion (ii) for X and Z finite dimensional
linear spaces is just (Rockafellar 1970, Theorem 6.8).

Lemma 12 Let A ⊂ X × Z be a convex set (multifunction) and (x0, z0) ∈ X × Z.
Then:

(i) the following statements are equivalent: a) (x0, z0) ∈ Ai , b) x0 ∈ (PX (A))i

and z0 ∈ (A(x0))
i , c) x0 ∈ (

A−1(z0)
)i

and z0 ∈ (A(x0))
i ;

(ii) the following statements are equivalent: a) (x0, z0) ∈ i A, b) x0 ∈ i (PX (A))
and z0 ∈ i (A(x0)).

Proof First observe that, doing a translation, we may (and we do) suppose that
(x0, z0) = (0, 0). Let us first prove (i).

(a) ⇒ (c) Let x ∈ X ; since (0, 0) ∈ Ai , there exists λ > 0 such that λ(x, 0) ∈ A,
whence λx ∈ A−1(0). Therefore 0 ∈ (

A−1(0)
)i

. Similarly, 0 ∈ (A(0))i .
(c) ⇒ (b) is obvious (because A−1(0) ⊂ PX (A)).
(b) ⇒ (a) Let (x, z) ∈ X × Z . Since 0 ∈ (PX (A))i , there exists λ > 0 such that

λx ∈ PX (A), and so there exists z′ ∈ Z such that (λx, z′) ∈ A. Since 0 ∈ (A(0))i ,
there exists µ > 0 such that (0, µ(λz − z′)) ∈ A. Since A is convex, it follows that

µλ

1 + µ
(x, z) = 1

1 + µ

(

0, µ(λz − z′)
) + µ

1 + µ

(

λx, z′) ∈ A.

Therefore (0, 0) ∈ Ai .
(ii) (a) ⇒ (b) Assume that (0, 0) ∈ i A. Consider first x ∈ PX (A). Then (x, z) ∈ A

for some z ∈ Z . It follows that (x ′, z′) := −λ(x, z) ∈ A for some λ > 0, and so
x ′ = −λx ∈ PX (A). Hence 0 ∈ i (PX (A)). Let now z ∈ A(0), that is, (0, z) ∈ A. As
before, −λ(0, z) ∈ A for some λ > 0, whence −λz ∈ A(0). Hence 0 ∈ i (A(0)).

(b) ⇒ (a) Let (x, z) ∈ A. Then x ∈ PX (A). Since 0 ∈ i (PX (A)), there exists λ > 0
such that x ′ := −λx ∈ PX (A) for some λ > 0, and so (x ′, z′) ∈ A for some z′ ∈ Z .
Then

(

0,
1

1 + λ
z′ + λ

1 + λ
z

)

= 1

1 + λ
(x ′, z′)+ λ

1 + λ
(x, z) ∈ A,
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and so z′′ := 1
1+λ z′+ λ

1+λ z ∈ A(0). Because 0 ∈ i (A(0)), there existsµ > 0 such that
z′′′ := −µz′′ ∈ A(0). Taking η := µ/(1+λ+µ) ∈ ]0, 1[ we obtain that ηx ′ = −ηλx
and

ηz′ + (1 − η)z′′′ = ηz′ − µ(1 − η)

1 + λ
z′ − λµ(1 − η)

1 + λ
z = − λµ

1 + λ+ µ
z = −ηλz.

Hence −ηλ(x, z) = η(x ′, z′)+ (1 − η)(0, z′′′) ∈ A, which proves that (0, 0) ∈ i A. ��
Note that the implications (a) ⇒ (c) and (c) ⇒ (b) in (i) are valid for arbitrary sets

A, but generally (c) ⇒ (a) [and so (b) ⇒ (a)] is not valid if A is not convex; take for
example A := ([−1, 1]× {0})∪ ({0}× [−1, 1]). Also note that even for A convex the
fact that 0 ∈ i (A−1(0)) and 0 ∈ i (A(0)) do not imply that (0, 0) ∈ i A; for this take
A := {(x, x) | x ∈ R+}. Moreover, the assertion (ii) of the preceding lemma cannot
be obtained from (i) because, even for (0, 0) ∈ A, span A is not the product of two
linear spaces.

In Thierfelder (1991a, Lemma 2.1) and Thierfelder (1991b) the implication (b) ⇒
(a) of (i) is given in a weaker form: if (PX (A))i �= ∅ and (A(x))i �= ∅ for every
x ∈ (PX (A))i then Ai �= ∅.

Theorem 13 Let � : X ⇒ Z be a K –convex multifunction, X0 ⊂ X a linear sub-
space and T0 ∈ L(X0, Z). Suppose that 0 ∈ i (dom � − X0) and T0x �> z for all
(x, z) ∈ � ∩ (X0 × Z). Then there exists z∗ ∈ Z ′ and T ∈ L(X, Z) such that

T
∣
∣X0 = T,

〈

z, z∗〉 > 0 ∀ z ∈ K i and
〈

T x, z∗〉 ≤ 〈

z, z∗〉 ∀ (x, z) ∈ �.

In particular T x �> z for very (x, z) ∈ �. Moreover, T can be defined by T x =
T0x0 − 〈x1, x∗〉 z, where z ∈ Z, x∗ ∈ X ′ and the linear subspace X1 ⊂ X with
X = X0 ⊕ X1 are fixed, and x = x0 + x1 with x0 ∈ X0, x1 ∈ X1.

Proof Assume first that 0 ∈ (dom � − X0)
i . Let B = epi�−gph T0. It is obvious that

PX (B) = dom �− X0, and so 0 ∈ (PX (B))i . Then B(0) �= ∅ and z ∈ B(0) ⇒ 0 �> z.
Indeed, if z ∈ B(0) then (0, z) = (x, z′)− (x0, T0x0)+ (0, k′) for some (x, z′) ∈ �,
x0 ∈ X0 and k′ ∈ K . It follows that x = x0 and z = z′ + k′ − T0x0 �< 0. Since
K i �= ∅, it is clear that (B(0))i �= ∅. Therefore, by Lemma 12(i), Bi �= ∅. Moreover,
(0, 0) /∈ Bi . In the contrary case, again by Lemma 12(i), 0 ∈ (B(0))i , contradicting
the fact observed above that z �< 0 for every z ∈ B(0).

Using an algebraic separation theorem, we get (x∗, z∗) ∈ X ′ × Z ′ \ {(0, 0)} such
that

〈

x − x0, x∗〉 + 〈

z − T0x0 + k, z∗〉 ≥ 0 ∀ (x, z) ∈ �, ∀x0 ∈ X0, ∀k ∈ K . (4)

First notice that, because 0 ∈ (dom � − X0)
i , if z∗ = 0 then x∗ = 0, a contradiction;

therefore, z∗ �= 0. Next, from (4), it follows that 〈k, z∗〉 ≥ 0 for every k ∈ K ,

〈

x0, x∗〉 + 〈

T0x0, z∗〉 = 0 ∀x0 ∈ X0, (5)
〈

x, x∗〉 + 〈

z, z∗〉 ≥ 0 ∀(x, z) ∈ �. (6)
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Of course, 〈k, z∗〉 > 0 for every k ∈ K i . Fix z ∈ Z such that 〈z, z∗〉 = 1, X1 ⊂ X
a linear subspace such that X0 ⊕ X1 = X and T : X → Z defined by T x :=
T0x0 − 〈x1, x∗〉 z for x = x0 + x1 with x0 ∈ X0 and x1 ∈ X1. Then, of course,
T

∣
∣X0 = T0 and for (x, z) ∈ �, taking x0 ∈ X0 and x1 ∈ X1 with x = x0 + x1, we

have

〈

T x, z∗〉 = 〈

T0x0 − 〈

x1, x∗〉 z, z∗〉 = 〈

T0x0, z∗〉 − 〈

x1, x∗〉 = − 〈

x, x∗〉 ≤ 〈

z, z∗〉 .

If X := aff(dom � − X0) = span(dom � − X0) �= X we find first x∗ ∈ L(X ,R)
and z∗ ∈ Z ′ as above and then extend x∗ to an element of X ′. The proof is complete.

��
Notice that using the same hypotheses as in Theorem 7, the conclusion of Theo-

rem 13 is stronger, not only because 〈T x, z∗〉 ≤ 〈z, z∗〉 implies T x �> z, but also
because we have a very special expression for T . This is quite surprising because in
the proof of Theorem 13 we utilized the usual separation theorem from the scalar case
which is equivalent to the classical Hahn–Banach theorem, while in the proof of The-
orem 7 we utilized a similar technique to that used in the proof of Theorem 1, that is,
for the proof of the Hahn–Banach–Kantorovich theorem. Furthermore, the technique
utilized in the proof of Theorem 13 is more adequate for obtaining continuous versions
of this theorem. However, we hope the technique used in the proof of Theorem 7 could
be useful in other situations.

A continuous version of Theorem 13 is the next result in which, as mentioned before
Remark 2, L(X, Z) denotes the linear space of continuous linear operators from X
into Z and X∗ denotes the topological dual of X , that is, L(X,R).

Theorem 14 Let X, Z be separated locally convex spaces, � : X ⇒ Z be a
K –convex multifunction, X0 ⊂ X a linear subspace and T0 ∈ L(X0, Z). Suppose
that int(epi�) �= ∅, X0 ∩ int(dom �) �= ∅, and T0x �> z for all (x, z) ∈ �∩ (X0 × Z).
If either (a) X0 has a topological supplement, or (b) T0x = 〈

x, x∗
0

〉

z0 for every x ∈ X0
with fixed x∗

0 ∈ X∗ and z0 ∈ Z, then there exists z∗ ∈ Z∗ and T ∈ L(X, Z) such that

T
∣
∣X0 = T,

〈

z, z∗〉 > 0 ∀ z ∈ K i and
〈

T x, z∗〉 ≤ 〈

z, z∗〉 ∀ (x, z) ∈ �.

In particular T x �> z for very (x, z) ∈ �. Moreover, in case (a) T can be defined by
T x = T0x0−〈x1, x∗〉 z, where z ∈ Z, x∗ ∈ X∗ are fixed and x = x0+x1 with x0 ∈ X0,
x1 ∈ X1, while in case (b) T can be defined by T x := 〈

x, x∗
0

〉

(z0 − 〈z0, z∗〉 z1) −
〈x, x∗〉 z1 for x ∈ X with fixed x∗ ∈ X∗ and z1 ∈ Z such that 〈z1, z∗〉 = 1.

Proof In the proof of Theorem 13, because int(epi�) �= ∅, we have that int B (= Bi )

is non-empty; it follows that x∗ ∈ X∗ and z∗ ∈ Z∗. In case (a), because the projections
on X0 and X1 are continuous, taking into account the construction of T we obtain that
T is continuous.

Assume now that T0x = 〈

x, x∗
0

〉

z0 for every x ∈ X0 with fixed x∗
0 ∈ X∗ and

z0 ∈ Z . From (5) we obtain that
〈

x, x∗ + 〈z0, z∗〉 x∗
0

〉 = 0 for every x ∈ X0. Taking
z1 ∈ Z with 〈z1, z∗〉 = 1 and T x := 〈

x, x∗
0

〉

(z0 − 〈z0, z∗〉 z1)− 〈x, x∗〉 z1 for x ∈ X ,
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506 C. Zălinescu

we have that T is continuous and T x = T0x for x ∈ X0. Moreover, for (x, z) ∈ � we
have

〈

T x, z∗〉 = 〈〈

x, x∗
0

〉

z0 − (〈

z0, z∗〉 〈x, x∗
0

〉 − 〈

x, x∗〉) z1, z∗〉

= 〈

x, x∗
0

〉 〈

z0, z∗〉 − 〈

z0, z∗〉 〈x, x∗
0

〉 − 〈

x, x∗〉

= − 〈

x, x∗〉 ≤ 〈

z, z∗〉 ,

the last inequality being obtained using (6). ��
Thierfelder (1991b, Theorem 2.5) obtains similar conclusions for Theorem 13 in

the following two situations: (1) there exists z∗ strictly positive on K \ {0} such
that 〈z, z∗〉 ≥ 〈T0x0, z∗〉 for (x, z) ∈ � ∩ (X0 × Z) and (2) there exists an alge-
braically open convex cone P such that K\{0} ⊂ P and �(0) + P ⊂ �(0). Taking
P = {z ∈ Z | 〈z, z∗〉 > 0} in case 1), in each situation we have that �(0)∩(−P) = ∅,
and so the conclusion is obtained applying Theorem 13 for K replaced by P ∪ {0}.
Remark 5 Meng (1998, Theorem 2.1) obtained Theorem 14 for T as in (b) with
z0 ∈ int K without the condition X0 ∩ int(dom �) �= ∅. (Note that when z0 ∈ K i

we can take z1 := 〈z0, z∗〉−1 z0.) However, the hypothesis X0 ∩ int(dom �) �= ∅ is
essential. For this take X := Z := R, � := {

(x, z) ∈ X × Z | x ≥ 0, z ≥ −√
x
}

,
K := R+, X0 := {0}, T0 := 0; in this case all the hypotheses of Theorem 14, but
X0 ∩ int(dom �) �= ∅, are verified. However, the conclusion of Theorem 14 (and of
Theorem 2.2 in Meng (1998)) does not hold. Note also that Theorem 2.2 in Meng
(1998) is false; for this take X := R

2, Z := R, K := R+, ψ(x) := {−√
v2 − u2}

for x := (u, v) with v ∈ R+ and u ∈ [−v, v], ψ(x) := ∅ otherwise. Then ψ is
K -sublinear (that is ψ(λx) = λψ(x), ψ(x)+ψ(x ′) ⊂ ψ(x + x ′)+ K for x, x ′ ∈ X ,
λ ∈ P) and int(epiψ) �= ∅. The hypothesis of (Meng 1998, Theorem 2.2) is verified
for x0 := (1, 1) and q∗

0 := 1, but for p := 1 ∈ int K the conclusion does not hold for
any x∗ ∈ X∗ = R

2.

Note that if � : X ⇒ Z is upper semicontinuous at x0 ∈ int(dom �), int K �= ∅
and �(x0) is bounded above then int(epi�) �= ∅. Concerning the affine and affinelike
multifunctions we mention the following result. The equivalence of (a), (b′′) and (c)
(in an slightly different form) is mentioned in Thierfelder (1991a,b).

Proposition 15 Let A ⊂ X × Z. Consider the following assertions.

(a) A is an affine manifold;
(b) λA(x)+ (1 − λ)A(x ′) ⊂ A

(

λx + (1 − λ)x ′) for all x, x ′ ∈ X and λ ∈ R;
(b′) λA(x)+ (1 − λ)A(x ′) ⊂ A

(

λx + (1 − λ)x ′) for all x, x ′ ∈ PX (A) and λ ∈ R;
(b′′) λA(x)+ (1 − λ)A(x ′) = A

(

λx + (1 − λ)x ′) for all x, x ′ ∈ PX (A) and λ ∈ R;
(c) there exist linear subspaces X0 ⊂ X, Z0 ⊂ Z, a linear map T0 : X0 → Z and

(x0, z0) ∈ X × Z such that PX (A) = x0 + X0 and A(x) = T0(x − x0)+ z0 + Z0
for every x ∈ PX (A);

(d) A is an affinelike multifunction on a linear subspace X0 ⊂ X.

Then (a) ⇔ (b) ⇔ (b′) ⇔ (b′′) ⇔ (c); if X0 := PX (A) is a linear space then (a) ⇒
(d).
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Proof We may (and we do) assume that (0, 0) ∈ A; otherwise replace A by A−(x0, z0)

with (x0, z0) ∈ A.
The fact that (a) ⇔ (b) ⇔ (b′) ⇐ (b′′) is simple verification, (b) being a rewriting

of (b′) taking into account the fact that B + ∅ = ∅ + B = ∅ for B ⊂ Z .
(a) ⇒ (c) Because A is a linear subspace, X0 := PX (A) and Z0 := A(0) =

PZ (A ∩ ({0} × Z)) are linear spaces. Take Z1 ⊂ Z a linear subspace such that Z =
Z0 ⊕ Z1. Observe first that for (x, z), (x, z′) ∈ A we have (0, z − z′) ∈ A, and so
z − z′ ∈ Z0. Hence, taking T0 : X0 → Z defined by T0(x) := z1, where z = z0 + z1 ∈
A(x)with z0 ∈ Z0, z1 ∈ Z1, T0 is well defined. Since A is a linear subspace it follows
immediately that T0 is a linear operator and A(x) = T0(x)+ Z0 for every x ∈ X0.

(c) ⇒ (b′′) follows by a simple verification.
(c) ⇒ (d) is obvious when X0 := PX (A) is a linear space. ��

Observe that (d) ⇒ (a) if and only if the set M in the definition of an affinelike
multifunction is an affine set.

Note also that the spaces X0 and Z0 are uniquely determined by A; in fact X0 is
the parallel subspace of PX (A) and Z0 is the parallel subspace of A(x0) for some
x0 ∈ PX (A). The equivalences of (a), (b′′) and (c) (the last one presented in the form
there exist an affine mapping T0 : PX (A) → Z and a linear subspace Z0 of Z such that
A(x) = T0(x)+ Z0 for every x ∈ PX (A)) are provided in Thierfelder (1991b). Note
that when Z is ordered by the convex cone K , in Thierfelder (1991b) one says that
the affine multifunction A ⊂ X × Z is non-vertical when every two distinct elements
from A(x) are not comparable for each x ∈ X , which is equivalent, by Lemma 3.1 in
Thierfelder (1991b), to Z0 ∩ K = {0} where Z0 is provided by Proposition 15(d).
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