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Abstract The Karush-Kuhn-Tucker (KKT) conditions for an optimization problem
with fuzzy-valued objective function are derived in this paper. A solution concept
of this optimization problem is proposed by considering an ordering relation on the
class of all fuzzy numbers. The solution concept proposed in this paper will follow
from the similar solution concept, called non-dominated solution, in the multiobjective
programming problem. In order to consider the differentiation of a fuzzy-valued func-
tion, we use the Hausdorff metric to define the distance between two fuzzy numbers
and the Hukuhara difference to define the difference of two fuzzy numbers. Under
these settings, the KKT optimality conditions are elicited naturally by introducing the
Lagrange function multipliers.

Keywords Hausdorff metric · Hukuhara difference · H-differentiability · Lagrange
function multipliers · Karush-Kuhn-Tucker conditions

1 Introduction

The occurrence of randomness and fuzziness in the real world is inevitable owing to
some unexpected situations. Therefore, imposing the uncertainty upon the conven-
tional optimization problems becomes an interesting research topic. The randomness
occurring in the optimization problems is categorized as the stochastic optimization
problems, and the fuzziness occurring in the optimization problems is categorized as
the fuzzy optimization problems. The books written by Birge and Louveaux (1997),
Kall (1976), Prékopa (1995), Stancu-Minasian (1984) and Vajda (1972) give many use-
ful techniques for solving the stochastic optimization problems. Bellman and Zadeh
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(1970) inspired the development of fuzzy optimization by providing the aggregation
operators, which combined the fuzzy goals and fuzzy decision space. After this motiva-
tion and inspiration, there come out a lot of articles dealing with the fuzzy optimization
problems. The earliest interesting works were initiated by Rödder and Zimmermann
1977 and Zimmermann 1976, 1978, 1985 who applied fuzzy sets theory to the linear
programming problems and linear multiobjective programming problems by using the
aspiration level approach. The collection of papers on fuzzy optimization edited by
Słowiński (1998) and Delgado et al. (1994) gives the main stream of this topic. Lai and
Hwang 1992, 1994 also give an insightful survey. On the other hand, the book edited
by Słowiński and Teghem (1990) gives the comparisons between fuzzy optimization
and stochastic optimization for the multiobjective programming problems. Inuiguchi
and Ramík (2000) also gives a brief review of fuzzy optimization and a comparison
with stochastic optimization in portfolio selection problem.

For the real problems, the data sometimes cannot be recorded or collected precisely
under some unexpected situations. For instance, owing to the fluctuation of market
from time to time, we cannot exactly know the price of a product. In fact, we can just
know that the price of a product is around p dolloars. The phrase “around p dollars”
can be described as a fuzzy number p̃. This situation is completely different from
assuming p as a random variable. Under this explanation, we now can say that the
price of a product is p̃ (by considering the price as a fuzzy number). We consider
a simple example to motivate our study for this optimization problem. Suppose that
a factory can produce five products x1, . . . , x5 subject to some budget constraints.
For selling products x1, . . . , x5, the factory can earn income around 5, 8, 7, 4, 6, res-
pectively, depending on the market effect. In this case, we can say that, for selling
products x1, . . . , x5, the factory can earn income 5̃, 8̃, 7̃, 4̃, 6̃, respectively. Now we
can formulate this problem as folows:

max ˜5x1 ⊕˜8x2 ⊕˜7x3 ⊕˜4x4 ⊕˜6x5
subject to 2x1 + 3x2 + 3x3 + 2x4 + 2x5 ≤ 20

3x1 + 5x2 + 4x3 + 2x4 + 4x5 ≤ 30
x1, x2, x3, x4, x5 ≥ 0,

where “⊕” is the addition between fuzzy numbers, which will be defined in this paper
below. In order to solve the above optimization problem with fuzzy-valued objective
function, we shall define an ordering among fuzzy numbers. Since this ordering is a
partial ordering, we are going to consider the non-dominated solution which follows
from the similar notion of the multiobjective optimization problem.

The usual ordering “≤” for real numbers is a total ordering on R. However,
there exist no natural orderings among the class of all fuzzy numbers. In this
paper, we provide a solution concept for the optimization problem (nonlinear pro-
gramming problem) with fuzzy-valued objective function by proposing an ordering
relationship between two fuzzy numbers. We shall see that this ordering relation
is not a total ordering on the class of all fuzzy numbers. Therefore, the solution
concept will follow from the similar solution concept (non-dominated solution) in
the conventional multiobjective programming problems. Under these settings, we are
going to derive the Karush-Kuhn-Tucker optimality conditions in an optimization
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The Karush-Kuhn-Tucker optimality conditions 205

problem with fuzzy-valued objective function by introducing the Lagrange function
multipliers.

In Sect. 2, we introduce some basic properties and arithmetics of fuzzy numbers.
In Sect. 3, we use the well-known Hausdorff metric to define the distance between
any two fuzzy numbers. Using this metric, we can consider the continuity and limit
of a fuzzy-valued function. In Sect. 4, we use the Hukuhara difference to define
the difference of any two fuzzy numbers. Using this Hukuhara difference and the
concept of limit in fuzzy-valued function which is defined in Sect. 3, we are capable
of proposing the differentiation of a fuzzy-valued function. In Sect. 5, we formulate
an optimization problem with fuzzy-valued objective function and provide a solution
concept for this problem. In the final Sect. 6, we derive the KKT conditions for our
problem by introducing the Lagrange function multipliers.

2 Arithmetics of fuzzy numbers

Let U be a topological vector space. The fuzzy subset ã of U is defined by a function ξã :
U → [0, 1], which is called a membership function. The α-level set of ã, denoted by ãα ,
is defined by ãα = {x ∈ U : ξã(x) ≥ α} for all α ∈ (0, 1]. The 0-level set ã0 is defined
as the closure of the set {x ∈ U : ξã(x) > 0}, i.e., ã0 = cl ({x ∈ U : ξã(x) > 0}).

Definition 2.1 We denote by F(U ) the set of all fuzzy subsets ã of U with membership
function ξã satisfying the following conditions:

(i) ã is normal, i.e., there exists an x ∈ U such that ξã(x) = 1;
(ii) ξã is quasi-concave, i.e., ξã(λx +(1−λ)y) ≥ min{ξã(x), ξã(y)} for all x, y ∈ U

and λ ∈ [0, 1];
(iii) ξã is upper semicontinuous, i.e., {x ∈ U : ξã(x) ≥ α} = ãα is a closed subset

of U for each α ∈ (0, 1];
(iv) the 0-level set ã0 is a compact subset of U .

Throughout this paper, the topological vector space U is assumed to be the set of
all real numbers R which is endowed with the usual topology. Then the member ã in
F(R) is called a fuzzy number. Suppose now that ã ∈ F(R). Then condition (ii) says
that the α-level set ãα of ã is a convex subset of R for each α ∈ [0, 1]. Combining
this fact with conditions (iii) and (iv), the α-level set ãα of ã is a compact and convex
subset of R for each α ∈ [0, 1], i.e., ãα is a closed interval in R for each α ∈ [0, 1].
Therefore, we also write ãα = [

ãL
α , ãU

α

]

.

Definition 2.2 Let ã be a fuzzy number. We say that ã is nonnegative if ãL
α ≥ 0 for

all α ∈ [0, 1]. We say that ã is positive if ãL
α > 0 is for all α ∈ [0, 1].

Remark 2.1 Let ã be a fuzzy number. Then ãL
α ≤ ãU

α for all α ∈ [0, 1]. Therefore if
ã is nonnegative then ãL

α ≥ 0 and ãU
α ≥ 0 for all α ∈ [0, 1], and if ã is positive then

ãL
α > 0 and ãU

α > 0 for all α ∈ [0, 1].
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Let “�” be any binary operations ⊕ or ⊗ between two fuzzy numbers ã and b̃. The
membership function of ã � b̃ is defined by

ξã�b̃(z) = sup
x◦y=z

min{ξã(x), ξb̃(y)}

using the extension principle in Zadeh (1975), where the operations � = ⊕ and ⊗
correspond to the operations ◦ = + and ×, respectively. Then we have the following
results.

Proposition 2.1 Let ã, b̃ ∈ F(R). Then we have

(i) ã ⊕ b̃ ∈ F(R) and

(ã ⊕ b̃)α =
[

ãL
α + b̃L

α , ãU
α + b̃U

α

]

;

(ii) ã ⊗ b̃ ∈ F(R) and

(ã ⊗ b̃)α =
[

min
{

ãL
α b̃L

α , ãL
α b̃U

α , ãU
α b̃L

α , ãU
α b̃U

α

}

,

max
{

ãL
α b̃L

α , ãL
α b̃U

α , ãU
α b̃L

α , ãU
α b̃U

α

}]

.

Let A and B be two compact and convex subsets of R
n . If there exists a compact

and convex subset of R
n , say C , such that A = B + C , then C is called the Hukuhara

difference of A and B. We also write C = A 	 B (ref. Banks and Jacobs 1970).
Inspired by this concept, we can also define the Hukuhara difference between two
fuzzy numbers. Let ã and b̃ be two fuzzy numbers. If there exists a fuzzy number c̃
such that c̃ ⊕ b̃ = ã (note that the fuzzy addition is commutative), then c̃ is unique.
In this case, c̃ is called the Hukuhara difference of ã and b̃ and is denoted by ã 	H b̃
(ref. Puri and Ralescu 1983). The following proposition is very useful for considering
the differentiation of fuzzy-valued function.

Proposition 2.2 Let ã and b̃ be two fuzzy numbers. If the Hukuhara difference c̃ =
ã 	H b̃ exists, then c̃L

α = ãL
α − b̃L

α and c̃U
α = ãU

α − b̃U
α for all α ∈ [0, 1].

Proof The result follows from Proposition 2.1 (i) immediately. 
�
Definition 2.3 Let ã be a fuzzy number. We say that ã is a canonical fuzzy number if the
functions η1(α) = ãL

α and η2(α) = ãU
α are continuous on [0, 1], where [ãL

α , ãU
α ] = ãα .

We denote by Fc(R) the set of all canonical fuzzy numbers.

Remark 2.2 Let ã be a fuzzy number. Then ãα = [ãL
α , ãU

α ] for all α ∈ [0, 1]. Suppose
that its membership function is strictly increasing on the interval

[

ãL
0 , ãL

1

]

and strictly
decreasing on the interval

[

ãU
1 , ãU

0

]

. Then, from the fact of strict monotonicity,η1(α) =
ãL
α and η2(α) = ãU

α are continuous functions with respect to the variable α on [0, 1].
It shows that ã is a canonical fuzzy number.

123



The Karush-Kuhn-Tucker optimality conditions 207

We have the converse result for Proposition 2.2. First of all, we need a useful lemma.

Lemma 2.1 (Negoita and Ralescu 1975) Let A be a set and {Aα : α ∈ [0, 1]} be a
family of subsets of A such that

(a) A0 = A
(b) Aβ ⊆ Aα for α < β

(c) Aα = ⋂∞
n=1 Aαn for αn ↑ α.

Then the function ξ : A → [0, 1] defined by

ξ(x) = sup
α∈[0,1]

α · 1Aα (x)

has the property that Aα = {x : ξ(x) ≥ α} for all α ∈ [0, 1], where 1Aα is the
indicator function of set Aα .

Proposition 2.3 Let ã and b̃ be two canonical fuzzy numbers and satisfy ãL
α − b̃L

α ≤
ãU
α − b̃U

α , ãL
α − b̃L

α ≤ ãL
β − b̃L

β and ãU
β − b̃U

β ≤ ãU
α − b̃U

α for α < β, then the Hukuhara

difference c̃ = ã 	H b̃ exists, and c̃ is also a canonical fuzzy number.

Proof Let Aα =
[

ãL
α − b̃L

α , ãU
α − b̃U

α

]

. Then Aβ ⊆ Aα for α < β. By Definition 2.3,

we have
⋂∞

n=1 Aαn = Aα for αn ↑ α. From Lemma 2.1, we can induce a canonical
fuzzy number c̃ such that c̃L

α = ãL
α − b̃L

α and c̃U
α = ãU

α − b̃U
α . This completes the proof.


�
We say that ã is a crisp number with value m if its membership function is given by

ξã(r) =
{

1 if r = m
0 otherwise.

We also use the notation 1̃{m} to represent the crisp number with value m. It is easy to
see that (1̃{m})L

α = (1̃{m})U
α = m for all α ∈ [0, 1]. Let us remark that a real number

m can be regarded as a crisp number 1̃{m}.

3 Limit and continuity of fuzzy-valued function

Let A ⊆ R
n and B ⊆ R

n . The Hausdorff metric is defined by

dH (A, B) = max

{

sup
a∈A

inf
b∈B

‖ a − b ‖, sup
b∈B

inf
a∈A

‖ a − b ‖
}

.

Let ã, b̃ ∈ F(R). We define the metric dF in F(R) as

dF (ã, b̃) = sup
0≤α≤1

dH (ãα, b̃α).

The following result is obvious.
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Proposition 3.1 Let ã and b̃ be two fuzzy numbers. Then we have

dH (ãα, b̃α) = max
{∣

∣

∣ãL
α − b̃L

α

∣

∣

∣ ,

∣

∣

∣ãU
α − b̃U

α

∣

∣

∣

}

for all α ∈ [0, 1].
Proposition 3.2 Let ã and b̃ be two canonical fuzzy numbers. Then dF (ã, b̃) < ε

implies |ãL
α − b̃L

α | < ε and |ãU
α − b̃U

α | < ε for all α ∈ [0, 1].

Proof By definition, ãL
α , ãU

α , b̃L
α and b̃U

α are continuous with respect to the variable α

on [0, 1]. From Proposition 3.1, η(α) = dH (ãα, b̃α) is continuous on [0, 1]. Therefore,
we have

ε > dF (ã, b̃) = sup
0≤α≤1

dH (ãα, b̃α) = max
0≤α≤1

dH (ãα, b̃α).

It shows that dH (ãα, b̃α) < ε for all α ∈ [0, 1]. From Proposition 3.1 again, the proof
is complete. 
�

Let f̃ : R
n → Fc(R) be a fuzzy-valued function defined on R

n , i.e., f̃ (x) is a
canonical fuzzy number for each x ∈ R

n . For any fixed α ∈ [0, 1], we can define two
real-valued functions f̃ L

α (x) = ( f̃ (x))L
α and f̃ U

α (x) = ( f̃ (x))U
α on R

n .

Definition 3.1 Let ã be a canonical fuzzy number. For c ∈ R
n , we write

lim
x→c

f̃ (x) = ã

if, for every ε > 0, there exists a δ > 0 such that, for ‖ x − c ‖< δ, we have
dF ( f̃ (x), ã) < ε. We say that f̃ is continuous at c if

lim
x→c

f̃ (x) = f̃ (c).

We say that the fuzzy-valued function f̃ is level-wise continuous at c if and only if the
real-valued functions f̃ L

α and f̃ U
α are continuous at c for all α ∈ [0, 1].

We are going to show that the continuity implies the level-wise continuity.

Proposition 3.3 Let f̃ : R
n → Fc(R) be a fuzzy-valued function defined on R

n. If f̃
is continuous at c, then f̃ L

α and f̃ U
α are continuous at c for all α ∈ [0, 1], i.e., f̃ is

level-wise continuous at c.

Proof From Proposition 3.2, we see that dH ( f̃ (x), f̃ (c)) < ε implies | f̃ L
α (x) −

f̃ L
α (c)| < ε and | f̃ U

α (x) − f̃ U
α (c)| < ε for all α ∈ [0, 1]. The remaining proof is

obvious. 
�
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Suppose now that the fuzzy-valued function f̃ : R → Fc(R) is defined on R. Then
we can similarly define the right-hand limit

lim
x→c+ f̃ (x).

Then, from Proposition 3.2, we can also have the following result.

Proposition 3.4 Let f̃ : R → Fc(R) be a fuzzy-valued function defined on R. If

lim
x→c+ f̃ (x) = ã,

where ã is a canonical fuzzy number, then

lim
x→c+ f̃ L

α (x) = ãL
α and lim

x→c+ f̃ U
α (x) = ãU

α

for all α ∈ [0, 1].

4 Differentiation of fuzzy-valued function

Using the concept of Hukuhara difference between two fuzzy numbers, we can propose
the differentiation of fuzzy-valued function (ref. Puri and Ralescu 1983).

Definition 4.1 Let X be an open subset of R. A fuzzy-valued function f̃ : X → Fc(R)

is called level-wise differentiable at x̄ if and only if f̃ L
α and f̃ U

α are differentiable at x̄
for all α ∈ [0, 1]. We say that the fuzzy-valued function f̃ is H-differentiable at x̄ if
there exists a canonical fuzzy number f̃ ′(x̄) such that the limits

lim
h→0+ 1̃{ 1

h } ⊗
[

f̃ (x̄ + h) 	H f̃ (x̄)
]

and lim
h→0+ 1̃{ 1

h } ⊗
[

f̃ (x̄) 	H f̃ (x̄ − h)
]

both exist and are equal to f̃ ′(x̄), where 1̃{ 1
h } is a crisp number with value 1

h . In this

case, f̃ ′(x̄) is called the H-derivative of f̃ at x̄ .

We are going to show that the H-differentiability implies the level-wise differen-
tiability.

Proposition 4.1 Let X be an open subset of R. If a fuzzy-valued function f̃ : X →
Fc(R) is H-differentiable at x̄ with H-derivative f̃ ′(x̄), then the real-valued functions
f̃ L
α and f̃ U

α are differentiable at x̄ for all α ∈ [0, 1], i.e., f̃ is level-wise differentiable
at x̄ . Moreover, we have ( f̃ L

α )′(x̄) = ( f̃ ′(x̄))L
α and ( f̃ U

α )′(x̄) = ( f̃ ′(x̄))U
α for all

α ∈ [0, 1].
Proof From Propositions 2.1, 2.2 and 3.4, we see that

lim
h→0+ 1̃{ 1

h } ⊗
[

f̃ (x̄ + h) 	H f̃ (x̄)
]

= f̃ ′(x̄) = lim
h→0+ 1̃{ 1

h } ⊗
[

f̃ (x̄) 	H f̃ (x̄ − h)
]
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implies

lim
h→0+

f̃ L
α (x̄ + h) − f̃ L

α (x̄)

h
= ( f̃ ′(x̄))L

α = lim
h→0+

f̃ L
α (x̄) − f̃ L

α (x̄ − h)

h

and

lim
h→0+

f̃ U
α (x̄ + h) − f̃ U

α (x̄)

h
= ( f̃ ′(x̄))U

α = lim
h→0+

f̃ U
α (x̄) − f̃ U

α (x̄ − h)

h

for all α ∈ [0, 1]. This shows that the real-valued functions f̃ L
α and f̃ U

α are differen-
tiable at x̄ , and ( f̃ L

α )′(x̄) = ( f̃ ′(x̄))L
α and ( f̃ U

α )′(x̄) = ( f̃ ′(x̄))U
α for all α ∈ [0, 1].


�
Now we consider the n-dimensional case of differentiability. Let X be an open

subset of R
n . We are going to consider the fuzzy-valued function f̃ defined on X , i.e.,

f̃ (x) = f̃ (x1, . . . , xn) is a canonical fuzzy number for each x = (x1, . . . , xn) ∈ X .
Therefore, we have the corresponding real-valued functions

f̃ L
α (x) = f̃ L

α (x1, . . . , xn) = ( f̃ (x1, . . . , xn))L
α and f̃ U

α (x) = f̃ U
α (x1, . . . , xn)

= ( f̃ (x1, . . . , xn))U
α

defined on X for all α ∈ [0, 1].
Proposition 4.2 (Apostol 1974, Theorem 12.11) Let f be a real-valued function de-
fined on R

n. Assume that one of the partial derivatives ∂ f/∂x1, . . . , ∂ f/∂xn exists at
x̄ and that the remaining n − 1 partial derivatives exist on some neighborhoods of x̄
and are continuous at x̄. Then f is differentiable at x̄.

Inspired by the above Proposition 4.2, we propose the following definition.

Definition 4.2 Let f̃ : X → Fc(R) be a fuzzy-valued function defined on an open
subset X of R

n and x̄ = (x̄1, . . . , x̄n) ∈ X be fixed.

(i) We say that the fuzzy-valued function f̃ is level-wise differentiable at x̄ if and only
if the real-valued functions f̃ L

α and f̃ U
α are differentiable at x̄ for all α ∈ [0, 1]

(which imply that all of the partial derivatives ∂ f̃ L
α /∂xi and ∂ f̃ U

α /∂xi exist at x̄
for all α ∈ [0, 1] and all i = 1, . . . , n).

(ii) If the fuzzy-valued function g̃(xi ) = f̃ (x̄1, . . . , x̄i−1, xi , x̄i+1, . . . , x̄n) is
H -differentiable at x̄i with H-derivative g̃′(x̄i ), then we say that f̃ has the i th
partial H-derivative at x̄. We also write g̃′(x̄i ) as (∂ f̃ /∂xi )(x̄).

(iii) We say that the fuzzy-valued function f̃ is H-differentiable at x̄ if one of the
partial H-derivatives ∂ f̃ /∂x1, . . . , ∂ f̃ /∂xn exists at x̄ and the remaining n − 1
partial H-derivatives exist on some neighborhoods of x̄ and are continuous at x̄
(in the sense of fuzzy-valued function).

123



The Karush-Kuhn-Tucker optimality conditions 211

Proposition 4.3 Let f̃ : X → Fc(R) be a fuzzy-valued function defined on an open
subset X of Rn. If f̃ is H-differentiable at x̄ ∈ X, then f̃ is also level-wise differentiable
at x̄.

Proof The result follows from Propositions 3.3, 4.1 and 4.2 immediately. 
�
Definition 4.3 Let f̃ : X → Fc(R) be a fuzzy-valued function defined on an open
subset X of R

n and x̄ = (x̄1, . . . , x̄n) ∈ X be fixed.

(i) We say that the fuzzy-valued function f̃ is level-wise continuously differentiable
at x̄ if and only if the real-valued functions f̃ L

α and f̃ U
α are continuously dif-

ferentiable at x̄ for all α ∈ [0, 1] (i.e., all of the partial derivatives ∂ f̃ L
α /∂xi

and ∂ f̃ U
α /∂xi exist on some neighborhoods of x̄ and are continuous at x̄ for all

α ∈ [0, 1] and all i = 1, . . . , n).
(ii) We say that the fuzzy-valued function f̃ is continuously H-differentiable at x̄ if all

of the partial H-derivatives ∂ f̃ /∂xi , i = 1, . . . , n, exist on some neighborhoods
of x̄ and are continuous at x̄ (in the sense of fuzzy-valued function).

Using Propositions 3.3, 4.1 and 4.2 again, we also have the following result.

Proposition 4.4 Let f̃ : X → Fc(R) be a fuzzy-valued function defined on an open
subset X of R

n. If f̃ is continuously H-differentiable at x̄ ∈ X, then f̃ is also level-wise
continuously differentiable at x̄.

Let f̃ be H-differentiable at x̄. Then the H-gradient of f̃ at x̄ is denoted by

∇ f̃ (x̄) =
(

∂ f̃

∂x1
(x̄), . . . ,

∂ f̃

∂xn
(x̄)

)T

, (1)

where each (∂ f̃ /∂xi )(x̄) is a canonical fuzzy number for i = 1, . . . , n. The α-level
set of ∇ f̃ (x̄) is defined and denoted by

(

∇ f̃ (x̄)
)

α
=
((

∂ f̃

∂x1
(x̄)

)

α

, . . . ,

(

∂ f̃

∂xn
(x̄)

)

α

)T

,

where
(

∂ f̃

∂xi
(x̄)

)

α

=
[

∂ f̃ L
α

∂xi
(x̄),

∂ f̃ U
α

∂xi
(x̄)

]

(2)

is a closed interval, since Proposition 4.1 shows that

(

∂ f̃

∂xi
(x̄)

)L

α

= ∂ f̃ L
α

∂xi
(x̄) and

(

∂ f̃

∂xi
(x̄)

)U

α

= ∂ f̃ U
α

∂xi
(x̄) (3)

for all α ∈ [0, 1]. In other words, (∇ f̃ (x̄))α is an n-vector whose components are
closed intervals as shown in (2) for all α ∈ [0, 1].
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5 Solution concept

Let A = [aL , aU ] and B = [bL , bU ] be two closed intervals in R. We write B ≤ A if
and only if bL ≤ aL and bU ≤ aU , and B < A if and only if the following conditions
are satisfied

{

bL < aL

bU ≤ aU or

{

bL ≤ aL

bU < aU or

{

bL < aL

bU < aU .

Let ã and b̃ be two fuzzy numbers. Then ãα = [ãL
α , ãU

α ] and b̃α = [b̃L
α , b̃U

α ] are
two closed intervals in R for all α ∈ [0, 1]. We write b̃ � ã if and only if b̃α ≤ ãα for
all α ∈ [0, 1], or equivalently, b̃L

α ≤ ãL
α and b̃U

α ≤ ãU
α for all α ∈ [0, 1]. It is easy to

see that “�” is a partial ordering on F(R).
Now we consider the following optimization problem with fuzzy-valued objective

function

(FOP1) min f̃ (x) = f̃ (x1, . . . , xn)

subject to x = (x1, x2, . . . , xn) ∈ X ⊆ R
n,

where the feasible set X is assumed to be a convex subset of R
n . For instance, the

fuzzy-valued objective function f̃ (x) can be taken as the linear-type objective function

f̃ (x) = f̃ (x1, . . . , xn) =
(

ã1 ⊗ 1̃{x1}
)

⊕
(

ã2 ⊗ 1̃{x2}
)

⊕ · · · ⊕
(

ãn ⊗ 1̃{xn}
)

,

where each ãi is a canonical fuzzy number and each 1̃{xi } is a crisp number with value
xi for i = 1, . . . , n.

We need to interprete the meaning of minimization in problem (FOP1). Since “�”
is a partial ordering, not a total ordering, on F(R), we may follow the similar solution
concept (the non-dominated solution) used in multiobjective programming problem
to interprete the meaning of minimization in problem (FOP1).

Now we write ã ≺ b̃ if and only if ãα ≤ b̃α for all α ∈ [0, 1] and there exists an
α∗ ∈ [0, 1] such that ãα∗ < b̃α∗ , i.e.,

{

ãL
α∗ < b̃L

α∗
ãU
α∗ ≤ b̃U

α∗
or

{

ãL
α∗ ≤ b̃L

α∗
ãU
α∗ < b̃U

α∗
or

{

ãL
α∗ < b̃L

α∗
ãU
α∗ < b̃U

α∗
. (4)

Therefore, we see that ã ≺ b̃ means ã � b̃ and ã �= b̃. For the minimization problem
(FOP1), we propose the following definition.

Definition 5.1 Let x∗ be a feasible solution, i.e., x∗ ∈ X .

(i) We say that x∗ is a non-dominated solution of problem (FOP1) if there exists no
x̄ ∈ X \ {x∗} such that f̃ (x̄) ≺ f̃ (x∗).

(ii) We say that x∗ is a strongly non-dominated solution of problem (FOP1) if there
exists no x̄ ∈ X \ {x∗} such that f̃ (x̄) � f̃ (x∗).
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Remark 5.1 It is easy to see that if x∗ is a strongly non-dominated solution of problem
(FOP1), then it is also a non-dominated solution of problem (FOP1).

In the sequel, we are going to provide the Karush-Kuhn-Tucker optimality condi-
tions for (strongly) non-dominated solution of problem (FOP1).

6 The Karush-Kuhn-Tucker optimality conditions

Let X be a convex subset of R
n and f be a real-valued function defined on X . We

recall that f is convex at x∗ if

f (λx∗ + (1 − λ)x) ≤ λ f (x∗) + (1 − λ) f (x)

for each λ ∈ (0, 1) and each x ∈ X .
Let f and g j , j = 1, . . . , m, be real-valued functions defined on R

n . Then we
consider the following (conventional) optimization problem

(P) min f (x) = f (x1, . . . , xn)

subject to g j (x) ≤ 0, j = 1, . . . , m.

Suppose that the constraint functions g j are convex on R
n for each j = 1, . . . , m.

Then the feasible set X = {x ∈ R
n : g j (x) ≤ 0, j = 1, . . . , m} is a convex subset

of R
n . The well-known Karush-Kuhn-Tucker optimality conditions for problem (P)

(e.g., Horst et al. 2000 or Bazarra et al. 1993) is stated below.

Theorem 6.1 Assume that the constraint functions g j : R
n → R are convex on R

n

for j = 1, . . . , m. Let X = {x ∈ R
n : g j (x) ≤ 0, i = 1, . . . , m} be a feasible set and

a point x∗ ∈ X. Suppose that the objective function f : R
n → R is convex at x∗, and

f , g j , j = 1, . . . , m, are continuously differentiable at x∗. If there exist (Lagrange)
multipliers 0 ≤ µ j ∈ R, j = 1, . . . , m, such that

(i) ∇ f (x∗) +∑m
j=1 µ j∇g j (x∗) = 0;

(ii) µ j g j (x∗) = 0 for all j = 1, . . . , m,
then x∗ is an optimal solution of problem (P).

6.1 KKT conditions for level-wise differentiable case

In this subsection, the fuzzy-valued objective function f̃ is assumed as level-wise
(continuously) differentiable at a feasible solution x∗. Therefore, from Propositions 4.3
and 4.4, we see that all of the results presented in this subsection also hold true for
(continuously) H-differentiable case. We shall also present the KKT conditions in the
fuzzy-valued form for continuously H-differentiable case in the next subsection. First
of all, we introduce the concept of convexity for fuzzy-valued functions.
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Definition 6.1 Let X be a nonempty convex subset of R
n and f̃ be a fuzzy-valued

function defined on X . We say that f̃ is convex at x∗ if

f̃ (λx∗ + (1 − λ)x) �
(

1̃{λ} ⊗ f̃ (x∗)
)

⊕
(

1̃{1−λ} ⊗ f̃ (x)
)

for each λ ∈ (0, 1) and each x ∈ X , where 1̃{λ} and 1̃{1−λ} are crisp numbers with
values λ and 1 − λ, respectively.

Proposition 6.1 Let X be a nonempty convex subset of R
n and f̃ be a fuzzy-valued

function defined on X. Then f̃ is convex at x∗ if and only if f̃ L
α and f̃ U

α are convex at
x∗ for all α ∈ [0, 1].
Proof The result follows from Proposition 2.1 immediately. 
�

Now we consider the following constrained minimization problem with fuzzy-
valued objective function

(FOP2) min f̃ (x)

subject to g j (x) ≤ 0, j = 1, . . . , m,

where the real-valued constraint functions g j : R
n → R are convex on R

n for j =
1, . . . , m. We see that problem (FOP2) follows from problem (FOP1) by taking the
convex set X as X = {x : g j (x) ≤ 0, j = 1, . . . , m}.

Now we are in a position to present the Karush-Kuhn-Tucker optimality conditions
for non-dominated solutions of problem (FOP2).

Theorem 6.2 Assume that the real-valued constraint functions g j : R
n → R are

convex on R
n for j = 1, . . . , m. Let X = {x ∈ R

n : g j (x) ≤ 0, j = 1, . . . , m} be
the feasible set of problem (FOP2) and a point x∗ ∈ X. Suppose that the fuzzy-valued
objective function f̃ : R

n → Fc(R) is convex and level-wise continuously differen-
tiable at x∗, and the real-valued constraint functions g j : R

n → R are continuously
differentiable at x∗ for j = 1, . . . , m. If there exist nonnegative real-valued functions
µ j (nonnegative Lagrange function multipliers) for j = 1, . . . , m defined on [0, 1]
such that

(i) ∇ f̃ L
α (x∗) + ∇ f̃ U

α (x∗) +∑m
j=1 µ j (α) · ∇g j (x∗) = 0 for all α ∈ [0, 1];

(ii) µ j (α)g j (x∗) = 0 for all α ∈ [0, 1] and all j = 1, . . . , m,
then x∗ is a non-dominated solution of problem (FOP2).

Proof We are going to prove this result by contradiction. Suppose that conditions (i)
and (ii) are satisfied and x∗ is not a non-dominated solution. Then there exists an x̄ ∈ X
such that f̃ (x̄) ≺ f̃ (x∗), i.e., from (4),

{

f̃ L
α∗(x̄) < f̃ L

α∗(x∗)
f̃ U
α∗(x̄) ≤ f̃ U

α∗(x∗) or

{

f̃ L
α∗(x̄) ≤ f̃ L

α∗(x∗)
f̃ U
α∗(x̄) < f̃ U

α∗(x∗) or

{

f̃ L
α∗(x̄) < f̃ L

α∗(x∗)
f̃ U
α∗(x̄) < f̃ U

α∗(x∗) (5)
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for some α∗ ∈ [0, 1]. We now define a real-valued function

f (x) = f̃ L
α∗(x) + f̃ U

α∗(x). (6)

Combining (5) and (6), we see that

f (x̄) < f (x∗) (7)

Since f̃ is convex and level-wise continuously differentiable at x∗, i.e., f̃ L
α and f̃ U

α

are convex and continuously differentiable at x∗ for all α ∈ [0, 1], we see that f is
also convex and continuously differentiable at x∗. Furthermore, from (6), we have

∇ f (x) = ∇ f̃ L
α∗(x) + ∇ f̃ U

α∗(x). (8)

Since conditions (i) and (ii) are satisfied for all α ∈ [0, 1], according to (8), we can
obtain the following two new conditions for any fixed α∗ ∈ [0, 1]:

(i’)∇ f̃ L
α∗(x∗)+∇ f̃ U

α∗(x∗)+∑m
j=1µ jα∗∇g j (x∗)=∇ f (x∗)+∑m

j=1µ jα∗∇g j (x∗)=0;
(ii’) µ jα∗ g j (x∗) = 0 for all j = 1, . . . , m,

where µ jα∗ = µ j (α
∗) ≥ 0 for j = 1, . . . , m. We consider the following constrained

optimization problem

min f (x)

subject to g j (x) ≤ 0, j = 1, . . . , m,

where f is defined in (6). Then this problem has the same constraints of problem
(FOP2). Using Theorem 6.1, conditions (i’) and (ii’) are the KKT conditions for this
optimization problem. Therefore, we conclude that x∗ is an optimal solution of the
real-valued objective function f , i.e., f (x∗) ≤ f (x̄), which contradicts (7). This
completes the proof. 
�
Remark 6.1 The Lagrange function multipliers µ j for j = 1, . . . , m can be construc-
ted as follows. For any fixed α ∈ [0, 1], if there exists 0 ≤ µ jα ∈ R such that the
following conditions are satisfied:

(a) ∇ f̃ L
α (x∗) + ∇ f̃ U

α (x∗) +∑m
j=1 µ jα · ∇g j (x∗) = 0;

(b) µ jαg j (x∗) = 0 for all j = 1, . . . , m.

Then we can define the nonnegative real-valued functions µ j (α) = µ jα for all
α ∈ [0, 1] and all j = 1, . . . , m. Therefore, if the above conditions (a) and (b)
are satisfied for all α ∈ [0, 1], then x∗ is a non-dominated solution of problem (FOP2)
by constructing the Lagrange function multipliers as described above.

In the sequel, we are going to relax the convexity assumption by considering the
pseudoconvexity. Let X be a nonempty feasible set and x∗ ∈ clX (the closure of X ).
The cone of feasible directions of X at x∗, denoted by D, is defined by

D = {d ∈ R
n : d �= 0, there exists a δ>0 such that x∗+ηd ∈ X for all η ∈ (0, δ)}.

(9)
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Each d of D is called a feasible direction of X . The following proposition, from
Bazarra et al. (1993), is very useful.

Proposition 6.2 (Bazarra et al. 1993, Lemma 4.2.4) Let X = {x ∈ R
n : g j (x) ≤

0, j = 1, . . . , m}be a feasible set and a point x∗ ∈ X. Assume that g j are differentiable
at x∗ for all j = 1, . . . , m. Let I = { j : g j (x∗) = 0} be the index set for the active
constraints. Then

D ⊆ {d ∈ R
n : ∇g j (x∗)T d ≤ 0 for each j ∈ I }

(note that this proposition still hold true if we just assume that g j are continuous at
x∗ instead of differentiable at x∗ for j �∈ I ).

Let f be a differentiable real-valued function defined on a nonempty open convex
subset X of R

n . Then f is convex at x∗ if and only if f (x) ≥ f (x∗)+∇ f (x∗)T (x−x∗)
for x ∈ X (ref. Bazarra et al. 1993, Theorem 3.3.3), i.e., f (x)− f (x∗) ≥ ∇ f (x∗)T (x−
x∗). Therefore, we see that if f (x) ≤ f (x∗) then ∇ f (x∗)T (x − x∗) ≤ 0. Also, if
f (x) < f (x∗) then ∇ f (x∗)T (x − x∗) < 0. Let us also recall that f is pseudoconvex
at x∗ if f (x) < f (x∗) then ∇ f (x∗)T (x − x∗) < 0 for x ∈ X , and f is strictly
pseudoconvex at x∗ if f (x) ≤ f (x∗) then ∇ f (x∗)T (x − x∗) < 0 for x ∈ X . It is
well-known that the strict convexity implies the strict pseudoconvexity. Inspired by
Proposition 6.1, we propose the following definition.

Definition 6.2 Let f̃ : X → Fc(R) be a fuzzy-valued function defined on a convex
set X ⊆ R

n . We say that f̃ is pseudoconvex at x∗ if and only if the real-valued functions
f̃ L
α and f̃ U

α are pseudoconvex at x∗ for all α ∈ [0, 1].

The Tucker’s theorem of the alternative states that, given matrices A and C , exactly
one of the following system has a solution:

System I: Ax ≤ 0, Ax �= 0, Cx ≤ 0 for some x ∈ R
n ;

System II: AT λ + CT µ = 0 for some (λ,µ), λ > 0, µ ≥ 0.
We are going to use the Tucker’s theorem to refine the KKT conditions when some
mild conditions are imposed upon the fuzzy-valued objective function.

Theorem 6.3 Let X = {x ∈ R
n : g j (x) ≤ 0, j = 1, . . . , m} be the feasible set of

problem (FOP2). Assume that X is a convex subset of R
n and a point x∗ ∈ X. Suppose

that the fuzzy-valued objective function f̃ : R
n → Fc(R) is level-wise differentiable

and pseudoconvex at x∗, and the real-valued constraint functions g j : R
n → R are

differentiable at x∗ for j = 1, . . . , m. If there exist nonnegative real-valued functions
µL

j and µU
j for j = 1, . . . , m defined on [0, 1] such that

(i) ∇ f̃ L
α (x∗) +∑m

j=1 µL
j (α) · ∇g j (x∗) = 0 for all α ∈ [0, 1];

(ii) ∇ f̃ U
α (x∗) +∑m

j=1 µU
j (α) · ∇g j (x∗) = 0 for all α ∈ [0, 1];
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(iii) µL
j (α) · g j (x∗) = 0 = µU

j (α) · g j (x∗) for all α ∈ [0, 1] and all j = 1, . . . , m,
then x∗ is a non-dominated solution of problem (FOP2).

Proof We are going to prove this result by contradiction. Suppose that conditions
(i–iii) are satisfied and x∗ is not a non-dominated solution. Then there exists an x̄ ∈ X
such that f̃ (x̄) ≺ f̃ (x∗), i.e., from (5), f̃ L

α∗(x̄) < f̃ L
α∗(x∗) or f̃ U

α∗(x̄) < f̃ U
α∗(x∗) for

some α∗ ∈ [0, 1]. Since f̃ is level-wise differentiable and pseudoconvex at x∗, we see
that the real-valued functions f̃ L

α∗ and f̃ U
α∗ are differentiable and pseudoconvex at x∗

by definition. By the definition of pseudoconvexity, we have ∇ f̃ L
α∗(x∗)T (x̄ − x∗) < 0

or ∇ f̃ U
α∗(x∗)T (x̄ − x∗) < 0. First of all, we consider the case of

∇ f̃ L
α∗(x∗)T (x̄ − x∗) < 0. (10)

Let d = x̄ − x∗. Since X is a convex set and x̄, x∗ ∈ X , for η ∈ (0, 1), we have

x∗ + ηd = x∗ + η(x̄ − x∗) = ηx̄ + (1 − η)x∗ ∈ X.

This shows that d ∈ D as presented in (9). From Proposition 6.2, we conclude that

∇g j (x∗)T d ≤ 0 for each j ∈ I , (11)

where I is the index set for the active constraints. Since conditions (i) and (iii) are
satisfied for all α ∈ [0, 1], we obtain the following two new conditions:

(a) ∇ f̃ L
α∗(x∗) +∑m

j=1 µ jα∗ · ∇g j (x∗) = 0;
(b) µ jα∗ · g j (x∗) = 0 for all j = 1, . . . , m,

where µ jα∗ = µ j (α
∗) ≥ 0 for all j = 1, . . . , m. Let A = ∇ f̃ L

α∗(x∗)T and C be the
matrix whose rows are ∇g j (x∗)T for j ∈ I . We consider the following two systems:

System I: Ad ≤ 0, Ad �= 0, Cd ≤ 0 for some d ∈ R
n ;

System II: AT λ + CT µ = 0 for some (λ,µ), λ > 0, µ ≥ 0.
Then from (10) to (11), System I has a solution d = x̄ −x∗. According to the Tucker’s
theorem of the alternative, system II will have no solutions. That is, there exist no
multipliers 0 < λ ∈ R and 0 ≤ µ j ∈ R, j ∈ I , such that

λ∇ f̃ L
α∗(x∗) +

∑

j∈I

µ j∇g j (x∗) = 0;

or, equivalently, there exist no multipliers 0 ≤ η j ∈ R, j ∈ I , such that

∇ f̃ L
α∗(x∗) +

∑

j∈I

η j∇g j (x∗) = 0, (12)

where η j = µ j/λ. Since I is the index set of active constraints, we have g j (x∗) �= 0
for j �∈ I . Therefore, if η j g j (x∗) = 0 for all j = 1, . . . , m, then η j = 0 for j �∈ I , i.e.,

∑

j∈I

η j∇g j (x∗) =
m
∑

j=1

η j∇g j (x∗). (13)
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In other words, from (12) and (13), there exist no multipliers 0 ≤ η j ∈ R such that

(a’) ∇ f̃ L
α∗(x∗) +∑m

j=1 η j∇g j (x∗) = 0;
(b’) η j · g j (x∗) = 0 for all j = 1, . . . , m.

However, conditions (a’) and (b’) violate the previous conditions (a) and (b) for the
existence of multipliers µ jα∗ ≥ 0 for all j = 1, . . . , m. Similarly, for the case of
∇ f̃ U

α∗(x∗)T (x̄ − x∗) < 0, conditions (ii) and (iii) of this theorem will be violated. We
complete the proof. 
�

Next, we are going to present the KKT conditions for strongly non-dominated
solutions.

Definition 6.3 Let f̃ : X → Fc(R) be a fuzzy-valued function defined on a convex
set X ⊆ R

n . We say that f̃ is strictly upper-pseudoconvex (resp. strictly lower-
pseudoconvex) at x∗ if each real-valued function f̃ U

α (resp. f̃ L
α ) is strictly pseudo-

convex at x∗ for all α ∈ [0, 1].
Theorem 6.4 Let X = {x ∈ R

n : g j (x) ≤ 0, j = 1, . . . , m} be the feasible set
of problem (FOP2). Assume that X is a convex subset of R

n and a point x∗ ∈ X.
Suppose that the fuzzy-valued objective function f̃ : R

n → Fc(R) is level-wise
differentiable and strictly lower-pseudoconvex (resp. strictly upper-pseudoconvex) at
x∗, and the real-valued constraint functions g j : R

n → R are differentiable at x∗ for
j = 1, . . . , m. If there exist α∗ ∈ [0, 1] and 0 ≤ µ j ∈ R for j = 1, . . . , m such that

(i) ∇ f̃ L
α∗(x∗) +∑m

j=1 µ j · ∇g j (x∗) = 0

(resp. ∇ f̃ U
α∗(x∗) +∑m

j=1 µ j · ∇g j (x∗) = 0);
(ii) µ j · g j (x∗) = 0 for all j = 1, . . . , m,

then x∗ is a strongly non-dominated solution of problem (FOP2).

Proof We are going to prove this result by contradiction. Suppose that conditions (i)
and (ii) are satisfied and x∗ is not a strongly non-dominated solution. Then there exists
an x̄ �= x∗ such that f̃ (x̄) � f̃ (x∗), i.e., f̃ L

α (x̄) ≤ f̃ L
α (x∗) (resp. f̃ U

α (x̄) ≤ f̃ U
α (x∗))

for all α ∈ [0, 1]. Since f̃ is level-wise differentiable and strictly lower-pseudoconvex
(resp. strictly upper-pseudoconvex) at x∗, i.e., f̃ L

α (resp. f̃ U
α ) is differentiable and

strictly pseudoconvex at x∗ by definition for all α ∈ [0, 1], we have ∇ f̃ L
α (x∗)T (x̄ −

x∗) < 0 (resp. ∇ f̃ U
α (x∗)T (x̄ − x∗) < 0) for all α ∈ [0, 1], i.e., ∇ f̃ L

α∗(x∗)T (x̄ −
x∗) < 0 (resp. ∇ f̃ U

α∗(x∗)T (x̄ − x∗) < 0). Using the similar arguments in the proof of
Theorem 6.3, there exist no multipliers 0 ≤ η j ∈ R such that

(a’) ∇ f̃ L
α∗(x∗) +∑m

j=1 η j∇g j (x∗) = 0
(resp. ∇ f̃ U

α∗(x∗) +∑m
j=1 η j∇g j (x∗) = 0);

(b’) η j · g j (x∗) = 0 for all j = 1, . . . , m.
This shows that conditions (i) and (ii) are violated. We complete the proof. 
�

6.2 KKT conditions for H-differentiable case

We are going to present the KKT conditions in the fuzzy-valued form. For notatio-
nal convenience, we denote by 0̃ the crisp number 1̃{0} with value 0. We also write
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0̃ = (0̃, . . . , 0̃)T . Let x be an n-vector in R
n . Then the crisp vector 1̃{x} is defined as

1̃{x} =
(

1̃{x1}, 1̃{x2}, . . . , 1̃{xn}
)

. Let a = (a1, . . . , an) be an n-vector. We say that a
has the same sign if and only if ai ≥ 0 for all i = 1, . . . , n simultaneously, or ai < 0
for all i = 1, . . . , n simultaneously (i.e., the components of vector a have the same
sign). Or, equivalently, a has the same sign if and only if a ≥ 0 or a < 0.

Theorem 6.5 Assume that the real-valued constraint functions g j : R
n → R are

convex on R
n for j = 1, . . . , m. Let X = {x ∈ R

n : g j (x) ≤ 0, j = 1, . . . , m} be
the feasible set of problem (FOP2) and a point x∗ ∈ X. Suppose that the fuzzy-valued
objective function f̃ : R

n → Fc(R) is convex and continuously H-differentiable at x∗,
and the real-valued constraint functions g j : R

n → R are continuously differentiable
at x∗ for j = 1, . . . , m. We also assume that each ∇g j (x∗) has the same sign for
j = 1, . . . , m. If there exist nonnegative fuzzy numbers (nonnegative fuzzy Lagrange
multipliers) µ̃ j ∈ F(R), j = 1, . . . , m, such that

(i) ∇ f̃ (x∗) ⊕
[

⊕m
j=1

(

µ̃ j ⊗ 1̃{∇g j (x∗)}
)]

= 0̃;

(ii) µ̃ j ⊗ 1̃{g j (x∗)} = 0̃ for all j = 1, . . . , m,

then x∗ is a non-dominated solution of problem (FOP2).

Proof Let I+ ⊂ {1, . . . , m} and I− ⊂ {1, . . . , m} be the index sets defined by

I+ = { j : ∇g j (x∗) ≥ 0} and I− = { j : ∇g j (x∗) < 0}.

Since f̃ is H-differentiable at x∗, the H-gradient ∇ f̃ (x∗) exists as shown in (1). Since

1̃{∇g j (x∗)} =
(

1̃{ ∂g j
∂x1

(x∗)
}, 1̃{ ∂g j

∂x2
(x∗)

}, . . . , 1̃{ ∂g j
∂xn

(x∗)
}

)T

,

from (1), the i th component of the formula in condition (i) is given by

∂ f̃

∂xi
(x∗) ⊕

⎡

⎣

m
⊕

j=1

(

µ̃ j ⊗ 1̃{ ∂g j
∂xi

(x∗)
}

)

⎤

⎦ = 0̃. (14)

Taking the α-level set of (14) by using (3) and Proposition 2.1, we have

∂ f̃ L
α

∂xi
(x∗) +

∑

j∈I+
(µ̃ j )

L
α · ∂g j

∂xi
(x∗) +

∑

j∈I−
(µ̃ j )

U
α · ∂g j

∂xi
(x∗) = 0

= ∂ f̃ U
α

∂xi
(x∗) +

∑

j∈I+
(µ̃ j )

U
α · ∂g j

∂xi
(x∗) +

∑

j∈I−
(µ̃ j )

L
α · ∂g j

∂xi
(x∗)

for all α ∈ [0, 1] and all i = 1, . . . , n, where (µ̃ j )
L
α and (µ̃ j )

U
α are nonnegative real

numbers by Remark 2.1 for all α ∈ [0, 1] and all j = 1, . . . , m. Equivalently, in the
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vector form, we have

∇ f̃ L
α (x∗) +

∑

j∈I+
(µ̃ j )

L
α · ∇g j (x∗) +

∑

j∈I−
(µ̃ j )

U
α · ∇g j (x∗) = 0

= ∇ f̃ U
α (x∗) +

∑

j∈I+
(µ̃ j )

U
α · ∇g j (x∗) +

∑

j∈I−
(µ̃ j )

L
α · ∇g j (x∗)

for all α ∈ [0, 1], which also implies, by adding them together,

∇ f̃ L
α (x∗) + ∇ f̃ U

α (x∗) +
m
∑

j=1

µ jα · ∇g j (x∗) = 0 (15)

for all α ∈ [0, 1], where µ jα = (µ̃ j )
L
α + (µ̃ j )

U
α is a nonnegative real number for all

α ∈ [0, 1] and all j = 1, . . . , m. We are going to prove this theorem by contradiction.
Suppose that x∗ is not a non-dominated solution. Then there exists an x̄ ∈ X such that
f̃ (x̄) ≺ f̃ (x∗), i.e., (5) is satisfied for some α∗ ∈ [0, 1]. We now define a real-valued
function

f (x) = f̃ L
α∗(x) + f̃ U

α∗(x). (16)

From Propositions 4.4 and 6.1, we see that the real-valued functions f̃ L
α and f̃ U

α are
convex and continuously differentiable at x∗ for all α ∈ [0, 1]. Therefore, f is also
convex and continuously differentiable at x∗. From condition (ii) of this theorem and
Proposition 2.1, since g j (x∗) ≤ 0 for all j = 1, . . . , m, we see that

(µ̃ j )
U
α · g j (x∗) =

(

µ̃ j ⊗ 1̃{g j (x∗)}
)L

α
= 0 =

(

µ̃ j ⊗ 1̃{g j (x∗)}
)U

α
= (µ̃ j )

L
α · g j (x∗)

for all α ∈ [0, 1] and all j = 1, . . . , m, which implies

0 = (µ̃ j )
L
α · g j (x∗) + (µ̃ j )

U
α · g j (x∗) = µ jα · g j (x∗) (17)

for all α ∈ [0, 1] and all j = 1, . . . , m. From (16), we have

∇ f (x) = ∇ f̃ L
α∗(x) + ∇ f̃ U

α∗(x),

According to equations (15) and (17), we obtain the following new conditions
(i)’ ∇ f (x∗) +∑m

j=1 µ jα∗∇g j (x∗) = 0 [note that equation (15) is satisfied for all
α ∈ [0, 1]];

(ii)’ µ jα∗ · g j (x∗) = 0 for all j = 1, . . . , m [note that equation (17) is satisfied for
all α ∈ [0, 1]].
Using Theorem 6.1, we see that x∗ is an optimal solution of the real-valued objective
function f subject to the same constraints of problem (FOP2), i.e.,

f (x∗) ≤ f (x̄). (18)
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From (16) to (5), we see that f (x̄) < f (x∗), which contradicts (18). This completes
the proof. 
�

6.3 Numerical examples

Some examples are provided to illustrate the applications.

Example 6.1 Now we introduce the concept of triangular fuzzy number. The mem-
bership function of a triangular fuzzy number ã is defined by

ξã(r) =
⎧

⎨

⎩

(r − aL)/(a − aL) if aL ≤ r ≤ a
(aU − r)/(aU − a) if a < r ≤ aU

0 otherwise,

which is denoted by ã = (aL , a, aU ). The α-level set (a closed interval) of ã is then

ãα = [(1 − α)aL + αa, (1 − α)aU + αa];

that is,
ãL
α = (1 − α)aL + αa and ãU

α = (1 − α)aU + αa. (19)

It is easy to see that the triangular fuzzy number is also a canonical fuzzy numbers.
Now we consider the following optimization problem

min
(

˜−5 ⊗ 1̃{x1}
)

⊕
(

˜−8 ⊗ 1̃{x2}
)

⊕
(

˜−7 ⊗ 1̃{x3}
)

⊕
(

˜−4 ⊗ 1̃{x4}
)

⊕
(

˜−6 ⊗ 1̃{x5}
)

subject to 2x1 + 3x2 + 3x3 + 2x4 + 2x5 ≤ 20
3x1 + 5x2 + 4x3 + 2x4 + 4x5 ≤ 30
x1, x2, x3, x4, x5 ≥ 0,

where

˜−5 = (−6,−5,−3), ˜−8 = (−9,−8,−6), ˜−7 = (−8,−7,−4),

˜−4 = (−5,−4,−1), ˜−6 = (−7,−6,−5)

are triangular fuzzy numbers. That is,

f̃ (x1, . . . , x5) =
(

˜−5 ⊗ 1̃{x1}
)

⊕
(

˜−8 ⊗ 1̃{x2}
)

⊕
(

˜−7 ⊗ 1̃{x3}
)

⊕
(

˜−4 ⊗ 1̃{x4}
)

⊕
(

˜−6 ⊗ 1̃{x5}
)

g1(x1, . . . , x5) = 2x1 + 3x2 + 3x3 + 2x4 + 2x5 − 20

g2(x1, . . . , x5) = 3x1 + 5x2 + 4x3 + 2x4 + 4x5 − 30

g j (x1, . . . , x5) = −x j−2 for j = 3, . . . , 7.
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Using Proposition 2.1 and (19), we obtain

f̃ L
α (x1, . . . , x5) = x1(−6 + α) + x2(−9 + α) + x3(−8 + α) + x4(−5 + α)

+x5(−7 + α)

f̃ U
α (x1, . . . , x5) = x1(−3 − 2α) + x2(−6 − 2α) + x3(−4 − 3α) + x4(−1 − 3α)

+x5(−5 − α)

for α ∈ [0, 1]. We can also obtain

∇ f̃ L
α (x) =

⎡

⎢

⎢

⎢

⎢

⎣

−6 + α

−9 + α

−8 + α

−5 + α

−7 + α

⎤

⎥

⎥

⎥

⎥

⎦

,∇ f̃ U
α (x) =

⎡

⎢

⎢

⎢

⎢

⎣

−3 − 2α

−6 − 2α

−4 − 3α

−1 − 3α

−5 − α

⎤

⎥

⎥

⎥

⎥

⎦

,∇g1(x) =

⎡

⎢

⎢

⎢

⎢

⎣

2
3
3
2
2

⎤

⎥

⎥

⎥

⎥

⎦

and ∇g2(x) =

⎡

⎢

⎢

⎢

⎢

⎣

3
5
4
2
4

⎤

⎥

⎥

⎥

⎥

⎦

.

Let us first solve the equations g1(x) = 0 = g2(x). Then we obtain

x∗ = (x∗
1 , x∗

2 , x∗
3 , x∗

4 , x∗
5 ) = (0, 5, 0, 2.5, 0).

From condition (ii) in Theorem 6.2, we see that µ4(α) = 0 = µ6(α), since g4(x∗) =
−5 and g6(x∗) = −2.5. Now applying condition (i) at this x∗, we obtain

∇ f̃ L
α (x∗) + ∇ f̃ U

α (x∗) +
7
∑

j=1

µ j (α) · ∇g j (x∗)

=

⎡

⎢

⎢

⎢

⎢

⎣

−9 − α + 2µ1(α) + 3µ2(α) − µ3(α)

−15 − α + 3µ1(α) + 5µ2(α)

−12 − 2α + 3µ1(α) + 4µ2(α) − µ5(α)

−6 − 2α + 2µ1(α) + 2µ2(α)

−12 + 2µ1(α) + 4µ2(α) − µ7(α)

⎤

⎥

⎥

⎥

⎥

⎦

= 0.

After some algebraic calculations, we obtain the nonnegative real-valued functions

µ1(α) = 2α,µ2(α) = 3 − α and µ j (α) = 0 for j = 3, . . . , 7 and α ∈ [0, 1].

Therefore, using Theorem 6.2, x∗ = (0, 5, 0, 2.5, 0) is a non-dominated solution.
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Example 6.2 Let us consider the following optimization problem

min
[(

1̃{x1} ⊕ ˜−3
)

⊗
(

1̃{x1} ⊕ ˜−3
)]

⊕
[(

1̃{x2} ⊕ ˜−5
)

⊗
(

1̃{x2} ⊕ ˜−5
)]

subject to x1 + x2 ≥ 10
x1 ≥ 4
x2 ≥ 6,

where ˜−3 = (−4,−3,−2) and ˜−5 = (−6,−5,−4) are triangular fuzzy numbers.
Then we have

f̃ (x1, x2) =
[(

1̃{x1} ⊕ ˜−3
)

⊗
(

1̃{x1} ⊕ ˜−3
)]

⊕
[(

1̃{x2} ⊕ ˜−5
)

⊗
(

1̃{x2} ⊕ ˜−5
)]

g1(x1, x2) = −x1 − x2 + 10

g2(x1, x2) = −x1 + 4

g3(x1, x2) = −x2 + 6.

Using Proposition 2.1 and (19), we obtain

(

1̃{x1} ⊕ ˜−3
)L

α
= x1 − 4 + α ≥ 0,

(

1̃{x1} ⊕ ˜−3
)U

α
= x1 − 2 − α ≥ 0

(

1̃{x2} ⊕ ˜−5
)L

α
= x2 − 6 + α ≥ 0,

(

1̃{x2} ⊕ ˜−5
)U

α
= x2 − 4 − α ≥ 0

since x1 ≥ 4, x2 ≥ 6 and α ∈ [0, 1]. Therefore, using Proposition 2.1 again, we obtain

f̃ L
α (x1, x2) =

[

(

1̃{x1} ⊕ ˜−3
)L

α

]2

+
[

(

1̃{x2} ⊕ ˜−5
)L

α

]2

= (x1 − 4 + α)2 + (x2 − 6 + α)2

f̃ U
α (x1, x2) =

[

(

1̃{x1} ⊕ ˜−3
)U

α

]2

+
[

(

1̃{x2} ⊕ ˜−5
)U

α

]2

= (x1 − 2 − α)2 + (x2 − 4 − α)2.

For any fixed α ∈ [0, 1], we see that f̃ L
α and f̃ U

α are strictly convex, i.e., strictly
pseudoconvex. It says that f̃ is both strictly lower-pseudoconvex and strictly upper-
pseudoconvex. Therefore we are going to apply Theorem 6.4 to obtain the strongly
non-dominated solution by considering f̃ as a strictly lower-pseudoconvex. Now we
have

∇ f̃ L
α (x) =

[

2 · (x1 − 4 + α)

2 · (x2 − 6 + α)

]

,∇ f̃ U
α (x) =

[

2 · (x1 − 2 − α)

2 · (x2 − 4 − α)

]

,

∇g1(x) =
[−1

−1

]

,∇g2(x) =
[−1

0

]

and ∇g3(x) =
[

0
−1

]

,
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According to conditions (i) and (ii) in Theorem 6.4, we need to solve the following
system of equations

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

2x1 − 8 + 2α∗ − µ1 − µ2 = 0
2x2 − 12 + 2α∗ − µ1 − µ3 = 0
µ1 · (−x1 − x2 + 10) = 0
µ2 · (−x1 + 4) = 0
µ3 · (−x2 + 6) = 0.

Then we obtain

(x1, x2) = (4, 6) and α∗ = µ1 = µ2 = µ3 = 0.5.

This says that (x∗
1 , x∗

2 ) = (4, 6) is a strongly non-dominated solution. From
Remark 5.1, (x∗

1 , x∗
2 ) = (4, 6) is also a non-dominated solution.
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