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Abstract Both the static and the dynamic single-leg revenue management
problem are studied from the perspective of a risk-averse decision maker. Struc-
tural results well-known from the risk-neutral case are extended to the risk-averse
case on the basis of an exponential utility function. In particular, using the closure
properties of log-convex functions, it is shown that an optimal booking policy can
be characterized by protection levels, depending on the actual booking class and
the remaining time. Moreover, monotonicity of the protection levels with respect
to the booking class and the remaining time are proven.

Keywords Markov decision processes · Revenue management · Exponential
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1 Introduction

We consider a single leg flight of an airplane with a capacity of C seats that is
to depart after a certain time T . Customers request tickets of a certain booking
class i = 1, . . . , k with associated fare of r̂i . Without loss of generality we assume
throughout that 0 < r̂k < r̂k−1 < · · · < r̂1. Each customer requests a single
seat, neither cancellations nor no-shows are considered. It is to determine which
exogenously arriving requests to accept or reject assuming that customer demand
is independent between booking classes and of the controls being applied.

If demand for each booking class arrives in non-overlapping periods, this model
is called the static capacity control model, dynamic capacity control models allow
passengers to arrive in any order.
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These two models are the textbook capacity control models in revenue manage-
ment and do not reflect the state-of-the-art in the revenue management literature
(see e.g. Talluri and van Ryzin 2004). However, even in the latest literature on
capacity control the most widespread optimality criterion used is expected reve-
nue, i.e. a risk-neutral decision maker is modelled. Under this assumption, the above
mentioned models have been studied extensively, structural properties of the opti-
mal policy have been proven, heuristics were promoted and various extensions and
alternatives were suggested.

But evidently, not all revenue managers are risk-neutral. Most product managers
in charge of revenue management policies present some degree of risk-aversion
(see Bitran and Caldentey 2003, p. 226; Weatherford 2004, p. 279). Traditional
capacity control models fall short of meeting the needs of risk-averse planner,
since they do not suggest mechanisms to reduce the chance of unfavorable revenue
levels.

The concept of risk-aversion has already been applied to a variety of stop-
ping and inventory models (see among others Müller 2000; Bouakiz and Sobel
1992). But despite the very rich literature on revenue management to the au-
thors’ knowledge only very few papers deal with risk-aversion in the revenue
management context: in particular the papers of Agrawal and Seshadri (2000),
Feng and Xiao (1999), Chen et al. (2005), Lancaster (2003), Mitra and Wang
(2003, 2005), Weatherford (2004) and Barz (2006). Agrawal and Seshadri (2000),
Feng and Xiao (1999) and Chen et al. (2005) focus on pricing (and inventory)
problems, Mitra and Wang investigate a specific traffic engineering model for
bandwidth provisioning. Only Weatherford (2004) and Barz (2006) incorporate
risk-aversion into the classic seat inventory control problem. Weatherford (2004)
extends the expected marginal seat revenue (EMSR)-b heuristic introduced in
Belobaba and Weatherford (1996) to a concept called expected marginal seat
utility (EMSU) by substituting a ticket’s revenue by the utility of its revenue.
He finds that his heuristic can have significant impact on the expected utility
and revenue performance and increases the probability of hitting certain reve-
nue thresholds. The paper by Barz (2006) is closely related to ours. Assuming
constant absolute risk-aversion in the sense of Pratt (1964), Barz (2006) states the
optimality equation for the static seat inventory control with a risk-averse deci-
sion maker and simulates the effect of varying coefficients of risk-aversion, but
no structural results are proven. Furthermore, an extension of the EMSR-b heu-
ristic to account for risk-aversion is given. Lancaster (2003) does not directly
incorporate risk-aversion into revenue management models, but using a sensitivity
analysis he emphasizes that “revenue managers do have an opportunity to manip-
ulate policy and strategy to achieve more financially stable results” (Lancaster
2003, p. 163).

In the present paper, we extend both the basic static and the dynamic capacity
control model in revenue management to introduce risk-sensitivity in case of an
exponential utility function. We show that all well-known structural results of the
expected revenue maximizing policy hold for the resulting (risk-sensitive) optimal
policy as well.

The paper is organized as follows. In Sect. 2, the decision problem of the basic
dynamic revenue management model is introduced, reduced to a Markov deci-
sion model and extended to a risk-sensitive Markov decision model in the spirit
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of Howard and Matheson (1972). The ideas of Lautenbacher and Stidham (1999)
proving the existence of protection levels are generalized, properties of the pro-
tection levels are shown and an example illustrating the effect of risk-sensitivity
on the optimal policy is given. Accordingly, Sect. 3 introduces and generalizes
the decision problem of the static revenue management model, proves structural
results of an optimal policy and demonstrates the impact of risk-sensitivity in an
example.

Notation We use Z (N0, N) to denote the set of all (nonnegative, positive)
integers. A real-valued function v is said to be increasing (decreasing) if x ≤ x ′
implies v(x) ≤ v(x ′) (v(x) ≥ v(x ′)).

2 The dynamic model

In the basic dynamic model, the booking horizon is divided into N time periods in
such a way that the probability of two or more requests arriving within one period
can be neglected. These periods are indexed by n and the indices run backwards in
time so that smaller values of n indicate later points in time. Period N corresponds
to the beginning of the booking horizon, and period 0 denotes the scheduled depar-
ture time. For each period n, the probability of a class i customer request is given
by pin . Furthermore, p0n = 1 − ∑k

i=1 pin denotes the probability of no customer
request in period n.

Dynamic models answer the question whether or not to accept a particular
reservation request for booking class i in period n given a remaining capacity of c.

2.1 The risk-neutral approach

The objective of finding a policy maximizing the expected revenue can be
reduced to solving the optimality equation of a finite stage Markov decision model
MDP(N , X, A, (qn), (rn), V0) with planning horizon N , state space X = {(c, i) ∈
Z × N0 | c ≤ C, i ≤ k}, where we refer to c as the remaining capacity and to i as
the requested booking class with i = 0 denoting the artificial class 0 having fare
r̂0 = 0, action space A = {0, 1} ≡ {reject, accept}, specifying the sets A(c, i) = A
for i > 0 and A(c, i) = {0} of admissible actions in state (c, i) ∈ X, transition laws
qn from D := {(c, i, a) ∈ X × A | a ∈ A(c, i)} into X, for n = N , N − 1, . . . , 0
defined by qn((c, i), a, (c − a, j)) = p jn and 0 otherwise, one-stage reward
functions rn on D, rn((c, i), a) = a · r̂i , and terminal reward function V0 on
X, V0(c, i) = 0 for c ≥ 0 and V0(c, i) = r̄ · c for c < 0 with r̄ > maxi {r̂i }.

A (Markov) policy π = ( fN , fN−1, . . . , f1) is defined as a sequence fN ,
fN−1, . . . , f1 of decision rules fn specifying the action an = fn(cn, in) to be taken
at stage n in state (cn, in). Let F denote the set of all decision rules and F N the set
of all policies.

Denote by (X N , X N−1, . . . , X0) the state process of the MDP, and introduce
V ∗(c, i) to be the maximal expected revenue starting with capacity c and request
i , i.e.

V ∗(c, i) = max
π∈F N

Eπ

[
N∑

n=1

rn(Xn, fn(Xn))+V0(X0) | X N = (c, i)

]

, (c, i)∈X.
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It is well known in dynamic programming that V ∗ ≡ VN is the unique solution
to the optimality equation

Vn(c, i) = max
a∈A(c,i)

⎧
⎨

⎩
ar̂i +

k∑

j=0

p jn Vn−1(c − a, j)

⎫
⎬

⎭
, (2.1)

which can be obtained for n = 1, . . . , N iteratively, starting with V0. Moreover,
each policy π∗ formed by actions a = f ∗

n (c, i) each maximizing the right hand
side of (2.1) is optimal, i.e. leads to V ∗.

For this model, Lee and Hersh (1993), Lautenbacher and Stidham (1999), Liang
(1999) and Barz and Waldmann (2006) prove structural results of an optimal policy.

Within this context, a decision rule fn ∈ F of a control limit type is known
to be a time-dependent protection level rule, if there exist constants yi−1(n) ∈ N0
such that for all (c, i) it holds that

fn(c, i) =
{

1, c > yi−1(n)

0, c ≤ yi−1(n),

which implies that, given a request from customer class i = 2, . . . , k, a number of
yi−1(n) seats (so-called time-dependent protection level) is reserved for demand
in periods n − 1, . . . , 1.

It is widely known (see e.g. Lee and Hersh 1993; Lautenbacher and Stidham
1999 or Talluri and van Ryzin 2004) that for every period n, f ∗

n (c, i) is monotone in
the remaining capacity c, i.e. the more capacity is available, the more one is willing
to sell given a request of booking class i . f ∗

n can be shown to be a time-dependent
protection level rule with protection levels of

y∗
i−1(n) = max

{

c ∈ N0 : r̂i <

k∑

i=0

pin(Vn−1(c, i) − Vn−1(c − 1, i))

}

for i = 1, . . . , k. It is the largest value of c for which the expected marginal seat
revenue is higher than the class i fare. The choice of r̄ ensures that y∗

i−1(n) ≥ 0
for all i and n. Furthermore, for fixed capacity c, f ∗

n (c, i) has been shown to be
monotone in the remaining arrival periods n and in the booking class i requested.

For a more comprehensive introduction to traditional dynamic models, see
Talluri and van Ryzin (2004, Chap. 2.5).

2.2 A risk-sensitive approach

Next we assume a risk-averse decision maker, who seeks to maximize the expected
utility of the revenue Rπ := ∑N

n=1 rn(Xn, fn(Xn)) + V0(X0) based on a von
Neumann–Morgenstern utility function u : R → R.

According to Howard (1988, p. 689), exponential utility functions “satisfacto-
rily treat a wide range of individual and corporate risk preferences”. In addition,
Kirkwood (2004) shows that in most cases an appropriately chosen exponential
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utility function is a very good approximation for general utility functions. This is
why, as a first step, we will restrict ourselves to exponential utility functions, i.e.

uγ (x) = − exp(−γ x). (2.2)

Since a risk-averse decision-maker has a concave utility function, in the
following we always suppose positive values of the parameter γ . This parame-
ter determines the degree of constant absolute risk-aversion. Thus, in the sense of
Pratt (1964), a decision maker with utility function uγ1 is more risk-averse than
one with uγ2 , if γ1 is larger than γ2.

The objective of finding a policy π∗γ = ( f ∗γ

N , f ∗γ

N−1, . . . , f ∗γ
1 ), called

γ -optimal, maximizing the expected exponential utility of revenue leads to a mod-
ification of the MDP studied in Sect. 2.1.

Let V ∗γ (c, i), (c, i) ∈ X, denote the maximal expected exponential utility, i.e.

V ∗γ (c, i)

= max
π∈F N

Eπ

[

− exp

(

−γ ·
[

N∑

n=1

rn(Xn, fn(Xn)) + V0(X0)

])

|X N = (c, i)

]

.

(2.3)

It can be shown that for γ → 0 this criterion approximates a maximization of
Eπ (Rπ ) − γ

2 Varπ (Rπ ); for γ → ∞ it reduces to a worst-case optimization (see
Coraluppi 1997, pp. 24, 43, respectively).

Then, as already has been shown in Howard and Matheson (1972), V ∗γ ≡ V γ

N
is the unique solution of

V γ
n (c, i)= max

a∈A(c,i)

⎧
⎨

⎩
exp(−γ ar̂i ) ·

k∑

j=0

p jn V γ
n−1(c − a, j)

⎫
⎬

⎭
, (c, i) ∈ X, (2.4)

which can be obtained for n = 1, . . . , N by backward induction starting with
V γ

0 (c, i) = − exp(−γ V0(c, i)) for (c, i) ∈ X. Moreover, each policy π∗γ formed
by actions a∗γ = f ∗γ

n (c, i) each maximizing the right hand side of (2.4) is
γ -optimal, i.e. leads to V ∗γ .

To simplify the notation, we will often write Lnv(c) in place of
∑k

j=0 p jnv

(c, j) for an arbitrary real-valued function v on X in the following.
It easily follows by induction on n that V γ

n (·, i) is increasing in c for all i .
Additionally using r̂0 =0, we finally have V γ

n (c, 0)= Ln V γ
n−1(c)≥ Ln V γ

n−1(c−1)
for all n and c, which allows us to extend A(c, 0) to A without loss of generality.

2.3 Structural results of an optimal policy

For proving structural results it is more convenient to work with Gγ
n := −V γ

n ,
which is the unique solution of

Gγ
n (c, i) = min

a∈{0,1}
{
exp(−γ ar̂i ) · LnGγ

n−1(c − a)
}

(2.5)
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= LnGγ
n−1(c − 1) · min

{

exp(−γ r̂i ),
LnGγ

n−1(c)

LnGγ
n−1(c − 1)

}

(2.6)

= LnGγ
n−1(c) · min

{

1, exp(−γ r̂i ) · LnGγ
n−1(c − 1)

LnGγ
n−1(c)

}

(2.7)

(with initial value Gγ
0 = −V γ

0 ). Note that (2.5) [which immediately follows from
(2.4) by multiplication with (−1)] preserves the γ -optimality of a policy.

First observe that it is optimal to accept an arbitrary request, if there is a remain-
ing capacity c and merely n ≤ c periods remain. Furthermore, an arbitrary request
will be rejected in case of c ≤ 0. This is the result of the following proposition.

Proposition 2.1 For γ > 0, n ∈ {1, . . . , N }, and i ∈ {1, . . . , k} we have

(i) Gγ
n (c, i) = exp(−γ r̂i ) · LnGγ

n−1(c − 1) = exp(−γ r̂i ) · ∏n
m=2

∑k
j=0 p jm

exp(−γ r̂ j ), c ≥ n.
(ii) Gγ

n (c, i) = LnGγ
n−1(c) = exp(−γ r̄ c), c ≤ 0.

Proof (i) and (ii) follow by induction on n, using the inequalities exp(−γ r̂i ) ≤
1 ≤ exp(γ (r̄ − r̂i )). 	


We call a function g : Z → (0, ∞) log-convex, if ln g is convex or,
equivalently, if

g(x + 1)2 ≤ g(x + 2)g(x) (2.8)

holds for all x ∈ Z. Log-convex functions have the nice properties of being closed
under (1) addition and (2) multiplication. To verify property (1), use can be made
of the inequality a1/2b1/2 + c1/2d1/2 ≤ (a + c)1/2(b + d)1/2, which holds for all
positive numbers a, b, c, d (cf. Roberts and Varberg 1973, p. 19), in order to verify
f (x)1/2 f (x + 2)1/2 + g(x)1/2g(x + 2)1/2 ≤ [ f (x) + g(x)]1/2[ f (x + 2) + g(x +
2)]1/2. Property (2) is an immediate consequence of (2.8).

Theorem 2.2 For γ > 0, n ∈ {1, . . . , N }, and i ∈ {0, . . . , k} it holds that

(i) LnGγ
n−1(c) is log-convex and decreasing in c.

(ii) Gγ
n (c, i) is log-convex and decreasing in c.

Proof The assertion follows by induction on n. Fix γ > 0. For all 1 ≤ n ≤ N set

gn(c) := LnGγ
n−1(c), c ∈ Z.

Let n = 1. Then, since −γ V0(·, j) is convex, and using closure of log-convex
functions with respect to convex combinations, we have log-convexity of g1,

g1(s) =
∑

j

p1 j exp(−γ V0(c, j)).

Next we use g1 to rewrite (2.5) as

ln Gγ
1 (c, i) = min

a∈{0,1}{−aγ r̂i + ln g1(c − a)}. (2.9)
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Finally, by applying Lemma 1 in Stidham (1978) to (2.9), we obtain convexity
of ln Gγ

1 (·, i), i ∈ I . Hence, Gγ
1 (·, i) is log-convex.

Therefore suppose Gγ
n (·, i) to be log-convex for some 1 ≤ n < N . Then

gn+1(s) =
∑

j

pn+1, j G
γ
n (c, j)

is log-convex as a convex combination of log-convex functions, and, by applying
Stidham’s lemma to

ln Gγ
n+1(c, i) = min

a∈{0,1}{−aγ r̂i + ln gn+1(c − a)},

we finally get the desired log-convexity of Gγ
n+1(·, i), i ∈ I .

The monotonicity of LnGγ
n−1(·, i) and Gγ

n (·, i) follows by standard arguments
in dynamic programming. 	


By Theorem 2.2(i), LnGγ
n−1(c) is log-convex in c. Thus LnGγ

n−1(c) is a
positive function and the ratio

LnGγ
n−1(c)

LnGγ
n−1(c − 1)

is increasing in c. Together with Proposition 2.1 we may then define constants
y∗γ

i−1(n),

y∗γ

i−1(n)=max

{

c ∈ {0, . . . , n − 1} : exp(−γ r̂i )>
LnGγ

n−1(c)

LnGγ
n−1(c − 1)

}

(2.10)

such that π∗γ = ( f ∗γ

N , f ∗γ

N−1, . . . , f ∗γ
1 ), defined by

f γ
n (c, i) =

{
1, c > y∗γ

i−1(n)

0, c ≤ y∗γ

i−1(n),

is γ -optimal. Note that the (so-called) protection levels y∗γ

i−1(n) allow for a similar
interpretation as in the risk-neutral setting. It is the largest value of c for which the
utility of a class i request is lower than the expected utility gain of an additional
seat. We are now in a position to show the following theorem.

Theorem 2.3 The protection levels y∗γ

i−1(n) (of an γ -optimal policy) satisfy

(i) y∗γ

i−1(n) is increasing in i = 1, . . . , k for all n and γ ,
(ii) y∗γ

i−1(n − 1) ≤ y∗γ

i−1(n) ≤ y∗γ

i−1(n − 1) + 1 for n = 2, . . . , N and all i and γ .

Proof (i) follows directly from the definition of y∗γ

i−1(n), Theorem 2.2(i) and
r̂i ≥ r̂i+1.
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To prove (ii) introduce

Hγ
n (c) := LnGγ

n−1(c)

LnGγ
n−1(c − 1)

in order to obtain

Hγ
n (c) = Hγ

n−1(c − 1) ·
∑k

j=0 p jn−1 ·min{e−γ r̂ j , Hγ
n−1(c)}

∑k
j=0 p jn−1 ·min{e−γ r̂ j , Hγ

n−1(c − 1)} ≥ Hγ
n−1(c − 1),

using (2.6) and Theorem 2.2(i), and

Hγ
n (c) = Hγ

n−1(c) ·
∑k

j=0 p jn−1 ·min{1, e−γ r̂ j ·(1/Hγ
n−1(c))}

∑k
j=0 p jn−1 · min{1, e−γ r̂ j · (1/Hγ

n−1(c − 1))} ≤ Hγ
n−1(c),

using (2.7) and again Theorem 2.2(i). Hence

Hγ
n−1(c − 1) ≤ Hγ

n (c) ≤ Hγ
n−1(c).

Now, by definition of the protection levels, for c = y∗γ

i−1(n),

exp(−γ r̂i ) > Hγ
n (y∗γ

i−1(n)) ≥ Hγ
n−1(y∗γ

i−1(n) − 1),

which implies y∗γ

i−1(n − 1) ≥ y∗γ

i−1(n) − 1. Analogously, for c = y∗γ

i−1(n − 1),

exp(−γ r̂i ) > Hγ
n−1(y∗γ

i−1(n − 1)) ≥ Hγ
n (y∗γ

i−1(n − 1)),

which implies y∗γ

i−1(n) ≥ y∗γ

i−1(n − 1). Thus (ii) holds completing the proof. 	

Finally, we can conclude that in the dynamic model all structural properties

of the optimal policy that are well-known in the risk-neutral case also hold for
exponential, risk-averse utility functions.

2.4 A numerical example

To illustrate our structural results, we take up an example given in Lee and Hersh
(1993): they consider four booking classes with fares r̂1 = 200, r̂2 = 150, r̂3 =
120, r̂4 = 80. The capacity of the airplane is C = 10, the request probabilities are
listed in Table 1.

The left-hand side of Fig. 1 shows the time-dependent values y∗
i−1(n) of the

optimal protection levels in case of risk-neutrality. The right-hand side shows opti-
mal protection levels in the risk-sensitive model with γ = 0.002. Recall that n = 0
corresponds to the flight departure. In correspondence with Theorem 2.3 the pro-
tection levels are increasing in n and i with jumps of a height of 1.

The fact that protection levels given risk-sensitivity are smaller than under risk-
neutrality is not surprising. A more risk-averse decision maker values the chance
of making revenue from reserving a seat less than a risk-neutral decision-maker.
Thus, protection levels are smaller.
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Table 1 Request probabilities pin

i n

1 ≤ n ≤ 4 5 ≤ n ≤ 11 12 ≤ n ≤ 18 19 ≤ n ≤ 25 26 ≤ n ≤ 30

1 0.15 0.14 0.10 0.06 0.08
2 0.15 0.14 0.10 0.06 0.08
3 0 0.16 0.10 0.14 0.14
4 0 0.16 0.10 0.14 0.14

Fig. 1 Protection levels of an optimal policy in case of risk-neutrality and risk aversion. y∗γ
0 ,

y∗γ
1 and y∗γ

2 are indicated in black, grey, and white, respectively

3 The static model

In the basic static model, the demand of each booking class i ∈ {1, . . . , k} is
supposed to arrive during a single contiguous time segment. In this case, the book-
ing period can be divided into periods with booking requests belonging to the same
fare class. At the time the total demand d of a booking class i is known, one has
to determine the amount a ∈ {0, . . . , d} of demand to be accepted in order to
maximize the expected (utility of) revenue of that flight.

The total demands D1, . . . , Dk of the booking classes i = 1, . . . , k are assumed
to be independent random variables on N0 with counting densities P(Di = d) =
pi (d), d ∈ N0, say. Additionally, it is often assumed that customer requests for
tickets arrive in increasing fare order, i.e. the class willing to pay the fare r̂k before
r̂k−1, etc. We stick to this assumption in the following. Since there is a one-to-one
correspondence between periods and classes, we index both by i .

3.1 The risk-neutral approach

The static yield management model with two fare classes was introduced by
Littlewood (1972) and extended heuristically to more than two fare classes by
Belobaba (1987a) and Belobaba and Weatherford (1996). An exact solution was
found by Curry (1990), Wollmer (1992) and Brumelle and McGill (1993). Li
and Oum (2002) discuss the equivalence of the three solutions. Robinson (1995)



574 C. Barz and K.-H. Waldmann

relaxed the assumption of arrivals in increasing fare order. Lautenbacher and Stid-
ham (1999) and Barz (2006) stressed the underlying Markov decision process.

The objective of finding a policy maximizing the expected revenue in the static
model can be reduced to solving the optimality equation of a finite stage Mar-
kov decision model MDP(k, X, A, (qi ), (ri ), V0) with planning horizon k, state
space X = {(c, d) ∈ Z × N0 | c ≤ C}, where we refer to c as the remaining
capacity and to d as the demand observed for the actual booking class, action
space A = N0, where action a denotes the number of requests to be accepted,
with sets A(c, d) = {0, . . . , d} of admissible actions in states (c, d) ∈ X, tran-
sition laws qi from D := {(c, d, a) ∈ X × A | a ∈ A(c, d)} into X, defined by
qi ((c, d), a, (c − a, d ′)) = pi−1(d ′) and 0 otherwise (with p0(·) arbitrary), one-
stage reward functions ri on D, ri ((c, d), a) = a · r̂i (with r̂0 = 0), and terminal
reward function V0 on X, V0((c, d)) = 0 for c ≥ 0 and V0((c, d)) = r̄ · c for c < 0
with r̄ > maxi {r̂i }.

Thus, for booking classes i = k, k − 1, . . . , 1, given the residual capacity ci
and demand di , we have to determine the number ai = fi (ci , di ) ∈ {0, . . . , di } of
seats to be accepted.

A (Markov) policy π = ( fk, fk−1, . . . , f1) is then defined as a sequence
fk, fk−1, . . . , f1 of decision rules fi specifying the action ai = fi (ci , di ) to be
taken at stage i in state (ci , di ). Let F denote the set of all decision rules and Fk

the set of all policies.
Within this context, a decision rule fi ∈ F is called a protection level rule, if

there exists a constant yi−1 such that

fi (c, d) =
{

min{d, c − yi−1}, c > yi−1

0, c ≤ yi−1,

which implies that, given request d from booking class i , a number of yi−1 seats,
the so called protection level, is reserved for future (higher-value) demand.

Denote by (Xk, Xk−1, . . . , X0) the state process of the MDP and introduce

V ∗(c, d) = max
π∈Fk

Eπ

[
k∑

i=1

ri (Xi , fi (Xi )) + V0(X0) | Xk = (c, d)

]

, (c, d) ∈ X,

to be the maximal expected revenue. Then, in analogy to Sect. 2, V ∗ ≡ Vk is the
unique solution to the optimality equation

Vi (c, d) = max
a∈{0,...,d}

{

ar̂i +
∞∑

d ′=0

pi−1(d
′)Vi−1(c − a, d ′)

}

, (c, d) ∈ X, (3.1)

which can be obtained for i = 1, . . . , k by backward induction starting with V0.
Moreover, each policy π∗ formed by actions a∗ = f ∗

i (c, d) each maximizing the
right hand side of (3.1) is optimal.

It is widely known (see e.g. Wollmer 1992; Lautenbacher and Stidham 1999;
Talluri and van Ryzin 2004) that each f ∗

i (·, d) (of an optimal π∗) is monotone
in the remaining capacity c, i.e. the more capacity is available, the more one is
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willing to sell. Furthermore, it can be shown that f ∗
i is a protection level rule with

protection levels y∗
i−1 of

y∗
i−1 = max

{

x ∈ N0 : r̂i <

∞∑

d ′=0

pi−1(d
′)(Vi−1(c, d ′) − Vi−1(c − 1, d ′))

}

,

where i = 2, . . . , k and y∗
0 = 0. The interpretation is the same as in the dynamic

model. Finally, for fixed capacity c and observed demand d , the optimal policy π∗
has been shown to be monotone in the remaining arrival periods i .

For a more comprehensive introduction to traditional static models, see Talluri
and van Ryzin (2004, Chap. 2.2) or Phillips (2005, Chap. 7).

3.2 A risk-sensitive approach

Next we assume a risk-averse decision maker, who seeks to maximize the ex-
pected exponential utility of the revenue

∑k
i=1 ri (Xi , fi (Xi ))+ V0(X0), which re-

sults in determining a policy π∗γ = ( f ∗γ

k , f ∗γ

k−1, . . . , f ∗γ
1 ), called γ -optimal, which

realizes

V ∗γ (c, d)

= max
π∈Fk

Eπ

[

− exp

(

−γ ·
[

k∑

i=1

ri (Xi , fi (Xi )) + V0(X0)

])

|Xk = (c, d)

]

.

The corresponding optimality equation reads as follows

V γ

i (c, d) = max
a∈{0,...,d}

{

exp(−γ ar̂i ) ·
∞∑

d ′=0

pi−1(d
′)V γ

i−1(c − a, d ′)
}

, (3.2)

where V γ
0 (c, d) = − exp(−γ V0(c, d)).

Similar to the dynamic model, V ∗γ ≡ V γ

k and each policy π∗γ formed by
actions f ∗γ

i (c, d) each maximizing the right hand side of (3.2) is γ -optimal.

3.3 Structural results of an optimal policy

To simplify the notation, we often write Liv(c) in place of
∑∞

d ′=0 pi (d ′)v(c, d ′)
for an arbitrary real-valued function v on X in the following.

As in Sect. 2, it is more convenient to work with Gγ

i := −V γ

i , which is the
unique solution of

Gγ

i (c, d) = min
a∈{0,...,d}

{
exp(−γ ar̂i ) · Li−1Gγ

i−1(c − a)
}

(3.3)

(with initial value Gγ
0 = −V γ

0 ), and preserves the γ -optimality of a policy.
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Lemma 3.1 For γ > 0, d ∈ N0, and i ∈ {1, . . . , k} it holds that

(i) Li−1Gγ

i−1(c) is log-convex and decreasing in c.
(ii) Gγ

i (c, d) is log-convex and decreasing in c.

Proof The assertions follow by essentially the same arguments as given in the
proof of Theorem 2.2. 	


We are now in a position to prove the main result of this section.

Theorem 3.2 For γ > 0 there exists a γ -optimal policy π∗γ = ( f ∗γ

k , f ∗γ

k−1, . . . ,

f ∗γ
1 ) such that

f ∗γ

i (c, d) =
{

min{d, c − y∗γ

i−1}, c > y∗γ

i−1
0, c ≤ y∗γ

i−1,

where the constants

y∗γ

i−1 = sup

{

c ∈ N0 : exp(−γ r̂i ) >
Li−1Gγ

i−1(c)

Li−1Gγ

i−1(c − 1)

}

additionally fulfill

0 = y∗γ
0 ≤ y∗γ

1 ≤ · · · ≤ y∗γ

k−1.

Proof Fix γ > 0. Introduce G̃γ

i (c, d) := exp(γ cr̂i ) ·Gγ

i−1(c, d) in order to rewrite
(3.3) as

G̃γ

i (c, d) = min
c−d≤ã≤c

{
exp(γ ã(r̂i − r̂i−1)) · Li−1G̃γ

i−1(ã)
}

.

Observe that ã = c − a has no longer the interpretation of the number of
customers to be accepted but the remaining capacity after accepting a customers.

Since Gi (·, d) is log-convex by Lemma 3.1(ii), we also have that ã → Li G̃
γ

i (ã)

is log-convex. Thus, J γ

i (ã) is log-convex, where

J γ

i (ã) := exp[γ ã(r̂i − r̂i−1)] · Li−1G̃γ

i−1(ã), ã ∈ Z.

Hence, J γ

i (ã) is monotone or there exists some ã∗γ

i−1 ∈ Z for which J γ

i (ã) becomes
minimal. ã∗γ

i−1 may be characterized as the maximum of all ã, for which J γ

i (ã−1) >

J γ

i (ã) or, equivalently,

exp(−γ (r̂i − r̂i−1)) >
Li−1G̃γ

i−1(ã)

Li−1G̃γ

i−1(ã − 1)
(3.4)

holds. If J γ

i (ã) is increasing (resp. decreasing), we formally set ã∗γ

i−1 = −∞ (resp.

ã∗γ

i−1 = +∞). In particular, the policy π̃γ = ( f̃ γ

k , f̃ γ

k−1, . . . , f̃ γ
1 ), defined by

f̃ γ

i (c, d) =

⎧
⎪⎨

⎪⎩

c, c ≤ ã∗γ

i−1
ã∗γ

i−1, c − d ≤ ã∗γ

i−1 < c
c − d, ã∗γ

i−1 < c − d,

(3.5)

is γ -optimal.
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Next we show that 0 = ã∗γ
0 ≤ ã∗γ

1 ≤ · · · ≤ ã∗γ

k−1. First, for ã ≤ 0, we

have J γ
1 (ã) = eγ ãr̂1e−γ ãr̄ ≥ 1 = J γ

1 (0). Hence ã∗γ
1 ≥ 0. Furthermore, since

J γ
1 (ã) = eγ ãr̂1 ≥ 1 = J γ

1 (0) for ã ≥ 0, we have ã∗γ
1 ≤ 0 and, finally, ã∗γ

1 = 0.
Now we show that J γ

i+1(ã
∗γ

i−1 − 1) > J γ

i+1(ã
∗γ

i−1) holds, which implies ã∗γ

i ≥
ã∗γ

i−1. Indeed, using exp[−γ (r̂i+1 − r̂i )] > 1, we get

J γ

i+1(ã
∗γ

i−1 − 1)

J γ

i+1(ã
∗γ

i−1)
= exp[−γ (r̂i+1 − r̂i )]

Li G̃
γ

i (ã∗γ

i−1 − 1)

Li G̃
γ

i (ã∗γ

i−1)

>

∑∞
d ′=0 pi (d ′) min{J γ

i (ã) | ã∗γ

i−1 − 1 − d ′ ≤ ã ≤ ã∗γ

i−1 − 1}
∑∞

d ′=0 pi (d ′) min{J γ

i (ã) | ã∗γ

i−1 − d ′ ≤ ã ≤ ã∗γ

i−1}

= J γ

i (ã∗γ

i−1 − 1)

J γ

i (ã∗γ

i−1)
> 1.

Finally, rewriting (3.5) in the original terms with a = c − ã, and using that
ã∗γ

i ≥ 0 and that (3.4) is equivalent to

exp(−γ r̂i ) >
Li−1Gγ

i−1(c)

Li−1Gγ

i−1(c − 1)
,

the proof is complete. 	

Thus, we can conclude that in the static model all structural properties of the

optimal policy that are well-known in the risk-neutral case also hold for exponen-
tial, risk-averse utility functions.

3.4 A numerical example

For an illustration consider the following data taken from Belobaba (1987b): there
are four fare classes with fare prices of r̂1 = 105 ≥ r̂2 = 83 ≥ r̂3 = 57 ≥ r̂4 = 39.
The total capacity is C = 107. The demand is normally distributed (rounded to
integer values). Table 2 shows the associated expectations and standard deviations.

The protection levels of the optimal policy in the risk-neutral setting [obtained
by solving (3.1)] read: y∗

3 = 77, y∗
2 = 49, and y∗

1 = 13. This means that e.g. 77
seats are protected for classes 1, 2 and 3 and at most 107 − 77 = 30 seats would
be sold to class 4 customers.

Table 2 Parameters of the normally distributed demands

Fare class i E[Di ] σ [Di ]
1 20.3 8.6
2 33.4 15.1
3 19.3 9.2
4 29.7 13.1
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Fig. 2 Protection levels of different γ -optimal policies

If the decision maker is risk-averse, he is more likely to prefer a lower, certain
revenue (now) compared to future uncertain revenue. Accordingly, in the risk-
averse formulation, by solving (3.2), optimal protection levels can be calculated to
be y∗0.001

3 = 61, y∗0.001
2 = 38, and y∗0.001

1 = 11, if γ = 0.001, and y∗0.002
3 = 49,

y∗0.002
2 = 30, and y∗0.002

1 = 9, if γ = 0.002.
Figure 2 shows the values of the optimal protection levels given different

values of γ .
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