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Abstract Inventory situations, introduced in Meca et al. (Eur J Oper Res 156:
127–139, 2004), study how a collective of firms can minimize its joint inventory
cost by means of co-operation. Depending on the information revealed by the indi-
vidual firms, they analyze two related cooperative TU games: inventory cost games
and holding cost games, and focus on proportional division mechanisms to share
the joint cost. In this paper we introduce a new class of inventory games: general-
ized holding cost games, which extends the class of holding cost games. It turns
out that generalized holding cost games are totally balanced.We then focus on the
study of a core-allocation family which is called N-rational solution family. It is
proved that a particular relation of inclusion exists between the former and the
core. In addition, an N -rational solution called minimum square proportional rule
is studied.

Keywords Generalized holding cost games · Core-allocations · Minimum square
proportional rule · Inventory situations · Cooperative games
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1 Introduction

During the past decades the interrelation between operations research and game
theory has been disclosed many times. We could say that the starting point is
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the famous visit of George Dantzig to von Neumann in 1947 (see Dantzig 1991)
where the connection between duality theory and the minimax theorem was set.
Moreover, we could point out the relation between linear complementary problems
and bimatrix games (Lemke and Howson 1964), Markov processes and stochas-
tic games (Shapley 1953b), and optimal control theory and differential games
(Fleming 1961). However, the relationship with cooperative game theory is much
more recent, and for TU cooperative games, it could be condensed to studying
operations research games; i.e., studying aspects of joint cost allocation in opera-
tions research models. These models are designed to optimize the operation of a
complex system in which, commonly, several agents are involved. The effects of
cooperation and/or competition of the agents who interact in an operations research
problem clearly play a prominent role here. In the last years some surveys on this
topic have been written, i.e., Curiel (1997) and Borm et al. (2001).

Very recently inventory models have also been approached from this point
of view. In particular, cooperation in a news-vendor problem has been treated in
Hartman et al. (2000), Slikker et al. (2005), and Müller et al. (2002). Tijs et al.
(2005) study a situation where one agent has an amount of storage space available
and the other agents have some goods, part of which can be stored generating
benefits. A general framework for the study of continuous time decentralized dis-
tribution systems is analyzed in Anupindi et al. (1991). The problem of sharing the
benefits produced by full cooperation between agents is tackled by introducing a
related cooperative game. Minner (2005) analyzes horizontal cooperations between
organizations that have the opportunity to jointly replenish material requirements.

In Meca et al. (2004) inventory cost games and holding cost games are intro-
duced and studied. In an inventory cost game, a group of firms dealing with the
ordering and holding of a certain commodity (every individual agent’s problem
being an EOQ problem), decide to cooperate and jointly make their orders. To coor-
dinate the ordering policy of the firms, some revelation of information is needed:
the amount of revealed information between the firms is kept as low as possible
since they may be competitors on the consumer market. However, in a holding cost
game coordination with regard to holding cost is also considered. In this case a full
disclosure of information is needed. These kinds of cooperation are not unusual
in the economic world: for instance, pharmacies usually form groups that order
and share storage space. For both classes of games, Meca et al. (2004) focus on
proportional division mechanisms to share the joint cost. They introduce and char-
acterize the SOC-rule (Share the Ordering Costs) as a core-allocation for inventory
cost games, and Meca et al. (2003) revisit inventory cost games and the SOC-rule.
There it is shown that the wider class of n-person EPQ inventory situations with
shortages leads to exactly the same class of cost games. Moreover, an alternative
characterization of the SOC-rule is provided there. In addition, Meca et al. (2004)
show that holding cost games are permutationally concave. Moreover, the demand
proportional rule leads to a core-allocation of the corresponding game that can even
be sustained as a population monotonic allocation scheme (Sprumont 1990).

In this paper we complete the study of holding cost games. We present a new
class of inventory games inspired by the aforesaid ones. Following the ideas in Meca
et al. (2003) we first consider the n-person EPQ inventory model with shortages.
However, we take one step further and focus on a more general class of inventory
games than the one corresponding to the aforementioned inventory model. It is
called generalized holding cost games.
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We start by introducing definitions and notations in Sect. 2. In Sect. 3 we first
give a complete description of the process which leads to define the class of gen-
eralized holding cost games. Next it is shown that generalized holding cost games
and all their subgames are permutationally concave; hence generalized holding cost
games are totally balanced. We then focus on the study of a core-allocation family
which is called N-rational solution family (Sect. 4). It is proved that a particular
relation of inclusion exists between the above family and the core. Finally a new
proportional rule called minimum square proportional rule is studied, which is an
N -rational solution (Sect. 5). Some concluding remarks and directions for future
research complete the paper.

2 Preliminaries

Inventory and holding cost games constitute two classes of cooperative games
with transferable utility (TU games). A TU cost game is a pair (N , c) where N =
{1, 2, . . . , n} is the finite player set and c : 2N → R(2N is the set of all subsets
of N ) the characteristic function satisfying c(∅) = 0. Define the zero cost game
(N , c0) by c0(S) = 0 for all S ⊆ N . The subgame related to coalition S, cS, is the
restriction of mapping c to the subcoalitions of S. We denote by lower case letter s
the cardinality of set S, i.e., card(S) = s for all S ⊆ N . A cost-sharing vector will
be x ∈ R

n, and for every coalition S ⊆ N we shall write x(S) := ∑
i∈S xi , the

cost-sharing to coalition S (where x(∅) = 0). The core of the game (N , c) consists
of those cost-sharing vectors which allocate the cost of the grand coalition in such
a way that every other coalition pays at most its cost by the characteristic function:
C(c) = {x ∈ R

n/x(N ) = c(N ) and x(S) ≤ c(S) for all S ⊂ N }. Cost-sharing
vectors belonging to the core will be called from now on core-allocations. A cost
game (N , c) has a non-empty core if and only if it is balanced (see Bondareva
1963 or Shapley 1967). It is a totally balanced game if the core of every subgame
is non-empty.

Let K be a bounded convex polyhedron in R
n . We say that x ∈ K is an extreme

point if y, z ∈ K and x = 1
2 y + 1

2 z imply y = z. We denote by Ext K the set
of extreme points for K from now on. It is well-known that x ∈ K if and only
if x has at least n binding constraints whose coefficients are linearly independent.
From the standard classical convex analysis we know the core is a bounded convex
polyhedron. As a consequence it has a finite number of extreme points and the core
is the convex hull of its set of extreme points. The search of characterizations of
the extreme core-allocations is therefore important.

A population monotonic allocation scheme (Sprumont 1990), or pmas, for the
game (N , c) is a collection of vectors yS ∈ R

S for all S ⊆ N , S �= ∅ such that
yS(S) = c(S) for all S ⊆ N , S �= ∅, and yS

i ≥ yT
i for all S ⊆ T ⊆ N and

i ∈ S. Note that if (yS)∅�=S⊆N is a pmas for (N , c), then yS ∈ C(cS) for all
S ⊆ N , S �= ∅. Every cost game with pmas is totally balanced. A core-alloca-
tion for (N , c), i.e., x ∈ C(c) is reached through a pmas if there exits a pmas
(yS)∅�=S⊆N for the game (N , c) such that yN

i = xi for all i ∈ N . Hence the set
of core-elements that can be reached through a pmas is a refinement of the core.

A game is said to be subadditive when for all disjoint coalitions S and T, c(S ∪
T ) ≤ c(S) + c(T ) holds. In a subadditive game, it will always be beneficial for
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two disjoint coalitions to cooperate and form a larger coalition. Balanced cost
games might not be subadditive but they always satisfy subadditive inequalities
involving the grand coalition. However, totally balanced cost games are subaddi-
tive. A well-known class of totally balanced and subadditive games is the class
of concave games (Shapley 1971). A cost game (N , c) is concave if and only if
c(S ∪{i})−c(S) ≥ c(T ∪{i})−c(T ) for all player i ∈ N and all pair of coalitions
S, T ⊆ N such that S ⊆ T ⊆ N\{i}.

Another class of balanced and subadditive games is the class of permutationally
concave games (Granot and Huberman 1982). Before defining it we first introduce
orders. An order σ of N is a bijection σ : N ∪ {0} → N ∪ {0} such that σ(0) = 0.
This order is denoted by σ−1(1) · · · σ−1(n), where σ(i) = j means that with
respect to σ , player i is in the j th position. As usual, σ(S) = {σ(i)/ i ∈ S} for all
S ⊆ N . We denote by �(N ) the set of all orders in N . Let (N , c) be a cost game. For
any σ ∈ �(N ), the marginal vector mσ (c) is defined by mσ

i (c) := c(P
σ

i )−c(Pσ
i )

for all i ∈ N where Pσ
i = { j ∈ N/σ( j) < σ(i)} is the set of predecessors of i with

respect to σ excluding i , and P
σ

i = { j ∈ N/σ( j) ≤ σ(i)} = Pσ
i ∪ {i} is the set of

predecessors of i with respect to σ including i . Define for all σ ∈ �(N ), Pσ
0 = ∅.

A cost game (N , c) is permutationally concave with respect to σ ∈ �(N ) if
and only if c(P

σ

i ∪ R) − c(P
σ

i ) ≥ c(P
σ

j ∪ R) − c(P
σ

j ) for all i, j ∈ N ∪ {0}
such that σ(i) ≤ σ( j) and all R ⊆ N\P

σ

j . A game is permutationally concave if
and only if there exists an order σ ∈ �(N ) such that the game is permutationally
concave with respect to σ . Granot and Huberman (1982) showed that if the game
(N , c) is permutationally concave with respect to σ ∈ �(N ) then mσ (c) ∈ C(c).
It is well-known that for all (N , c), if mσ (c) ∈ C(c) then mσ (c) ∈ Ext C(c).

The Weber set for the cost game (N , c) is the convex hull of all marginal vectors;
i.e., W (c) := conv{mσ (c)/σ ∈ �(N )}. Weber (1978) proved that C(c) ⊆ W (c)
for any cost game (N , c). If a cost game is concave, then it follows from Shapley
(1971) that all its marginal vectors belong to the core. Hence the core of a concave
cost game coincides with the Weber set.

The Shapley value (Shapley 1953a) is a linear operator on the class of all TU
games and for a cost game (N , c) is defined as �(c) = (1/n!) · ∑σ∈�(N ) mσ (c).

The τ -value (Tijs 1981) is an operator on the class of quasibalanced games. A
cost game (N , c) is quasibalanced if and only if mi (c) ≥ Mi (c) for all i ∈ N , and∑

j∈N m j (c) ≥ c(N ) ≥ ∑
j∈N M j (c), where for all i ∈ N ,

Mi (c) = c(N ) − c(N\i), mi (c) = min
S⊆N ,i∈S

{

c(S) −
∑

j∈S\i

M j (c)

}

.

Every balanced game is a quasibalanced one. For a quasibalanced cost game
(N , c), the τ -value is defined as τ(c) = m(c)+α[M(c)−m(c)], where M(c), m(c)
∈ R

n are upper and lower vectors, respectively, and α ∈ R is such that
∑

i∈N
τi (c) = c(N ).

The proportional rule with respect to λ ∈ R
n such that λ(N ) �= 0, or λ

-proportional rule, is a linear operator on the class of all TU games, and for a
cost game (N , c) is defined as p(c) = λ · c(N )/λ(N ).

We will now introduce four properties for solution rules (operators) on the
class of all cost games. Let � be a solution rule on the class of all cost games.
Then �i (c) ∈ R denotes the cost allocated to player i ∈ N according to this
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rule in the game c and �(c) = (�i (c))i∈N ∈ R
n . Let (N , c) and (N , c) be

cost games. The rule � satisfies efficiency if
∑

i∈N �i (c) = c(N ). It satisfies
symmetry if �i (c) = � j (c) when the players i and j are symmetric, that is,
c(S ∪ {i}) = c(S ∪ { j}) for all S ⊂ N\{i, j}. � satisfies zero-symmetry if it is
symmetric only for the zero cost game. Finally the rule � satisfies monotonicity if
for all i ∈ N such that c({i}) ≤ c({i}) it holds that c(N ) · �i (c) ≤ c(N ) · �i (c).

Inventory and holding cost games were introduced in Meca et al. (2004) as
models for inventory situations. The player set N consists of a group of firms
dealing with the ordering and holding of a certain commodity (every individual
agent’s problem being an EOQ problem). In an inventory cost game, a group of
players minimize their total cost by placing their orders together as one big order
(paying a fix ordering cost a). To coordinate the ordering policy of the firms, some
minimum public information is needed: the optimal number of orders for each
player, i.e., mi for all i ∈ N . Then an inventory cost situation is given by the
3-tuple 〈N , a, {mi }i∈N 〉 with a > 0 and mi ≥ 0, for all i ∈ N . The corresponding
inventory cost game (N , cv) is defined as follows. For all coalitions S ⊆ N , S �= ∅,

cv(S) := 2a

√∑

i∈S

m2
i . (1)

Meca et al. (2004) show that inventory cost games are concave and mono-
tone. Moreover, the c2-proportional rule with c2 = (cv(i)2)i∈N , or SOC-rule, on
inventory cost games is a core-allocation which can be reached through a pmas
for (N , cv). In addition, the SOC-rule is the unique rule on the class of inventory
cost games satisfying efficiency, symmetry and monotonicity. Meca et al. (2003)
revisit inventory cost games and the SOC-rule. They prove that the wider class of
n-person EPQ inventory situations with shortages leads to exactly the same class
of cost games. Moreover, an alternative characterization of the SOC-rule, based on
some kind of additivity property, is provided there.

In a holding cost game a group of players decide to cooperate making their
orders jointly and storing in the warehouse of the player with the lowest hold-
ing cost. A full disclosure of information is needed now. Each player i ∈ N
reveals its demand di and holding cost hi . Then a holding cost situation is given by
〈N , a, {di , hi }i∈N 〉 with a > 0, di ≥ 0, hi > 0, for all i ∈ N . The corresponding
holding cost game (N , ch) is defined as follows. For all coalitions S ⊆ N , S �= ∅,

ch(S) =
√

2a
∑

i∈S

di · hS, (2)

where hS = min j∈S{h j }. In Meca et al. (2004) it is shown that holding cost games
are permutationally concave. In addition, the d-proportional rule with d = (di )i∈N ,
or demand proportional rule, on holding cost games is also a core-allocation which
can be reached through a pmas for (N , ch).

3 Generalized holding cost games

Following the ideas in Meca et al. (2003) we consider a set of agents N making
orders of a certain good that they need and the fixed cost of an order is a. Every
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agent i needs di units of the good per time unit and has a holding cost hi for keeping
one unit of the good in stock during one time unit. Besides, every agent i considers
the possibility of not fulfilling all the demand in time, but allowing a shortage of
the good. The cost of a shortage of one unit of the good for one time unit is si > 0.
When an order is placed, after a deterministic and constant lead time (which can be
assumed to be zero, w.l.o.g.), agent i receives the order gradually; more precisely,
ri units of the good are received per time unit. It is assumed that ri > di (otherwise
the model makes little sense). We call ri the replacement rate of agent i .

The inventory model we are dealing with for every agent is the Economic
Production Quantity (EPQ) with shortages. It is a well-known model in inventory
management which generalizes the EOQ model (an EOQ model can be seen as
an EPQ model for which the replacement rate and the shortage cost are infinite).
The analysis of this model, that we will summarize below, can be found in Tersine
(1994). The reader may notice that every player i must choose Q̂i (order size)
and M̂i (maximum shortage), minimizing his average inventory cost per time unit
given by

c(Qi , Mi ) = a
di

Qi
+ hi

(
Qi

(
1 − di

ri

)
− Mi

)2

2Qi

(
1 − di

ri

) + si
M2

i

2Qi

(
1 − di

ri

) .

Then it turns out that

Q̂i =
√
√
√
√

2adi

hi

(
1 − di

ri

)

(
hi + si

si

)

, M̂i =
√

2adi hi

si (hi + si )

(

1 − di

ri

)

.

It is easy to check that

c(Q̂i , M̂i ) =
√

2adi hi

(
si

hi + si

)(

1 − di

ri

)

.

Now assume that the agents in S ⊆ N decide to make their orders jointly to save
part of the order costs. We will consider situations in which there is full disclosure
of information. Each agent i ∈ S reveals its demand di , holding cost hi , shortage
cost si , replacement rate ri , its individual optimal order size Q̂i and maximum
shortage M̂i . In addition, if we assume there are no limits to storage capacities,
transport costs are equal to zero and deterministic transport times, then we can
consider coordination with regard to holding cost. If a member of a coalition S
has a very low holding cost then this coalition can reduce its cost if it stores its
inventory in the warehouse of this member.

Following the same reasoning in Meca et al. (2004), it can be easily checked
that, as in order to minimize the sum of the average inventory costs per time unit,
the agents must coordinate their orders so Q∗

i /di = Q∗
j/d j for all i, j ∈ N , Q∗

i and
Q∗

j denoting the optimal order sizes for i and j if agents in S cooperate. Moreover,
all goods will be stored in the warehouse of the agent with the lowest holding cost.
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Define hS := min j∈S{h j }. Then the total average cost per time unit is given by

c(Qi , (M j ) j∈S) = adi

Qi
+

∑

j∈S

hS

(
Q j

(
1 − d j

r j

)
− M j

)2

2Q j

(
1 − d j

r j

) +
∑

j∈S

s j
M2

j

2Q j

(
1− d j

r j

)

= adi

Qi
+ 1

2

∑

j∈S

hS

⎛

⎝
d j

di
Qi

(

1− d j

r j

)

− 2M j + di M2
j

d j Qi

(
1 − d j

r j

)

⎞

⎠

+ 1

2

∑

j∈S

s j
di M2

j

d j Qi

(
1 − d j

r j

) .

Note in passing that the above average cost is a function depending on coalition
S ⊆ N , it means c((Qi , M j ) j∈S). However, taking relations between Qi and Q j
into account, it can be expressed just by c(Qi , (M j ) j∈S).

Applying standard techniques of differential analysis it can be checked that the
values (Q∗

i )i∈S and (M∗
i )i∈S which minimize c are given by

Q∗
i =

√
√
√
√

2ad2
i

hS · ∑ j∈S d j
s j

hS+s j

(
1 − d j

r j

) , M∗
i = Q∗

i ·
hS ·

(
1 − d j

r j

)

hS + si

for all i ∈ S. From this it follows that the minimal average cost per time unit for
coalition S equals

c(Q∗
i , (M∗

j ) j∈S) =
√
√
√
√2a

∑

j∈S

d j · hS

(
s j

hS + s j

)(

1 − d j

r j

)

. (3)

At this point we could consider a holding cost situation 〈N , a, {di , hi }i∈N 〉 and
define the corresponding generalized holding cost game as the one which assigns
to coalition S ⊆ N , S �= ∅ its minimal cost as in (3). However, we take advantage
of a common property underlying (2) and (3), specifically the increasing character
of their functions in hS, and focus on a more general class of inventory games
which contains the class defined by (3) and the holding cost games one.

A generalized holding cost situation is described by the tuple 〈N , a,
{di , hi , fi }i∈N 〉 where a > 0, and for all i ∈ N , di ≥ 0, hi > 0, and fi is an
increasing function from R++ to R++. Given a generalized holding cost situation
we can define the corresponding generalized holding cost game (N , c) as the game
that assigns to coalition S ⊆ N , S �= ∅ its minimal cost as follows

c(S) :=
√

2a
∑

i∈S

di fi (hS). (4)

As we have just announced (2) and (3) are particular cases of (4), with fi (x) = x

and fi (x) = x · (
si

x+si
)(1 − d j

r j
) for all i ∈ S ⊆ N , respectively.



506 A. Meca

Next we denote by G H N the class of generalized holding cost games with
player set N . The reader may notice that generalized holding cost games are su-
badditive, but not necessarily concave as Example 1 given in Meca et al. (2004)
shows.

The following theorem shows that generalized holding cost games are also
permutationally concave games.

Theorem 3.1 Generalized holding cost games are permutationally concave games.

Proof Let (N , c) be a generalized holding cost game. Without loss of general-
ity we number all players from 1 to n, N = {1, . . . , n}, in such a way that the
holding cost per time unit of all players forms a non-decreasing sequence, i.e.,
h1 ≤ h2 ≤ · · · ≤ hn . Take σ ∈ �(N ) such that σ(i) = i, ∀i ∈ N . Let us see that
(N , c) is permutationally concave with respect to σ .

Take i, j ∈ N ∪ {0} such that σ(i) ≤ σ( j) and R ⊆ N\Pσ
j . Then i ≤ j since

σ(k) = k for all k ∈ N∪{0}. The game (N , c) defined by c(S) =
√∑

j∈S d j f j (h1)

for all S ⊆ N is concave, because
√

x is a concave and monotone increasing func-
tion; i.e., for all S ⊆ T ⊆ N and all U ⊆ N\T, c(S∪U )−c(S) ≥ c(T ∪U )−c(T ).

If we take S = P
σ

i , T = P
σ

j and U = R, then S ⊆ T since σ(i) ≤ σ( j), U ⊂
N\T and
√
√
√
√

∑

k∈P
σ
i ∪R

dk fk(h1)−
√
√
√
√

∑

k∈P
σ
i

dk fk(h1) ≥
√
√
√
√

∑

k∈P
σ
j ∪R

dk fk(h1)−
√
√
√
√

∑

k∈P
σ
j

dk fk(h1).

(5)
To complete the proof we can distinguish three cases:

1. If i = 0 and j = 0 then P
σ

i = P
σ

j = ∅ and

c(P
σ

i ∪ R) − c(P
σ

i ) = c(R) − c(∅) = c(P
σ

j ∪ R) − c(P
σ

j ).

2. If i = 0 and j > 0, then P
σ

i = ∅ and P
σ

j = {1, 2, . . . , j}. Since 1 ∈ P
σ

j and
1 /∈ R it holds h P

σ
j

= h P
σ
j ∪R = h1. Hence

fk(h P
σ
j
) = fk(h P

σ
j ∪R) = fk(h1) ≤ fk(h R), ∀k ∈ P

σ

j ∪R, taking into account

that fk is increasing for all k ∈ N and h1 ≤ h R . By (5) we get
√∑

k∈R

dk fk(h R) − 0 ≥
√∑

k∈R

dk fk(h1) − 0

>

√
√
√
√

∑

k∈P
σ
j ∪R

dk fk(h1) −
√
√
√
√

∑

k∈P
σ
j

dk fk(h1),

then c(R) − c(∅) > c(P
σ

j ∪ R) − c(P
σ

j ).

3. If 0 < i ≤ j then 1 ∈ P
σ

i and 1 ∈ P
σ

j , hence (5) implies that c(P
σ

i ∪ R) −
c(P

σ

i ) ≥ c(P
σ

j ∪ R) − c(P
σ

j ).

��
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The reader may notice that the above proof also works for every subgame of
the generalized holding cost game. Then we can conclude that generalized holding
cost games are totally balanced.

4 N-rational solution family

Now that we have revisited the class of holding cost games and it has been extended
to the generalized holding cost games, we are interested in studying the core of the
latter. We introduce a core-allocation family which is called N-rational solution
family. It is proved that a particular relation of inclusion among the former, the core
and the Weber set exists.

Given c ∈ G H N , we define the set of players with minimum holding cost as
M = {i ∈ N | hi = hN }. Players belonging to M are called minimum play-
ers (M-players) and players belonging to N\M , are called complementary players
(c-players). By (4) we know that the individual cost for player i ∈ N is given
by c({i}) = √

2adi fi (hi ). Likewise, for each T ⊆ N , T �= ∅, and i ∈ T, we
define the cost for player i in coalition T as cT ({i}) := √

2adi fi (hT ). Then for
each S ⊆ T ⊆ N , S �= ∅ the cost for coalition S in coalition T is defined by

cT (S) :=
√∑

i∈S cT ({i})2.

The meaning of this cost is clear and simple: it is the cost generated by the
smaller coalition (S) when storing in the optimal place of the bigger (T ). Note that
cR(S) ≤ cT (S) for all T ⊆ R, and cT (S) ≤ cT (R) for all S ⊆ R ⊆ T . Moreover,
cN (S) ≤ c(S) for each S ⊆ N ; in particular, cN (S) = c(S) for all S ⊆ N such
that S ∩ M �= ∅, and cN (S) < c(S) for all S ⊆ N\M.

Given c ∈ G H N we could consider a new game (N , cN ), which will be called
N-cost game. It is clear that cN is a concave game. In fact, cN could be seen as
either an inventory cost game with a = 1/2 and mi = cN ({i}) for all i ∈ N , or a
generalized holding cost game with M = N .

Next we propose a core-allocation solution family for generalized holding cost
games, which will allow to know better the core of these games.

Such a family is inspired by the fact that for generalized holding cost games
there always exist core-allocations which assign a lower cost to each coalition
than its own when all members in such a coalition store in the M-player’s ware-
house. This makes sense since because of coordination on ordering and holding
simultaneously, which produces a bigger reduction in total costs.

Thinking about core restrictions for a generalized holding cost game carefully,
we observe that a sufficient condition for being a core-allocation is the follow-
ing: x(N ) = c(N ) and no coalition S � N exists such that x(S) > cN (S) since
cN (S) ≤ cS(S) = c(S).

All the above leads us to define a core-allocation solution family for generalized
holding cost games which we call N-rational solution family , as follows:

F(c) := {
x ∈ R

n /
x(N ) = c(N ) and x(S) ≤ cN (S), ∀S � N

}
.

Note that F(c) = C(cN ). Since cN is concave, F(c) �= ∅; in fact, F(c) =
conv{mσ (cN )/σ ∈ �(N )}. Besides, since cN (S) ≤ c(S) for all S ⊆ N , F(c) ⊂
C(c), but in general, F(c) �= C(c). Moreover, for each x ∈ F(c), xi ≤ cN ({i}),∀i
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∈ N ; i.e., all players will at most pay their cost in the grand coalition. This is the
main reason for the name N -rational solution family.

The following example illustrates the relationship among the core, the Weber
set and the N -rational solution family for a generalized holding cost game.

Example 4.1 Consider the generalized holding cost situation given by N={1, 2, 3},
a = 1/2, di = 1,∀i ∈ N ; h1 = h2 = 1, h3 = 4; fi (x) = x,∀x ∈ R++, ∀i ∈ N .

The generalized holding cost game corresponding to the above situation is

S {1} {2} {3} {1, 2} {1, 3} {2, 3} N
c(S) 1 1 2

√
2

√
2

√
2

√
3

Hence,

C(c) = conv

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

⎛

⎝
1√

2 − 1√
3 − √

2

⎞

⎠ ,

⎛

⎝
1√

3 − √
2√

2 − 1

⎞

⎠ ,

⎛

⎝

√
2 − 1
1√

3 − √
2

⎞

⎠ ,

⎛

⎝

√
3 − √

2
1√

2 − 1

⎞

⎠ ,

⎛

⎝

√
3−√

2√
3−√

2
2
√

2−√
3

⎞

⎠

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

,

W (c) = conv

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

⎛

⎝
1√

2 − 1√
3 − √

2

⎞

⎠ ,

⎛

⎝
1√

3 − √
2√

2 − 1

⎞

⎠ ,

⎛

⎝

√
2 − 1
1√

3 − √
2

⎞

⎠ ,

⎛

⎝

√
3 − √

2
1√

2 − 1

⎞

⎠ ,

⎛

⎝

√
2 − 2√

3 − √
2

2

⎞

⎠ ,

⎛

⎝

√
3 − √

2√
2 − 2
2

⎞

⎠

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

,

and

F(c) = conv

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

⎛

⎝
1√

2 − 1√
3 − √

2

⎞

⎠ ,

⎛

⎝
1√

3 − √
2√

2 − 1

⎞

⎠ ,

⎛

⎝

√
2 − 1
1√

3 − √
2

⎞

⎠ ,

⎛

⎝

√
3 − √

2
1√

2 − 1

⎞

⎠ ,

⎛

⎝

√
2 − 1√

3 − √
2

1

⎞

⎠ ,

⎛

⎝

√
3 − √

2√
2 − 1
1

⎞

⎠

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

.

The reader may notice that there are four common extreme points for the core,
the Weber set and the N -rational solution family:

⎛

⎝
1√

2 − 1√
3 − √

2

⎞

⎠ ,

⎛

⎝
1√

3 − √
2√

2 − 1

⎞

⎠ ,

⎛

⎝

√
2 − 1
1√

3 − √
2

⎞

⎠ ,

⎛

⎝

√
3 − √

2
1√

2 − 1

⎞

⎠ ;

these are the marginal vectors related to the orders with an M-player first; i.e., mσ (c)
with σ ∈ �(N ) such that ∃i ∈ M = {1, 2}, σ (i) = 1. Moreover, we find a vector

x =
⎛

⎝

√
3 − √

2√
3 − √

2
2
√

2 − √
3

⎞

⎠ ∈ C(c), but x /∈ F(c), since x3 = 2
√

2−√
3 > 1 = cN ({3}).
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At this point we wonder if for every generalized holding cost game all afore-
mentioned extreme points are common extreme points for the core, the N -rational
solution family and the Weber set.

The following proposition gives an affirmative answer. It shows that a particu-
lar relation of inclusion exists among the N -rational solution family, the core and
the Weber set of generalized holding cost games. These polyhedra have a special
subset of common extreme points whose cardinality is no larger than card(M) ·
(card(N ) − 1)! : those marginal vectors related to orders with an M-player first
and the rest of the players able to order in any which way.

Next we define by �1(N ) := {σ ∈ �(N ) | ∃i ∈ M, σ (i) = 1} the set of all
orders with an M-player first. Then �(N )\�1(N ) = {σ ∈ �(N ) | ∀i ∈ M, ∃ j ∈
N\M with σ( j) < σ(i)} is the set of all orders with a c-player first.

Proposition 4.2 For every c ∈ G H N ,

{
mσ (c)

/
σ ∈ �1(N )

} ⊆ Ext F(c) ∩ Ext C(c) ∩ Ext W (c).

Proof Take c ∈ G H N and σ ∈ �1(N ). We know that mσ (cN ) ∈ Ext F(c) and
mσ (c) ∈ Ext W (c). Let us see that mσ (cN ) = mσ (c). Then mσ (c) ∈ Ext C(c) and
so the proposition’s statement.

For all i ∈ M such that σ(i) = 1, mσ
i (cN ) = cN (Pσ

i ) − cN (∅) = c(Pσ
i ) =

mσ
i (c).

On the other hand, for all j ∈ N , j �= i, it holds that i ∈ Pσ
j , and i ∈ Pσ

j .

Hence, mσ
j (cN ) = cN (Pσ

j ) − cN (Pσ
j ) = c(Pσ

j ) − c(Pσ
j ) = mσ

j (c).
Then we can conclude that mσ (cN ) = mσ (c). ��
Next we wonder if for every generalized holding cost game the aforemen-

tioned common extreme points for the core and the N -rational solution family are
the unique common ones.

It is easy to check that if M = N , then c is concave and so F(c) = C(c) =
W (c), but in general the converse is not true. From now on we focus on the case
M �= N . Two sufficient conditions for the uniqueness of these common extreme
points are obtained. The first shows that for generalized holding cost games corre-
sponding to situations with positive constant demand, and the same strictly increas-
ing function for each player, the unique common extreme points for the N -rational
solution family and the core are the marginal vectors related to the orders with
an M-player first. The second one generalizes the former to 3-player generalized
holding cost games corresponding to situations with positive demands and strictly
increasing functions. It is an open question whether the latter can be extended to
games with at least four players.

The following technical lemma will be very useful to prove the first condition.

Lemma 4.3 Let N = {1, 2, . . . , n} a finite set. Then, for each S ⊆ N,

∑

j∈S

(√
j − √

j − 1
)
{= √

card(S) if S = {1, 2, . . . , card(S)}
<

√
card(S) any other case.

Proof It is a straightforward consequence of the fact that the function f (x) =√
x − √

x − 1 is strictly decreasing on [1, +∞). ��
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As we just announced, the next theorem shows that, under some particular
conditions, the set of common extreme points for the N -rational solution family
and the core of generalized holding cost games is the special subset referred to just
before Proposition 4.2.

Theorem 4.4 Let 〈N , a, {di , hi , fi }i∈N 〉 be a generalized holding cost situation
and c the corresponding generalized holding cost game. Then

Ext F(c) ∩ Ext C(c) = {
mσ (c)

/
σ ∈ �1(N )

}
, (6)

(i) if di = d > 0 and fi = f strictly increasing for all i ∈ N ;
(ii) if N = {1, 2, 3}, di > 0 and fi a strictly increasing function for all i ∈ N .

Proof (i) Taking into account that

Ext F(c) = {
mσ (c)

/
σ ∈ �1(N )

} ∪ {
mσ (cN )

/
σ ∈ �(N )\�1(N )

}
,

and Proposition 4.2, it is enough to prove that mσ (cN ) /∈ Ext C(c) for all σ ∈
�(N )\�1(N ).

Take σ ∈ �(N )\�1(N ), then σ(i) = j �= 1 for all i ∈ M. We prove that
mσ (cN ) has exactly n − (k − 1) binding constraints in C(c), where 2 ≤ k =
mini∈M {σ(i)} ≤ n : those corresponding to P

σ

σ−1(k), P
σ

σ−1(k+1), . . . , P
σ

σ−1(n).

If S = P
σ

σ−1(r) (or equivalently σ(S) = {1, . . . , r}), for an arbitrary r ∈
{1, . . . , n}, then

∑

i∈S

mσ
i (cN ) =

r∑

j=1

mσ
σ−1( j)(cN ) = cN

(
P

σ

σ−1(r)

)
.

Two cases are considered:

(1) If r ∈ {1, . . . , k − 1}, then P
σ

σ−1(r) ∩ M = ∅, hence
∑

i∈S mσ
i (cN ) <

c(P
σ

σ−1(r)), since f is strictly increasing and d > 0.

(2) If r ∈ {k, . . . , n}, then P
σ

σ−1(r)∩ M �= ∅, hence
∑

i∈S mσ
i (cN ) = c(P

σ

σ−1(r)).

For all S �= P
σ

σ−1(r), r = 1, . . . , n,

∑

i∈S

mσ
i (cN )

=
∑

j∈σ(S)

mσ
σ−1( j)(cN )

=
∑

j∈σ(S)

[
cN

({
σ−1(1), . . . , σ−1( j)

}) − cN
({

σ−1(1), . . . , σ−1( j − 1)
})]

=
∑

j∈σ(S)

√
2a · d · f (h1)

(√
j − √

j − 1
)

.

By lemma 4.3,
∑

j∈σ(S)(
√

j − √
j − 1) <

√
card(S). Therefore, we can con-

clude that
∑

i∈S mσ
i (cN ) < cN (S) < c(S).
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(ii) Let 〈N , a, {di , hi , fi }i∈N 〉 be a generalized holding cost situation with
N = {1, 2, 3}, di > 0 and fi a strictly increasing function for all i ∈ N . Let us see
that mσ (cN ) /∈ Ext C(c) for all σ ∈ �(N )\�1(N ), hence we can conclude that
(6) holds.

We can distinguish two cases:
Case 1 M = {1, 2}. Then �(N )\�1(N ) = {312, 321} and

m312(cN ) =
⎛

⎝
c({1, 3}) − cN ({3})

c(N ) − c({1, 3})
cN ({3})

⎞

⎠ .

It can be easily checked that m312(cN ) has exactly two binding constraints in
C(c) : those corresponding to P

σ

σ−1(2)=1 = {1, 3}, P
σ

σ−1(3)=2 = N ; i.e., m312
1 (cN )

+ m312
3 (cN ) = c({1, 3}) and m312

1 (cN ) + m312
2 (cN ) + m312

3 (cN ) = c(N ). Then
by the characterization of extreme points of a bounded convex polyhedron in R

n

given in Sect. 2, m312(cN ) /∈ Ext C(c). A similar argument shows that m321(cN ) /∈
Ext C(c).

Case 2 M = {1}. Then �(N )\�1(N ) = {321, 213, 231, 312} and

m321(cN ) =
⎛

⎝
c(N ) − cN ({2, 3})

cN ({2, 3}) − cN ({3})
cN ({3})

⎞

⎠ , m213(cN ) =
⎛

⎝
c({1, 2}) − cN ({2})

cN ({2})
c(N ) − c({1, 2})

⎞

⎠ .

It can be easily checked again that m321(cN ) has just one binding constraint in
C(c). Moreover, m213(cN ) has exactly 2 binding constraints in C(c) : P

σ

σ−1(2)=1 =
{1, 2}, P

σ

σ−1(3)=3 = N . Then m321(cN ), m213(cN ) /∈ Ext C(c). Similar arguments
show that m231(cN ), m312(cN ) /∈ Ext C(c). ��

The reader may notice that for holding cost games with positive constant de-
mand, the set of common extreme points for the N -rational solution family and the
core consists of those marginal vectors related to the orders with an M-player first.

5 Minimum square proportional rule

To complete the study of generalized holding cost games, we wonder if any of the
well-known solutions for cost games are either N -rational solutions or core-alloca-
tions for generalized holding cost games. The following example shows that neither
the Shapley value nor the τ -value are N -rational solutions, although the τ -value is
a core-allocation [Driessen and Tijs (1985) show that it is always a core-allocation
for quasibalanced games with two and three players] but the Shapley value is not.

Example 5.1 Consider the generalized holding cost situation given by
N = {1, 2, 3}, a = 1/2, d1 = 4, d2 = 1, d3 = 144; h1 = 1, h2 = 4, h3 =
16; fi (x) = x,∀x ∈ R++, ∀i ∈ N .

The generalized holding cost game and the N-cost game corresponding to the
above situation are

S {1} {2} {3} {1, 2} {1, 3} {2, 3} N
c(S) 2 2 48

√
5

√
148

√
580

√
149

cN (S) 2 1 12
√

5
√

148
√

145
√

149
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The Shapley value is then given by �(c) = (−9.22,−3.26, 24.69). However,
�1(c) + �3(c) = 15.47 > c({1, 3}) = 12.16. Hence, �(c) /∈ C(c) and so
�(c) /∈ F(c).

On the other hand, taking into account that M(c)=(−11.88, 0.04, 9.97), m(c)=
(2, 2, 24.04), and then α = c(N )−∑

j∈N m j (c)∑
j∈N [M j (c)−m j (c)] = −15.83

−29.91 = 0.52, the τ -value is

given by τ(c) = (−5.34, 0.96, 16.59). However, τ3(c) = 16.59 > 12 = cN ({3});
so, τ(c) /∈ F(c).

We realize thinking about the nature of generalized holding cost games that
they are similar to inventory cost games [compare (4) with (1)]. This leads us to
think of choosing a core-allocation following the idea of proportional allocations.
The question that arises immediately is what proportional factor should be chosen?

Since demand plays an important role on the class of generalized holding cost
games, a possible allocation rule could be the demand proportional rule. However,
the following example shows that the demand proportional rule on generalized
holding cost games is not necessarily a core-allocation.

Example 5.2 Consider the generalized holding cost situation given by N={1, 2, 3},
a = 1/2, d1 = d2 = 1, d3 = 1/2, h1 = 4, h2 = h3 = 9; fi (x) = x · (

si
x+si

), ∀x ∈
R++, ∀i ∈ N , where s1 = s2 = 1, s3 = 4.

The generalized holding cost game corresponding to the above situation is

S {1} {2} {3} {1, 2} {1, 3} {2, 3} N

c(S) 2√
5

3√
10

6√
13

√
8
5

3√
5

√
297
130

√
13
5

Then the demand proportional rule is p(c) = ( 2
5

√
13
5 , 2

5

√
13
5 , 1

5

√
13
5 ). Note that

p1(c) + p2(c) = 4
5

√
13
5 >

√
8
5 = c({12}). Hence, p(c) /∈ C(c).

Following the ideas adopted for inventory cost games, a new proportional rule
is proposed: minimum square proportional rule. This is an N -rational solution.

Definition 5.3 The minimum square proportional rule on the class of generalized
holding cost games is a map P : G H N → R such that, for every c ∈ G H N and
all i ∈ N

Pi (c) :=
{

cN ({i})2
∑

j∈N cN ({ j})2 c(N ) c �= c0

0 c = c0
.

Note that cN ({i})2 = minS⊂N/ i∈S{cS({i})2}, ∀i ∈ N . This is the main reason
for the name minimum square proportional rule. The difference between the pro-
portional rule (on inventory cost games) and the minimum square proportional rule
(on generalized holding cost games) is the proportionality factor: now cN ({i})2,
instead of cv(i)2, which reflects both kinds of coordination considered: ordering
and holding.

Taking into account that c(N )2 = ∑
j∈N cN ({ j})2, the above proportional rule

can be rewritten as follows: for all c �= c0 and all i ∈ N ,

Pi (c) = 2adi fi (hN )
√∑

j∈N 2ad j f j (hN )
= cN ({i})2

c(N )
. (7)
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Moreover, for generalized holding cost games coming from a generalized hold-
ing cost situation with fi = f, ∀i ∈ N (in particular, holding cost games), it equals
the demand proportional rule.

Note that the above rule is determined by the parameters of the generalized
holding cost situation that leads to the generalized holding cost game; i.e., it depends
on the fixed ordering cost a, demands {di }i∈N , minimum holding cost hN and
functions { fi }i∈N . It is not necessary to know the complete characteristic function
of such a game and so, it is easy to calculate.

Example 5.4 Consider the generalized holding cost game given in Example 5.2.

The minimum square proportional rule is P(c) = ( 4
13

√
13
5 , 4

13

√
13
5 , 5

13

√
13
5 ). Tak-

ing into account that the corresponding N-cost game is

S {1} {2} {3} {1, 2} {1, 3} {2, 3} N

cN (S) 2√
5

3√
10

1
√

8
5

3√
5

3√
5

√
13
5

it can be easily checked that P(c) ∈ F(c); it is a core-allocation.

The reader may notice that the minimum square proportional rule satisfies
the efficiency and zero-symmetry properties. The following theorem shows that
the minimum square proportional rule is always a N -rational solution, hence a
core-allocation. Besides it gives some other nice properties for such a rule: for
generalized holding cost games coming from situations with fi = f, ∀i ∈ N , it
can be reached through a pmas.

Theorem 5.5 Let c ∈ G H N . Then

(i) P(c) ∈ F(c).
(ii) If c comes from a generalized holding cost situation with fi = f, ∀i ∈ N ,

then P(c) can be reached through a pmas for c.
(iii) P(c) can be reached through a pmas for cN .

Proof (i) We just have to prove that for all non-empty coalitions S in N ,
∑

i∈S Pi (c)
≤ cN (S). Take S ⊂ N , then

∑

i∈S

Pi (c) =
∑

i∈S

2adi fi (hN )
√∑

j∈N 2ad j f j (hN )
≤

∑

i∈S

2adi fi (hN )
√∑

i∈S 2adi fi (hN )

=
√∑

i∈S

2adi fi (hN ) = cN (S).

(ii) Take c ∈ G H N such that fi = f, ∀i ∈ N . For all players i ∈ N

Pi (c) = di
∑

j∈N d j

√

2a f (hN )
∑

j∈N

d j .

Now for each i ∈ S, S ⊂ N , S �=∅ we define yS
i = di∑

j∈S d j

√
2a f (hS)

∑
j∈S d j .

Then ∀S ⊂ N , S �= ∅, yS(S) =
√

2a f (hS)
∑

j∈S d j = c(S).
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Moreover, for all S, T ⊂ N , S, T �= ∅, such that S ⊂ T and all player i ∈ S

yS
i = di

√
2a f (hS)

√∑
j∈S d j

≥ di
√

2a f (hT )
√∑

j∈T d j

= yT
i ,

since hT ≤ hS and f is an increasing function.
(iii) Take c ∈ G H N . We know that the corresponding N-cost game (N , cN )

is concave. Since Pi (c) ∈ F(c) = C(cN ), it follows from Sprumont (1990) that
each of its core-elements, or equivalently each element of F(c), can be reached
through a pmas for cN . ��

We will now introduce a monotonicity property for allocation rules on the class
of generalized holding cost games. When thinking of a monotonicity property for
a proportional rule on generalized holding cost games, we could follow the ideas
adopted when studying the proportional rule on inventory cost games (see Meca
et al. 2004). However, we should take into account the fact that now we are also
considering coordination on holding. So we focus on the cost for a player in the
grand coalition instead of its own individual cost and we propose the following
property, which is called the N-monotonicity property.

Let (N , c) and (N , c) be generalized holding cost games corresponding to gen-
eralized holding cost situations 〈N , a, {di , hi , fi }i∈N 〉 and 〈N , a, {di , hi , fi }i∈N 〉,
respectively. The solution rule � satisfies N-monotonicity if for all i ∈ N such
that cN ({i}) ≥ cN ({i}) it holds that c(N ) · �i (c) ≥ c(N ) · �i (c).

Together with efficiency and zero-symmetry, the N-monotonicity property char-
acterizes the minimum square proportional rule on the class of generalized holding
cost games as the next theorem [closely related to theorem 1 in Meca et al. (2004)]
shows.

Theorem 5.6 A unique rule exists on the class of generalized holding cost games
satisfying efficiency, zero-symmetry and N-monotonicity. It is the minimum square
proportional rule.

Proof It is clear that the minimum square proportional rule satisfies efficiency,
zero-symmetry and N-monotonicity.

To show the converse, we take a rule � on the class of generalized holding
cost games that satisfies efficiency, zero-symmetry and N-monotonicity. Note that
N-monotonicity implies that for all generalized holding cost games (N , c) and
(N , c)

cN ({i}) = cN ({i}) ⇒ c(N ) · �i (c) = c(N ) · �i (c). (8)

By efficiency and zero-symmetry it follows that �i (c0) = 0 for all i ∈ N .
Take a generalized holding cost game (N , c). If for some i ∈ N it holds that
cN ({i}) = 0 then cN ({i}) = c0({i}). When c(N ) = 0 then c = c0 (since di = 0
for all i ∈ N ), and so �i (c) = 0. Otherwise, when c(N ) > 0 then it follows
from (8) that c(N ) · �i (c) = c0(N ) · �i (c0) = 0 and thus �i (c) = 0. We can
conclude that

if c({i}) = 0 then cN ({i}) = 0 and so �i (c) = 0. (9)

Define the number I (c) to be the number of players i ∈ N with c({i}) > 0.
We show that �i (c) = Pi (c) for all i ∈ N by induction on I (c).
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If I (c) = 0 then by (9), �i (c) = 0 for all i ∈ N .
If I (c) = 1 then there is a single player k ∈ N with c({k}) > 0. For all

i ∈ N\{k}, c({i}) = 0, so by (9), �i (c) = 0 = Pi (c), since cN ({i}) = 0. By effi-
ciency it follows that �k(c) = c(N )−∑

i �=k �i (c) = c(N )−∑
i �=k Pi (c) = Pk(c).

Assume now that �(c) = P(c) for all generalized holding cost games (N , c)
with I (c) ≤ I, I ≤ n − 1. Consider a generalized holding cost game (N , c)
corresponding to 〈N , a, {di , hi , fi }i∈N 〉 with I (c) = I + 1. Without loss of gen-
erality assume that c({i}) > 0 for the players i = 1, 2, . . . , I + 1. Define the
game (N , c) to be corresponding to 〈N , a, {di , hi , fi }i∈N 〉 where a = a, di =
di , hi = hi , fi = fi for all j ∈ N\{I + 1} and dI+1 = 0. Then I (c) = I and
�(c) = P(c). Since cN ({k}) = cN ({k}) > 0 for all k = 1, 2, . . . , I it follows by
(8) that c(N ) · �k(c) = c(N ) · �k(c) = c(N ) · Pk(c). By (7),

Pk(c) = 2adk fk(hN )
√∑

j∈N 2ad j f j (hN )
= cN ({k})2

c(N )
,

so using induction

c(N ) · �k(c) = c(N ) · Pk(c) = c(N )
cN ({k})2

c(N )
= cN ({k})2 = cN ({k})2.

From this it follows that �k(c) = cN ({k})2/c(N ) = Pk(c). We also have
c({ j}) = 0 for all j = I + 2, . . . , n − 1, n so by (9) � j (c) = 0 = P j (c). Finally,
efficiency implies that

�I+1(c) = c(N ) −
∑

k �=I+1

�k(c) = c(N ) −
∑

k �=I+1

Pk(c) = PI+1(c),

which concludes the proof. ��

6 Concluding remarks

Holding cost games are introduced and studied in Meca et al. (2004). In the way of
extending this study to the cost games corresponding to the n-person EPQ inven-
tory situations with shortages, we took advantage of a common property underlying
both models (EOQ and EPQ with shortages). Specifically we use the increasing
character of the functions involved to introduce the more general framework of
generalized holding cost games.

Since every generalized holding cost game is totally balanced but not concave,
in general, we study a core-allocation family for it: the N -rational solution family.
For generalized holding cost games corresponding to situations with positive con-
stant demand and the same strictly increasing function for all players (for instance,
holding cost games with positive constant demand), it turns out to be an interesting
relation of inclusion between the N -rational solution family and the core: there
are a fixed number of common extreme points for them—exactly all of those mar-
ginal vectors related to orders with an M-player first, enabling to order the rest of
the players in any way. The above result is also true for the 3-player generalized
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holding cost games corresponding to situations with positive demands and strictly
increasing functions; for instance, the 3-player generalized holding cost games
corresponding to n-person EPQ inventory situations with shortages and positive
demands.

A particular N -rational solution, the minimum square proportional rule, is pro-
posed. Finally we prove that for generalized holding cost games that come from
situations with the same function f for each player (holding cost games, among
others), the minimum square proportional rule can be reached through a pmas.

It is a topic for further research to find out if the minimum square propor-
tional rule can be reached through a pmas for every generalized holding cost game.
Another direction for future research would be to complete the analysis of core
structure for generalized holding cost games; for instance, to study the common
extreme points for their core.
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