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Abstract In this paper, a branch and bound approach is proposed for global
optimization problem (P) of the sum of generalized polynomial fractional functions
under generalized polynomial constraints, which arises in various practical prob-
lems. Due to its intrinsic difficulty, less work has been devoted to globally solving
this problem. By utilizing an equivalent problem and some linear underestimat-
ing approximations, a linear relaxation programming problem of the equivalent
form is obtained. Consequently, the initial non-convex nonlinear problem (P) is
reduced to a sequence of linear programming problems through successively refin-
ing the feasible region of linear relaxation problem. The proposed algorithm is
convergent to the global minimum of the primal problem by means of the solu-
tions to a series of linear programming problems. Numerical results show that the
proposed algorithm is feasible and can successfully be used to solve the present
problem (P).
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1 Introduction

Consider the following global optimization problem of the sum of generalized
polynomial fractional functions:

(P)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

min h(x) =
p∑

j=1

a j
n j (x)

d j (x)

s.t. gk(x) ≤ 0, k = 1, . . . , M,

x ∈ X = {x | 0 < xi ≤ xi ≤ xi < ∞, i = 1, . . . , N },
where for each j = 1, . . . , p and each k = 1, . . . , M ,

n j (x) =
T 1

j∑

t=1

b1
j t

N∏

i=1

x
γ 1

j ti
i , d j (x) =

T 2
j∑

t=1

b2
j t

N∏

i=1

x
γ 2

j ti
i , gk(x) =

T 3
k∑

t=1

b3
kt

N∏

i=1

x
γ 3

kti
i ,

and p, T 1
j , T 2

j , T 3
k are all natural numbers; a j , b1

j t , b2
j t and b3

kt are all nonzero real

constant coefficients; γ 1
j ti , γ 2

j ti and γ 3
kti are all nonzero real constant exponents.

So far, the global optimization problems of linear (or quadratic, polynomial)
fractional functions, as a special case of problem (P), have attracted the inter-
est of researchers and practitioners, and various specialized algorithms have been
reported for solving these special types (for example, see Konno and Fukaisi 2000;
Gotoh and Konno 2001). This is because, from a practical point of view, these
problems have spawn a wide variety of applications, specially in transportation
planning, government contracting, and finance and investment etc. (see Tuy et al.
2004; Phuong and Tuy 2003; Konno et al. 1997; Tuy 1998). In addition, from a
research point of view, these problems pose significant theoretical and computa-
tional challenges. This is mainly due to the fact that these problems are global
optimization problems, i.e., they are known to generally possess multiple local
optima that are not global optima.

Several algorithms have been proposed for globally solving optimization
problems of the nonlinear sum of fractional functions (Bensen 2002a,b). In the
most considered problems, the feasible regions are polyhedrons or convex sets, or
the considered problems have been limited to non-general problems (Phuong and
Tuy 2003; Konno et al. 1997; Tuy 1998; Bensen 2002a,b; Konno and Abe 1995;
Konno and Yamshita 1997). To our knowledge, there exist few algorithms for
globally solving problem (P), where the feasible region is nonconvex set, and the
objective function is the sum of ratios with real coefficients, and the expressions
of the objective and constrained functions involve in generalized multivariable
polynomials.

In this paper, we present a branch and bound algorithm for finding globally
optimal solution of problem (P). The proposed algorithm works by solving prob-
lem (P2), which is equivalent to problem (P). In the algorithm, we use a convenient
linearization techniques to systematically convert problem (P2) into a series of lin-
ear programming problems. The solutions of these converted problems can be as
close as possible to the global optimum of problem (P) by a successive refinement
process. The main computation involves in solving a series of linear programming
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problems over the partitioned subsets, for which some efficient and known methods
are available. Numerical results show that the proposed algorithm is feasible.

This paper is organized as follows. In Sect. 2, by using Bernstein Algorithm
(Nataray and Kotecha 2004; Berz and Hoffstatter 1998) and an exponential trans-
formation, problem (P2) is derived that is equivalent to problem (P). Then a linear
relaxation programming (LRP) is given by a linearization technique. In Sect. 3,
we present a branch and bound algorithm for globally solving Problem (P2) and
prove its convergence property. In Sect. 4, we show that the algorithm is feasible
via several numerical examples. And finally, the summary of this paper is given.

2 Equivalent problem and its linear relaxation

2.1 Equivalent nonconvex program

In this subsection, we show how to convert problem (P) into an equivalent noncon-
vex programming problem. For convenience of the following discussions, without
loss of generality, we let a j > 0 ( j = 1, . . . , K ) and a j < 0 ( j = K + 1, . . . , p)
in (P).

In order to introduce an equivalent form of problem (P), we require that problem
(P) satisfies the following additional assumption.

Assumption 1 For each j = 1, . . . , p, suppose that

n j (x) > 0, d j (x) > 0, ∀ x ∈ X.

Based on Assumption 1, by using Bernstein Algorithm (Nataray and Kotecha
2004; Berz and Hoffstatter 1998) for each j = 1, . . . , p, we can obtain positive
scalars l j , u j , L j and U j such that

0 < l j ≤ n j (x) ≤ u j , 0 < L j ≤ d j (x) ≤ U j , ∀ x ∈ X.

Next, let H = {(t, s) ∈ R2p | l j ≤ t j ≤ u j , L j ≤ s j ≤ U j , j = 1, 2, . . . , p}.
Then we can get the following equivalent problem (P1):

(P1):

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

min
K∑

j=1

a j t j s
−1
j +

p∑

j=K+1

a j t j s
−1
j

s.t. n j (x) − t j ≤ 0, s j − d j (x) ≤ 0, j = 1, . . . , K ,
t j − n j (x) ≤ 0, d j (x) − s j ≤ 0, j = K + 1, . . . , p,
gk(x) ≤ 0, k = 1, . . . , M,
x ∈ X, (t, s) ∈ H.

The key equivalence result for problems (P) and (P1) is given by the following
theorem.

Theorem 1 x∗ is a global optimal solution of problem (P) if and only if (x∗, t∗, s∗)
is a global optimal solution of problem (P1), where t∗j = n j (x∗) and s∗

j = d j (x∗)
for each j = 1, . . . , p.
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Proof Let x∗ be a global optimal solution of problem (P), and let t∗j = n j (x∗) and
s∗

j = d j (x∗), j = 1, . . . , p. Then (x∗, t∗, s∗) is a feasible solution of problem
(P1) with objective function value h(x∗). Let (x, t, s) be any feasible solution of
problem (P1), it is obvious that

a j
n j (x)

d j (x)
≤ a j

t j

s j
, j = 1, . . . , K , K + 1, . . . , p.

This means that

h(x) =
K∑

j=1

a j
n j (x)

d j (x)
+

p∑

j=K+1

a j
n j (x)

d j (x)
≤

K∑

j=1

a j
t j

s j
+

p∑

j=K+1

a j
t j

s j
. (1)

By the optimality of x∗, we must have

p∑

j=1

a j
t∗j
s∗

j
= h(x∗) ≤ h(x) ≤

p∑

j=1

a j
t j

s j
. (2)

Therefore, by x∗ ∈ X and (t∗, s∗) ∈ H , it follows that (x∗, t∗, s∗) is a global
solution of problem (P1).

Conversely, suppose that (x∗, t∗, s∗) is a global optimal solution for problem
(P1), then we have

0 < n j (x∗) ≤ t∗j ≤ u j , 0 < s∗
j ≤ d j (x∗) ≤ U j , j = 1, . . . , K ;

0 < l j ≤ t∗j ≤ n j (x∗), 0 < L j ≤ d j (x∗) ≤ s∗
j , j = K + 1, . . . , p.

This implies that

n j (x∗)
d j (x∗)

≤ t∗j
s∗

j
for j = 1, . . . , K , and

n j (x∗)
d j (x∗)

≥ t∗j
s∗

j
for j = K + 1, . . . , p,

and so,

h(x∗) = a j
n j (x∗)
d j (x∗)

≤ a j
t∗j
s∗

j
for j = 1, . . . , p. (3)

For each j = 1, . . . , p, let t̄ j = n j (x∗), s̄ j = d j (x∗), then (x∗, t̄, s̄) is a feasible
solution for problem (P1) with objective function value h(x∗). Since (x∗, t∗, s∗)
is a global optimal solution for problem (P1), we get that

h(x∗) =
p∑

j=1

a j
t̄ j

s̄ j
≥

p∑

j=1

a j
t∗j
s∗

j
. (4)

Combining (3) with (4), we have

h(x∗) =
p∑

j=1

a j
t∗j
s∗

j
. (5)
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By definition of h(x), since

n j (x∗)
d j (x∗)

≤ t∗j
s∗

j
, 0 < n j (x∗) ≤ t∗j , 0 < s∗

j ≤ d j (x∗), j = 1, . . . , K ;

n j (x∗)
d j (x∗)

≥ t∗j
s∗

j
, 0 < t∗j ≤ n j (x∗), 0 < d j (x∗) ≤ s∗

j , j = K + 1, . . . , p,

which implies that t∗j = n j (x∗) and s∗
j = d j (x∗) for each j = 1, . . . , p, then for

any feasible solution x for problem (P), if we set that t j = n j (x), and s j = d j (x),
j = 1, . . . , p, then (x, t, s) is a feasible solution for problem (P1) with objective
function value h(x). By the optimality (x∗, t∗, s∗) and feasibility of x , we have

h(x) ≥
p∑

j=1

a j
t∗j
s∗

j
.

Since x∗ ∈ X , it follows from the above inequality that x∗ is a global optimal
solution for problem (P), and the proof is complete. ��

For the problem (P1), since it possesses some particular structure, we can uti-
lize an exponential variable transformation to obtain an equivalent problem (P2)
of (P1). Let y = (y1, y2, y3) ∈ R2p+N with y1 ∈ RN and y2, y3 ∈ R p, and let
xi = exp(y1

i ) for each i = 1, . . . , N and s j = exp(y2
j ), t j = exp(y3

j ) for each
j = 1, . . . , p. Then, without loss of generalization, we can rewrite the problem
(P1) to the following problem:

(P2) :

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

min �0(y)
s.t. �m(y) ≤ 0, m = 1, . . . , 2p + M,

y ∈ � = {y | y
n

≤ yn ≤ yn, n = 1, . . . , 2p + N }
= {ln xi ≤ y1

i ≤ ln xi , i = 1, . . . , N ,

ln l j ≤ y2
j ≤ ln u j , ln L j ≤ y3

j ≤ ln U j , j = 1, . . . , p},

where

�m(y) =
�m∑

t=1

cmt exp

⎛

⎝
2p+N∑

n=1

γmtn yn

⎞

⎠�
�m∑

t=1

cmt fmt (y), m = 0, 1, . . . , 2p + M,

(6)

and for each m, t and n, corresponding with problem (P1), cmt is a real constant
coefficient; γmtn is a real constant exponent; �m is a index set.

From Theorem 1, notice that, to search for a global solution for problem (P),
we may globally solving problem (P1) instead, and it is easy to see that the global
optimal values of problems (P1) and (P2) are equal. Hence, the branch and bound
algorithm to be presented can be applied to problem (P2).
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2.2 Linear relaxation programming

In the development of a solution procedure for solving problem (P2), the prin-
cipal structure is how to construct the linear relaxation programming of problem
(P2), which can provide the lower bounds of optimal value of problem (P2) in
the branch and bound method to be presented. This linear relaxation programming
can be obtained by using a linear underestimating function L�

m(y) of the nonlinear
function �m(y) for each m = 0, 1, . . . , 2p + M . Henceforth, for convenience, for
any y ∈ � some notations are first introduced as follows:

Y �
mt =

2p+N∑

n=1

γmtn yn;

Y �
mt =

2p+N∑

n=1

min(γmtn y
n
, γmtn yn);

Y
�

mt =
2p+N∑

n=1

max(γmtn y
n
, γmtn yn),

where m = 0, 1, . . . , 2p + M , t = 1, . . . , �m .
To illustrate how the function L�

m(y) can be derived to obtain the linear relaxa-

tion problem, we consider the function fmt (y) = exp(
∑2p+N

n=1 γmtn yn) = exp(Y �
mt )

as defined in (6), for any y ∈ �.
It is known that exponential function exp(Y ) is a monotone increasing, convex

function about the single variable Y . Let F�
mt (y) (H�

mt (y)) denote a linear overes-
timating (underestimating) function of fmt (y) over �. Then, by the convexity of

exp(Y �
mt ) on the interval [Y �

mt , Y
�

mt ], we can formulate F�
mt (y) as follows:

F�
mt (y) = A�

mt + B�
mt

⎛

⎝
2p+N∑

n=1

γmtn yn

⎞

⎠ , (7a)

where

A�
mt = (Y

�

mt exp(Y �
mt ) − Y �

mt exp(Y
�

mt ))/(Y
�

mt − Y �
mt ),

B�
mt = (exp(Y

�

mt ) − exp(Y �
mt ))/(Y

�

mt − Y �
mt ).

Moreover, let H�
mt (y) be a an affine function corresponding to a tangent hyperplane

of the graph of fmt (y), which is parallel to F�
mt (y). Then the point of tangential

support will occur at Ỹmt = ln B�
mt , thus, by computing, H�

mt (y) can be given as
follows:

H�
mt (y) = B�

mt (1 − ln B�
mt ) + B�

mt

⎛

⎝
2p+N∑

n=1

γmtn yn

⎞

⎠ . (7b)

Consequently, combining (7a) with (7b), it follows that

H�
mt (y) ≤ fmt (y) ≤ F�

mt (y), ∀ y ∈ �.
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Next, by using the above results, we can give the following linear relaxation
programming of problem (P2). Letting �q = [yq , yq ] ⊆ �, and denoting the lin-

ear underestimating function of each nonlinear function cmt exp(
∑2p+N

n=1 γmtn yn)

as L
�q
mt (y), for any y ∈ �q we have

cmt exp

⎛

⎝
2p+N∑

n=1

γmtn yn

⎞

⎠ ≥ L
�q
mt (y) =

⎧
⎨

⎩

cmt H
�q
mt (y), if cmt > 0,

cmt F
�q
mt (y), if cmt < 0.

∀ m, t.

Thus, summing it over all the terms t (t = 1, . . . , �m) and denoting the result-

ing right-hand side
∑�m

t=1 L
�q
mt (y) in this sum as L

�q
m (y), we easily see that

�m(y) ≥ L
�q
m (y) =

�m∑

t=1

L
�q
mt (y), ∀ y ∈ �q , m = 0, 1, . . . , 2p + M. (8)

Consequently, We construct the corresponding linear relaxation programming
(LRP) of the problem (P2) on �q as follows:

(LRP(�q)):
⎧
⎨

⎩

min L
�q
0 (y)

s.t. L
�q
m (y) ≤ 0, m = 1, . . . , 2p + M

y ∈ �q .

Notice that it follows immediately from (8) that every feasible point of problem
(P2) in subdomain �q is feasible for problem LPR(�q ), and the objective func-
tion value of (LPR) is less than or equal to that of problem (P2) for all points in
�q . Moreover, it should be noted that problem (LPR) contains only the necessary
constraints to guarantee convergence of the algorithm.

Lemma 1 The minimum of problem LPR(�q) provides a lower bound of the global
optimal value of problem (P2) over the partition set �q .

Proof This is obvious by the above construction method. ��
Lemma 2 Let {�q} be any subsequence of rectangles such that �q+1 ⊂ �q ⊆
R2p+N for any q and

⋂∞
q=1 �q = {y∗}. Consider the functions fmt (y), F

�q
mt (y)

and H
�q
mt (y) for any y ∈ �q . Then it holds that

max
y∈�q

|F�q
mt (y) − fmt (y)| = max

y∈�q
|H�q

mt (y) − fmt (y)| → 0, as q → ∞,

where m = 0, 1, . . . , 2p + M and t = 1, . . . , �m .

Proof Let �q = [yq , yq ] ⊆ R2p+N . Then, by assumption of this Lemma, there
exists a corresponding sequence {(yq , yq)} with yq = (yq

n
)(2p+N )×1 and yq =

(yq
n)(2p+N )×1 such that

(yq , yq) → (y∗, y∗), as q → ∞. (9)
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For any m, t , let ω
q
mt = Y

�q
mt − Y

�q
mt for each �q . Then, by the definitions of

Y
�q
mt and Y

�q
mt , we get that from (9)

ω
q
mt =

2p+N∑

n=1

|γmtn|(yq
n − yq

n
) → 0 as q → ∞. (10)

Now, we consider two differences F
�q
mt (y) − fmt (y) � �

�q
mt (y) and fmt (y) −

H
�q
mt (y) � �

�q
mt (y) for any y ∈ �q . Then it follows from (6), (7a) and (7b) that

�
�q
mt (y) = A

�q
mt + B

�q
mt

⎛

⎝
2p+N∑

n=1

γmtn yn

⎞

⎠ − exp

⎛

⎝
2p+N∑

n=1

γmtn yn

⎞

⎠

= A
�q
mt + B

�q
mt Y

�q
mt − exp(Y

�q
mt ),

�
�q
mt (y) = exp

⎛

⎝
2p+N∑

n=1

γmtn yn

⎞

⎠ − B
�q
mt (1 − ln B

�q
mt ) − B

�q
mt

⎛

⎝
2p+N∑

n=1

γmtn yn

⎞

⎠

= exp(Y
�q
mt ) − B

�q
mt (1 − ln B

�q
mt + Y

�q
mt ).

Since �
�q
mt (Y

�q
mt ) is a concave function of the single variable Y

�q
mt over [Y �q

mt , Y
�q
mt ],

�
�q
mt (Y

�q
mt ) can attain its maximum �

q
max at the point ln B

�q
mt , and through comput-

ing we can obtain that

�q
max = A

�q
mt − B

�q
mt + B

�q
mt ln B

�q
mt

= exp(Y q
mt ) − B

�q
mt (Y q

mt +1 − ln B
�q
mt )=exp(Y q

mt )(1 − uq
mt + uq

mt ln uq
mt ),

where uq
mt = (exp(ω

q
mt ) − 1)/ω

q
mt .

On the other hand, since �
�q
mt (Y

�q
mt ) is a convex function of Y

�q
mt , for any

Y
�q
mt ∈ [Y �q

mt , Y
�q
mt ], it follows that its maximum, denoted by �

q
max, will occur at

the point Y
�q
mt or Y

�q
mt . Note that

�
�q
mt (Y

�q
mt ) = exp(Y

�q
mt ) − B

�q
mt (1 − ln B

�q
mt + Y

�q
mt ) = �q

max,

�
�q
mt (Y

�q
mt ) = exp(Y

�q
mt ) − B

�q
mt (1 − ln B

�q
mt + Y

�q
mt )

= exp(Y q
mt )(1 − uq

mt + uq
mt ln uq

mt ).

Therefore, we have

�q
max = �q

max = exp(Y q
mt )(1 − uq

mt + uq
mt ln uq

mt ).

Together with (10), from the above results we can follow that uq
mt → 1 and

�
q
max = �

q
max → 0, as q → ∞. This means that

max
y∈�q

|F�q
mt (y) − fmt (y)| = max

y∈�q
|H�q

mt (y) − fmt (y)| → 0 as q → ∞,

and the proof is complete. ��
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Lemma 3 Assumption as in Lemma 2. Then

max
y∈�q

|L�q
m (y) − �m(y)| → 0 as q → ∞,

where m = 0, 1 . . . , 2p + M.

Proof It follows immediately from Lemma 2 and the definitions of L
�q
m (y) and

�m(y). ��

3 Branch and bound algorithm and its convergence

To globally solve the problem (P2) which is equivalent to the primal problem (P),
a branch and bound algorithm is developed based on the former linear relaxation
programming. This algorithm needs to solve a sequence of linear programming
over the initial rectangle � or partitioned subrectangle �q(k) in order to search a
global optimal solution of (P2). The basic idea of this method is to generate nonin-
creasing upper bounds and nondecreasing lower bounds until they approximate to
enough closely each other. The proposed algorithm is based on partitioning � into
subrectangles, and each is associated with a node of the branch and bound tree,
and each node is associated with a LRP on the corresponding subrectangle. At any
stage k (k ≥ 1) of the algorithm, suppose that we have a collection of active nodes
indexed by Qk , say, each is associated with a rectangle �q(k) ⊆ �, ∀ q(k) ∈ Qk .
For each such node q(k), we will have computed a lower bound L Bq(k) via solution
of LRP(�q(k)), so that the lower bound of optimal value of problem (P2) at the
stage k is given by L B(k) = min{L Bq(k), q(k) ∈ Qk}. We now select an active
node q(k) such that L B(k) = L Bq(k) for further considering. Then we partition
the selected rectangles into two subrectangles according to the following branch-
ing rules. For these two subrectangles the feasibility checking are applied, in order
to identify whether the subrectangles should be eliminated. Computing the lower
bounds for each new undeleted nodes by solving the corresponding LRP as before.
If necessary and possible, we will update the upper bound of incumbent solution
V ∗. Then, the active nodes collection Qk will satisfy L Bq(k) < V ∗, ∀ q(k) ∈ Qk ,
for each stage k. Upon fathoming any nonimproving nodes, we obtain a collection
of active nodes for the next stage, and this process is repeated until convergence is
obtained.

The critical element in guaranteeing convergence to a global minimum is the
choice of a suitable branching rule. In this paper, we choose a simple and standard
bisection rule. This method is sufficient to ensure convergence since it drives all
the intervals to zero for the variables that are associated with the term that yields
the greatest discrepancy in the employed approximation along any infinite branch
of the branch and bound tree.
Branching rule:

Assume that a rectangle�q(k) = {y | yq
n

≤ yq
n ≤ yq

n , n = 1, . . . , 2p+N } ⊆ �

is going to be partitioned. Then the selection of the branching variable yλ which
possesses the maximum length in �q(k) and the partitioning of �q(k) is done using
the following rule. Let λ = arg max{yq

n − yq
n
, n = 1, . . . , 2p + N }, and partition
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�q(k) by bisecting the interval [yq
λ, yq

λ] into the subintervals [yq
λ, (yq

λ + yq
λ)/2] and

[(yq
λ + yq

λ)/2, yq
λ].

After these preparations we can now formulate our branch and bound algorithm.
The basic steps of the algorithm are summarized in the following.
Algorithm statement:

Step 0 A convergence tolerance ε is selected, and the iteration counter k is set to
zero, Qk = {1}, q(k) = 1, �q(k) = �1 = �. Set the initial upper V ∗ = ∞. Solve
LRP(�q(k)), and denote the corresponding optimal solution and optimal value by
(ŷ(�q(k)), L Bq(k)), and let the initial lower bound L B(k) = L Bq(k). If ŷ(�q(k))
is feasible for (P2), then update upper V ∗. If V ∗ − L B(k) ≤ ε, then stop with
ŷ(�q(k)) as the prescribed solution to problem (P2). Otherwise, proceed to Step 1.

Step 1 Choose a branching variable yλ to partition �q(k) to get two subrectangles
�q(k)·1 and �q(k)·2 according to the selected branching rule. Replace q(k) by these
two new node indices q(k) · 1 and q(k) · 2 in Qk .

Step 2 For each new node index q(k) · ν where ν = 1, 2, compute

�m(ν) =
�m∑

t=1, cmt >0

cmt exp(Y �q(k)·ν
mt )

+
�m∑

t=1, cmt <0

cmt exp(Y
�q(k)·ν
mt ) for m = 1, . . . , 2p + M,

where cmt , Y �q(k)·ν
mt and Y

�q(k)·ν
mt have been defined in Sect. 2.2. If �m(ν) > 0

for some m ∈ {1, 2, . . . , 2p + M}, that is, the problem (P2) is infeasible for
�q(k)·ν , then the corresponding index q(k) · ν will be eliminated from Qk . If
�q(k)·ν (ν = 1, 2) are all been eliminated, then go to Step 4.

Step 3 For undeleted subrectangle update the corresponding parameters A�q(k)·ν
mt ,

B�q(k)·ν
mt , Y �q(k)·ν

mt and Y
�q(k)·ν
mt as defined in Sect. 2.2. Solve problem LRP(�q(k)·ν)

where ν = 1 or ν = 2 or ν = 1, 2, and denote the obtained optimal solutions and
optimal values by (ŷ(�q(k)·ν), L Bq(k)·ν). Then if ŷ(�q(k)·ν) is feasible for (P2),
update the upper bound V ∗ = min{V ∗, �0(ŷ(�q(k)·ν))}. If L Bq(k)·ν > V ∗, then
delete the corresponding node.

Step 4 Fathom any nonimproving nodes by setting Qk+1 = Qk − {q(k) ∈ Qk |
L Bq(k) ≥ V ∗ − ε}. If Qk+1 = ∅ then stop, and V ∗ is the optimal value, y∗(κ)
with κ ∈ κ0 is a global optimal solution, where κ0 = {κ | V ∗ = �0(y∗(κ))}.
Otherwise, k = k + 1.

Step 5 Set the lower bound L B(k) = min{L Bq(k) | q(k) ∈ Qk}, then select an
active node q(k) ∈ arg min{L Bq(k)} for further considering, and go to Step 1.

Next, we will give the convergence of the algorithm.

Theorem 2 Suppose that problem (P2) has a global optimal solution, and let �∗
0

be the global optimal value of (P2). Then:
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(i) (For the case ε > 0): The algorithm always terminates after finitely many
iterations yielding a global ε-optimal solution y∗ and a global ε-optimal
value V ∗ for problem (P2) in the sense that

y∗ ∈ �, V ∗ − ε ≤ �∗
0 ≤ V ∗ with V ∗ = �0(y∗);

and
(ii) (For the case ε = 0): If the algorithm does not terminate after finitely many

iterations, then every accumulation point of a infinite sequence {yk} generated
by the algorithm is a global optimal solution for problem (P2).

Proof (i) If the algorithm is finite, then it terminates after finitely many iterations
k, k ≥ 0. Upon termination, by solving problem LPR(�q(k)) for some �q(k) ⊆ �,
we can find a feasible solution y∗ and a upper bound V ∗ of �∗

0 for problem (P2)
satisfying y∗ ∈ �, V ∗ = �0(y∗) and

L Bq(k) ≥ V ∗ − ε, ∀ q(k) ∈ Qk .

By Lemma 1, it is easy to show by standard arguments for branch and bound
algorithm that

L Bq(k) ≤ �∗
0.

Since y∗ is a feasible solution for problem (P2),

V ∗ = �0(y∗) ≥ �∗
0.

Taken together, the three previous statements imply that

V ∗ − ε ≤ L Bq(k) ≤ �∗
0 ≤ V ∗.

Therefore, V ∗ − ε ≤ �∗
0 ≤ V ∗.

(ii) Suppose that the algorithm is infinite. Then, since the bisection of rectangles
is exhaustive [see Horst and Tuy 2003], by the branching rule the proposed branch
and bound algorithm can always generate an infinite rectangle sequence {�k} with
�k = [yk, yk] such that �k+1 ⊆ �k ⊆ R2p+N and ∩∞

k=1�k = {y∗} with �1 = �.

Let {yk} be a infinite sequence satisfying yk ∈ �k for any k, then we clearly have
limk→∞ yk = y∗. Note that � is a compact set, and so, without loss of general-
ity, there exists a subsequence {yl} of {yk} such that yl is the optimal solution of
RLP(�q) with L B(l) = L�l

0 (yl) and liml→∞ yl = y∗. Since the nondecreasing
sequence {L B(l)} is bounded from above by min

y∈F
�0(y) = �∗

0, where F denotes

the feasible region of problem (P2), then there exists a limit such that

lim
l→∞ L B(l) � L B ≤ �∗

0. (11)

In addition, for any given l, by yl ∈ �l we have

�m(yl) − L�l
m (yl) ≤ max

y∈�l
|�m(y) − L�l

m (y)|, m = 1, . . . , 2p + M. (12)
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Letting {y∗} = �∗, and using Lemma 3, by taking the limit as l → ∞ the above
inequality (12) implies that

�m(y∗) ≤ L�∗
m (y∗) ≤ 0, for m = 1, . . . , 2p + N ,

and hence, y∗ is feasible for problem (P2). Moreover, by Lemma 3 and (11) it is
clear that

�0(y∗) = lim
l→∞ �0(yl) = lim

l→∞ L�l
0 (yl) = lim

l→∞ L B(l) ≤ �∗
0.

Therefore, y∗ is a global optimization solution for problem (2), and the proof is
complete. ��

4 Numerical experiment

To verify the performance of the proposed global optimization algorithm, there
exist at least two computational issues to be considered in the following.

The first one involves in computing the scalars l j , u j , L j and U j under
Assumption 1. The Bernstein Algorithm (Nataray and Kotecha 2004; Berz and
Hoffstatter 1998) has established an important tool for finding bounds on the range
of multivariate polynomials, and so, these scalars l j , u j , L j and U j can be ob-
tained on the given initial box X via Bernstein Algorithm such that 0 ≤ n j (x) ≤
u j , 0 < L j ≤ d j (x) ≤ U j .

The second one concerns the lower bound computing process which is obtained
by solving the linear relaxation programming (LRP) from Sect. 2. This linear pro-
gramming can be solved by some existing efficient and known methods. Here we
adopt the simplex algorithm to solve the linear relaxation programming, and so the
complement of the proposed global optimization algorithm will depend upon the
simplex algorithm.

The algorithm is coded with C++ and some test problems are implemented on a
Celeron IV (1693 MHz) microcomputer. Numerical results show that the proposed
algorithm can globally solve the problem (P).

Below we only describe some of these sample problems and the corresponding
computational results.

Example 1

(P)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min h(x) = −−x2
1 + 3x1 − x2

2 + 3x2 + 3.5

x1 + 1

− x2

x2
1 − 2x1 + x2

2 − 8x2 + 20

s.t. 2x1 + x2 ≤ 6,
3x1 + x2 ≤ 8,
−x1 + x2 ≥ −1,
X = {x : 1 ≤ x1 ≤ 3, 1 ≤ x2 ≤ 3 },

For solving this problem, we firstly give the upper and lower bounds of n1(x),
n2(x), d1(x) and d2(x). Clearly, the upper and lower bounds of n2(x) and d1(x)
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are u2 = 3, l2 = 1 and U1 = 4, L1 = 2, respectively. For all x ∈ X , by using
the (3, 3)th Bernstein polynomial, U2 = 16 and L2 = 4 can be obtained, and by
using the (5, 5)th Bernstein polynomial, we have u1 = 8.3, l1 = 3.5 .

Secondly, with ε = 1.0E-8, the algorithm found a global ε-optimal mini-
mum V ∗ = −4.060819161 after 2638 iterations at the global ε-optimal solution
(x1, x2)

T = (1.0, 1.743823132), and the CPU time of the algorithm is 16.23 s.

Example 2

(P)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min h(x) = a1
−x2

1 + 3x1 + 2x2
2 + 3x2 + 3.5

x1 + 1

− a2
x2

x2
1 − 2x1 + x2

2 − 8x2 + 20

s.t. 3x1 + x2 ≤ 8,

x1 − x−1
1 x2 ≤ 1,

2x1x−1
2 + x2 ≤ 6,

X = {x : 1 ≤ x1 ≤ 3, 1 ≤ x2 ≤ 3 },
where a1 = 0.25, a2 = −1.75.

Similar to Example 1, for this problem, the upper and lower bounds of n2(x),
d1(x) and d2(x) are the same as Example 1. By using the (3, 3)th Bernstein poly-
nomial, for n1(x) we can obtain u1 = 33.1666667 and l1 = 8.5 for all x ∈ X .

With ε = 1.0E-8, the algorithm found the global ε-optimal minimum V ∗ =
0.883868686 after 420 iterations at the global ε-optimal solution

(x1, x2)
T = (1.618033989, 1.0),

and the CPU time of the algorithm is 3.52 s.

Example 3

(P)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

min h(x) = a1
n1(x)
d1(x)

+ a2
n2(x)
d2(x)

s.t. 2x−1
1 + x1x2 ≤ 4,

x1 + 3x−1
1 x2 ≤ 5,

x2
1 − 3x3

2 ≤ 2,
X = {x : 1 ≤ x1 ≤ 3, 1 ≤ x2 ≤ 3 },

where a1 = −1.35, a2 = 12.99, and

n1(x) = x2
1 x0.5

2 − 2x1x−1
2 + x2

2 − 2.8x−1
1 x2 + 7.5,

d1(x) = x1x1.5
2 + 1,

n2(x) = x2 + 0.1,

d2(x) = x2
1 x−1

2 − 3x−1
1 + 2x1x2

2 − 9x−1
2 + 12.

For this problem, we firstly apply to the equivalence transformation

n1(x)

d1(x)
= x1x2(x2

1 x0.5
2 − 2x1x−1

2 + x2
2 − 2.8x−1

1 x2 + 7.5)

x1x2(x1x1.5
2 + 1)

= x3
1 x1.5

2 − 2x2
1 + x1x3

2 − 2.8x2
2 + 7.5x1x2

x2
1 x2.5

2 + x1x2
�

n′
1(x)

d ′
1(x)

.
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Similarly,

n2(x)

d2(x)
= x1x2

2 + 0.1x1x2

x3
1 − 3x2 + 2x2

1 x3
2 − 9x1 + 12x1x2

�
n′

2(x)

d ′
2(x)

.

Then, for the upper and lower bounds of d ′
1(x) and n′

2(x), we can easily obtain
U1 = 149.2961148, L1 = 2, and u2 = 27.9, l2 = 1.1. For n′

2(x), by using the
(4, 4)th Bernstein polynomial, we have U2 = 601 and L2 = 3. In order to get u1
and l1, we let x0.5

2 = x̂2, then the given box X = [1, 3]× [1, 3] is transformed into
[1, 3] × [1,

√
3], consequently, u1 = 246.113037 and l1 = 4.7 are given by using

the (4, 7)th Bernstein polynomial.
With ε = 1.0E − 7, the algorithm found the global ε-optimal minimum V ∗ =

−1.96149893 after 15243 iterations at the global ε-optimal solution

(x1, x2)
T = (2.698690670, 1.20758556),

and the CPU time of the algorithm is 130.62 s.

5 Concluding remarks

In this paper, a global optimization algorithm is presented for solving the sum of
generalized polynomial ratios problem (P) on a nonconvex feasible region, which
arises in various engineering design problems. In the algorithm an equivalent prob-
lem (P2) is introduced firstly, then a linear relaxation programming is presented
based on linear underestimating functions of the objective and constraint functions
of problem (P2). Hence the lower bounding subproblems are linear programming
problems that can be solved by some existing efficient and known methods. These
characteristics offer computational advantages that can enhance the efficiencies of
the proposed algorithm. The algorithm was applied to several test problems, the
convergence of the global minimum was achieved in all case.

It is hoped in practice, the proposed algorithm and the ideas used in this paper
will offer some valuable tools for solving the sum of nonlinear ratios problems on
a nonconvex feasible region.
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