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Abstract The paper surveys the complexity results for job shop, flow shop, open
shop and mixed shop scheduling problems when the number n of jobs is fixed while
the number r of operations per job is not restricted. In such cases, the asymptotical
complexity of scheduling algorithms depends on the number m of machines for a
flow shop and an open shop problem, and on the numbers m and r for a job shop
problem. It is shown that almost all shop-scheduling problems with two jobs can
be solved in polynomial time for any regular criterion, while those with three jobs
are N P-hard. The only exceptions are the two-job, m-machine mixed shop prob-
lem without operation preemptions (which is N P-hard for any non-trivial regular
criterion) and the n-job, m-machine open shop problem with allowed operation
preemptions (which is polynomially solvable for minimizing makespan).

1 Introduction

In 2004, there was the 50th anniversary of the publication of the first polynomial
algorithm given by Johnson (1954) for a flow shop problem with two machines and
makespan minimization. In Johnson (1954) and in the majority of the subsequent
papers on scheduling theory basically systems with a fixed number of machines and
an unrestricted number of jobs have been investigated. In this survey, we present
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all known complexity results for shop-scheduling problems with a fixed number
of jobs and an unrestricted number of machines or operations per job. The most
important results obtained for a job shop problem with m ≥ n are presented in this
survey with proofs.

The job shop problem may be formulated as follows. Given are n jobs J =
{J1, J2, . . . , Jn} and m machines M1, M2, . . . , Mm . Job Ji consists of a sequence
O1i , O2i , . . . , Ori ,i of ri operations which must be processed in the given order, i.e.
operation O j+1,i cannot start before operation O ji is completed, j=1, 2, . . . , ri −1.
Associated with each operation O ji there are a processing time p ji > 0 and a
machine µ j i ∈ {M1, M2, . . . , Mm}. Operation O ji must be processed for p ji time
units on machine µ j i . Each job can be processed by at most one machine at a
time and each machine can process at most one operation at a time. We assume
that all jobs and machines are available from starting time zero. If preemption of
operations is forbidden, then equality c ji = s ji + p ji must hold, where s ji and
c ji denote the starting time and completion time of operation O ji , respectively.
The job shop problem is to find a schedule which minimizes the given objective
function � = �(C1, C2, . . . , Cn), where Ci means the completion time of job Ji ,
i.e. Ci = cri ,i . The majority of known results for shop-scheduling problems has
been obtained for makespan minimization Cmax = max{Ci : Ji ∈ J }, and for the
minimization of the sum of the job completion times

∑ Ci = ∑n
i=1 Ci .

Depending on the type of job routes through m machines, which may be fixed
or not before scheduling, we obtain different classes of shop-scheduling problems.
In a flow shop, routes for all jobs are fixed and identical, namely: µ1i = M1, µ2i =
M2, . . . , µmi = Mm for each job Ji ∈ J .

In an open shop, job routes are not fixed before scheduling (and thus the choice
of job routes is a part of the decision for an open shop problem). It is known only
that each job has exactly one operation on each machine (the same as for a flow
shop).

In a job shop, routes of all jobs are fixed and can be different for different jobs.
Thus, a flow shop is a special case of a job shop. Note also that in a job shop, a
route of a job may have machine repetition or (and) absence of some machines.
Thus, in contrast to flow shop and open shop in which equality ri = m holds for
each job Ji , in a job shop each of the three possibilities is allowed: ri < m, ri = m
or ri > m.

In a mixed shop, there are n J jobs with fixed routes (as in a job shop) and
nO = n − n J jobs whose routes are not fixed (as in an open shop). However,
equality ri = m must hold for each job in a mixed shop.

For the classification of scheduling problems the three-field form α|β|γ is
used, where α characterizes the type of the processing system and the number of
machines. Thus, symbol F is used for the notation of a flow shop problem, O for an
open shop problem, J for a job shop problem and X for a mixed shop problem. The
parameter β defines a set of job constraints. The position γ specifies the objective
function. E.g. Johnson’s algorithm [1] has been developed for a flow shop problem
with two machines and minimization of makespan, i.e. for problem F2||Cmax.

As it was already mentioned, the majority of known results of scheduling theory
have been obtained for the case of a fixed number of machines m when the number
of jobs n > m can be arbitrarily large. In particular, the asymptotical complexity
of the algorithm given by Johnson (1954) is O(nlogn) and, hence, it is polynomial
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in the number of jobs n. In this paper, we survey all known results for the case of a
fixed number of jobs which define the boundary between easy and hard problems.
The complexity of the considered algorithms depends on the number m for flow
and open shop problems and on m and r = max{ri : Ji ∈ J } for job shop problems.

Along with the theoretical significance of the case n > m, it has practical
importance, in particular, for scheduling problems arising in modern microelec-
tronics when it is necessary to design a specific processing system with a fixed set
of jobs, where a rather cheap standard equipment (machines) can be used.

The paper is organized as follows. In Sect. 2, we present a table defining the
boundary between N P-hard and polynomially solvable job shop problems with
a fixed number of jobs. Sections 3 and 4 describe polynomial algorithms for job
shop problems with two jobs. Sections 4, 5 and 6 describe polynomial algorithms
for job shop problems with two machines and a fixed number of jobs. NP-hardness
of the job shop problem with n = m = 3 without operation preemption (with
n = 3, m = 2 with operation preemption) is proven in Sect. 7 (Sect. 8). In Sects. 9
and 10 we present tables defining the boundary between N P-hard and polynomi-
ally solvable problems of flow shop, open shop and mixed shop type. Concluding
remarks are given in Sect. 11. An appendix contains the N P-hardness proof of
problem J2 | n = 3, pmtn|Cmax. Hereafter, ‘pmtn’ means allowance of operation
preemption.

2 Job shop problems

In Table 1, we present known results concerning the complexity of algorithms for
job shop problems with an unrestricted number of operations per job. Besides the
notations given in the previous section, in Table 1 the following notation is used:
L = max{Li : Ji ∈ J, Li = ∑ri

j=1 p ji }. The symbol [p ji ] means that processing
times of all operations should be natural numbers. The symbol MPM in the fourth
column specifies that the processing times of all operations and the set of machines
on one of which the operation can be processed. In rows 11 and 12 of Table 1 any
non-decreasing function fi (Ci ) can be considered.

In the last column of Table 1, publications are listed in which the corresponding
algorithms are given or N P-hardness of the problem is proved. Since a number
of the results has been independently obtained by different authors, we present the
papers in an increasing order of their years of publication.

3 Two jobs without preemptions

Polynomial algorithms which construct optimal schedules for two jobs (see rows
1, 3–8 in Table 1) are based on a geometrical representation of schedules for prob-
lems J | n = 2|Cmax, which has been originally suggested in Akers (1956) and
Akers and Friedman (1956) and developed in Brucker (1988); Szwarc (1960) and
Hardgrave and Nemhauser (1963). In Sotskov (1985, 1991), the geometric algo-
rithm was generalized for problems J | n = 2|� and J | n = 2, pmtn|�. Next,
we describe this approach for problem J | n = 2|Cmax and prove its efficiency.

The job shop problem with two jobs may be formulated as a shortest path
problem in the plane with regular objects as obstacles. Figure 1 shows a shortest
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J1M3M1M2M10

M1

M3

M2

J2

Fig. 1 Path problem with obstacles

path problem with obstacles which corresponds to a job shop problem with two
jobs and r1 = 4 and r2 = 3. The processing times of the operations of job J1 (job
J2) are represented by intervals on the x-axis (y-axis) which are arranged in the
order in which the corresponding operations are to be processed. Furthermore, the
intervals are labelled by the machines on which the corresponding operations must
be processed.

A feasible schedule corresponds to a path from initial vertex O = (0, 0) to
terminal vertex H . This path has the following properties:

• the path consists of segments which are either parallel to one of the axes (an
operation of only one job is processed) or diagonal (operations of both jobs are
processed in parallel);

• the path has to avoid the interior of any rectangular obstacle of the form I1 × I2,
where I1 and I2 are intervals on the x-axis and y-axis which correspond to the
same machine (this follows from the fact that two operations cannot be pro-
cessed simultaneously on the same machine and that operation preemption is
not allowed);

• the length of the path, which corresponds to the schedule length, is equal to:

length l of horizontal parts plus length of vertical parts plus (length of
diagonal parts)/

√
2.

In general, we have consecutive intervals I x
ν (I y

ν ) of length pν1(pν2) where
ν = 1, 2, . . . , r1(r2). Furthermore, the rectangles I x

i × I y
j are forbidden regions if

and only if µi1 = µ j2. Finally, define

a =
r1∑

ν=1

pν1 and b =
r2∑

ν=1

pν2.

We have to find a shortest path from vertex O = (0, 0) to vertex H = (a, b) which
has only horizontal, vertical, or diagonal segments and which does not pass through
the interior of any of the forbidden regions. Next, we show that the problem can
be reduced to an unrestricted shortest path problem in an appropriate network N .
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Fig. 2 Definition of arcs

Furthermore, the unrestricted path problem may be solved in time which is linear
in the number of obstacles.

The network N = (V, A, l) is constructed as follows. The set of vertices V
consists of O , H , and the set of north-west corners (NW-corners) and south-east
corners (SE-corners) of all obstacles. O is considered as a degenerate obstacle in
which both the NW-corner and the SE-corner coincide. Each vertex i ∈ V \{H}
coincides with at the most two arcs going out of i . To construct these arcs, we go
from i diagonally in a NE direction until we hit either the boundary of the rectangle
defined by O and H or the boundary of an obstacle. In the first case, H is the only
successor of i and arc (i, H) consists of the path which goes from i diagonally to the
boundary and continues along the boundary to H (see Fig. 2). If we hit an obstacle
D, then there are two arcs (i, j) and (i, k) where j and k are the NW-corner and
SE-corner of D, respectively. The corresponding polygons are shown in Fig. 2.

The length l(i, j) of an arc (i, j) is equal to the length of the vertical or hor-
izontal piece plus the length of the projection of the diagonal piece on the x-axis
(or equivalently, y-axis).

It is easy to see that an O-H -path (i.e. a path from O to H ) in N = (V, A, l)
corresponds to a feasible schedule, and its length is equal to the corresponding
Cmax-value. Furthermore, an optimal schedule corresponds with a shortest O − H -
path in N .

The network N is acyclic and has O(s) arcs where s in the number of obstacles.
Thus, a shortest O-H -path can be calculated in time O(s). In general s = r2 where
r = max{r1, r2}.

To construct the network N = (V, A, l) we apply a line sweep with the SW–
NE-line y−x = c. We move this line parallel to itself from north-west to south-east.
The sweep line intersects the obstacles creating an ordered set of intervals. Let S be
the corresponding set of obstacles, together with the order induced by the intervals
on the sweep line. We keep track of changes in S during the sweep. There are two
possible events where changes occur.

• If the sweep line hits an NW-corner i of an obstacle Dl , then we have to insert
Dl into the ordered set S. If there is a next element Dh in S, which has an
NW-corner j and a SE-corner k, then the arcs (i, j) and (i, k) must be inserted
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Fig. 3 Going through obstacles

into A and we have to calculate d(i, j) and l(i, k). Otherwise, we have to insert
(i, H) into A and calculate l(i, H).

• The sweep line hits a SE-corner i of an obstacle Dl . If there is a next element
Dh in S with an NW-corner j and a SE-corner k, then we insert (i, j) and (i, k)
into A and calculate l(i, j) and l(i, k). Otherwise, we have to insert (i, H) into
A and calculate l(i, H). Finally, Dl must be deleted from S.

The arcs (i, j), (i, k) and the distances d(i, j), d(i, k) can be calculated in con-
stant time. Furthermore, if we use a balanced tree, e.g. a 2–3 tree (see Aho et al.
(1974)), then the insert and delete operations can be done in O(log r) time. Thus,
N can be constructed in O(r2 log r) time.

4 Two jobs with preemptions

Next, we describe the modification of the above algorithm for problem J | n =
2, pmtn | Cmax. If operation preemption is allowed in the previous problem, then
we may go horizontally or vertically through obstacles. For this reason, the network
N = (V, A, l) must be defined differently.

The vertex set is defined recursively as follows:

• O is a vertex.
• If v is a vertex and the half-line starting from v and going in a NE-direction

hits an obstacle, then v has the two successors i and j shown in Fig. 3a or b.
• If v is a vertex and the half-line starting from v and going in a NE-direction hits

the borderline given by the rectangle defined by O and H , then H is the only
successor of v.

We denote the modified network by N .
Arcs (i, j) and arc lengths d(i, j) are defined as before in Sect. 3. If in the

above algorithm for problem J | n = 2 | Cmax the “NW-corner” and “SE-corner”
are replaced by “north boundary point” and “east boundary point”, respectively,
this modified algorithm applied to N solves problem J | n = 2, pmtn | Cmax. The
running time of this modified algorithm is bounded by O(r3). This can be seen as
follows.

Consider for each SE-corner or NW-corner v, which can be reached from O ,
the unique path starting from v which avoids the boundaries of the obstacles it hits.
If such a path hits the SW-corner t of an obstacle (or a boundary point t ′ of the
rectangle R, defined by O and H ), this path terminates in t (or in H ). There are at
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M2

M1

t0 = 0 t1 t2 t3 t4 t5 t6 t7 = T

Fig. 4 Block structure of a schedule

most O(r1, r2) of these paths and each has at the most r1+r2 arcs. Furthermore, the
set of all these paths covers all arcs going through the interior of obstacles. Thus,
the total number of arcs which go through the interior of obstacles is bounded by
O(r3). Because the number of arcs not going through the interior of obstacles is
bounded by O(r1r2) and the total computation time of the shortest path algorithm
is proportional to the number of all arcs, we have an O(r3)-algorithm.

Finally, we remark that all of the geometric methods also work if we allow
repetition of machines.

5 Two machines, no preemptions

It is necessary to note that job shop problems with a fixed number of jobs are not
NP-hard in the strong sense (unary NP-hard) since there exists a pseudo-polynomial
algorithm for the decision problem, for example, in Servach (1983) and Brucker et
al. (1989) (see row 8 in Table 1). The algorithms specified in rows 10–13 of Table 1
are polynomial (since k represents a constant). However, these algorithms will be
really effective only for sufficiently small values k and r .

We give a shortest path formulation for the two-machine job shop problem with
k jobs and makespan objective. The corresponding network is acyclic and has at
the most O(rk) vertices. It can be constructed in time O(r2k). Thus, the job shop
problem can be solved in O(r2k) time. We consider only active schedules, i.e.
schedules in which no operation can be started earlier without violating feasibility.
Each schedule can be transformed into an active one without increasing the Cmax-
value. Given an active schedule S, we have a unique sequence t0 = 0 < t1 < t2 <
· · · < tq of all times at which either two operations begin processing jointly on
both machines or one operation begins processing on one machine while an idle
period is starting on the other machine (see Fig. 4). We define tq+1 = T where T
is the Cmax-value of the schedule.

Furthermore, we call the set Dν of operations scheduled in the interval [tν, tν+1]
(ν = 0, 1, . . . , q) a block. For a block D, let D1(D2) be the set of operations of D
processed on machine M1 (machine M2) and denote the sum of processing times
of all operations in D1 (D2) by l1

D(l2
D). A block D associated with the interval

[ti , ti+1] has the properties that

• all jobs in D1 (D2) are scheduled in the interval [ti , ti +l1
D] (interval [ti , ti +l2

D]),
• ti+1 = ti + max{l1

D, l2
D}, and

• one machine is idle in the interval [min{l1
D, l2

D}, ti+1].
The value lD = max{l1

D, l2
D} = ti+1 − ti is called the length of block D.

It follows that a schedule is defined by a sequence of blocks and the schedule
length is the sum of the lengths of all blocks in that sequence.
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M1 O1
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O3

O4 . . .

. . . Or– 1
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Fig. 5 Decomposition of a block

To formulate the job shop problem as a shortest path problem in some network
N we characterize blocks in the following way. For a given block, let us consider
the vector u = (u( j))k

j=1 where u( j) is the index of the last operation Ou( j), j of
job j which is processed in the previous block. Thus, the block can be described
by pairs (u, v) of index tuples. The network N = (V, A, l) is defined by

• the set V of all index tuples u = (u( j)) with 0 ≤ u( j) ≤ n j for j = 1, 2, . . . , k.
The vector s with s( j) = 0 for all j = 1, 2, . . . , k is the initial vertex, the
vector t with t ( j) = n j for all j = 1, 2, . . . , k is the terminal vertex of the
network,

• (u, v) ∈ A if and only if u < v and the set of operations

{Oi( j), j | j = 1, 2, . . . , k; u( j) < i( j) ≤ v( j)}
defines a block, and

• for each (u, v) ∈ A, its length l(u, v) is the length of the block corresponding
to (u, v).

In network N , each s–t-path p corresponds to a feasible schedule and the length
of p is equal to the makespan of this schedule. We obtain this schedule by sched-
uling the blocks corresponding to the arcs in p consecutively as shown in Fig. 4.
Furthermore, there is an s–t-path corresponding to an optimal schedule. Thus, to
solve the job shop problem we have to find a shortest s–t-path in N .

It remains to show that the network can be constructed in time O(r2k). For this
purpose we will present an O(rk)-algorithm which, for a given vertex u, finds all
arcs (u, v) which define a block. W.l.o.g. let u = s where s is the initial vertex
defined in the previous section.

A block may be decomposed as shown in Fig. 5. This decomposition is defined
by operations Oi (i = 1, 2, . . . , r) with the property that Oi with odd (even) index
are processed on machine M1 (machine M2) and each pair of consecutive opera-
tions Oi and Oi+1 are overlapping. The Oi are called main operations.

We construct a directed graph G with O(rk) vertices and O(krk) arcs such that
all blocks starting in s can be found by visiting all vertices in this graph. This can
be done in O(krk) time.

G consists of s and of noninitial vertices defined by pairs (u, h) of index-tuples
u = (u( j)) together with a job index h defining a main operation Ou(h),h . Ver-
tex (u, h) defines a block consisting of all operations Oi j with i ≤ u( j) where
j = 1, 2, . . . , k. Vertex (v, l) is a successor of vertex (u, h) if v is derived from
u by adding a single operation, i.e. by incrementing one index u( j) by one. If
a main operation is added, then we have h �= j = l. In this case, Ou( j),l must
finish later than Ou(h),h . Otherwise, l = h and the added operation Ou( j), j must
finish earlier than the main operation Ou(h),h . The successors of s are the vertices
representing blocks consisting only of a main operation. Clearly, each vertex has
at most k successors. Thus, the graph can be searched in O(krk) time which is
O(rk) if k is fixed. Therefore, the network N can be constructed in time O(r2k).



470 P. Brucker et al.

j i k j

i k j k
. . .

Fig. 6 Block decomposition for n = 3 and no machine repetition

6 Three jobs, two machines, no machine repetition

We use the previous algorithm described in Sect. 5 to solve the special case with
three jobs and no machine repetition. Due to the fact that no machine repetition is
allowed blocks have a special structure which may be characterized by the follow-
ing two properties (see Fig. 6) which can be easily verified:

• with the exception of a first and a last operation, each operation in the block
overlaps exactly two other operations;

• the job indices are repeated periodically, i.e. the operations ordered according to
increasing starting times yield a sequence Ori , Osj , Otk, Or+1,i , Os+1, j , Ot+1,k ,
Or+2,i , . . .

Notice, that a block may also consist of exactly one operation.
For a block B there are at most three one-element blocks which may be a suc-

cessor of B. In a successor block of B containing more than one operation, two
operations begin at the same time. Given these two operations, there is a unique
maximal block satisfying conditions (a) and (b) and this maximal block can be
constructed in O(r) time. Each initial part of this maximal block may be a suc-
cessor of B. Due to the fact that there are only these two possibilities to start a
successor block of B, it follows that block B has at most O(r) successors and
these successors can be constructed in O(r) time.

This implies that the network has at most O(r4) arcs and can be constructed in
O(r4) time. Thus, we have an O(r4)-algorithm.

Surprisingly, the job shop problem with two machines and three jobs is N P-
hard if we allow machine repetition. This is shown in Sect. 8 and the appendix.

7 Three jobs

In this section, we show how to prove that problem J3 | n = 3 | Cmax is binary
N P-hard.

The complexity of problem J3 | n = 3 | Cmax is determined through a reduc-
tion from the following version of the partitioning problem, known as even–odd
partition.
PARTITION: Given positive integers ei (i = 1, 2, . . . , 2k) with

∑2k
i=1 ei = 2E =

�. Does there exist a partition of the index set A = {1, 2, . . . , 2k} into subsets A1
and A2 such that

∑
i∈A1

ei = E and A1 includes exactly one element from each
pair (2i − 1, 2i) where i = 1, 2, . . . , k?

For problem J3 | n = 3 | Cmax we first allow repetition of machines.

Theorem 1 Problem J3 | n = 3 | Cmax is binary N P-hard.
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J1

J2

J3

Fig. 7 J3 | n = 3 | Cmax-instance

Proof Given an instance of PARTITION the corresponding instance of J3 | n =
3 | Cmax is constructed as follows. Let H be an integer with H > 8E . The struc-
ture of the J3 | n = 3 | Cmax-instance can be divided into k identical periods.
One period is shown in Fig 7. Operations to be processed on M1, M2, and M3 are
represented by white circles, black circles, and squares, respectively.

The processing times of the corresponding operations are as follows:

p6l+1,1 =
l−1∑

ν=−1

�2ν+1,2ν+2, p6l+2,1 = H −
l−1∑

ν=−1

�2ν+1,2ν+2,

p6l+3,1 = H +
l−1∑

ν=−1

�2ν+1,2ν+2 + e2l+2, p6l+4,1 = �2l+1,2l+2,

p6l+5,1 = 2H − �2l+1,2l+2, p6l+6,1 = 2H,

p4l+1,2 = H, p4l+2,2 = 2H, p4l+3,2 = 2H, p2l+4,2 = H,

p4l+1,3 = e2l+1, p4l+2,3 = e2l+2, p4l+3,3 = �2l+1,2l+2, p4l+4,3 = H,

where � j, j+1 = e j − e j+1, �−1,0 = 0 and l = 0, 1, . . . , k − 1.

It can be shown that problem PARTITION has a solution if and only if the cor-
responding J3 | n = 3 | Cmax-instance has a solution with Cmax ≤ 6k H + E .

��
By adding separating operations with very small processing times ε > 0 the

N P-hardness proof also for J3 | n = 3 | Cmax without machine repetition can be
accomplished.

8 Two machines, three jobs with preemptions

We now consider the preemptive two-machine version of the problem discussed in
Sect. 7. This problem is usually denoted by J2 | n = 3, pmtn | Cmax. First, we
will show that this problem can be solved pseudopolynomially. This follows from
the fact that problem Jm | n = k, pmtn | Cmax can be solved in time O(rT k−1)
where

T = k
max
j=1

n j∑

i=1

pi j and r = k
max
j=1

n j .

In the second part we state the main result of this section, namely problem J2 |
n = 3, pmtn | Cmax is N P-hard.
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We start with an observation which is essential for the pseudopolynomial algo-
rithm for problem Jm | n = k, pmtn | Cmax and which is also useful for the
N P-hardness proof.

Given a schedule S, a slice of S is a maximal time period [t, t ′] such that dur-
ing the whole period [t, t ′] each machine is either idle or continuously processes
exactly one operation. Clearly, a schedule S decomposes into a sequence of slices,
i.e. if Cmax is the makespan of S, then there are unique slices [t0, t1], (ti , ti+1](i =
1, 2, . . . , h − 1) with t0 = 0 < t1 < · · · < th = Cmax.

Lemma 1 For problem J | pmtn | Cmax there exists an optimal schedule which
has a slice decomposition [t0, t1], (ti , ti+1] (i = 1, 2, . . . , h − 1) such that at each
time ti (i = 1, 2, . . . , h) at least one operation finishes.

This result follows from the fact that an arbitrary schedule can be transformed
into a schedule satisfying the required conditions without increasing the objective
function.

Next, we show that problem Jm | n = k, pmtn | Cmax can be formulated as
a problem of finding a shortest path in an acyclic network with O(rT k−1) arcs.
Thus, the problem can be solved in time O(rT k−1).

The construction of the network N is based on the fact, that there exists an
optimal schedule which decomposes into slices such that each slice contains a
finishing operation, i.e. for a slice (ti , ti+1] there exists a job J j such that some
operation Ou j finishes at time ti+1.

We may associate with ti+1 an operation Ou j which finishes at time ti+1. Fur-
thermore, for each job Jν, ν = 1, 2, . . . , k, we denote by sν the total processed
time of job Jν at time ti+1. Note that s j = ∑u

i=1 pi j . Therefore, we associate with
ti+1 a vertex

v = (Ou j , s1, . . . , s j−1, s j+1, . . . , sk)

in the network N . There are at most rkT k−1 = O(rT k−1) vertices. A vertex

v′ = (Ol ′ j ′, s′
1, . . . , s′

j ′−1, s′
j ′+1, . . . , s′

k)

is a successor of vertex v in network N , if (v, v′) defines a slice. Ol ′ j ′ is a finishing
operation of this slice and

lv,v′ =

⎧
⎪⎨

⎪⎩

l ′∑

ν=1
pν j ′ − s j ′ if j ′ �= j

pl ′ j ′ otherwise

is its length.
Each vertex has at most k · ( k

m

)
successors which is a constant number if m and

k are fixed. Thus, network N has O(rT k−1) arcs.
Notice that there are several sources and sinks. Each path from a source to a

sink in network N corresponds with a feasible schedule and the length of the path
corresponds with the makespan of the corresponding schedule. Due to Lemma 1
there exists an optimal schedule which is represented by a path in network N . Thus,
to solve problem Jm | n = k, pmtn | Cmax we have to find a shortest path from a
source to a sink in N which can be done in O(rT k−1) time.
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Again, the problem PARTITION will be reduced to problem J2 | n = 3 |
Cmax. The corresponding reduction is similar to the reduction from PARTITION
to J3 | n = 3, pmtn | Cmax. The proof of the following theorem is given in the
appendix.

Theorem 2 Problem J2 | n = 3, pmtn | Cmax is binary N P-hard.

An immediate consequence of the results in this section is that the job shop
problem with two machines, three jobs, and unit processing times is binary N P-
hard if we allow machine repetition.

The investigation of job shop problems with a fixed number of jobs has led to an
unexpected result concerning the influence of preemptions of an operation. For the
first time, a problem has been specified for which there exists a polynomial algo-
rithm for the case when preemptions are forbidden while it is N P-hard in the case
of allowed preemptions (see rows 11, 12 and rows 22, 23 in Table 1). Before the
publication of Brucker et al. (1994, 1999), for all investigated problems for which a
polynomial algorithm exists in the case of forbidden operation preemptions, there
exists also a polynomial algorithm in the case of allowed operation preemptions.

9 Flow shop and open shop

Since a flow shop is a special case of a job shop, the polynomial algorithms given in
Table 1 for job shop problems can also be used for determining an optimal solution
for a flow shop. Therefore, in Table 2 only those algorithms are presented which
have a smaller complexity in comparison with the algorithms for the corresponding
job shop problem.

In Gonzalez and Sahni (1976), it has been proven that problem O3 || Cmax is
N P-hard and an algorithm of complexity O(m) for problem O2 || Cmax as well
as an algorithm of complexity O(n2m2) for problem O | pmtn | Cmax have been
developed. Based on these results, one can conclude by taking into account the
symmetry of jobs and machines for problems O || Cmax and O | pmtn | Cmax
that problem O | n = 3 | Cmax is N P-hard while problems O | n = 2 | Cmax and
O | n = k, pmtn | Cmax are polynomially solvable.

It is necessary to note that for criterion
∑

Ci and other classical criteria open
shop problems do not possess the symmetry property of jobs and machines. Nev-
ertheless, in Shakhlevich and Strusevich (1990) an algorithm of linear time in
the number of machines has been suggested for problems O | n = 2 | � and
O | n = 2, pmtn | � for an arbitrary regular optimality criterion.

10 Mixed shop

In paper Masuda et al. (1985), a mixed shop problem has been considered for the
first time in which n J ≤ n jobs of the set J have the same fixed route (as for the
flow shop problem), and routes of nO ≤ n jobs of set O are not fixed (as for the
open shop problem). It is assumed that equality n = n J + nO holds.

In Table 3, known results about the complexity of problems X || � with a fixed
number of jobs are given. Number n J means the number of jobs with fixed routes
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which may be different for different jobs. The sign ∞ in the second and third
column of Table 3 specifies that the corresponding parameter can be arbitrarily.

In Shakhlevich et al. (2000), a review of known results for mixed shop prob-
lems is given when the numbers n J ≤ n and nO ≤ n of the jobs of the set J are
not fixed. It is necessary to note that, if the problem is N P-hard for the makespan
criterion, it remains N P-hard for all other regular criteria traditionally considered
in scheduling theory.

11 Conclusion

The literature in scheduling theory includes a large number of reviews and books
devoted to one-stage and multi-stage processing systems. In this review, the border
between polynomially solvable and N P-hard scheduling problems with a fixed
number of jobs and an unlimited number of machines is given.

In particular, as it follows from Table 1, there is a polynomial algorithm for any
regular optimization criterion in the case of two jobs while the problem with three
jobs is N P-hard for any criterion traditionally considered in scheduling theory.
The construction of a makespan optimal schedule without operation preemptions
for a mixed shop problem is possible in polynomial time, if the number of jobs and
machines is fixed provided that one of the parameters m and n J is not larger than
two.

From Tables 1, 2 and 3 it follows that the classification of scheduling problems
with a fixed number of jobs is completed. Possible directions of further work in
this area can be the improvement of the complexity of efficient algorithms for the
criteria Cmax and

∑
Ci and also the investigation of similar scheduling problems

for other optimization criteria.

Acknowledgments This work has been supported by INTAS (projects 00-217 and 03-51-5501).

Appendix

Proof of Theorem 2 We reduce problem PARTITION polynomially to the follow-
ing decision problem. Does there exist a schedule for J2 | n = 3, pmtn | Cmax
such that Cmax ≤ y?

Given an instance of problem PARTITION we construct the following instance
for J2 | n = 3, pmtn | Cmax. Let H > 3� and set y = 41Hk +2�k +3.5�. The
structure of the J2 | n = 3, pmtn | Cmax - instance can be divided into k periods
as shown in Figure 8(a–c). In these figures, operations to be processed on machine
M1 (machine M2) are represented by white (black) circles. The processing times
of the operations are shown above the circles.

First, we show that if problem PARTITION has a solution, then a schedule with
Cmax ≤ y exists.

Assume that there is a partition A1, A2 of A = {1, 2, . . . , 2k} with
∑

i∈A1

ei =
∑

i∈A2

ei = E = 0.5�.
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J2

J1

5H + e2 2H + e2

2H + e15H + e1
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9H + 3∆5H + e1 + e212H 5H
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4H11H + ∆

11H + ∆

O11 O31

2H + e1 + e25H + e1 + e2
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J2
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J3
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4H

4H11H + ∆

11H + ∆

O51 O61 O71 O81

O72 O82 O92 O10,2 O11,2 O12,2

O53 O63 O73 O83

5H + e4 2H + e4

5H + e3 + e4 9H + 2∆ 5H + e3 + e4 2H + e3 + e4

2H + e35H + e3

The second period

J2

J1

J3

11H + ∆

11H + ∆

5H + e2k

O1+4(k−1),1 O2+4(k−1),1 O3+4(k−1),1

2H + e2k

O4k,1

O6k,2O5+6(k−1),2O4+6(k−1),2O3+6(k−1),2O2+6(k−1),2O1+6(k−1),2

O1+4(k−1),3

5H + e2k−1

O2+4(k−1),3

2H + e2k−1

O3+4(k−1),3

2H + e2k−1 + e2k12H 5H + e2k−1 + e2k 9H + 2∆ 5H + e2k−1 + e2k

4H

5H

4H

O4k,3

The last (kth) period

(a)

(b)

(c)

Fig. 8 a The first period; b the second period c the last (kth) period

Then we construct a schedule for the instance of problem J2 | n = 3; pmtn | Cmax
which consists of k blocks. The i th block corresponds to the i th period of the
instance.

If e1 ∈ A1 and e2 ∈ A2, the first block is as shown in Fig. 9a. Figure 9b shows
the first block for the case e1 ∈ A2, e2 ∈ A1. In both figures it is possible to switch
O43 and O41 in the last three slices. Furthermore, in each of these figures as well
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11H + ∆ H − ∆ 5H + e1 + e2

O22

12H

O12

5H + e1 + e2

O42

5H

O62

9H + 3∆

O23

2H + e1 + e2

O52

O11 O13 O31

2H + e2 10H + 2∆

O13 O33

2H + e1

5H + e2

O21 O41

3H + e2 − ∆ 5H + e1

O23

e2

O41

4H

O43 O41

H − 2e2 + ∆

11H + ∆ H − ∆ 5H + e1 + e2

O13 O11 O22

12H

O12 O23

5H + e1

2H + e1

O31 O11

10H + 2∆ 5H + e1 + e2

O42 O31

2H + e2 5H

O62

9H + 3∆

O32 O43

3H + e1 − ∆ 5H + e2

O21 O43

e1 2H + e1 + e2

O52 O43

H − 2e1 + ∆ 4H

O41

(a)

(b)

First block if e1 ∈ A1 and e2 ∈ A2

First block if e1 ∈ A2 and e2 ∈ A1

Fig. 9 a First block if e1 ∈ A1 and e2 ∈ A2; b first block if e1 ∈ A2 and e2 ∈ A1

as in the following figures the first line corresponds with M1 and the second line
corresponds with M2. Preemptions are indicated by arrows.

For the case e1 ∈ A1, e2 ∈ A2 the extensions of the first block (see Fig. 9a)
are shown for the cases e3 ∈ A1, e4 ∈ A2 and e3 ∈ A2, e4 ∈ A1 in Fig. 10a, b,
respectively. As we can choose either O41 or O43 to be the last operation in all
partial schedules can be combined.

Similarly, we get extensions for the case e1 ∈ A2, e2 ∈ A1 (see Fig. 9b) if in
the extension we interchange corresponding operations of the first and third job.
Note, that (as in the first block) in the second block we can choose O83 or O81 to
be scheduled as the last operation. Thus, in each Figs. 9a, b and 10a, b we have
two possible schedules.

Similarly, we construct blocks ν = 3, 4, . . . , k. The resulting schedule
has length y as shown in Fig. 11. In this figure we suppose that
A1 = {e1, e3, . . . , e2k−1} and A2 = {e2, e4, . . . , e2k}.

Next, we show that if a schedule with Cmax ≤ y exists for the instance, then
problem PARTITION has a solution. Due to Lemma 1 we may consider only
schedules in which at least one operation finishes at the end of each slice.

Taking into account
∑

µi j =M1
pi j = ∑

µi j =M2
pi j = 41 · H ·k +2� ·k +3 ·�,

the total idle time of machine M1 as well as the total idle time of machine M2 is
not more than 0.5� in the desired schedule.

Through an extensive case analysis it can be shown that in order to satisfy the
bound 0.5� for the idle time, we must schedule the operations from the first period
in one of the four ways shown in Fig. 9 (remember that O43 can be scheduled as
last operation instead of O41), the operations from the second period in one of the
four ways shown in Fig. 10, and so on. Thus, for the processing lengths on both
machines in each period we have two possibilities. These possibilities are indicated
in Fig. 12.
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11H + ∆ H − 2e1 5H + e3 + e4 2H + e3 10H + ∆ + 2e1 5H + e3 + e4 2H + e4 5H

O53 O51 O82 O73 O51 O10, 2 O71 O12, 2

∆ − 2e1 12H 5H + e3 9H + 2∆ 3H − ∆ + e3 + 2e1 e3 2H + e3 + e4 4H H + ∆ − 2e1 − 2e3

O41 O72 O63 O92 O83 O61 O83 O11, 2 O81 O83

5H + e4

11H + ∆ H − 2e1 5H + e3 + e4 2H + e4 10H + ∆ + 2e1 5H + e4 + e3 2H + e3 5H

∆ − 2e1 12H 5H + e4 9H + 2∆ 3H − ∆ + e4 + 2e15H + e3 e4 2H + e3 + e4 4H H + ∆ − 2e1 − 2e4

O51 O53 O82 O71 O53 O10, 2 O73 O12, 2

O43 O72 O61 O92 O81 O63 O81 O11, 2 O83 O81

(a)

(b)

Second block if e3 ∈ A1 and e4 ∈ A2

Second block if e3 ∈ A2 and e4 ∈ A1

Fig. 10 a Second block if e3 ∈ A1 and e4 ∈ A2; b Second block if e3 ∈ A2 and e4 ∈ A1

e1 e3 e2k−1

e2 e4 e2k

first block second block last (k-th) block

41H + 2∆ + 3e1 + 3e2 + e1 41H + 2∆ + 3e3 + 3e4 + e3 41H + 2∆ + 3e2k−1 + 3e2k + e2k−1

41H + 3∆ + 2e1 + 2e2 + e2 41H + 2∆ + 2e3 + 2e4 + e4 41H + 2∆ + 2e2k−1 + 2e2k + e2k

· · ·

Fig. 11 Schedule for the instance

∆

2e2

B1

e1

e2

∆

2e1 2e3

e4

2e4

e341H + 2∆ + 2e3 + 2e4

41H + 2∆ + 2e3 + 2e4

B2

41H + 2∆ + 2e1 + 2e2

41H + 2∆ + 2e1 + 2e2

Fig. 12 Lower bounds for the completion times on the machines

Let Bi = 41H +2�+2e2i +2e2i−1 for i = 1, 2, . . . , k. It follows from Fig.12
that for some set A1 ⊂ {1, 2, . . . , 2k} such that A1 includes exactly one element
from each pair (2i − 1, 2i) (i = 1, 2, . . . , k)

• ∑k
i=1 Bi + ∑

i∈A1
ei + � is a lower bound for the completion time on ma-

chine M2,
• ∑k

i=1 Bi +∑
i∈A1

ei +2(�−∑
i∈A1

ei ) is a lower bound for the completion time
on
machine M1.

Thus, we have
∑k

i=1 Bi + ∑
i∈A1

ei + � ≤ y = 41Hk + 2�k + 3.5� =
∑k

i=1 Bi +1.5� which implies
∑

i∈A1
ei ≤ 0.5� and

∑k
i=1 Bi +∑

i∈A1
ei +2(�−



480 P. Brucker et al.

∑
i∈A1

ei ) ≤ y which implies
∑

i∈A1
ei ≥ 0.5�. Therefore,

∑
i∈A1

ei = 0.5� and
we conclude that A1 solves the problem PARTITION.

It is easy to see that the above reduction of problem PARTITION to problem
J2 | n = 3, pmtn | Cmax is a polynomial one, and thus Theorem 2 is proven. ��
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