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Abstract In this paper, we introduce the symmetric strong vector quasi-equilib-
rium problem. We then demonstrate that the symmetric strong vector quasi-equi-
librium problem is solvable under the suitable assumptions. As an application, we
get an existence theorem of the strong saddle points of vector-valued functions.
In addition, we give a characterization of vector-valued properly quasi-convex
functions.
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1 Introduction and preliminaries

Let X, Y be real locally convex Hausdorff topological vector spaces, let E ⊂ X, D
⊂ Y be nonempty subsets. Let S : E × D → 2E and T : E × D → 2D be set-
valued mappings and let f, g : E × D → R be real functions. According to Noor
and Oettli (1994), the symmetric quasi-equilibrium problems consists in finding
(x̄, ȳ) ∈ E × D such that x̄ ∈ S(x̄, ȳ), ȳ ∈ T (x̄, ȳ), and

f (x̄, ȳ) � f (x, ȳ), for any x ∈ S(x̄, ȳ),

g(x̄, ȳ) � g(x̄, y), for any y ∈ T (x̄, ȳ).

The problem is a generalization of the equilibrium problem proposed by Blum
and Oettli (1994). The special cases of the equilibrium problem include, for
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instance, optimization problems; problems of Nash equilibriums; fixed point prob-
lems; variational inequalities; and complementarity problems (see Blum and Oettli
(1994)).

Fu (2003) introduced the symmetric weak vector quasi-equilibrium problems,
for which he obtained an existence theorem.

Recently, Ansari et al. (1997) introduced the concept of the strong minimal
solution in the vector equilibrium problem. In Chen and Hou (2000), stated that
the existence of the solution for the (strong) vector variational inequalities was still
an open problem. Fu (2000) discussed the existence of the solution for the strong
generalized vector equilibrium problems. Tan (2004) discussed the existence of the
solution for the strong vector quasi-variational inclusion problems.

In this paper, we will introduce the symmetric strong vector quasi-equilibrium
problem, and give an existence theorem for the solution of this problem. As an
application, we get an existence theorem of the strong saddle points of vector-val-
ued functions.

Throughout this paper, let Z be a real topological vector space, let C ⊂ Z be a
closed convex pointed cone. Cone C induces a partially ordering in Z , defined by

z1 � z2(or z2 � z1) if and only if z2 − z1 ∈ C.

Let X, Y, E, D, S, T be as above. Let the vector-valued functions f, g : E × D →
Z be given.

The symmetric strong vector quasi-equilibrium problem (in short, SSVQEP)
consists in finding (x̄, ȳ) ∈ E × D such that x̄ ∈ S(x̄, ȳ), ȳ ∈ T (x̄, ȳ), and

f (x̄, ȳ) � f (x, ȳ), for any x ∈ S(x̄, ȳ), (1.1)

g(x̄, ȳ) � g(x̄, y), for any y ∈ T (x̄, ȳ). (1.2)

We call this (x̄, ȳ) the solution of SSVQEP.
If intC �= ∅, and (1.1), (2.1) are replaced with

f (x, ȳ) − f (x̄, ȳ) /∈ − int C, for any x ∈ S(x̄, ȳ),

g(x̄, y) − g(x̄, ȳ) /∈ − int C, for any y ∈ T (x̄, ȳ),

the problem then becomes the symmetric weak vector quasi-equilibrium problem
(in short, SWVQEP); and we call this (x̄, ȳ) the solution of SWVQEP (see Fu
(2003)).

It is clear that if int C �= ∅, and (x̄, ȳ) is a solution of SSVQEP, then (x̄, ȳ) is
a solution of SWVQEP.

Let F be a set-valued map from a Hausdorff topological space W to another
topological space Q. We say that F is upper semicontinuous at x0 ∈ W , if for any
neighborhood U (F(x0)) of F(x0), there exists a neighborhood U (x0) of x0 such
that

F(x) ⊂ U (F(x0)), for all x ∈ U (x0).

We say that F is upper semicontinuous on W if F is upper semicontinuous at
every point x ∈ W .

We say that F is lower semicontinuous at x0 ∈ W , if for any y0 ∈ F(x0) and
any neighborhood U (y0) of y0, there exists a neighborhood U (x0) of x0 such that

F(x) ∩ U (y0) �= ∅, for all x ∈ U (x0).
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We say that F is lower semicontinuous on W if F is lower semicontinuous at
every point x ∈ W .

From Aubin and Ekeland (1984), we can see that F is lower semicontinuous
at x0 ∈ W if and only if for any y0 ∈ F(x0), and any net {xα} with xα → x0, there
is a net {yα} such that yα ∈ F(xα) and yα → y0.

We say that F is continuous on W if F is both upper semicontinuous and lower
semicontinuous on W.

The set

graph(F) = {(x, y) ∈ W × Q : y ∈ F(x)}
is said to be the graph of F . We say that F is closed if graph (F) is closed.

2 The vector-valued properly quasi-convex function

In this section, we give a characterization of vector-valued properly quasi-convex
functions.

Definition 2.1 (Ferro (1989)) Let A ⊂ X be a convex subset, h : A → Z be a
vector-valued function. The function h is called properly quasi-convex if for every
x1, x2 ∈ A and for any t ∈ [0, 1], we have

either h(t x1 + (1 − t)x2) � h(x1) or h(t x1 + (1 − t)x2) � h(x2).
The function h is called properly quasi-concave if −h is properly quasi-convex.

The concept of vector-valued properly quasi-convex function is of great impor-
tance in the study of the minimax theorem for the vector-valued function, the strong
generalized vector equilibrium problems, and the strong vector quasi-variational
inclusion problems (see Fu 2000; Tan 2004; Ferro 1989).

Definition 2.2 Let A ⊂ X be a nonempty convex set, h : A → Z be a vector-
valued function. The function h is called quasi-convex if for any z ∈ Z, the set
L(z) =: {x ∈ A : h(x) � z} is convex. The function h is called lower semicontin-
uous if for any z ∈ Z, the set L(z) =: {x ∈ A : h(x) � z} is closed.

Lemma 2.1 Assume that A is a nonempty convex set, and the vector-valued func-
tion h : A → Z is lower semicontinuous. Then h is properly quasi-convex if and
only if

(i) for any x1, x2 ∈ A, there exists t0 ∈ [0, 1] such that

h(t0x1 + (1 − t0)x2) � h(x1) and h(t0x1 + (1 − t0)x2) � h(x2);
(ii) h is quasi-convex.

Proof If h is properly quasi-convex, then for every x1, x2 ∈ A, we have

[0, 1] = {t ∈ [0, 1] : h(x(t)) � h(x1)} ∪ {t ∈ [0, 1] : h(x(t)) � h(x2)} (2.1)

where x(t) = t x1 + (1 − t)x2. Since h is lower semicontinuous and [0, 1] is con-
nected, the two sets in the right-hand side of (2.1) are nonempty and closed. It
follows that there exists t0 ∈ [0, 1] such that

h(t0x1 + (1 − t0)x2) � h(x1) and h(t0x1 + (1 − t0)x2) � h(x2);
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It is easy to see that h is quasi-convex.
Now that the conditions (i) and (ii) are satisfied, we show that h is properly

quasi-convex.
By condition (i), for any x1, x2 ∈ A, there exists t0 ∈ [0, 1] such that

h(t0x1 + (1 − t0)x2) � h(x1) and h(t0x1 + (1 − t0)x2) � h(x2). (2.2)

Let xt0 = t0x1 + (1 − t0)x2. If t0= 1, by (2.2), we have h(x1) � h(x2).Hence
x1, x2 ∈ L(h(x2)). By the quasi-convexity of h, for any t ∈ [0, 1], we have

t x1 + (1 − t)x2 ∈ L(h(x2)),

that is

h(t x1 + (1 − t)x2) � h(x2) for any t ∈ [0, 1]. (2.3)

If t0= 0, by (2.2), we have h(x2) � h(x1). By the quasi-convexity of h, we can get

h(t x1 + (1 − t)x2) � h(x1), for any t ∈ [0, 1]. (2.4)

If t0 ∈ (0, 1), For any t ∈ [0, 1], if t � t0, take α = (t − t0)/(1 − t0) ∈ [0, 1]. By
h(xt0) � h(x1), h(x1) � h(x1) and the quasi-convexity of h, we have

h(αx1 + (1 − α)xt0) � h(x1). (2.5)

It is easy to see that αx1 + (1 − α)xt0 = t x1 + (1 − t)x2. By (2.5), we have

h(t x1 + (1 − t)x2) � h(x1). (2.6)

If t � t0, take α = (t0 − t)/t0 ∈ [0, 1], by h(xt0) � h(x2), h(x2) � h(x2) and
the quasi-convexity of h, we have

h(αx2 + (1 − α)xt0) � h(x2). (2.7)

It is easy to see that αx2 + (1 − α)xt0 = t x1 + (1 − t)x2. By (2.7), we have

h(t x1 + (1 − t)x2) � h(x2). (2.8)

By (2.3), (2.4), (2.6), and (2.8), for every x1, x2 ∈ A and for any t ∈ [0, 1], we
have either h(t x1 + (1 − t)x2) � h(x1) or h(t x1 + (1 − t)x2) � h(x2). Thus h is
properly quasi-convex.

3 Main result

In this section, we give an existence theorem for the solution of the symmetric
strong vector quasi-equilibrium problem.

Theorem 3.1 Assume that

(i) E ⊂ X, D ⊂ Y are nonempty convex compact subsets,S : E × D →
2E and T : E × D → 2D are continuous; and for each (x, y) ∈ E ×
D, S(x, y), T (x, y) are nonempty closed convex subsets;

(ii) f, g : E × D → Z are continuous;
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(iii) For any y ∈ D, f (x, y) is properly quasi-convex in x; for any x ∈ E, g(x, y)
is properly quasi-convex in y.

Then SSVQEP has a solution.

Proof Define A : E × D → 2E and B : E × D → 2D by

A(x, y) = {v ∈ S(x, y) : f (v, y) � f (u, y) for all u ∈ S(x, y)}, for all (x, y)

∈ E × D,

B(x, y) = {w ∈ T (x, y) : g(x, w) � g(x, d) for all d ∈ T (x, y)}, for all (x, y)

∈ E × D.

(I) For any fixed (x, y) ∈ E × D, A(x, y) is nonempty.
Indeed, for every u ∈ S(x, y), we set

H(u) = {v ∈ S(x, y) : f (v, y) � f (u, y)}.
We have u ∈ H(u), H(u) �= ∅. Now by induction, we show that the family
{H(u) : u ∈ S(x, y)} has the finite intersection property. Let u1, u2 ∈ S(x, y). By
assumptions (ii) and (iii), and Lemma 2.1, there exists some t ∈ [0, 1] such that

f (tu1 + (1 − t)u2, y) � f (u1, y) and f (tu1 + (1 − t)u2, y) � f (u2, y).

Since S(x, y) is a convex set, v =: tu1 + (1 − t)u2 ∈ S(x, y). Hence v ∈
H(u1) ∩ H(u2). Let u1, . . . , un ∈ S(x, y), and

n⋂

i=1
H(ui ) �= ∅. Then there exists

v ∈ S(x, y) such that

f (v, y) � f (ui , y), i = 1, . . . , n. (3.1)

Let un+1 ∈ S(x, y). By assumptions (ii) and (iii), and Lemma 2.1, there exists
some t ∈ [0, 1] such that

f (tv + (1 − t)un+1, y) � f (un+1, y) and f (tv + (1 − t)un+1, y) � f (v, y).

(3.2)

From (3.1) and (3.2), we can get

f (tv + (1 − t)un+1, y) � f (ui , y), i = 1, . . . , n + 1.

Since S(x, y) is a convex set, tv+ (1− t)un+1 ∈ S(x, y). Thus tv+ (1− t)un+1 ∈
n+1⋂

i=1
H(ui ). Since S(x, y) is a closed subset of E, and E is a compact set, S(x, y)

is a compact subset of E. By the continuity of f, we can see that H(u) is closed for
every u ∈ S(x, y).This follows that

∩{H(u) : u ∈ S(x, y)} �= ∅.

Hence there exists v ∈ ∩{H(u) : u ∈ S(x, y)}. This means that v ∈ S(x, y)
and

f (v, y) � f (u, y), for all u ∈ S(x, y).
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Thus A(x, y) �= ∅.
(II) For any fixed (x, y) ∈ E × D, A(x, y) is a closed subset of E.
In fact, let a net {vα : α ∈ I } ⊂ A(x, y), vα → v ∈ E . Since vα ∈ S(x, y)

and S(x, y) is closed, v ∈ S(x, y). It follows from f (vα, y) � f (u, y), for all
u ∈ S(x, y) and the continuity of f that

f (v, y) � f (u, y), for all u ∈ S(x, y).

Thus v ∈ A(x, y).
(III) For any fixed (x, y) ∈ E × D, A(x, y) is a convex subset of E.
Indeed, let v1, v2 ∈ A(x, y). Then v1, v2 ∈ S(x, y) and

f (vi , y) � f (u, y), for all u ∈ S(x, y), i = 1, 2.

Since f (·, y) is quasi-convex, L( f (u, y)) is a convex set. Thus for any u ∈
S(x, y),

tv1 + (1 − t)v2 ∈ L( f (u, y)) = {v ∈ E : f (v, y) � f (u, y)} for all t ∈ [0, 1].
Hence

f (tv1 + (1 − t)v2, y) � f (u, y), for all u ∈ S(x, y).

Since S(x, y) is a convex set,

tv1 + (1 − t)v2 ∈ S(x, y), for all t ∈ [0, 1].
We have tv1 + (1 − t)v2 ∈ A(x, y). Hence A(x, y) is convex.

(IV) A(x, y) is upper semicontinuous on E × D,.
Since E is a compact set, we need only to show that A is a closed map-

ping (see Aubin and Ekeland (1984)). Let a net {(xα, yα) : α ∈ I } ⊂ E ×
D converging to (x, y) ∈ E × D. Let vα ∈ A(xα, yα) and vα → v. We will show
that v ∈ A(x, y). Since S is an upper semicontinuous set-valued map and for each
(x, y) ∈ E × D, S(x, y) is a closed set, S is a closed set-valued map (see Aubin
and Ekeland (1984)). It follows from (xα, yα) → (x, y), vα ∈ S(xα, yα), and
vα → v that v ∈ S(x, y). Since S is lower semicontinuous on E × D, for any
u ∈ S(x, y), there exists a net {uα} with uα ∈ S(xα, yα) such that uα → u. Since
vα ∈ A(xα, yα), we have

f (vα, yα) � f (uα, yα).

It follows from continuity of f that

f (v, y) � f (u, y).

Thus

f (v, y) � f (u, y), for all u ∈ S(x, y),

hence v ∈ A(x, y).
(V) Similarly, for each (x, y) ∈ E × D, B(x, y) is a nonempty convex closed

subset of D, and B is upper semicontinuous on E × D.
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(VI) Define F : E × D → 2E×D by

F(x, y) = (A(x, y), B(x, y)), for all (x, y) ∈ E × D.

Then for each (x, y) ∈ E × D, F(x, y) is a nonempty convex closed subset of
E × D, and F is upper semicontinuous on E × D. By Kakutani-Fan-Glicksberg
fixed point theorem (see Holmes 1975, p. 186), there is a point (x̄, ȳ) ∈ E × D
such that (x̄, ȳ) ∈ F(x̄, ȳ), i.e. x̄ ∈ A(x̄, ȳ), ȳ ∈ B(x̄, ȳ). By the definition of A
and B, we have x̄ ∈ S(x̄, ȳ), ȳ ∈ T (x̄, ȳ), and

f (x̄, ȳ) � f (x, ȳ), for any x ∈ S(x̄, ȳ),

g(x̄, ȳ) � g(x̄, y), for any y ∈ T (x̄, ȳ).

Thus (x̄, ȳ) is a solution of SSVQEP. The proof is completed.

Corollary 3.1 Assume that

(i) E ⊂ X, D ⊂ Y are nonempty convex compact subsets,S : D → 2E and
T : E → 2D are continuous; and for each y ∈ D, x ∈ E, S(y) and T (x)
are nonempty closed convex subsets;

(ii) f, g : E × D → Z are continuous;
(iii) For any fixed y ∈ D, f (x, y) is properly quasiconvex in x; for any fixed

x ∈ E, g(x, y) is properly quasiconvex in y.

Then there exists a point (x̄, ȳ) ∈ E × D such that x̄ ∈ S(ȳ), ȳ ∈ T (x̄), and

f (x̄, ȳ) � f (x, ȳ), for any x ∈ S(ȳ),

g(x̄, ȳ) � g(x̄, y), for any y ∈ T (x̄).

If int C �= ∅, we can get the following corollary.

Corollary 3.2 (Fu 2003) Assume that

(i) E ⊂ X, D ⊂ Y are nonempty convex compact subsets,S : E × D →
2E and T : E × D → 2D are continuous; and for each (x, y) ∈ E ×
D, S(x, y), T (x, y) are nonempty closed convex subsets;

(ii) f, g : E × D → Z are continuous;
(iii) For any y ∈ D, f (x, y) is properly quasiconvex in x; for any x ∈ E, g(x, y)

is properly quasiconvex in y.
Then SWVQEP has a solution.

By comparing Theorem 3.1 and Corollary 3.2, we can see that under the same
conditions, our result is better than the main result in Fu (2003).

4 Application

In this section, we will apply Theorem 3.1 to get the existence theorem of strong
saddle points of the vector-valued functions.

Definition 4.1 Let E ⊂ X, D ⊂ Y be nonempty subset. Let f : E × D → Z be a
vector-valued function. A point (x̄, ȳ) ∈ E × D is called a strong saddle point of
f in E × D if

f (x̄, y) � f (x̄, ȳ) � f (x, ȳ), for all (x, y) ∈ E × D.
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Definition 4.2 Let E ⊂ X, D ⊂ Y be nonempty subset. Let S : E × D →
2E , T : E × D → 2D, and f : E × D → Z be a vector-valued function. A point
(x̄, ȳ) ∈ E × D is called a strong saddle point of f in E × D with constraints if
x̄ ∈ S(x̄, ȳ), ȳ ∈ T (x̄, ȳ) and

f (x̄, y) � f (x̄, ȳ) � f (x, ȳ), for any x ∈ S(x̄, ȳ) and y ∈ T (x̄, ȳ).

Using the concepts of weakly minimal (weakly maximal) points and minimal
(maximal) points in multiobjective optimization, some authors obtained the exis-
tence theorems of the saddle point for vector-valued functions (see Tanaka 1988,
1994; Shi and Ling 1995; Luc and Vargas 1992; Tan et al. 1996). It is clear that
a strong saddle point of f is an ideal saddle point; it is better than other saddle
points. Up to now, no paper deals with strong saddle point problem.

Theorem 4.1 Assume that

(i) E ⊂ X, D ⊂ Y are nonempty convex compact subsets,S : E × D →
2E and T : E × D → 2D are continuous; and for each (x, y) ∈ E ×
D, S(x, y), T (x, y) are nonempty closed convex subsets;

(ii) f : E × D → Z is continuous;
(iii) For any y ∈ D, f (x, y) is properly quasi-convex in x;
(iv) For any x ∈ E, f (x, y) is properly quasi-concave in y.

Then there exists a point (x̄, ȳ) ∈ E × D such that x̄ ∈ S(x̄, ȳ), ȳ ∈ T (x̄, ȳ),
and

f (x̄, y) � f (x̄, ȳ) � f (x, ȳ) for any x ∈ S(x̄, ȳ) and y ∈ T (x̄, ȳ).

Proof In Theorem 3.1, let g(x, y) = − f (x, y), (x, y) ∈ E × D. For any x ∈ E,
since f (x, y) is properly quasi-concave in y, g(x, y) = − f (x, y) is properly quasi-
convex in y. In view of Theorem 3.1, there exists a point (x̄, ȳ) ∈ E × D such that
x̄ ∈ S(x̄, ȳ), ȳ ∈ T (x̄, ȳ), and

f (x̄, ȳ) � f (x, ȳ), for any x ∈ S(x̄, ȳ),

and

g(x̄, ȳ) � g(x̄, y), for any y ∈ T (x̄, ȳ).

It follows that

f (x̄, y) � f (x̄, ȳ) � f (x, ȳ), for any x ∈ S(x̄, ȳ) and y ∈ T (x̄, ȳ).

Corollary 4.1 Assume that

(i) E ⊂ X, D ⊂ Y are nonempty convex compact subsets.
(ii) f : E × D → Z is continuous;

(iii) For any y ∈ D, f (x, y) is properly quasi-convex in x;
(iv) For any x ∈ E, f (x, y) is properly quasi-concave in y.

Then there exists a point (x̄, ȳ) ∈ E × D such that

f (x̄, y) � f (x̄, ȳ) � f (x, ȳ), for any (x, y) ∈ E × D.
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Proof In Theorem 4.1, let S(x, y) = E for all (x, y) ∈ E × D, and T (x, y) = D
for all (x, y) ∈ E × D. It is clear that S : E × D → 2E and T : E × D → 2D are
continuous; and for each (x, y) ∈ E × D, S(x, y), T (x, y) are nonempty closed
convex subsets. Then Theorem 4.1 yields the conclusion. �	
Example 4.1 Let X = Y = R, E = D = [−1, 1] ⊂ R, Z = R2,

C = R2+ = {(x, y) ∈ R2 : x � 0, y � 0}. Define f : [−1, 1] × [−1, 1] → R2

by

f (x, y) = (y − x, (y − x)3), (x, y) ∈ [−1, 1] × [−1, 1].
Then (i) f is continuous on [−1, 1] × [−1, 1].
(ii) For any y ∈ [−1, 1], f (x, y) is properly quasi-convex in x . In fact, for

every x1, x2 ∈ [−1, 1] and for any t ∈ [0, 1], let x1 < x2. We have

f (t x1 + (1 − t)x2, y) = (y − (t x1 + (1 − t)x2), (y − (
t x1 + (1 − t)x2)

3)

� (y − x1, (y − x1)
3) = f (x1, y)

since h(t) = t3 is a monotone increasing function on (−∞,+∞).
(iii) For any x ∈ [−1, 1], f (x, y) is properly quasi-concave in y. In fact, for

every y1, y2 ∈ [−1, 1] and for any t ∈ [0, 1], let y1 < y2. We have

f (x, t y1 + (1 − t)y2) = (
t y1 + (1 − t)y2 − x, (t y1 + (1 − t)y2 − x)3)

�
(
y1 − x, (y1 − x)3) = f (x, y1).

By Corollary 4.1, there exists a point (x̄, ȳ) ∈ [−1, 1] × [−1, 1] such that

f (x̄, y) � f (x̄, ȳ) � f (x, ȳ), for any (x, y) ∈ [−1, 1] × [−1, 1].
We know that point (1,1)∈ [−1, 1] × [−1, 1] is a strong saddle point of f in

[−1, 1] × [−1, 1].
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