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Abstract Multichoice games, as well as many other recent attempts to generalize
the notion of classical cooperative game, can be casted into the framework of
lattices. We propose a general definition for games on lattices, together with an
interpretation. Several definitions of the Shapley value of a multichoice games
have already been given, among them the original one due to Hsiao and Raghavan,
and the one given by Faigle and Kern. We propose a new approach together with
its axiomatization, more in the spirit of the original axiomatization of Shapley, and
avoiding a high computational complexity.

1 Introduction

The field of cooperative game theory has been enriched these recent years by many
new kinds of game, trying to model in a more accurate way the behavior of players
in a real situation. In the classical view of cooperative games, to each coalition of
players taking part into the game, an asset or a power (voting games) is associated,
and participation is assumed to be of a binary nature, i.e., either a player partic-
ipates or he does not. From this point, many variations have been introduced, let
us cite games with precedence constraints among players (Faigle and Kern 1992)
where not all coalitions are valid, ternary voting games (Felsenthal and Machover
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1997) where abstention is permitted, bi-cooperative games (Bilbao et al. 2000)
where each player can choose to play either in favor, against, or not to play, multi-
choice games (Hsiao and Raghavan 1993) where each player has a set of m possible
ordered actions, fuzzy games (Butnariu and Klement 1993; Tijs et al. 2004) which
can be seen as a continuous generalization of multichoice games, global games
(Gilboa and Lehrer 1991) where coalitions are replaced by partitions of the set of
players, etc.

All the above examples of games can be casted into the general framework of
games defined on a lattice, i.e., functions v : (L , ≤) −→ R, where (L , ≤) is a
lattice, and such that v(⊥) = 0, ⊥ denoting the bottom element of L . We mention
at this point that one can define games on other structures of discrete mathemat-
ics, such as matroids and convex geometries; this has been extensively studied by
Bilbao (2000).

A central question in game theory is to define a value or solution concept for
a game, i.e., how to individually reward players supposing that all players have
joined the grand coalition. A famous example for classical games is the Shapley
value, based on rational axioms for sharing the total worth of the game v(N ). A
different approach is to consider the core of the game, i.e., the set of imputations
such that no subcoalition can do better by itself.

The aim of this paper is first to provide a general approach to games on lattices,
giving an interpretation in terms of elementary actions, and second to provide a
definition for the Shapley value together with an axiomatization. As it will be dis-
cussed, other previous definitions of the Shapley value have been given. We will
focus on the works of Faigle and Kern (1992), and Hsiao and Raghavan (1993).
Previous works of the authors around this topic can be found in Grabisch (2004a,b),
Grabisch and Labreuche (2006).

2 Mathematical background

We begin by recalling necessary material on lattices [a good introduction on lattices
can be found in Davey and Priestley (1990)], in a finite setting. A lattice is a set L
endowed with a partial order ≤ such that for any x, y ∈ L their least upper bound
x ∨ y and greatest lower bound x ∧ y always exist. For finite lattices, the greatest
element of L (denoted �) and least element ⊥ always exist. x covers y (denoted
x 	 y) if x > y and there is no z such that x > z > y. The lattice is distributive if
∨, ∧ obey distributivity. An element j ∈ L , j 
= ⊥, is join-irreducible if it cannot
be expressed as a supremum of other elements. Equivalently j is join-irreducible if
it covers only one element. Join-irreducible elements covering ⊥ are called atoms,
and the lattice is atomistic if all join-irreducible elements are atoms. The set of all
join-irreducible elements of L is denoted J (L).

An important property is that in a distributive lattice, any element x can be
written as an irredundant supremum of join-irreducible elements in a unique way
(this is called the minimal decomposition of x). We denote by η∗(x) the set of
join-irreducible elements in the minimal decomposition of x , and we denote by
η(x) the normal decomposition of x , defined as the set of join-irreducible elements
smaller or equal to x , i.e., η(x) := { j ∈ J (L) | j ≤ x}. Hence η∗(x) ⊆ η(x), and
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x =
∨

j∈η∗(x)

j =
∨

j∈η(x)

j.

Let us rephrase differently the above result. We say that Q ⊆ L is a downset of L if
x ∈ Q and y ≤ x imply y ∈ Q. For any subset P of L , we denote by O(P) the set
of all downsets of P . Then the mapping η is an isomorphism of L onto O(J (L))
(Birkhoff’s theorem).

In a finite setting, Boolean lattices are of the type 2N for some set N , i.e. they
are isomorphic to the lattice of subsets of some set, ordered by inclusion. Boolean
lattices are atomistic, and atoms corresponds to singletons. A linear lattice is such
that ≤ is a total order. All elements are join-irreducible, except ⊥.

Given lattices (L1, ≤1), . . . , (Ln, ≤n), the product lattice L = L1 × · · · × Ln
is endowed with the product order ≤ of ≤1, . . . , ≤n in the usual sense. Elements of
x can be written in their vector form (x1, . . . , xn). We use the notation (xA, y−A)
to indicate a vector z such that zi = xi if i ∈ A, and zi = yi otherwise. Sim-
ilarly L−i denotes

∏
j 
=i L j . All join-irreducible elements of L are of the form

(⊥1, . . . ,⊥i−1, ji , ⊥i+1, . . . , ⊥n), for some i and some join-irreducible element
ji of Li . A vertex of L is any element whose components are either top or bottom.
We denote �(L) the set of vertices of L . Note that �(L) = L iff L is Boolean, since
in this case, denoting the trivial lattice {⊥,�} by 2, we have L = 2 × · · · × 2︸ ︷︷ ︸

n times

= 2n .

3 Games on lattices

We denote by N := {1, . . . , n} the set of players.

Definition 1 We consider finite distributive lattices (L1, ≤1), . . . , (Ln, ≤n) and
their product L := L1 ×· · ·× Ln endowed with the product order ≤. A game on L
is any function v : L −→ R such that v(⊥) = 0. The set of such games is denoted
G(L). A game is monotone if x ≤ x ′ implies v(x) ≤ v(x ′).
Lattice (Li , ≤i ) represents the (partially) ordered set of actions, choices, levels of
participation of player i to the game. Each lattice may be different.

First, let us examine several particular examples.

• (L , ≤) = (2N , ⊆). This is the classical notion of game. Each player has two
possible actions (participate, not participate), hence Li = {0, 1}. L is a Boolean
lattice.

• (L , ≤) = (3N , ≤). This case comprises ternary voting games and bi-cooperative
games (each Li can be coded as Li = {−1, 0, 1}, where 0 means “no partic-
ipation”, −1 means voting or playing against, and 1 means voting or playing
in favor), as well as multichoice games with m = 2, letting Li = {0, 1, 2},
with 0 indicating no participation, and 1, 2 participation (low and high). In fact,
Grabisch (2004) distinguishes these two cases, the first one being called bipolar
game since the Li ’s have a symmetric structure around 0.

• (L , ≤) = (m N , ≤), with Li = {0, 1, . . . , m}. This corresponds to multichoice
games as introduced by Hsiao and Raghavan. In this paper we will call them
m-choice games, and call multichoice game the case where each Li is a linear
lattice Li := {0, 1, . . . , li } (i.e., the number of levels may be different for each
player).
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• (L , ≤) = ([0, 1]n, ≤). This corresponds to fuzzy games.

Note that the case of global games cannot be recovered by our definition, since the
lattice of partitions is not a product lattice.

Let us turn to the interpretation of our definition. We assume that each player
i ∈ N has at his/her disposal a set of elementary or pure actions j1, . . . , jni . These
elementary actions are partially ordered (e.g., in the sense of benefit caused by
the action), forming a partially ordered set (Ji , ≤). Then by virtue of Birkhoff’s
theorem (see Sect. 2), the set (O(Ji ), ⊆) of downsets of Ji is a distributive lattice
denoted Li , whose join-irreducible elements correspond to the elementary actions.
The bottom action ⊥ of Li is the action which amounts to do nothing. Hence, each
action in Li is either a pure action jk or a combined action jk ∨ jk′ ∨ jk′′ ∨ · · ·
consisting of doing all actions jk, jk′, . . . for player i .

For example, assume that players are gardeners who take care of some garden
or park. Elementary actions are watering (W), light weeding (LW), careful weed-
ing (CW), and pruning (P). All these actions are benefic for the garden and clearly
LW<CW, but otherwise actions seem to be incomparable. They form the following
partially ordered set:

W P LW

CW

which in turn form the following lattice of possible actions:

W

P

LW

LW,CW

Let us give another interpretation of our framework, borrowed from Faigle and
Kern (1992). Let P := (N , ≤) be a partially ordered set of players, where ≤ is
a relation of precedence: i ≤ j if the presence of j enforces the presence of i
in any coalition S ⊆ N . Hence, a (valid) coalition of P is a subset S of N such
that i ∈ S and j ≤ i entails j ∈ S. Hence, the collection C(P) of all coalitions
of P is the collection of all downsets (ideals) of P . A game on P is any function
v : C(P) → R such that v(∅) = 0.

From this definition, it is possible to recover our structure. For each player i in
N , let Ji := { j1, . . . , jni } be the set of elementary actions of player i . Consider
the set of virtual players
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N ′ :=
⋃

i∈N

Ji

equipped with the partial order ≤ induced by the partial orders on each Ji . Then
coalitions of (N ′, ≤) correspond bijectively to elements of

∏
i∈N O(Ji ).

4 Previous works on the Shapley value

We present in this section the Shapley value defined by Faigle and Kern, and the
one defined by Hsiao and Raghavan, together with their axiomatization. A good
comparison of these two values can be found in Branzei et al. (2005). We present
them with our notations, which are rather far from the original ones.

The value introduced by Faigle and Kern is the average of the marginal vectors
along all maximal chains in L . A maximal chain in a (finite) lattice L is a sequence
of elements C = {⊥, x, y, z, . . . , �} such that ⊥ ≺ x ≺ y ≺ z · · · ≺ �. We
denote by C(L) the set of all maximal chains on L . Then the Shapley value of
Faigle and Kern is defined by

φv
FK( ji ) := 1

|C(L)|
∑

C∈C(L)

[v(x ji ) − v(x ji )], (1)

for any join-irreducible element ji of Li , and for any i ∈ N . The element x ji is
the first in the sequence C containing ji in η(x ji ), and x ji is its predecessor in the
chain C . In the vocabulary of Faigle and Kern, maximal chains correspond to what
they call feasible ranking of join-irreducible elements (players).

The axiomatic of Faigle and Kern is essentially based on linearity (L) and the
unique decomposition of a game on the basis of unanimity games. In this case, a
unanimity game ux is defined by, for any x ∈ L:

ux (y) :=
{

1, if y ≥ x,

0, otherwise.
(2)

Then the coordinates of any game v in this basis are given by the Möbius trans-
form (or dividend) of v (Rota 1964). It remains then to fix the Shapley value of any
unanimity game by some suitable axioms. They are indicated below.

An element c ∈ L is a carrier if v(x ∧ c) = v(x), for all x ∈ L .

Carrier axiom (C): If c is a carrier for V , then
∑

ji ≤c φv
FK( ji ) = v(c).

The hierarchical strength of a join-irreducible element ji ∈ Li with respect to
some x ∈ L is defined by the relative number of maximal chains in L where x is
the first occurrence of ji in the chain, that is

hx ( ji ) := 1

|C(L)|
∣∣{C ∈ C(L) | x ji = x

}∣∣.

Hierarchical strength axiom (HS): For any x ∈ L and any join-irreducible
elements ji , j ′i ′ ∈ η(x),

hx ( ji )φ
ux
FK( j ′i ′) = hx ( j ′i ′)φ

ux
FK( ji )
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Then, under axioms (L), (C) and (HS), the value of the unanimity game ux is
uniquely determined:

φ
ux
FK( ji ) =

{
0, if ji 
∈ η(x),

hx ( ji )/
∑

k∈η(x) hx (k), otherwise.

We turn to the value proposed by Hsiao and Raghavan, which is limited to m-
choice games in our terminology. Its construction is similar to the one of Faigle and
Kern because it is based also on unanimity games. The main difference is that Hsiao
and Raghavan introduced weights for all possible actions of the players, leading
to a kind a weighted Shapley value. Let us denote by w1, . . . , wm the weights of
actions 1, . . . , m; they are such that w1 < · · · < wm . The first axiom is additivity
(A) of the value, i.e. φv+w

HR = φv
HR + φw

HR. The second axiom is the carrier axiom
(C), as for Faigle and Kern. The remaining ones are as follows.

Minimal effort axiom (ME): if v is such that v(x) = 0 for all x 
≥ y, then
for all players i , all action ki < yi , we have φv

HR(ki ) = 0.

Weight axiom (W): If v := αux for some α > 0, then φv
HR(xi ) is propor-

tional to wxi , for all i ∈ N .

Using these axioms, it can be shown that, ji denoting action j for player i :

φ
ux
HR( ji ) =

{
w j∑

i∈N wxi
, if j = xi ,

0, otherwise.
(3)

Let us discuss these values. As remarked by Faigle and Kern, since the problem
of computing the number of maximal chains in a partially ordered set is a �P-com-
plete counting problem, it is doubtful whether an efficient algorithm could exist to
compute exactly φFK. For multichoice games, the number of maximal chains is,
with our notation (Branzei et al. 2005; Faigle and Kern 1992):

|C(L)| =
(∑

i∈N li
)!

∏
i∈N (li !) =

(
l

l1

)(
l − l1

l2

)(
l − l1 − l2

l3

)
· · · 1,

with l := ∏
i∈N li . For 5 players having each 3 actions (3-choice game), this

gives already (15)!/65 = 168, 168, 000. The same remark applies to φHR, since
its explicit expression given in Hsiao and Raghavan (1993) is very complicated.
Branzei et al. (2005), have shown that φFK and φHR do not coincide in general.
Even more, one can find examples where for no system of weights the two values
can coincide.

Concerning the axiomatic, the one of Faigle and Kern is very simple, although
the meaning of the (HS) axiom is not completely clear, at least in our framework
of games on lattices (recall that this axiomatic was primarily intended for games
with precedence constraints). The axiomatic of Hsiao and Raghavan is simple and
clear, but they need weights on action, which are necessarily all different, so one
could ask about what if no weight is wanted, and what do precisely mean these
weights (in particular, what is the exact difference between w j and v( ji )?).

In the next section, we present an alternative view.
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5 Axiomatic of the Shapley value for multichoice games

Our approach will take a different way. We do not use unanimity games, but
introduce axioms similar to the original ones of Shapley, adding them one by
one as Weber in Weber (1988), to see the exact effect of each axiom. Surprisingly,
we will come up with a value which is very near the classical Shapley value, and
very simple to compute.

5.1 Notations, differential and cumulative values

We recall that for every player i , Li is a linear lattice denoted Li := {0, 1, 2, . . . , li }.
The set J (L) of join-irreducible elements (or virtual players in the framework of
Faigle and Kern) of L is {(01, . . . , 0i−1, ki , 0i+1, . . . , 0n) | i ∈ N , k ∈ Li \ {0}};
hence each join-irreducible element corresponds to a single player playing at a
given level. Since we use them constantly in the following, we will often adopt the
shorthand k̃i for (01, . . . , 0i−1, ki , 0i+1, . . . , 0n).

Our aim is to define the Shapley value for each join-irreducible element k̃i .
A first approach would be to define the Shapley value for k̃i as a kind of aver-
age contribution of player i playing at level k, compared to the situation where i
plays at level k − 1. We call this a differential value, which we denote by φ(ki ). A
differential value obviously satisfies what could be called a differential null axiom,
saying that φ(ki ) = 0 whenever player i is such that v(x−i , ki ) = v(x−i , (k − 1)i )
for all x−i ∈ L−i , using our notation for compound vectors (see Sect. 2).

A careful look at the previous axiomatizations of Faigle and Kern, and Hsiao
and Raghavan, show that their value are differential. This is due to the carrier
axiom, which could be implied by the differential null axiom and a suitable effi-
ciency axiom (see also formula (1), which obviously satisfies the differential null
axiom).

However, if we stick to the idea that the Shapley value for ki should be a reward
for player i having played at level k, it should express an average of the contribu-
tion of player i playing at level k, but compared to the situation where k does not
participate. Roughly speaking, this amounts to sum all differential values from the
first level to the kth level. Hence, such a value could be called a cumulative value,
and to our opinion, it is the only one of interest, the differential value being merely
an intermediate step of computation. We denote by �(ki ) the cumulative value for
player i playing at level k.

Our position is to give directly an axiomatization of the cumulative Shapley
value, which in the sequel will be called simply “Shapley value”. It is possible
however to derive a similar axiomatization for the differential value [see Grabisch
(2004) for the case of m-choice games].

5.2 The axiomatic of the (cumulative) Shapley value

Let us give first the following definitions generalizing the ones given for classical
games.

• For some k ∈ Li , k 
= 0, player i is said to be k−null (or simply ki is null) for
v ∈ G(L) if v(x, ki ) = v(x, 0i ), ∀ x ∈ L−i .



160 M. Grabisch, F. Lange

• For some k ∈ Li , k 
= 0, player i is said to be k−dummy (or simply ki is dummy)
for v ∈ G(L) if v(x, ki ) = v(x, 0i ) + v(k̃i ), ∀ x ∈ L−i .

• v ∈ G(L) is said to be monotone if v(x) ≤ v(y), for all x, y in L such that
x ≤ y.

This enables to introduce the following axioms:

Null axiom (N): ∀ v ∈ G(L), for all null ki , �v(ki ) = 0.

Dummy axiom (D): ∀ v ∈ G(L), for all dummy ki , �v(ki ) = v(k̃i ).

As for classical games, the dummy axiom implies the null axiom. Indeed,
assume ki is null. Then v(k̃i ) = v(0) = 0, so that v(x, ki ) = v(x, 0i ) + v(k̃i )
holds, i.e. ki is dummy. Then �v(ki ) = v(k̃i ) = 0, which proves that (N) holds.

Monotonicity axiom (M): ∀ v ∈ G(L), if v is monotone, then �v(ki ) ≥ 0,
for all k̃i ∈ J (L).

Linearity axiom (L): For all k̃i ∈ J (L), �(ki ) is linear on the set of games
G(L), which directly implies

�v(ki ) =
∑

x∈L

aki
x v(x), with aki

x ∈ R.

Proposition 1 Under axioms (L) and (N ), ∀ v ∈ G(L), for all k̃i ∈ J (L),

�v(ki ) =
∑

x∈L−i

pki
x [v(x, ki ) − v(x, 0i )], with pki

x ∈ R.

Proof It is clear that the above formula satisfies the axioms. Conversely, assuming
ki is null,

�v(ki ) =
∑

x∈L

aki
x v(x)

=
∑

x∈L−i

[
aki
(x,0i )

v(x, 0i ) + · · · + aki
(x,li )

v(x, li )
]

=
∑

x∈L−i

v(x, 0i )
[
aki
(x,0i )

+ aki
(x,ki )

]
+

∑

x∈L−i

∑

j 
=0,k

aki
(x, ji )

v(x, ji ). (4)

Consider v′ ∈ G(L−i ) and extend it to G(L):

v(x, ji ) =
{

v′(x), if j = k, 0,

0, otherwise.

Then ki is null for v, hence (4) applies and reduces to

�v(ki ) =
∑

x∈L−i

v′(x)
[
aki
(x,0i )

+ aki
(x,ki )

]
= 0.
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This implies aki
(x,ki )

= −aki
(x,0i )

. Introducing this in (4) we get

�v(ki ) = 0 =
∑

x∈L−i

∑

j 
=0,k

aki
(x, ji )

v(x, ji ).

Since this must hold for any game, we deduce that aki
(x, ji )

= 0, ∀ j 
= 0, k. Letting

pki
x := aki

(x,ki )
, the result is proven. ��

Proposition 2 Under axioms (L) and (D), ∀ v ∈ G(L), for all k̃i ∈ J (L),

�v(ki ) =
∑

x∈L−i

pki
x [v(x, ki ) − v(x, 0i )], with pki

x ∈ R, and
∑

x∈L−i

pki
x = 1.

Proof We consider the unanimity game uki defined by

uki (x) =
{

1, if x ≥ ki ,

0, otherwise.

ki is dummy since uki (x, ki ) = 1 = uki (x, 0i ) + uki (k̃i ). Hence

�uki
(ki ) = uki (k̃i ) = 1 =

∑

x∈L−i

pki
x .1

which proves the result. ��
Proposition 3 Under axioms (L),(N ) and (M), ∀ v ∈ G(L), for all k̃i ∈ J (L),

�v(ki ) =
∑

x∈L−i

pki
x [v(x, ki ) − v(x, 0i )], with pki

x ≥ 0.

Proof Let choose some y ∈ L and define by analogy with classical games

û y(x) =
{

1, if x ≥ y, x 
= y
0, else.

By definition, û y is monotone. Letting y = (x0, 0i ) for some x0 ∈ L−i , and
applying Proposition 1, we get:

�û(x0,0i )
(ki ) =

∑

x∈L−i

pki
x [û(x0,0i )(x, ki ) − û(x0,0i )(x, 0i )]

= pki
x0

≥ 0.

��
As a consequence, one can deduce from Propositions 2 and 3 that under axi-

oms (L), (D) and (M), for every join-irreducible k̃i , (pki
x )x∈L−i will be a probability

distribution.
The next axiom enables an easier computation of coefficients pki

x while reduc-
ing their number:
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Invariance axiom (I): Let us consider two games v1, v2 of G(L) such that
for some i in N ,

v1(x, ki ) = v2(x, (k − 1)i ), ∀ x ∈ L−i , ∀ k ∈ Li , k > 1

v1(x, 0i ) = v2(x, 0i ), ∀ x ∈ L−i .

Then �v1(ki ) = �v2((k − 1)i ), 1 < k ≤ li .

The axiom says that when a game v2 is merely a shift of another game v1 concerning
player i , the Shapley values are the same for this player. This implies that the way
of computing v does not depend on the level k, as shown in the next proposition.

Proposition 4 Under axioms (L), (N ) and (I ), ∀ v ∈ G(L), for all join-irreducible
ki ,

�v(ki ) =
∑

x∈L−i

pi
x [v(x, ki ) − v(x, 0i )], with pi

x ∈ R.

Proof We have for k > 1

�v1(ki ) =
∑

x∈L−i

pki
x

[
v1(x, ki ) − v1(x, 0i )

]

=
∑

x∈L−i

pki
x

[
v2(x, (k − 1)i ) − v2(x, 0i )

]

�v2((k − 1)i ) =
∑

x∈L−i

p(k−1)i
x

[
v2(x, (k − 1)i ) − v2(x, 0i )

]
,

which proves the result. ��
Let us now introduce a symmetry axiom, which is an adaptation of the classical

symmetry axiom. The difficulty here is that since the Li ’s could be different, apply-
ing directly the classical symmetry axiom may lead to meaningless expressions.
In this purpose, we introduce a subspace of G(L):

G0(L) := {v ∈ G(L) | v(x) = 0,∀ x 
∈ �(L)},
where we recall that �(L) = {01, l1}×{02, l2}× · · ·×{0n, ln} is the set of vertices
of L . For any x in �(L) and any permutation σ on N , we define xσ := (xσ

1 , . . . , xσ
n )

by

xσ
i :=

{
0i , if xσ(i) = 0σ(i),

li , if xσ(i) = lσ(i).

Besides, for any v ∈ G0(L), we denote by vσ the game in G0(L) such that vσ (x) :=
v(xσ ), for any x in �(L). When all li ’s are different, observe that xσ is a vertice of
�(L), contrary to σ(x) := (xσ(1), . . . , xσ(n)), as well as vσ is a game in G0(L) while
v ◦ σ is not. Let us take for example L := {0, 1, 2} × {0, 1, 2, 3, 4} × {0, 1, 2, 3},
and

i 1 2 3
σ(i) 2 3 1
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Then (2, 0, 0)σ = (0, 0, 3), (2, 0, 3)σ = (0, 4, 3).

Symmetry axiom (S): Let σ be a permutation on N . Then for any game v
in G0(L), and any i in N ,

�vσ−1

(lσi ) = �v(li ).

Thus, as for classical games, this axiom says that the computation of Shapley
value should not depend on the labelling of the players. Finally, we give the last
axiom:

Efficiency axiom (E): ∀ v ∈ G(L),
∑

i∈N �v(li ) = v(l1, . . . , ln).

Theorem 1 Under axioms (L), (D), (M), (I ), (S) and (E), ∀ v ∈ G(L), for all
k̃i ∈ J (L),

�v(ki ) =
∑

x∈�(L−i )

(n − h(x) − 1)! h(x)!
n! [v(x, ki ) − v(x, 0i )],

where h(x) := |{ j ∈ N \ i | x j = l j }|.
Proof Let v be a game in G0(L) and let σ be a transposition of N , that is to say
a permutation which only exchanges two players i and j . This implies σ = σ−1.
Then by (S) we have �v(li ) = �vσ

(l j ), which writes, using axioms (L), (D), (M)
and (I), and Propositions 3 and 4:

∑

x∈�(L−i )

pi
x [v(x, li ) − v(x, 0i )] =

∑

x∈�(L− j )

p j
x [v((x, l j )

σ ) − v((x, 0 j )
σ )],

which can be rewritten as
∑

x∈�(L−i, j )

∑

x j ∈{0,l j }
pi

x,x j
[v(x, li , x j ) − v(x, 0i , x j )]

=
∑

x∈�(L−i, j )

∑

xi ∈{0,li }
p j

x,xi [v((x, xi , l j )
σ ) − v((x, xi , 0 j )

σ )].

If x ∈ �(L−i, j ), then (x, xi , l j )
σ = (x, li , x ′

j ), and (x, xi , 0 j )
σ = (x, 0i , x ′

j ),
where x ′

j is of the same nature than xi , (i.e., x ′
j = 0 iff xi = 0, and x ′

j = l j iff
xi = li ). Consequently, as the above equalities are true for any v ∈ G0(L), we can
identify the term of the first member coefficient of which is pi

x,x j
, with the term

of the second member coefficient of which is p j
x,xi , such that xi and x j are of the

same nature. This gives equality between these coefficients.
By taking into account all transpositions of N , for any x in �(L−i, j,l), we write

pi
x,x j ,xl

= p j
x,x ′

i ,xl
where x ′

i of the same nature than x j ,

= pl
x,x ′

i ,x
′
j

where x ′
j of the same nature than xl ;

besides, pi
x,x j ,xl

= pl
x,x ′′

i ,x j
where x ′′

i of the same nature than xl and thus of x ′
j .
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As a result, for all l 
= i, j and for all x ∈ �(L−i, j,l), pl
x,x ′

i ,x
′
j
= pl

x,xi ,x j
whenever

xi and x ′
j have the same nature, as well as x ′

i and x j . Consequently, for the com-

putation of pl
x , x ∈ L−l , any permutation being a composition of transpositions,

indices of components 0i and li of x have no importance as long as the cardinality
h(x) = |{i ∈ N \ l | xi = li }| is the same. Therefore, we will use a new notation
for pl

x :

pl
m := pl

x , where m = h(x).

Moreover, it is clear that for all i, j ∈ N , for all m ∈ {0, . . . , n −1}, pi
m = p j

m , due
to the effect of the transposition i ↔ j . It follows that one can write pm instead of
pi

m , i ∈ N .
Now, by efficiency axiom, we have

∑
i∈N

∑
x∈L−i

pi
x [v(x, li ) − v(x, 0i )] =

v(l1, . . . , ln). Assuming v is a game in G0(L), this gives the following equation:

∑

i∈N

n−1∑

m=0

∑

x∈L−i ,

h(x)=m

pm [v(x, li ) − v(x, 0i )] = v(l1, . . . , ln). (5)

Let us denote G(2N ) the set of classical games on N and v �→ ṽ the canonical
isomorphism from G0(L) to G(2N ), i.e., for all S ∈ 2N

ṽ(S) := v(s), with si =
{

li , if i ∈ S
0i , else

, ∀ i ∈ N .

Observe that, through this mapping, Eq. (5) becomes

∑

i∈N

n−1∑

m=0

∑

S⊆N\i,
|S|=m

pm [ṽ(S ∪ i) − ṽ(S)] = ṽ(N ). (6)

We recognize here the classical efficiency axiom, from which we deduce that
coefficients pm’s are nothing else that the well-known Shapley coefficients pm =
α1

m(n) := (n−m−1)! m!
n! for all m ∈ {0 . . . , n − 1}.

As a consequence, through inverse of the above isomorphism, we easily obtain
the expression of the previous pi

x when x ∈ �(L−i ):

pi
x = (n − h(x) − 1)! h(x)!

n! .

Finally, as (pi
x )x∈L−i is a probability distribution, and since we know that

∑
S⊆N\i

α1|S| = ∑
x∈�(L−i )

pi
x = 1, it follows that pi

x = 0 for all x ∈ L−i \ �(L−i ). ��
Remark 1 It is possible to give a rather different formulation suggested by the
proof of Theorem 1 by introducing the following axioms:

Symmetry axiom for classical games (CS): Let σ be a permutation on N .
Then for any game ν in G(2N ), and any i in N , �ν◦σ−1

(σ (i)) = �ν(i).
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Full participation axiom (FP): For any game v in G0(L), and any i in N ,
�v(li ) = �ṽ(i).

Consequently, axiom (S) being equivalent to the pair [(CS), (FP)] under axioms
(L),(D),(M),(I),(E), the required theorem can also be proven with these axioms and
(CS), (FP) instead of (S).

6 Towards the general case

In this section, we present first ideas to define a Shapley value for the general case,
where the Li ’s are finite distributive, as a basis for future research. Our aim is to
obtain �v(xi ), for any xi ∈ Li , xi 
= ⊥i , which should represent the contribution
of doing action xi instead of nothing for player i . We denote as usual the top and
bottom elements of each lattice Li by �i , ⊥i .

A first approach is to adapt the previous axiomatization for multichoice games
to the general case. This can be done under the restriction that in each Li , the bottom
element ⊥i has a unique successor, denoted by 1i (in other words, 1i is the unique
atom of Li ). Also, for any xi ∈ Li , xi 
= ⊥i , xi := ∧{yi ∈ Li | yi ≺ xi }, i.e., xi
is the infimum of all predecessors of xi . The following axioms and definitions are
direct generalizations of the previous ones:

• For some xi ∈ Li \ ⊥i , player i is xi -null (or simply xi is null) for v ∈ G(L) if
v(x, xi ) = v(x, ⊥i ), ∀x ∈ L−i .

• For some xi ∈ Li \ ⊥i , player i is xi -dummy (or simply xi is dummy) for
v ∈ G(L) if v(x, xi ) = v(x,⊥i ) + v(⊥−i , xi ), ∀ x ∈ L−i .

• Null axiom (N): ∀ v ∈ G(L), for all null xi , φv(xi ) = 0.
• Dummy axiom (D): ∀ v ∈ G(L), for all dummy xi , φv(xi ) = v(⊥−i , xi ).
• Monotonicity axiom (M): ∀ v ∈ G(L), if v is monotone, then �v(xi ) ≥ 0, for

every player i , xi 
= ⊥i .
• Linearity axiom (L): For all xi ∈ Li , xi 
= ⊥i , �v(xi ) is linear on G(L).
• Invariance axiom (I): Let us consider two games v1, v2 ∈ G(L) such that for

some i ∈ N ,

v1(y, xi ) = v2(y, xi ), ∀ y ∈ L−i , ∀ xi > 1i

v1(y,⊥i ) = v2(y,⊥i ), ∀ y ∈ L−i .

Then �v1(xi ) = �v2(xi ), xi > 1i .
• Symmetry axiom (S): Let σ be a permutation on N . Then for any game v ∈

G0(L) and any i ∈ N ,

�vσ−1

(�σ
i ) = �v(�i ),

with same notations as in previous section.
• Efficiency axiom (E): ∀ v ∈ G(L),

∑
i∈N �v(�i ) = v(�).

Using the same schemata of proofs as for multichoice games, we come up with the
following result:
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Theorem 2 Under axioms (L), (D), (M), (I ), (S) and (E), for all v ∈ G(L), for
all xi ∈ Li , xi 
= ⊥i ,

�v(xi ) =
∑

y∈�(L−i )

(n − h(y) − 1)! h(y)!
n! [v(y, xi ) − v(y, ⊥i )],

where h(y) := |{ j ∈ N \ i | x j = � j }|.
Although the result is appealing by its simplicity, it suffers from the restriction

imposed on the Li ’s, and by the fact the axiom (I) becomes questionable. Also, the
role of join-irreducible elements as a basic element of the construction has disap-
peared, which is not in accordance with our interpretation of games on lattice, as
given in Sect. 3.

Based on preceding remarks, we suggest an alternative approach, which goes
in several steps, and starts from join-irreducible elements.

1. For any join-irreducible element xi ∈ Li , we compute the differential Shapley
value φv(xi ), expressing the contribution of doing action xi instead of the pre-
decessor of action xi for player i . Since the predecessor of xi is unique iff xi is
a join-irreducible element, this makes sense.

2. We compute φv(xi ) for any xi ∈ Li , considering its unique irredundant decom-
position into join-irreducible elements (see Sect. 2). This unique decomposition
always exists since L is distributive.

3. We compute �v(xi ) by cumulating the differential Shapley values between xi
and ⊥i .

To bring this approach to an operational state, first an axiomatization is needed
for defining the differential Shapley value for join-irreducible elements. The sec-
ond problem is how to use the irredundant decomposition of xi to compute φv(xi ).
We suggest the following:

φv(xi ) =
∑

ji ∈η(xi )

φv( ji ) + I v(η(xi )),

where I v(S) is the interaction among elements of S ⊆ Li . The interaction repre-
sents the effect of joining elements. For example, for two join-irreducible elements
ji , ki :

• I v({ ji , ki }) = 0 if the worth of ji ∨ ki is the sum of the worths of ji and ki
• I v({ ji , ki }) > 0 (resp. < 0) if the worth of ji ∨ ki is greater (resp. smaller) than

the sum of the worths of ji and ki .

The first appearance of the notion of interaction for classical games is due to Owen
(1972) under the name “co-value”. It was rediscovered in a different context by
Murofushi and Soneda (1993), and generalized by Grabisch (1997). An axiomat-
ization of interaction has been done by Grabisch and Roubens (1999), and a general
definition for games on lattices has been recently given by Grabisch and Labreuche
(2006).

We leave the complete setting of this approach for future research.
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