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Abstract In this paper we consider Markov Decision Processes with discounted
cost and a random rate in Borel spaces. We establish the dynamic programming
algorithm in finite and infinity horizon cases. We provide conditions for the exis-
tence of measurable selectors. And we show an example of consumption-invest-
ment problem.
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1 Introduction

In this paper we consider a Markov decision problem (MDP) with discounted cost,
in which the discount rate is random in each stage. Generally, interest rates in eco-
nomic and financial models are stochastic processes (see, for example, Berument
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et al. 2004; Gil and Luis 2004; Haberman and Sung 2005; Lee and Rosenfield
2005; Newell and Pizer 2003; Ogaki and Santaella 2000; Sack and Wieland 2000;
Stockey and Lucas 1989). However, until now, it has been considered just fixed
rates in discounted cost MDPs. To the best of our knowledge, this is the first article
on discounted cost MDPs with where a random rate is considered. Empirical mod-
els of interest rate have been modeled in Gil and Luis (2004), Ogaki and Santaella
(2000), and Sack and Wieland (2000). The effects of uncertain rates have been
analyzed in Berument et al. (2004) and Newell and Pizer (2003). Haberman and
Sung (2005) and Lee and Rosenfield (2005) used dynamic programming with a
constant discount rate even thought they consider random rates in some parts of the
dynamic of their systems. See Stockey and Lucas (1989) for economic applications
with fixed discount rate. See also Cai et al. (2004) and Lettau and Uhlig (1999).

Discounted MDPs with fixed discount rate can be seen in Abbad and Daoui
(2003), Feinberg and Shwartz (1994, 1995, 1999), Hernández-Lerma and
González-Hernández (2000), Hu (2003), Kurano et al. (1998), Liu (1999), López-
Martínez and Hernández-Lerma (2003), Mao and Piunovskiy (2000), Michael
(1999), Shwartz (2001), and in Altman (1999, Chaps. 3 and 10), Bertsekas (1995,
Sect. 5.4), Borkar (1991, Chap. III), Hernández-Lerma and Lasserre (1996, pp.
32 and 33, Chap. 4), Piunovskiy (1997, Sect. 2.2), Puterman (1994, pp.
146–163, Chap. 6). The MDPs with discounted cost have been studied with differ-
ent approaches as dynamic programming (Kurano et al. 1998; Michael 1999),
convex analysis (Feinberg and Shwartz 1994, 1995, 1999; Mao and Piunovskiy
2000), linear programming (Hernández-Lerma and González-Hernández 2000),
Lagrange multipliers (López-Martínez and Hernández-Lerma 2003). In recent
years there is a growing interest to consider different discount factors, for exam-
ple, Feinberg and Shwartz (1994, 1995, 1999) and Shwartz (2001) studied the
case with two or more fixed discounted factors and described several
applications.

We begin Sect. 2 by defining a Markov decision model with performance crite-
rion the expected discounted cost and with a randomized rate of discount, where the
state and action spaces are Borel spaces. We finish this section with the canonical
construction. In Sect. 3 we study finite horizon MDPs and by using the dynamic pro-
gramming algorithm we prove the existence of optimal policies, under the assump-
tion of the existence of measurable selectors that satisfy optimality equations. In
Sect. 4 we give conditions that assure the existence of such selectors. In Sect. 5
we present infinite horizon MDPs, we show the optimality equation and we prove
the existence of optimal policies. In Sect. 6 we give an example of consumption–
investment problem and we find the solution.

2 Markov control model

The classical model of discounted cost MDP considers a constant discount factor
β = (1 + r)−1, where r is a fixed interest rate. We consider instead of e−α =
(1+r)−1 where r is a random rate, so α = ln(1+r). Since r lies in (0,∞), then α
lies in (0,∞). For this reason we consider state-space X × (0,∞). The elements
of a Markov control model (MCM) and notation we use throughout is five-tuple.

(
X, A, {A(x, α)|(x, α) ∈ X}, Q, c

)
, (1)
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where

(a) X = X ′ × (0,∞) is state space and X ′ is Borel space,
(b) A is action space and Borel space,
(c) a family {A(x, α)|(x, α) ∈ X} of nonempty measurable subsets A(x, α) of A,

where A(x, α) denotes the set of feasible control or actions when the system
is in state (x, α) ∈ X , and with the property that the set

IK = {
(x, α, a) : a ∈ A(x, α), (x, α) ∈ X

}
(2)

of feasible state-actions pairs is a measurable subset of X × A,
(d) a stochastic kernel Q on X given IK called transition law,
(e) a measurable function c : IK → IR called the cost-per-stage function. For our

purposes, we consider that one stage-cost function c is constant with respect to
the variable α.

We note that all results are true, with obvious changes, if we consider a general
function cost c(x, α, a) on IK. But the examples that we are interested in correspond
to model (1).

Throughout the following, we suppose that:

Assumption 1 The set IK contains the graph of a measurable function from X to
A.

This assumption ensures that the sets in Definition 1 are nonempty.

For each t = 0, 1, . . . , define the space Ht of admissible histories up to time t
as H0 = X0, and

Ht :=
[

t−1∏

i=0

IK

]

× X for t = 1, 2, . . . , (3)

where IK is the set in (2). A generic element ht of Ht , which is called an admissible
t-history, is a vector of the form

ht = (x0, α0, a0, . . . , xt−1, αt−1, at−1, xt , αt ) (4)

with (xi , αi , ai ) ∈ IK for i = 0, . . . , t − 1, and (xt , αt ) ∈ X . Observe that, for
each t , Ht is a subset of

H̄t =
t−1∏

i=0

(X × A)× X for t = 1, 2, . . . , (5)

and H̄0 = H0 = X0.
A policy is a sequence of actions that is taken by the controller, that is.

Definition 1 (a) A randomized control policy is a sequenceπ = {πt , t = 0, 1, . . .}
of stochastic kernels πt on the control set A given Ht , satisfying the constraint

πt (A(xt , αt )|ht ) = 1 ∀ ht ∈ Ht , t = 0, 1, . . . . (6)
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(b) The set � denotes the set of all stochastic kernels ϕ in P(A|X), such that
ϕ(A(x, α)|x, α) = 1 for all (x, α) ∈ X, and IF stands for the set of all mea-
surable functions f : X → A satisfying the constraint f (x, α) ∈ A(x, α) for
all (x, α) ∈ X. The functions in IF are called selectors of the multifunction
(x, α) �→ A(x, α).

The set of all policies is denoted by �. As usual, we will identify � with the
family of randomized stationary policies, and IF with the subfamily of determinis-
tic stationary policies. In this way, we have that IF ⊂ � ⊂ �.

With these elements we can define the next stochastic processes.

The canonical construction (see, Hinderer 1970, pp. 78–83)

Let (�,F) be the measurable space consisting of the (canonical) sample space
� := H̄∞ = ∏∞

t=1(X × A) and F is the corresponding product σ -algebra. The
element of � are sequence of the form w = (x0, α0, a0, x1, α1, a1, . . .) with
(xt , αt ) in X and at in A for all t = 0, 1 . . .; the projections (xt , αt ) and at from
� to the sets X and A are called state and control (or action) variables, respec-
tively. Observe that � contains the space H∞ = ∏∞

t=0 IK of admissible histories
(x0, α0, a0, x1, α1, a1, . . .) with (xt , αt , at ) ∈ IK for all t = 0, 1, . . .

Let π = {πt } be an arbitrary control policy and ν an arbitrary probability
measure on X , referred to as the initial distribution. Then, by the theorem of
C. Ionescu-Tulcea (Hernández-Lerma and Lasserre 1996, Appendix C; Hinderer
1970, pp. 78–83) there exists a unique probability measure Pπν on (�,F)which, by
(6), is supported on H∞, namely Pπν (H∞) = 1, and, moreover, for all B ∈ B(X),
C ∈ B(A) and ht ∈ Ht as in (4), t = 0, 1, . . .:

Pπν
(
(x0, α0) ∈ B

) = ν(B), (7)

Pπν (at ∈ C |ht ) = πt (C |ht ), (8)

Pπν
(
(xt+1, αt+1) ∈ B|ht , at

) = Q(B|xt , αt , at ). (9)

The stochastic process
(
�,F, Pπν , {(xt , αt )}

)
is called a discrete-time Markov con-

trol process (or Markov decision process). The expectation operator with respect
to Pπν is denoted by Eπν . If ν is concentrated at the initial state (x, α) ∈ X , then
we write Pπν and Eπν as Pπ(x,α) andEπ(x,α), respectively.

Interpretation We observe the system in discrete time (days, months, years,. . .).
The system starts at the state (x0, α0) and we apply a policy π = {πt } in the fol-
lowing way: we choose an action a0 with distribution law π0(·|h0), which incurs
the an immediate cost c(x0, a0). Then, the system evolves to a new state (x1, α1)
according to the transition law Q(·|x0, α0, a0). Now, we choose an action a1 with
distribution law π1(·|h1), which generates a new cost c(x1, a1) and the system
moves to another state (x2, α2) according to transition law Q(·|x1, α1, a1). The
process is repeated at each time t within the problem’s planning horizon.

The following notation will be useful for us.

Let φ ∈ �, g : X × A → R a measurable function, and Q a stochastic Kernel
on X given IK.
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Then we define

g(x, α, ϕ) =
∫

A

g(x, α, a)ϕ(da|x, α)

and

Q(·|x, α, ϕ) =
∫

A

Q(·|x, α, a)ϕ(da|x, α).

In particular for a function f ∈ IF (⊆ �), we have g(x, α, f ) = g(x, α, f (x, α))
and Q(B|x, α, f ) = Q(B|x, α, f (x, α)). Note that each of these functions is
measurable.

3 Finite-horizon problems

In this section we consider the Markov control model (1) with a finite planning
horizon N. The present value of the current cost in stage t is given by

e−St c(xt , at )

where S0 = 0 and St := α0 +· · ·+αt−1 for t = 1, . . . , N −1. Finally, we consider
that at stage N there is a terminal cost C(xN ). That is, The control problem we are
interested in is to minimize the finite horizon performance criterion

J (π, x, α) := Eπ(x,α)

[
N−1∑

t=0

e−St c(xt , at )+ e−SN cN (xN )

]

. (10)

Thus, denoting by J ∗ the value function, i.e.,

J ∗(x, α) := inf
�

J (π, x, α), (x, α) ∈ X0, (11)

the problem is to find a policy π∗ ∈ � such that

J (π∗, x, α) = J ∗(x, α) ∀(x, α) ∈ X. (12)

Our main result in this section is the following Dynamical Programming (DP)
theorem that gives the value function and a deterministic optimal policy.

Theorem 2 For t = 0, 1, . . . , N, let Jt be the function on X, defined (backward,
from t = N to t = 0) by

JN (x, α) := cN (x) (13)

and for t = N − 1, N − 2, . . . , 0,

Jt (x, α) := min
A(x,α)

[
c(x, a)+ e−α

∫

X

Jt+1(y, β)Q(d(y, β)|x, α, a)

]
. (14)
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Suppose that these functions are measurable and that, for each t = 0, . . . , N − 1,
there is a selector ft ∈ IF such that ft (x, α) ∈ A(x, α) attains the minimum in
(14) for all (x, α) ∈ X; that is, for all (x, α) in X and t = 0, . . . , N − 1,

Jt (x, α) := c(x, ft )+ e−α
∫

X

Jt+1(y, β)Q(d(y, β)|x, α, ft ). (15)

Then the policy π∗ = { f0, . . . , fN−1} is optimal and the value function J ∗ equals
J0, i.e.,

J ∗(x, α) = J0(x, α) = J (π∗, x, α) ∀(x, α) ∈ X. (16)

Proof Letπ = {πt } be an arbitrary policy, and let Ct (π, x, α) be the corresponding
expected total cost from time t to terminal time N , given the state (xt , αt ) = (x, α)
at time t , i.e.,

Ct (π, x, α) := Eπ
[

N−1∑

n=t

eSt −Sn c(xn, an)+ eSt −SN cN (xN , αN )|xt = x, αt = α

]

(17)

for t = 0, . . . , N − 1

CN (π, x, α) := Eπ (cN (xN )|xN = x, αN = α) = cN (x).

Ct (π, x, α) is called the ‘cost-to-go’ or cost from time t onwards when using the
policy π and (xt , αt ) = (x, α). In particular note that, from (10) and (17)

J (π, x, α) = C0(π, x, α) (18)

To prove the theorem, we shall show that, for all (x, α) ∈ X and t = 0, . . . , N ,

Ct (π, x, α) ≥ Jt (x, α) (19)

with equality if π = π∗, i.e.,

Ct (π
∗, x, α) = Jt (x, α). (20)

In particular for t = 0,

J (π, x, α) ≥ J0(x, α) with J (π∗, x, α) = J0(x, α) ∀(x, α),
which yields the desired conclusion (16), as J (π, ·, ·) ≥ J0(·, ·) for arbitrary π
implies J ∗(·, ·) ≥ J0(·, ·).

The proof of (19) and (20) is by backward induction. Observe that (19) and
(20) trivially hold for t = N , since, from (18) and (13),

CN (π, x, α) = JN (x, α) = cN (x).

Let us now assume (the induction hypothesis) that for some t = N − 1, . . . , 0,

Ct+1(π, x, α) ≥ Jt+1(x, α) ∀(x, α) ∈ X. (21)
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Then

Ct (π, x, α) = Eπ
[

N−1∑

i=t

eSt −Si c(xi , ai )+ eSt −SN cN (xN , αN )|xt = x, αt = α

]

=
∫

A

[
c(x, a)+ e−α

∫

X

Ct+1(π, y, β)Q(dy, dβ|x, α, a)

]
πt (da|x, α)

hence,

Ct (π, x, α) ≥ min
A(x,α)

[
c(x, a)+ e−α

∫

X

Jt+1(y, β)Q(dy, dβ|x, α, a)

]

= Jt (x, α).

This proves (19). On the other hand, if equality holds in (21) with π = π∗ so
that πt (·|ht ) is the Dirac measure concentrated at f (xt , αt ), then equality holds
throughout the previous calculations which yields (20). �
Remark 1 (a) The nonstationary case can be reduced to former case with an ade-

quate extension of spaces (see, for instance, Hinderer 1970, p. 78).
(b) We can see that when β = e−α is constant, we have the classical dynamic pro-

gramming equation for fixed discounted factor (see, for instance, Hernández-
Lerma and Lasserre 1996, pp. 32 and 33; Borkar 1991, Sect. III.2; Piunovskiy
1997, Subsect. 1.2.2.2).

(c) If we consider that observed interest rate in stage n is used to calculate the
present value of current cost in stage n. Then the corresponding performance
criterion would be

J 1(π, x, α) := Eπ(x,α)

[
N−1∑

t=0

e−St+1c(xt , at )+ e−SN cN (xN )

]

. (22)

In this case (14) becomes

J 1
t (x, α) := min

A(x,α)

[
e−α

(
c(x, a)+

∫

X

J 1
t+1(y, β)Q(d(y, β)|x, α, a)

)]
,

(23)

and (13) remains unchanged.

4 The measurable selection condition

In Theorem 2 we supposed the existence of measurable selectors, that satisfy the
Eqs. (10)–(15). In this section we give conditions on the MCM (1) that assure the
existence of selectors.



34 J. González-Hernández et al.

Assumption 3 For a given measurable function u : X → IR, the function u∗ from
X to IR defined,

u∗(x, α) := inf
A(x,α)

[
c(x, a)+ e−α

∫

X

u(y, β)Q(dy, dβ|x, α, a)

]
(24)

is measurable and there exists a selector f ∈ F such that the function within
brackets attains its minimum at f (x, α) ∈ A(x, α) for all (x, α) ∈ X , i.e.,

u∗(x, α) = c(x, f )+ e−α
∫

X

u(y, β)Q(dy, dβ|x, α, f ) ∀ (x, α) ∈ X.

We recall some definitions that will be used in the conditions below.
Let Y be a metric space and v a function from Y to IR∪{∞} such that v(y) < ∞

for at least one point y ∈ Y . The function v is said to be lower semicontinuous
(l.s.c.) at y ∈ Y , if lim inf v(yn) ≥ v(y) for any sequence {yn} in Y that converges
to y. The function v is called lower semicontinuous (l.s.c.) if it is l.s.c. at every
point of Y . A function v : IK → IR is said to be inf-compact on IK if, for every
(x, α) ∈ X and r ∈ IR, the set {a ∈ A(x, α)|v(x, α, a) ≤ r} is compact. A mul-
tifunction ψ from X to A is said to be upper semicontinuous (u.s.c) if ψ−1[F] is
closed in X for every closed set F ⊂ A. Let B(X) be the family of measurable
bounded functions on X , and C(X) ⊂ B(X) the subfamily of continuous functions.

We now consider the three conditions under which, in particular, Assumption
4.1 is satisfied

Condition 4 (a) The control sets A(x, α) are compact for all (x, α) ∈ X.
(b) The one-stage cost c is such that c(x, ·) is l.s.c on A(x, α) for every (x, α) ∈ X.
(c) The function

v′(x, α, a) :=
∫

X

v(y, β)Q(dy, dβ|x, α, a) (25)

on IK satisfies one of the two following conditions:
(c1) v′(x, α, ·) is l.s.c. on A(x, α) for every (x, α) ∈ X and every v ∈ C(X),
(c2) v′(x, α, ·) is l.s.c. on A(x, α) for every (x, α) ∈ X and every v ∈ B(X).

Condition 5 (a) A(x, α) is compact for all (x, α) ∈ X and the multifunction
(x, α) �→ A(x, α) is u.s.c.

(b) The one-stage cost c is l.s.c and bounded below.
(c) The transition law Q is either:

(c1) weakly continuous, i.e., for every function v ∈ C(X), the function v′ in
(25) is continuous and bounded on IK

(c2) strongly continuous, i.e., v′ is continuous and bounded on IK for every
v ∈ B(X).

Condition 6 (a) The one-stage cost c is l.s.c bounded below and inf-compact on
IK;

(b) Same as 5(c), i.e., Q is either
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(b1) weakly continuous, or
(b2) strongly continuous.

We next show how the last three conditions relate to Assumption 3.

Theorem 7 (i) Each of Conditions 4 and 5 implies Assumption 3 for any non-
negative measurable function u : X �→ IR. Moreover, under 4(c1) or 5(c1),
it suffices to take u nonnegative and l.s.c. in which case, under 5(a,b,c1) the
function u∗ in (24) is l.s.c.

(ii) Condition 6 implies Assumption 3 if, under b1, u is nonnegative and l.s.c or,
under b2, if u is a nonnegative measurable function. If in addition the multi-
function (x, α) �→ A∗(x, α) with A∗(x, α) equal to
{

a ∈ A(x, α)|u ∗ (x, α) := c(x, a)+ e−α
∫

u(y, β)Q(dy, dβ|x, α, a)

}

is l.s.c., then u∗ is l.s.c..

Remark 2 In Theorem 7, we suppose that u is nonnegative, but it is easily seen
that it suffices to take a bounded below.

Proof (i) Let u ≥ 0 be a measurable function on X .
To prove the first statement in (i), it clearly suffices to consider Conditions 4 (a),

(b) and (c2). Moreover, note that given l.s.c. functions v1, v2, then v1+e−αv2 is also
l.s.c.. Hence the desired conclusion follows from Proposition D.5 in Hernández-
Lerma and Lasserre (1996) provided that the function

a �→
∫

X

u(y, β)Q(dy, dβ | x, α, a) is l.s.c. on A(x, α) for every (x, α) ∈ X.

(26)

To prove this, let {un} be a sequence in B(X) such that un ↑ u, and let
{
al
}

be
a sequence in A(x, α). Converging to a ∈ A(x, α). Then, for each n we have

lim inf
l→∞

∫
u(y, β)Q(dy, dβ|x, α, al) ≥ lim inf

l→∞

∫
un(y, β)Q(dy, dβ|x, α, al)

≥
∫

un(y, β)Q(dy, dβ|x, α, a).

Letting n tend to infinity we obtain (by the Monotone Convergence Theorem)

lim inf
l→∞

∫
u(y, β)Q(dy, dβ|x, α, al) ≥

∫
u(y, β)Q(dy, dβ|x, α)

which proves (26). Thus, as was already mentioned, we obtain Assumption 3 from
Proposition D.5 in Hernández-Lerma and Lasserre (1996).

Let us now suppose that Conditions 4(c1) or 5(c1) hold. Then the second state-
ment in (i) follows from the same argument above, but now based on the fact that
u ≥ 0 is l.s.c., then it is the limit of an increasing sequence in C(X) (see Proposition
A.2 in Hernández-Lerma and Lasserre 1996).
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The last statement in (i) follows from the above arguments and Proposition
D.5(b) in Hernández-Lerma and Lasserre (1996).

(ii) Suppose that Condition 6 holds with (b2), and that u ≥ 0 is measurable.
Then, as in the proof of part (i), but now approximating u from below by functions
in B(X), one can show that the function

u′(x, α, a) = c(x, a)+ e−α
∫

X

u(y, β)Q(dy, dβ | x, α, a)}, (x, α, a) ∈ IK

is l.s.c and bounded below. Thus we may obtain Assumption 3 from Proposition
D.6(a) in Hernández-Lerma and Lasserre (1996), if u′ is intf-compact on IK, that
is, if for every (x, α) ∈ X and r ∈ IR, the set {a ∈ A(x, α)|u′(x, a) ≤ r} := D is
compact. But this is obviously true, since (by lower semicontinuity – see Proposi-
tion A.1(c) in Hernández-Lerma and Lasserre 1996) D is closed and, since u ≥ 0,
it is contained in the set {a ∈ A(x, α)|c(x, a) ≤ r}, which, by the inf-compactness
of c [see Condition 6(a)], is compact. The proof under (b1) is similar.

The last statement in (ii) follows from Proposition D.6(b) in Hernández-Lerma
and Lasserre (1996). �

5 Infinite-horizon cost problem

Now we study MDPs with random discounted cost and infinite-horizon. Given a
stationary control model as (1) and the performance criterion to be minimized is

V (π, x, α) := Eπ(x,α)

[ ∞∑

t=0

e−St c(xt , at )

]

, π ∈ �, (x, α) ∈ X (27)

where St as in Sect. 3. A policy π∗ satisfying

V (π∗, x, α) = inf
π

V (π, x, α) =: V ∗(x, α) ∀(x, α) ∈ X (28)

is said to be optimal and V ∗ is called the value function.
Throughout the following, we suppose that the one-stage cost c is nonnegative

(although, in fact, for virtually all of the results to be true it suffices to assume that
c is bounded below). Moreover, we will use Vn to denote the n-stage cost

Vn(π, x, α) := Eπ(x,α)

[
n−1∑

t=0

e−St c(xt , at )

]

. (29)

Hence (by the Monotone Convergence Theorem) we may write V (π, x, α) in
(27) as

V (π, x, α) = lim
n→∞ Vn(π, x, α). (30)
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A measurable function ν : X → IR is said to be a solution of optimality
equation (OE) if it satisfies

V (x, α) = min
A(x,α)

⎧
⎨

⎩
c(x, α)+ e−α

∫

X

V (y, β)Q(dy, dβ|x, α, a)

⎫
⎬

⎭
∀(x, α) ∈ X.

(31)

In Theorem 10, we prove that the value function V ∗ in (28) is solution to the OE.
To this end, we begin with the DP Theorem 2 for finite-horizon problems and with
suitable change of indices we obtain the forward form of the dynamic programming
algorithm, that is, the value iteration functions defined as

vn(x, α) = min
A(x,α)

⎧
⎨

⎩
c(x, a)+ e−α

∫

X

vn−1(y, β)Q(dy, dβ|x, α, a)

⎫
⎬

⎭
∀(x, α) ∈ X

(32)

and n = 1, 2, . . . , with v0(·) := 0. The idea then is to show that

V ∗(x, α) = lim
n→∞ vn(x, α) ∀(x, α) ∈ X. (33)

This result is to be expected since vn is the value function of the n-stage cost Vn in
(29) with zero terminal cost, namely

vn(x, α) = inf
π

Vn(π, x, α), (x, α) ∈ X. (34)

This, letting n → ∞ in (32) we anticipate to obtain (35), if we can justify the
interchange of limits and minima.

This approach, requires first of all, the measurable selection condition in
Assumption 3 for (32) and (35) to be well defined. We also impose the follow
requirements.

Assumption 8 (a) The one-stage cost c is l.s.c., nonnegative, and inf-compact on
IK.

(b) Q is strongly continuous.

Assumption 9 There exists a policyπ such that V (π, x, α) < ∞ for each (x, α) ∈
X .

We shall denote by �0 the family of policies for which Assumption 9 holds.
We now state our main result in this section.

Theorem 10 Suppose that Assumptions 8 and 9 hold. Then

(a) The value function V ∗ is the minimal solution to the OE, i.e.,

V ∗(x, α) = min
A(x,α)

{
c(x, a)+ e−α

∫

X

V ∗(y, β)Q(dy, dβ|x, α, a)

}
(35)

for all (x, α) ∈ X and if u is another solution to the OE, then u(·) ≥ V ∗(·).
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(b) There exists a selector f∗ ∈ IF such that f∗(x, α) ∈ A(x, α) attains the
minimum in (35), i.e.,

V ∗(x, α) = c(x, f∗)+ e−α
∫

V ∗(y, β)Q(dy, dβ|x, α, f∗) ∀(x, α) ∈ X

(36)

and the deterministic stationary policy f ∞∗ is optimal. Conversely, if f ∞∗ is a
stationary deterministic optimal policy, then it satisfies (36).

(c) If π∗ is a policy such that V (π∗, ·) is a solution to the OE and satisfies

lim
n→∞ Eπ(x,α)

[
e−Sn V (π∗, xn, αn)

]
= 0 ∀π ∈ �0 and (x, α) ∈ X, (37)

then V (π∗, ·) = V ∗(·), and so π∗ is α-discounted optimal. In other words, if
(37) holds, then π∗ is optimal if and only if V (π∗, ·) satisfies the OE.

(d) If an optimal policy exists, then there exists one that is deterministic stationary.

The proof of this theorem requires several lemmas.

Lemma 1 Let u and un (n = 1, 2, . . .) be l.s.c. functions, bounded below, and
inf-compact on IK. If un ↑ u. Then

lim
n→∞ min

A(x,α)
un(x, α, a) = min

A(x,α)
u(x, α, a) ∀(x, α) ∈ X. (38)

Proof The proof is similar to that of Lemma 4.2.4 in Hernández-Lerma and
Lasserre (1996, p.47), and, therefore is omitted. �
We need also in this case the existence of measurable selectors that satisfy the DP
equation. To do this we use Theorem 7 and the following definition.

Definition 2 M(X)+ denotes the cone of nonnegative measurable functions on X,
and, for every u ∈ M(X)+, T u is the function on X defined as

T u(x, α) := min
A(x,α)

⎡

⎣c(x, a)+ e−α
∫

X

u(y, β)Q(dy, dβ|x, α, a)

⎤

⎦ . (39)

Lemma 2 Under Assumption 8, T maps M(X)+ into itself, i.e., for every u in
M(X)+, T u is also in M(X)+, and moreover, there exists a selector f ∈ IF such
that

T u(x, α) = c(x, f )+ e−α
∫

X

u(y, β)Q(dy, dβ|x, α, f ) ∀(x, α) ∈ X.

Notice also that, using the operator T , we may rewrite the OE (35) and the functions
in (32) as

V ∗ = T V ∗ and vn = T vn−1 f or n ≥ 1

v0 = 0, respectively. We shall next relate V ∗ to the functions u that satisfy u ≥ T u
or u ≤ T u.
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Lemma 3 Suppose that Assumptions 8 and 9 hold:

(a) If u ∈ M(X)+ is such that u ≥ T u, then u ≥ V ∗.
(b) If u : X → IR is a measurable function such that T u is well defined and, in

addition, u ≤ T u and

lim
n→∞ Eπ(x,α)

[
e−Sn u(xn, αn)

]
= 0 ∀π ∈ �0 and (x, α) ∈ X (40)

then u ≤ V ∗.

Proof (a) Let u ∈ M+(X) such that u ≥ T u, then, by Lemma 2, we may choose
f ∈ IF such that

u(x, α) ≥ c(x, f )+ e−α
∫

X

u(y, β)Q(dy, dβ|x, α, f ).

Iterations of this inequality give us

u(x, α) ≥ Eπ(x,α)

[
N−1∑

t=0

e−St c(xt , at )

]

+ Eπ(x,α)

[
e−SN u(xN , aN )

]
, (41)

whereπ = ( f, f, . . .)= f ∞ and Eπ(x,α)
[
e−SN u(xN , αN )

] = ∫
u(y, β) Qn(dy, dβ|

x, α, f ). Since u ≥ 0, we have that

u(x, α) ≥ Eπ(x,α)

[
N−1∑

t=0

e−St c(xt , at )

]

.

Letting N → ∞, we get

u(x, α) ≥ V (π, x, α) ≥ V ∗(x, α) ∀(x, α) ∈ X.

This proves (a).
(b) Let π ∈ � and (x, α) ∈ X be arbitrary. From the Markov-like property (2.9)
and the assumption T u ≥ u,

Eπ(x,α)
[
e−St+1u(xt+1, αt+1)|ht , at

]

= e−St+1 Eπ(x,α)
[
u(xt+1, αt+1)|xt , αt , at

]

= e−St+1

⎡

⎣
∫

X

u(y, β)Q(dy, dβ|xt , αt , at )

⎤

⎦

= e−St

⎡

⎣c(xt , at )+ e−αt

∫

X

u(y, β)Q(dy, dβ|xt , αt , at )− c(xt , at )

⎤

⎦

≥ e−St [u(xt , αt )− c(xt , at )].
Hence

e−St c(xt , at ) ≥ −Eπ(x,α)
[
e−St+1u(xt+1, αt+1)|ht , at

] + e−St u(xt , αt )
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Thus, taking expectations Eπ(x,α) and summing over t = 0, . . . , N − 1, we have

Eπ(x,α)

[
N−1∑

t=0

e−St c(xt , at )

]

≥
N−1∑

t=0

(
Eπ(x,α)

[ − e−St u(xt , αt )+ e−St−1 u(xt−1, αt−1)
])

= −Eπ(x,α)
[ − e−SN u(xN , αN )

] + u(x, α) ∀ N .

Finally, letting N → ∞ and using the hypothesis (40), it follows that V (π, x, α) ≥
u(x), which implies V ∗ ≥ u, as π and (x, α) were arbitrary. �

We shall now use Lemmas 1 and 3 to prove the limit (33).

Lemma 4 Suppose that Assumptions 8 and 9 hold. Then vn ↑ V ∗ and V ∗ satisfies
the OE.

Proof To begin, note that, from (35), (27) and the assumption that c ≥ 0,

vn(x, α) ≤ Vn(π, x, α) ≤ V (π, x, α) ∀n, π, (x, α).

Therefore,

vn(x, α) ≤ V ∗(x, α) ∀n, (x, α) ∈ X. (42)

Now, the operator T in (39) is monotone. Therefore, since v0 := 0 and vn := T vn−1
for n ≥ 1, the functions form a nondecreasing sequence in M(X)+, which implies
that vn ↑ v∗ for some v∗ ∈ M(X)+. This, in turn (by the Monotone Convergence
Theorem), implies un ↑ u, where

un(x, α) = c(x, a)+ e−α
∫

X

vn(y, β)Q(dy, dβ|x, α, a),

u(x, α) = c(x, a)+ e−α
∫

X

v∗(y, β)Q(dy, dβ|x, α, a).

On the other hand, as in the proof of Theorem 7(ii), one can show that the non-
negative functions u and un (n ≥ 1) are l.s.c. and inf-compact on IK. Thus, from
Lemma 1,

v∗ = lim
n
vn = lim

n
T vn−1 = T v∗;

that is, v∗ satisfies the OE v∗ = T v∗.
Hence, to complete the proof of the lemma, it only remains to show that v∗ =

V ∗. But this is immediate because, by Lemma 3(a), v∗ = T v∗ implies v∗ ≥ V ∗,
and the reverse inequality follows from (42) and the already established fact that
vn ↑ v∗. �
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Finally, we prove Theorem 10.

Proof of Theorem 10 (a) From Lemma 4, V ∗ is a solution to the OE, and the fact
that V ∗ is the minimal solution follows from Lemma 3(a) – for if u = T u, then
u ≥ V ∗.

(b) The existence of a selector f∗ ∈ IF satisfying (36) is ensured by Lemma 2.
Now, iteration of (36) shows [as in (41)] that

V ∗ = E
f ∞∗
(x,α)

[
n−1∑

t=0

e−St c(xt , f∗)
]

+ E
f ∞∗
(x,α)

[
e−Sn V ∗(xn, αn)

]

≥ E
f ∞∗
(x,α)

[
n−1∑

t=0

e−St c(xt , f∗)
]

n ≥ 1 ∀(x, α) ∈ X.

This implies, letting n → ∞, V ∗(x, α) ≥ V ( f ∞∗ , x, α) ∀(x, α) ∈ X, whereas,
from (28), V ∗(·) ≤ V ( f ∞∗ , ·). That is, V ∗(·) = V ( f ∞∗ , ·) and, therefore, f ∞∗ is
optimal.

To prove the converse, we note first the important fact that for any deterministic
stationary policy f ∞, the cost V ( f ∞, ·) satisfies

V ( f ∞, x, α) = c(x, f )+ e−α
∫

X

V ( f ∞, y, β)Q(dy, dβ|x, α, f ) ∀(x, α) ∈ X.

(43)

Indeed,

V ( f ∞, x, α) = E f ∞
(x,α)

[ ∞∑

t=0

e−St c(xt , f )

]

= E f ∞
(x,α)

[

c(x0, f )+
∞∑

t=1

e−St c(xt , f )

]

= c(x, f )+ e−αE f ∞
(x,α)

[ ∞∑

t=1

e−St−1c(xt , f )

]

= c(x, f )+ e−αE f ∞
(x,α)E

f ∞
(x1,α1)

[ ∞∑

t=1

e−St−1c(xt , f )

]

= c(x, f )+ e−αE f ∞
(x,α)

[
V ( f ∞, x, α)

]

= c(x, f )+ e−α
∫

X

V ( f ∞, y, β)Q(dy, dβ|x, α, f ).

In particular, if f∗ is stationary deterministic optimal, then V ( f ∞∗ , ·) = V ∗(·), in
which case (43), with f = f∗, reduces to (36).
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(c) If V (π∗, ·) satisfies the OE, then from part (a) or Lemma 3(a) we get
V (π∗, ·) ≥ V ∗(·). The reverse inequality follows from (37) and Lemma 3(b).

Finally, (d) is a consequence of (a) and (b). �

6 An example

In this section we consider a consumption–investment problem, consisting of an
investor who wishes to allocate his/her current wealth xt between investment (at )
and consumption (xt − at ), in each period t = 0, 1, . . . , N . Since we assume that
borrowing is not allowed, the investment (or control) constraint set is A(x, α) =
[0, x]. The connection between investment decisions and accumulated capital is
given by

xt+1 = atξt ,

αt+1 = dαt + ηt , t = 0, 1, . . . , N ,

where {ξt } and {ηt } are independent sequences of i.i.d. random variables, and inde-
pendent of the initial state (x0, α0). Let E(ξ0) = em with m > 0, and 0 < d < 1;
the one-stage return r(x, a) is supposed to be a utility consumption, say r(x, a) :=
b(x −a)with b > 0, and we wish to maximize the expected total discounted utility.

We suppose that parameters d,m, α and expected value of E
(
e− η0

1−d
)

satisfy

E
(
e− η0

1−d
) ≥ 1, α0 + M

1 − d
≤ m (44)

where |η0| ≤ M .
With obvious changes of min by max in the DP algorithm (13), (14) and

rN+1(x) = 0 we have

JN (x, α) = max
a∈[0,x]

{
b(x − a)+ e−αE

(
JN+1(y)

)
}

= bx,

and fN (x, α) = 0. Similarly

JN−1(x, α) = max
a∈[0,x]

{
b(x − a)+ e−αE

(
JN (y, β)

)}

= b max
a∈[0,x]

{
x + a

( − 1 + em−α)}

= bem−αx

where the last equality is consequence of (44). Indeed, since

|α| ≤ |d N−2α0 +
N−2∑

i=0

diηi | ≤ α0 + M

1 − d
≤ m.

we obtain, em−α ≥ 1. And fN−1(x, α) = x . In general

JN−t (x, α) = max
a∈[0,x]

{
b(x − a)+ e−αE

(
JN−t+1(y, β)

)}
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for each t = 2, . . . , N .
The inequalities (44) yield that m ≥ α, and

m + ln E(e−η0) ≥ dα, . . . ,m + ln E
(
e−(1+···+dt−2)η0

) ≥ dt−1α.

Hence

emt−(1+d+···+dt−1)αE(e−η0)E
(
e−(1+d)η0

) · · · E
(
e−(1+d+···+dt−2)η0

) − 1 ≥ 0.

Therefore

JN−t (x, α) = bemt−(1+···+dt−1)αE(e−η0)E
(
e−(1+d)η0

) · · · E
(
e−(1+···+dt−2)η0

)
x

with fN−t (x, α) = x . Continuing this process we obtain the optimal value

J0(x, α) = bem N−(1+···+d N−1)αE(e−η0)E
(
e−(1+d)η0

) · · · E
(
e−(1+···+d N−2)η0

)
x

with f0(x, α) = x . Hence the optimal policy is to invest the whole wealth in each
stage 0 ≤ t ≤ N except at the last stage, when everything is consumed.
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