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Abstract We consider vector optimization problems on Banach spaces without
convexity assumptions. Under the assumption that the objective function is locally
Lipschitz we derive Lagrangian necessary conditions on the basis of Mordukhovich
subdifferential and the approximate subdifferential by Ioffe using a non-convex sca-
larization scheme. Finally, we apply the results for deriving necessary conditions
for weakly efficient solutions of non-convex location problems.

Keywords Non-convex vector optimization ·Lagrangian conditions ·Mordukhovich
subdifferential · Ioffe subdifferential

1 Introduction

In this paper we will be mainly concerned with the following vector minimization
problem (VP) given as

V − min F(x), subject to x ∈ C,

where X and Y are Banach spaces, K ⊂ Y a closed, convex and pointed cone
which induces a partial order on Y , F : X → Y and C ⊆ X . In order to describe
solution concepts for the vector optimization problem (VP) we use the following
notations: Let us consider A ⊆ Y .
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• A point y0 ∈ A is said to be a minimal point of A, if there exists no other
point y ∈ A such that y − y0 ∈ −(K\{0}). We denote this by y0 ∈ Eff(A, K ),
where Eff(A, K ) denotes the set of minimal points of A with respect to the
ordering cone K . A point x0 ∈ C is called an efficient point of (VP), if F(x0) ∈
Eff(F(C), K ).

• A point y0 ∈ A is said to be a weakly minimal element, if int K �= ∅ and
there exists no y ∈ A such that y − y0 ∈ −int K . This is denoted by y0 ∈
w − Eff(A, K ). A point x0 ∈ C is a weakly efficient point of (VP), if F(x0) ∈
w − Eff(F(C), K ).

• Consider a closed convex and pointed cone D with non-empty interior such
that K\{0} ⊂ int D. A point y0 ∈ A ⊆ Y is said to be properly minimal, if
y0 ∈ Eff(A, D). A point x0 ∈ C is called a properly efficient point for (VP), if
F(x0) ∈ Eff(F(C), D).

It is however important to note that in the above definition of minimal points
one may just assume K to be a non-empty set in Y rather than a cone. Such general
definitions are provided in Gerth(Tammer) and Weidner (1990) and we refer the
reader to Gerth(Tammer) and Weidner (1990) for more details on this issue.

There are many papers where Lagrangian multiplier rules are shown for vec-
tor optimization problems under differentiability or convexity (or convexity-like)
assumptions (see Jahn 1986, 2004). Necessary conditions for weakly minimal ele-
ments in non-differentiable vector optimization where the objective function takes
its values in finite dimensional spaces are derived by Clarke (1983),Minami (1983),
Mordukhovich (1985), Craven (1989) and Miettinen (1999), Miettinen and Mäkelä
(2000). Lagrangian multiplier rules for weakly minimal elements of vector opti-
mization problems on Banach spaces are presented by El Abdouni and Thibault
(1992) and by Amahroq and Taa (1997).

In this article we are interested in developing the Lagrangian necessary con-
ditions for the vector program (VP) and also try to demonstrate how Lagrangian
multipliers can be interpreted as subgradients of some convex scalarizing func-
tions. In the Lagrangian theory of vector optimization one of the most important
approaches is by scalarization where the vector optimization problem is converted
into an equivalent scalar optimization problem and then the usual techniques of
scalar optimization is applied. For example let us consider the case where the func-
tion F is a K -convex function and C a convex subset of X and let x0 be a weakly
efficient point for (VP). Then by using the standard separation theorem for convex
sets it is easy to show that there exists 0 �= y∗ ∈ K ∗ such that x0 also solves the
following scalar optimization problem (SP)

min〈y∗, F(x)〉, subject to x ∈ C.

The converse of this fact is also true. But when the function F is not convex
such a nice scalarization through bounded linear operators is not possible since
the convex separation results are no longer available. However, if Y = Rl and
K = Rl+ then a scalarization using max function can be developed for the case of
a weakly efficient point while a Chankong and Haimes (1983) type scalarization
can be used for an efficient point. But if Y is an infinite dimensional Banach space
such scalarizations cannot be used anymore. However, it is interesting to note that
Gerth(Tammer) and Weidner (1990) have developed some non-linear scalariza-
tion schemes by developing non-convex separation theorems in linear topological
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spaces. In this article we precisely aim to develop Lagrangian multiplier rules for
(VP) using these non-convex scalarization schemes. Moreover, we will also dem-
onstrate that the Lagrangian multipliers are in fact subgradients of certain convex
functions that are generated by these non-convex scalarization schemes. Further-
more, the Lagrangian conditions that we develop here are indeed very general by
their very nature.

Throughout this paper X and Y will denote Banach Spaces and X∗ and Y ∗
denotes the respective dual spaces. Let ‖.‖X and ‖.‖Y denote the norms in X and
Y , respectively. However, one can drop the subscript denoting the space if there
is no confusion. Let us consider a closed, convex and pointed cone K in Y which
induces a partial order on Y . Thus x ≤ K y iff y − x ∈ K for x, y ∈ Y . If K has
a non-empty interior that is int K �= ∅ then x <K y iff y − x ∈ int K . A func-
tional z : Y → R is said to be K -monotone (increasing) if y − x ∈ K implies
that z(y) ≥ z(x). The functional z is called strictly K -monotone (increasing) if
y − x ∈ K\{0} implies that z(y) > z(x). Let us mention in the beginning that
throughout the article by the term K -monotone we will mean monotone in the
increasing sense. We will also need the notion of the dual cone to K denoted as
K ∗ and given by

K ∗ = {y∗ ∈ Y ∗ : 〈y∗, y〉 ≥ 0,∀y ∈ K }.

2 Preliminaries

Throughout this article we will be mainly concerned with the case where the func-
tion F is strictly differentiable and also the case where F is locally Lipschitz (cf.
Clarke 1983). When F is locally Lipschitz, we will consider the case when Y is
finite dimensional and also the case when Y is infinite dimensional. When Y is finite
dimensional our main tool to express the optimality conditions is the Clarke sub-
differential and the subdifferential by Mordukhovich where as when Y is infinite
dimensional we will see that our main tool will be the approximate subdifferential
of Ioffe.

A comprehensive theory of basic/limiting normals and subgradients is pre-
sented in the book by Mordukhovich (2005).

In what follows we shall represent by F ′(x) the strict derivative of F at x .
Given any linear map T : X → Y we denote by T ∗ its adjoint map. Moreover, for
any set B we denote by coB the convex hull of B and by clB we mean the closure
of the set B. We denote by 〈., .〉 the usual duality pairing between X and X∗. For
any function F : X → Y and y∗ ∈ Y ∗ we evaluate the function 〈y∗, F〉 : X → R
as 〈y∗, F〉(x) = 〈y∗, F(x)〉. For any set B in X∗ we denote by co∗B the weak-star
closed convex hull of B. Moreover, for any set C ⊆ X we denote the Bouligand
tangent cone or the contingent cone to C at x0 ∈ C as T (C, x0). The Bouligand tan-
gent cone is closed though not necessarily convex. For more details on Bouligand
tangent cones see for example Rockafellar and Wets (1998).

For a given locally Lipschitz function f : X → R we denote the Clarke gen-
eralized directional derivative at the point x and in the direction v by f ◦(x, v) and
the Clarke subdifferential (see Clarke 1983) of f at x by ∂◦ f (x), furthermore we
denote by Tc(C, x0) and Nc(C, x0) the Clarke tangent cone and the Clarke normal
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cone to the set C at x0, respectively (see Clarke 1983). It is important to note that
the Clarke tangent cone is always a closed and convex set. If f : X → R be a
convex and continuous function then we will denote the subdifferential of f at x as
∂ f (x). An extended-valued function f : X → R, where R = R ∪ {+∞, −∞} is
said to be proper if f (x) > −∞ and the set dom f = {x ∈ X : f (x) < +∞} �= ∅.

The main tool in the proofs is the application of the following non-convex
scalarization scheme.

Lemma 2.1 (Gerth(Tammer) and Weidner 1990) Let K ⊂ Y be a closed convex
cone with a non-empty interior and let A be a subset of Y with non-empty interior.
We have y0 ∈ w − Eff(A, K ) if and only if y0 ∈ A and there exists a contin-
uous convex functional on Y which is strictly-(int K )-monotone with the range
(−∞,+∞) and

(i) z(y0) = 0.
(ii) z(A) ≥ 0.

(iii) z(int A) > 0.
(iv) z(y0 − K ) ≤ 0.
(v) z(y0 − int K ) < 0.

(vi) z(y0 − bdK ) = 0.

If y0 = 0 then one may choose z to be sublinear.

For our results we mainly require (i) and (ii) in Lemma 2.1. However a close
look at the proof of Lemma 2.1 in Gerth(Tammer) and Weidner (1990) will reveal
that the assumption int A �= ∅ is not essential to prove (i) and (ii) in Lemma 2.1.
Therefore we summarize our requirement in the form of the following Lemma.

Lemma 2.2 Let K ⊂ Y be a closed convex cone with a non-empty interior and
let A be subset of Y . We have y0 ∈ w − Eff(A, K ) if and only if y0 ∈ A and there
exists a continuous convex functional on Y which is strictly-(int K )-monotone with
the range (−∞, +∞) and

(i) z(y0) = 0.
(ii) z(A) ≥ 0.

Remark 2.1 Corresponding results can be shown for properly minimal elements:
Let K be a closed convex cone with a non-empty interior, D ⊂ Y a closed convex
and pointed cone with non-empty interior such that K\{0} ⊂ int D and let A be
subset of Y . We have y0 ∈ Eff(A, D) if and only if y0 ∈ A and there exists a
continuous convex functional on Y which is strictly-K -monotone with the range
(−∞,+∞) and

(i) z(y0) = 0.
(ii) z(A) ≥ 0.

Definition 2.1 For a set-valued map F : X → X∗ we denote by

lim sup
x→x0

F(x)
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the sequential Kuratowski-Painlevé upper limit with respect to the norm topology
on X and weak star topology on X∗, which is given as

lim sup
x→x0

F(x) = {x∗ ∈ X∗ : ∃ sequences xk → x0, and x∗
k

w∗−→ x∗,

with x∗
k ∈ F(xk), ∀k = 1, 2, . . .},

where
w∗−→ denotes convergence in the weak-star topology of X∗.

Definition 2.2 (Mordukhovich and Shao 1996) Let S be a non-empty subset of
X and let ε ≥ 0. Given x ∈ clS the non-empty set

N F
ε (S, x) =

{
x∗ ∈ X∗ : lim sup

y→x,y∈S

〈x∗, y − x〉
‖y − x‖ ≤ ε

}

is called the set of Fréchet ε-normals to S at x. When ε = 0, then the above set is
a cone, called the set of Fréchet normals and denoted by N F (S, x).
Let x0 ∈ cl S. The non-empty cone

NL(S, x0) = lim sup
x→x0,ε↓0

N F
ε (S, x)

is called the limiting normal cone or the Mordukhovich normal cone to S at x0.

It is important to note that the set of Frechet ε-normals is a convex set for every
ε ≥ 0 but the limiting normal cone is in general non-convex. For more details on
limiting normals see for example Mordukhovich and Shao (1996), for a treatment
of limiting normals in finite dimensional spaces see for example Mordukhovich
(1994) and Rockafellar and Wets (1998). When S is a convex set, then the limiting
normal cone reduces to the standard normal cone of convex analysis which has
been defined earlier. Moreover, if X is an Asplund space, then we have

NL(S, x0) = lim sup
x→x0

N F (S, x).

Further, in an Asplund space one also has

Nc(S, x0) = co∗NL(S, x0). (1)

Definition 2.3 Let f : X → R be a given proper function and x0 ∈ dom f . The
set

∂L f (x0) = {x∗ ∈ X∗ : (x∗, −1) ∈ NL(epi f, (x0, f (x0))}
is called the limiting subdifferential or the Mordukhovich subdifferential of f at
x0. If x0 �∈ dom f , then we set ∂L f (x0) = ∅.

Definition 2.4 Let f : X → R be a given proper function and x ∈ dom f . The
following set

∂ F
ε f (x) =

{
x∗ ∈ X∗ : lim inf

u→x

f (u) − f (x) − 〈x∗, u − x〉
‖u − x‖ ≥ −ε

}

is called the Frechet ε-subdifferential of f at x. If ε = 0, then we denote the above
set by ∂ F (x) and is known as the Frechet subdifferential of f at x.
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If f is lower-semicontinuous around x0, then it has been shown in Mordukhovich
and Shao (1996) that

∂L f (x0) = lim sup

x
f−→ x0,ε↓0

∂ F
ε f (x),

where x
f→ x0 means that x → x0 with f (x) → f (x0).

If f is a continuous convex function, then the limiting subdifferential coincides
with the usual subdifferential ∂ f (x) of a convex function. If X is an Asplund space,
then one has

∂L f (x0) = lim sup

x
f−→ x0

∂ F f (x).

Moreover, if X is an Asplund space and f : X → R be locally Lipschitz around
x0 then we have

∂◦ f (x0) = co∗∂L f (x0). (2)

We need the following calculus rules from Mordukhovich and Shao (1996) for
proving one of our main results.

Lemma 2.3 Let X be an Asplund space and let x0 ∈ X. Let fi : X → R̄, i = 1, 2
be proper lower-semicontinuous functions and one of these is Lipschitz near x0
(i.e., locally Lipschitz at x0). Then one has

∂L( f1 + f2)(x0) ⊆ ∂L f1(x0) + ∂L f2(x0).

Lemma 2.4 Let X be an Asplund space. Let F : X → R
m be locally Lipschitz at

x0. Let φ : R
m → R be Lipschitz around F(x0). Then one has

∂L(φ ◦ F)(x0) ⊆
⋃

y∗∈∂Lφ(F(x0))

∂L〈y∗, F〉(x0).

It is important to note that the notion of the limiting subdifferential was first
introduced by Mordukhovich (1976) in context of optimal control. For detailed
theory of the limiting subdifferential along with calculus rules and applications see
the comprehensive two volume book of Mordukhovich (2005).

As we have observed above, the limiting subdifferential admits a very good
calculus in Asplund spaces. In order to represent optimality conditions in arbi-
trary Banach spaces one needs to consider the approximate subdifferential by Ioffe
(1986, 1989, 2000). For an arbitrary function f : X → R̄, where X is a Banach
space, such subdifferentials are constructed via the Dini-Hadamard subdifferential
(for more details see for example Ioffe 1989). Since in this article we will need to
work with locally Lipschitz function and lower semicontinuous function we will
use the approach in Ioffe (2000) by first defining the approximate subdifferential
for the locally Lipschitz case and then use this idea to define the approximate nor-
mal cone and then use the normal cone to define the approximate subdifferential
for a lower semicontinuous function.
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Let f : X → R be a locally Lipschitz function. Then the lower Dini directional
derivative at x ∈ X and in the direction h ∈ X is given as

f −(x, h) = lim inf
λ↓0

f (x + λh) − f (x)

λ
.

The lower Dini subdifferential of f at x is given as

∂− f (x) = {x∗ ∈ X∗ : f −(x, h) ≥ 〈x∗, h〉, ∀h ∈ X}.
Let L be a closed subspace of X . We set

∂−
L f (x) = {x∗ ∈ X∗ : f −(x, h) ≥ 〈x∗, h〉, ∀h ∈ L}.

Let F denote the collection of finite dimensional subspaces of X . Then the approx-
imate subdifferential ∂a f (x) of a locally Lipschitz function f at x ∈ X is given
as

∂a f (x) =
⋂
L∈F

lim sup
u→x

∂−
L f (u).

For a locally Lipschitz function it holds ∂a f (x) �= ∅ for all x ∈ X . For any α > 0
it is thus clear that ∂a f (αx) ⊆ α∂a f (x). The normal cone to a closed set C at a
point x ∈ C is given as

Na(C, x) =
⋃
λ≥0

λ∂adC (x). (3)

Here dC represents the distance function associated with the set C and it is well
known that the distance function dC is Lipschitz with rank one.
Let f : X → R be a proper lower semicontinuous function. Then the approximate
subdifferential ∂a f (x) of f at x is given as

∂a f (x) = {x∗ ∈ X∗ : (x∗, −1) ∈ Na(epi f, (x, f (x)))}.
If f is locally Lipschitz, then the above definition of the approximate subdifferential
coincides with the definition of approximate subdifferential for locally Lipschitz
function given earlier. One can also show that if C is a closed set then

Na(C, x) = ∂aδC (x), (4)

where the δC represents the indicator function of the set C (see Ioffe 2000).
The asymptotic subdifferential associated with a proper lower semicontinuous
function f at x is given as

∂∞
a f (x) = {x∗ ∈ X∗ : (x∗, 0) ∈ Na(epi f, (x, f (x)))}.

If f is a locally Lipschitz, then we have ∂∞
a f (x) = {0}. Further, if x0 is a local

minimum for a lower-semicontinuous function f : X → R, then 0 ∈ ∂a f (x0).
Let X and Y be Banach spaces and let � : X → Y be a set-valued map. The
set-valued map D∗

a�(x, y) : Y ∗ → X∗ is defined as the co-derivative of � at the
point (x, y) and is given as

D∗
a�(x, y)(y∗) = {x∗ ∈ X; (x∗, −y∗) ∈ Na(gph�, (x, y))},
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where gph� denote the graph of the set-valued map �. If � is single-valued then
we write the co-derivative as D∗

a�(x)(y∗). We present the following calculus rules
which we shall use in the sequel. For more details, see Ioffe (1989).

The approximate normal cone and the approximate subdifferential for a proper
lower-semicontinuous function presented above is termed as the G-nucleus of
the G-normal cone and the G-nucleus of the G-subdifferential in Ioffe (1989).
For details on the G-normal cone and the G-subdifferential, see Ioffe (1989).
Ioffe (1989) has also introduced the notion of an A-subdifferential for an arbitary
function by slightly modifying the definition of the approximate subdifferential of
a locally Lipschitz function given here. However, for a locally Lipschitz function
the A-subdifferential, the G-subdifferential and G-nucleus all coincide. Further, if
we consider X to be a weakly compactly generated (WCG) Asplund space, then the
approximate subdifferential and the limiting subdifferential for a locally Lipschitz
function coincide (see Theorem 9.2 in Mordukhovich and Shao 1996). Moreover,
the limiting subdifferential and the approximate subdifferential coincide in finite
dimensional spaces.

Now, using Theorem 7.4 in Ioffe (1989) we have the following result:

Lemma 2.5 Let X be a Banach space and let f, g : X → R . Let f be locally
Lipschitz and g be a proper lower-semicontiuous function. Then

∂a( f + g)(x) ⊂ ∂a f (x) + ∂ag(x).

In the following we present the chain rules for approximate subdifferentials
which will lead us to derive optimality conditions for a vector minimization prob-
lem in Banach spaces. Now, we consider the function f = g ◦ F where g and F
are locally Lipschitz. One needs certain conditions on F in order to get chain rules
for the approximate subdifferential. One of the conditions is that F has a strict
prederivative with norm compact values (see Ioffe 1989). The other one is that F is
strongly compactly Lipschitzian (see Jourani and Thibault 1993). For simplicity in
the representation we shall split the results in the form of two lemmas. In the first
one we will show that without any additional assumption on F one can relate the
approximate subdifferential of g◦ F to the approximate coderivative of F . We now
provide the definition of the prederivative of F from Ioffe (1989) and the definition
of a strongly compactly Lipschitzian map from Jourani and Thibault (1993).

Definition 2.5 Consider F : X → Y , where X and Y are Banach spaces. Then
the set-valued map R : X → Y is called a strict prederivative of F at x if R is
positively homgeneous (i.e., R(λx) = λR(x), λ > 0 ), 0 ∈ R(0) and

F(u + h) − F(u) ∈ R(h) + r(u, h)‖h‖BY ,

where r(u, h) → 0 as u → x and h → 0. Here BY denotes the unit ball around
the origin in Y .

Definition 2.6 A mapping F : X → Y is said to be strongly compactly Lipschitz-
ian at x0 ∈ X, if there exist a multifunction R : X → Comp(Y ), where Comp(Y )
denotes the set of all norm compact subsets of Y , and a function r : X × X → R+
satisfying

(i) limx→x0,v→0 r(x, v) = 0;
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(ii) there exists α > 0 such that

t−1[F(x + tv) − F(x)] ∈ R(v) + ||v|| r(x, t) BY

for all x ∈ x0 + αBX , v ∈ α BX and t ∈ (0, α) (here BY denotes the closed
unit ball around the origin of Y );

(iii) R(0) = {0} and R is upper semicontinuous.

Remark 2.2 Any strongly compactly Lipschitzian mapping F at x0 is locally
Lipschitz near x0.

If Y is finite dimensional, then F is strongly compactly Lipschitzian at x0 if
and only if it is locally Lipschitz near x0 (see Jourani and Thibault 1993). Every
locally Lipschitz function F which has a upper semicontinuous strict prederivative
with norm compact values is also strongly compactly Lipschitzian, if we modify
the definition of positive homogeneity in Definition 2.5 to include λ = 0.

Lemma 2.6 Let F : X → Y be a locally Lipschitz function where X and Y are
Banach spaces. Let us consider the function f (x) = (g ◦ F)(x) where g : Y → R

is locally Lipschitz. Then

∂a f (x) ⊂
⋃

y∗∈∂a g(F(x))

D∗
a F(x)(y∗).

Further, if F has a strict prederivative with norm compact values then one has

∂a f (x) ⊂
⋃

y∗∈∂a g(F(x))

∂a〈y∗, F〉(x).

Proof Since F and g are locally Lipschitz it is clear that f = g ◦ F is also locally
Lipschitz. Since g is locally Lipschitz we have ∂∞

a g(y) = {0}. Thus the qualifica-
tion conditions of Theorem 7.5 in Ioffe (1989) are satisfied automatically and thus
using Theorem 7.5 in Ioffe (1989) we get

∂a f (x) ⊂
⋃

y∗∈∂a g(F(x))

D∗
a F(x)(y∗).

Further, if F has strict prederivative with norm compact values, then we get

∂a f (x) ⊂
⋃

y∗∈∂a g(F(x))

∂a〈y∗, F〉(x)

using Corollary 7.8.1 in Ioffe (1989). Observe that since ∂∞
a g(y) = {0} the quali-

fication condition in Corollary 7.8.1 in Ioffe (1989) is automatically satisfied. ��
Remark 2.3 In Theorem 7.5 in Ioffe (1989) one merely requires F to be continu-
ous near x and g to be directionally Lipschitz at F(x) and lower semicontinuous
around F(x) (see for example Ioffe 1989 for the definition of a directionally Lips-
chitz function). However, in our case both of these conditions are automatically
satisfied since F and g are locally Lipschitz functions.

The following lemma is a mere restatement of Theorem 2.5 in Jourani and Thibault
(1993):
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Lemma 2.7 Let F : X → Y be a locally Lipschitz function where X and Y are
Banach spaces. Let us consider the function f (x) = (g ◦ F)(x) where g : Y → R

is locally Lipschitz. If F is strongly compactly Lipschitzian then one has

∂a f (x) ⊂
⋃

y∗∈∂a g(F(x))

∂a〈y∗, F〉(x).

Remark 2.4 By using Proposition 2.4 in Jourani and Thibault (1993) one can show
that

∂a〈y∗, F〉(x) = D∗
a F(x)(y∗) ∀y∗ ∈ Y ∗.

Thus Lemma 2.7 can be deduced from Lemma 2.6. However, Jourani and Thibault
(1993) provides an elegant proof of Lemma 2.7 without using the machinery of
the coderivative.

3 Main results

Theorem 3.1 Let us consider the program (VP), where X and Y are Banach spaces
and F : X → Y is a locally Lipschitz function and C is a closed subset of X.
Moreover, assume that F is strictly differentiable. Let x0 be a weakly efficient point
of (VP). Then there exists 0 �= v∗ ∈ K ∗ such that

0 ∈ (F ′(x0))
∗v∗ + Nc(C, x0).

Proof Since x0 is a weakly efficient point for (VP) by Lemma 2.2 there exists a
continuous convex function z : Y → R with range (−∞,+∞), which is strictly
intK -monotone such that x0 solves the problem

min z ◦ F(x) subject to x ∈ C.

Thus from Clarke (1983) we have

0 ∈ ∂◦(z ◦ F)(x0) + Nc(C, x0).

Since z : Y → R is a continuous convex function it is locally Lipschitz and thus
by using Theorem 2.3.10 in Clarke (1983) we have

∂◦(z ◦ F)(x0) ⊆ (F ′(x0))
∗∂z(F(x0)).

Thus there exists v∗ ∈ ∂z(F(x0)) such that

0 ∈ (F ′(x0))
∗v∗ + Nc(C, x0).

We will now show that for any y ∈ Y one has ∂z(y) ⊆ K ∗ using the fact that z is
strictly int K -monotone. Let e ∈ int K . Thus we have z(y) > z(y − e). Since z is
a continuous convex function on the Banach Space Y one has ∂z(y) �= ∅ for each
y ∈ Y . Thus we have

z(y) > z(y − e) ≥ z(y) + 〈v∗, −e〉 ∀v∗ ∈ ∂z(y).

This shows that 〈v∗, e〉> 0 for any e ∈ int K . This immediately yields thatv∗ ∈ K ∗.
More it also shows that v∗ �= 0. This completes the proof. ��
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Remark 3.1 From the proof of the above theorem it is interesting to note that
the Lagrangian multiplier associated with the vector optimization problem (VP)
is actually the subgradient of the convex scalarizing function at the point F(x0).
Thus in a manner similar to the scalar optimization the above theorem provides the
interpretation of the Lagrangian multiplier of a vector minimization problem as a
subgradient.

Let us now assume that f : X → Y is locally Lipschitz and Y is finite
dimensional, say Y = R

l and let K = R
l+. Then if x0 ∈ C is a weakly effi-

cient point for (VP) one has

( f +
1 (x0, v), . . . , f +

l (x0, v)) �∈ −intRl+ ∀v ∈ T (C, x0),

where f +(x, v) denotes the upper-Dini directional derivative of a locally Lipschitz
function f : X → R at the point x and in the direction given as

f +(x, v) = lim sup
λ↓0

f (x + λv) − f (x)

λ
.

Since Tc(C, x0) ⊆ T (C, x0) we have

( f +
1 (x0, v), . . . , f +

l (x0, v)) �∈ −intRl+, ∀v ∈ Tc(C, x0).

This implies the following system

f +
1 (x0, v) < 0, . . . , f +

l (x0, v) < 0, v ∈ Tc(C, x0),

has no solutions. Since for a locally Lipschitz function f : X → R one has
f +(x0, v) ≤ f ◦(x0, v) we immediately get that the following system

f ◦
1 (x0, v) < 0, . . . , f ◦

l (x0, v) < 0, v ∈ Tc(C, x0)

has no solutions. Thus by applying the Gordan’s theorem of the alternative and
observing that Tc(C, x0) is a convex set we conclude that there exists τ ∈ R

l+\{0},
such that

l∑
j=1

τ j f ◦
j (x0, v) ≥ 0 ∀v ∈ Tc(C, x0).

By using the calculus of support functions we immediately have

0 ∈
l∑

j=1

τ j∂
◦ f j (x0) + Nc(C, x0).

However, we can often have the situation where K �= R
l+. For example, if one wants

to talk about (say) Benson properly efficient points then one has to consider the cone
K having a non-empty interior and also satisfying R

l+\{0} ⊂ intK and seek for an
efficient point with respect to such a cone K . Efficient points obtained with respect
to such a cone K are called Benson properly efficient points. Observe that we have
a similar definition in Sect. 1 in a general setting which we call as properly efficient
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point. In this situation we cannot take the advantage of componentwise descrip-
tion. Thus in such a case we need to consider the following approach to derive
a necessary optimality condition in terms of the Clarke subdifferential. Assume
that x0 ∈ C is a weakly efficient point of (VP), then by Lemma 2.2 there exists a
continuous convex function z : Y → R with range (−∞,+∞), which is strictly
intK -monotone such that x0 solves the problem

min z ◦ F(x) subject to x ∈ C.

Thus from Clarke (1983) we immediately get that

0 ∈ ∂◦(z ◦ F)(x0) + Nc(C, x0).

Now, by applying Theorem 2.4.5 in Clarke et al. (1998) we immediately get that

0 ∈ co∗
⎧⎨
⎩

⋃
v∗∈∂z(F(x0))

∂◦〈v∗, F〉(x0)

⎫⎬
⎭ + Nc(C, x0).

However, from the above expression it is not possible to deduce the existence of
v∗ ∈ ∂z(F(x0)) such that

0 ∈ ∂◦〈v∗, F〉(x0) + Nc(C, x0).

Thus we see that the Clarke’s subdifferential calculus is not the appropriate tool
to develop the necessary optimality conditions for weak minimization of locally
Lipschitz vector functions in terms of Clarke subdifferential and the Clarke normal
cone when X is an arbitrary Banach Space. However, we shall show that when
Y is finite dimensional and X is an Asplund space the limiting subdifferential
of Mordukhovich can be used to develop a sharp necessary optimality condition
for weak minimization of a vector optimization problem with a locally Lipschitz
objective function. Then using the condition thus developed one can then pass on
to a representation with Clarke subdifferential and Clarke normal cone using the
relations (2) and (1).

Theorem 3.2 Let us consider the program (VP). Consider that X is an Asplund
Space and Y = R

l and F : X → Y be locally Lipschitzian. Additionally assume
that C is a closed subset of X. Let x0 be a weakly efficient point of (VP). Then there
exists 0 �= v∗ ∈ K ∗ such that

0 ∈ ∂L〈v∗, F〉(x0) + NL(C, x0). (5)

Further, if F is strictly differentiable then one has

0 ∈ (F ′(x0))
∗v∗ + NL(C, x0).

Proof Since x0 is a weakly efficient point for (VP) by Lemma 2.2 there exists a
continuous convex function z : Y → R with range (−∞,+∞), which is strictly
intK -monotone such that x0 solves the problem

min z ◦ F(x) subject to x ∈ C.
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Hence x0 is also a solution of the problem

min z ◦ F(x) + δC (x),

where δC denotes the indicator function of the set C . Thus from Mordukhovich
and Shao (1996) we have

0 ∈ ∂L(z ◦ F + δC )(x0).

Since F is locally Lipschitz and z is a continuous convex function and hence locally
Lipschitz, it is clear that z ◦ F is also locally Lipschitz. Moreover, since C is a
closed subset of X we have δC to be a proper lower-semicontinuous function and
thus by Lemma 2.3 we have

0 ∈ ∂L(z ◦ F)(x0) + NL(C, x0),

where ∂LδC (x0) = NL(C, x0) (see Mordukhovich and Shao 1996). Now, by apply-
ing Lemma 2.4 we can claim the existence of a v∗ ∈ ∂L z(F(x0)) such that

0 ∈ ∂L〈v∗, F〉(x0) + NL(C, x0).

Moreover, analogously to the proof of Theorem 3.1 we can conclude that 0 �= v∗ ∈
K ∗.

The last assertion follows by a direct application of Theorem 5.2 in
Mordukhovich and Shao (1996). ��
Remark 3.2 It is clear that, if X is an Asplund space and x0 is a weakly efficient
point of (VP), we see using (5) that there exists v∗ ∈ K\{0} such that

0 ∈ co∗(∂L〈v∗, F〉(x0) + NL(C, x0)).

Now, using (2) and (1) we have

0 ∈ ∂◦〈v∗, F〉(x0) + Nc(C, x0) (6)

taking into account the weak*-compactness of Clarke’s subdifferential (see Prop-
osition 1.5 in Clarke et al. 1998). Thus we now have an representation in terms
of the Clarke’s subdifferential and Clarke’s normal cone. Further, let us note that
(2) and (1) shows that optimality conditions given by (5) is sharper than the ones
given by (6).

Remark 3.3 We get corresponding results like in Theorems 3.1, 3.2 for properly
efficient elements x0 (with v∗ belongs to the quasi-interior of K ∗) taking into
account Remark 2.1.

In the above theorem we consider Y to be a finite dimensional space. The nat-
ural question is why we are not considering Y to be an arbitrary Asplund space. In
most infinite dimensional Asplund spaces we will not be able to find an ordering
cone with a non-empty interior. For example, the natural ordering cone of any l p
space with p ∈ [1,+∞) has an empty interior. However, all these l p spaces are
Asplund spaces. Let 
 be a compact Hausdorff space and let C(
) denote the
space of all continuous real-valued functions defined on 
. The natural ordering
cone of C(
) has a non-empty interior though C(
) is not an Asplund space. Thus
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it is not of much interest to talk about weak minimum for the case when Y is an infi-
nite dimensional Asplund space. For more details regarding infinite dimensional
spaces which are useful in the study of vector optimization see for example Jahn
Jahn (2004).

Now, we shall consider the case where Y will be an arbitrary Banach space
and F : X → Y is a locally Lipschitz function. The optimality conditions as we
shall see will be represented via the co-derivative associated with the approximate
normal cone. Further, under additional assumptions on F we shall get a Lagrangian
multiplier rule for weak minimization in arbitrary Banach spaces:

Theorem 3.3 Let X and Y be arbitrary Banach spaces and F : X → Y be a
locally Lipschitz function. Let x0 ∈ C be a weakly efficient point of F over C,
where C is a closed set. Then there exists y∗ ∈ K ∗\{0} such that

0 ∈ D∗
a F(x0)(y∗) + Na(C, x0).

Further, if F has a strict prederivative with norm compact values or F is strongly
compactly Lipschitzian, then one has that there exists y∗ ∈ K ∗\{0} such that

0 ∈ ∂a〈y∗, F〉(x0) + Na(C, x0).

Proof Since x0 is a weakly efficient point of (VP) by Lemma 2.2 there exists a con-
tinuous convex function z : Y → R with range (−∞, +∞) and strictly − (int K )-
monotone, such that x0 solves the problem

min z ◦ F(x), subject to x ∈ C.

Then x0 also solves the following unconstrained problem

min(z ◦ F)(x) + δC (x).

Since (z ◦ F) is locally Lipschitz and δC is a proper lower-semicontinuous
function since C is a closed set, by using Lemma 2.5 we have

0 ∈ ∂a(z ◦ F)(x0) + ∂aδC (x0).

From (4) we have

0 ∈ ∂a(z ◦ F)(x0) + Na(C, x0).

By Lemma 2.6 we have

0 ∈
⋃

y∗∈∂z(F(x0))

D∗
a F(x0)(y∗) + Na(C, x0).

Thus there exists y∗ ∈ ∂z(F(x0)) such that

0 ∈ D∗
a F(x0)(y∗) + Na(C, x0).

Since z is a continuous convex function on Y which is also strictly − (int K )−
monotone, it is clear that ∂z(F(x0)) ⊂ K ∗. Furthermore, similar to the proof of
Theorem 3.1 we get y∗ ∈ K ∗\{0}.
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Now, if we additionally assume that F has a strict prederivative with norm
compact values or F is strongly compactly Lipschitzian then using Lemma 2.6 or
Lemma 2.7 we can easily show that

0 ∈ ∂a〈y∗, F〉(x0) + Na(C, x0).

This completes the proof. ��
Remark 3.4 A nearly similar result was shown by El Abdouni and Thibault (1992)
in terms of the approximate subdifferential by assuming the objective and con-
straints to be strictly compactly Lipschitzian. However, using the non-convex sca-
larization scheme our proof is shorter and simpler.

We will now discuss the case when the set C is defined by inequality constraints,
i.e.,

C = {x ∈ X : gi (x) ≤ 0, i = 1, . . . , m} (7)

where each gi : X → R.

Theorem 3.4 Let us consider the program (VP), where F : X → R
l is locally

Lipschitz, where X is an Asplund space and the set C is described by (7). Further
each gi is locally Lipschitz. Let x0 be a weakly efficient point for (VP). Assume that
the active index set I (x0) = {i : gi (x0) = 0} �= ∅ and 0 �∈ co

⋃
i∈I (x0)

∂gi (x0).
Then there exist 0 �= v ∈ K ∗ and scalars λi ≥ 0, i ∈ I (x0), such that

0 ∈ ∂L〈v∗, F〉(x0) +
∑

i∈I (x0)

λi∂L gi (x0).

Proof Since x0 is a weakly efficient point of (VP) by using Theorem 3.2 we imme-
diately conclude the existence of 0 �= v∗ ∈ K ∗ such that

0 ∈ ∂L〈v∗, F〉(x0) + NL(C, x0).

Since 0 �∈ co
⋃

i∈I (x0)
∂gi (x0)we have from Theorem 4.4 in Mordukhovich (2001)

NL(C, x0) ⊂
⎧⎨
⎩

∑
i∈I (x0)

λi∂L gi (x0) : λi ≥ 0, i ∈ I (x0)

⎫⎬
⎭ .

This immediately yields the result. ��
Let us now consider the case where C is defined by equality constraints, i.e.,

C = {x ∈ X : h j (x) = 0, j = 1, . . . , k}, (8)

where h j : X → R.

We have the following result which can be proved by an application of Theorem
4.4 in Mordukhovich (2001):



536 J. Dutta and C. Tammer

Theorem 3.5 Let X be an Asplund Space. Let F : X → R
l be locally Lipschitz

and hj be a locally Lipschitz function for each j . Consider the problem (VP),
where C is defined as in (8). Let x0 be a weakly efficient point for (VP). Assume
further that 0 �∈ co

⋃
j (∂L h j (x0) ∪ ∂L(−h j (x0))). Then there exist 0 �= v∗ ∈ K ∗

and scalars μ j ≥ 0, j = 1, . . . , k such that

0 ∈ ∂L〈v∗, F〉(x0) +
k∑

j=1

μ j (∂L h j (x0) ∪ ∂L h j (−x0)).

We would now study the case where Y is finite dimensional and K = R
l+.

Instead of a weakly efficient point we will now characterize an efficient point or a
Pareto minimum. To keep the exposition simple we will consider the case where the
feasible set is described by inequality constraints. It is well known from Chankong
and Haimes (1983) that a point x0 ∈ C is an efficient point for (VP) if and only if
x0 solves the problem P(k, x0) for all k = 1, . . . , l, where P(k, x0) is given as

min fk(x), subject to x ∈ Fk,

where Fk = { f j (x) ≤ f j (x0), j �= k, j = 1, . . . , l; x ∈ C}.
Theorem 3.6 Let X be an Asplund space, Y = R

l and K = R
l+. Consider the

problem (VP) where F(x) = ( f1(x), . . . , fl(x)) is locally Lipschitz and C is given
as

C = {x ∈ X : gi (x) ≤ 0, i = 1, . . . , m}.
Let x0 be an efficient point for (VP). Let there exists an index k for which the
following qualification condition holds

0 �∈ co

⎧⎨
⎩

⎛
⎝⋃

j �=k

∂L f j (x0)

⎞
⎠ ⋃ (⋃

i

∂L gi (x0)

)⎫⎬
⎭ . (9)

Then there exist scalars τ j ≥ 0 , j = 1, . . . , l and λi ≥ 0, i = 1, . . . , m, such that

(i) 0 ∈ ∑l
j=1 τ j∂L f j (x0) + ∑m

i=1 λi∂L gi (x0), (ii) λi gi (x0) = 0,

(iii) τ = (τ1, . . . , τl) �= 0.

Proof Since x0 is an efficient point, by the Chankong and Haimes (1983) criteria
x0 solves P(k, x0) for all k = 1, . . . , l. Hence for the particular k for which the
qualification condition (9) holds we have

0 ∈ ∂L fk(x0) + NFk (x0).

Then using Theorem 4.4 in Mordukhovich (2001) we are immediately led to the
fact that there exists τ j ≥ 0 and λi ≥ 0 , i ∈ I (x0), such that

0 ∈ ∂L fk(x0) +
∑
j �=k

τ j∂L f j (x0) +
∑

i∈I (x0)

λi∂L gi (x0).

By setting τk = 1 and λi = 0 if gi (x0) < 0 the result is immediately established.
��
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Remark 3.5 It is important to understand why one needs such an optimality condi-
tion in terms of the limiting subdifferential rather than the Clarke subdifferential.
In fact in terms of the Clarke subdifferential the result can be stated in an arbitary
Banach Space. However, in Asplund spaces the above optimality conditions are
more robust and sharper than the corresponding ones given in terms of the Clarke
subdifferential. To the best of our knowledge the qualification condition (9) in
terms of the limiting subdifferential to be new for the inequality constrained vector
optimization problem (VP). For a study of qualification conditions in nonsmooth
vector optimization using the Clarke subdifferential see for example Li (2000) or
Chandra et al. (2004).

We will now turn our attention to the case where X and Y are both finite dimen-
sional, say X = R

n and Y = R
l but K �= R

l+. If F is locally Lipschitz then one
would like to express the optimality conditions for a weakly efficient point of (VP)
in terms of the Clarke generalized Jacobian of F (see Clarke 1983 for details on the
Clarke generalized Jacobian). However a scalarization is possible if the function F
is additionally K -convex. To the best of our knowledge the nonlinear scalarization
scheme of Gerth(Tammer) and Weidner (1990) has not being used to derive opti-
mality conditions in the finite dimensional case. However we will show that even if
we use the nonlinear scalarization scheme of Gerth(Tammer) and Weidner (1990)
one will not get a robust optimality condition in terms of the Clarke generalized
Jacobian. Let us denote the Clarke generalized Jacobian of F at x0 by ∂C F(x0).
Let x0 be a weakly efficient point for (VP). Then using Lemma 2.2 we have that
there exists an increasing convex function z : R

l → R such that

0 ∈ ∂◦(z ◦ F)(x0) + Nc(C, x0).

Now by using for example Theorem 4.1 in Demyanov and Rubinov (1995) we
have

0 ∈ co{(∂C F(x0))
Tv : v ∈ ∂z(F(x0))} + Nc(C, x0),

where T denotes the transpose of a matrix. Since ∂z(F(x0)) ∈ K ∗ the above expres-
sion also implies that

0 ∈ co{(∂C F(x0))
Tv : v ∈ K ∗} + Nc(C, x0).

However, it is not immediate from the above expression whether there exits 0 �=
v ∈ K ∗ such that

0 ∈ (∂C F(x0))
Tv + Nc(C, x0).

Thus we conclude that for locally Lipschitz non-convex vector optimization
problems the Clarke subdifferential and the Clarke generalized Jacobians are not
useful tools to develop robust optimality conditions. In this direction it seems the
limiting subdifferential of Mordukhovich is very well suited for the purpose.
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4 Applications to approximation problems

We consider a class of vector-valued control approximation problems in which
each objective function is a sum of two terms, a locally Lipschitz function and a
power of a norm of a linear vector function and the feasible set is not necessary
convex. An important special case of such problems are (non-convex) vector-val-
ued location problems with forbidden regions. Necessary conditions for solutions
of these problems were derived using the results from Sect. 3.

In our proofs it is possible to use the special structure of the subdifferential of
a power of the norm and the Theorem 3.2.

We will introduce a general vector-valued control approximation problem.
We suppose that

(A) (X, ‖ · ‖X ) is an Asplund space and (Yi , ‖ · ‖i ) (i = 1, . . . , n) are real Banach
spaces, x ∈ X , ai ∈ Yi , αi ≥ 0 , βi ≥ 1, Ai ∈ L (X, Yi ), (i = 1, . . . , n),
f1 : X → R

n) is a locally Lipschitz cost function,
(B) C ⊆ X is a nonempty closed set,
(C) K ⊂ R

n is a pointed closed convex cone with nonempty interior and K +R
n+ ⊆

K .

Moreover, ‖ · ‖∗ denotes the dual norm to ‖ · ‖X , and ‖ · ‖i∗ the dual norm to
‖ · ‖i . Let us recall that the dual norm ‖ · ‖∗ to ‖ · ‖X is defined by

‖p‖∗ := sup
‖x‖X =1

| p(x) | .

Now we consider the following (non-convex) vector control approximation prob-
lem
(Papp) Compute the set Eff(F(C), K ),
where

F(x) := f1(x) +
⎛
⎝ α1‖A1(x) − a1‖β1

1· · ·
αn‖An(x) − an‖βn

n

⎞
⎠

is the objective vector function. We will derive necessary conditions for weakly
efficient elements using Theorem 3.2.

In order to prove this assertion we need the following assertion (cf. Zălinescu
2002, Corollary 2.4.16) concerning the subdifferential of norm terms (for the usual
subdifferential ∂‖x‖ of a convex function):

Lemma 4.1 If X is a Banach space then we have

∂‖x‖X =
{ {p ∈ L(X, R) | p(x) = ‖x‖X , ‖p‖∗ = 1} if x �= 0,

{p ∈ L(X, R) | ‖p‖∗ ≤ 1} if x = 0,

and for β > 1,

∂

(
1

β
‖ · ‖β

X

)
(x) = {p ∈ L(X, R) | ‖p‖∗ = ‖x‖β−1

X , p(x) = ‖x‖β
X }.
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In the next theorem we will derive necessary conditions for weakly efficient
solutions of (Papp).

Theorem 4.1 Consider a weakly efficient element x0 of the approximation problem
(Papp). Then there exists a functional v∗ ∈ K ∗\{0}, such that

0 ∈
{
∂L〈v∗, f1〉 +

n∑
i=1

αiβi A∗
i v

∗
i M0i | M0i ∈ L(Yi , R), M0i (Ai (x0) − ai ) =

‖Ai (x0) − ai‖βi
i , ‖M0i‖i∗ ≤ 1 if βi = 1 and Ai (x0) = ai ,

‖M0i‖i∗ = ‖Ai (x0)− ai‖βi −1
i otherwise (∀ i, 1 ≤ i ≤ n)

}
+ NL(C, x0).

Proof Assume x0 is a weakly efficient element of (Papp). Then from Theorem 3.2
we get the existence of v∗ ∈ K ∗\{0} and

0 ∈ ∂L〈v∗, F〉(x0) + NL(C, x0). (10)

Furthermore, we have

∂L〈v∗, F〉(x0) = ∂L〈v∗, f1(.) +
⎛
⎝ α1‖A1(.) − a1‖β1

1· · ·
αn‖An(.) − an‖βn

n

⎞
⎠〉(x0).

The rule of sums for Mordukhovich subdifferentials (Lemma 2.3) yields the
relation

∂L〈v∗, F〉(x0) ⊆ ∂L〈v∗, f1〉(x0) +
n∑

i=1

αiv
∗
i ∂‖Ai (·) − ai‖βi

i (x0). (11)

Applying Lemma 4.1, relation (11), implies

∂〈v∗, F〉(x0) ⊆ ∂L〈v∗, f1〉(x0) +
n∑

i=1

αi A∗
i v

∗
i ∂(‖u‖βi

i ) |u=Ai (x0)−ai

=
{
∂L〈v∗, f1〉(x0) +

n∑
i=1

αiβi A∗
i v

∗
i M0i | M0i ∈ L(Yi , R), M0i (Ai (x0) − ai )

= ‖Ai (x0) − ai‖βi
i , ‖M0i‖i∗ ≤ 1 if βi = 1 and Ai (x0) = ai ,

‖M0i‖i∗ = ‖Ai (x0) − ai‖βi −1
i otherwise (∀ i, 1 ≤ i ≤ n)

}
.

Then we get together with (10) the desired relation. ��
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