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erature. We characterize these ε-efficient solutions in convex multiobjective pro-
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1 Introduction

In the last years, researchers and practitioners have been interested on approximate
solutions of optimization problems. They agree that a lot of usual resolution meth-
ods, as for example, the iterative and heuristic methods, give as solution feasible
points near to the theoretical solution. This is the most important reason to study
this kind of solutions.

In vector optimization, as a consequence to model the preferences of the deci-
sion maker by a partial order, there exist different approximate efficiency notions,
called ε-efficiency concepts. The first concept was introduced by Kutateladze
(1979) and has been used to establish vector variational principles, approximate
Kuhn-Tucker type conditions, approximate duality theorems, resolution methods,
etc. (see Dentcheva and Helbig 1996; Dutta and Vetrivel 2001; Gutiérrez 2004;
Gutiérrez et al. 2005a,b; Idrissi et al. 1998; Isac 1996; Liu 1991, 1996; Liu and
Yokoyama 1999; Loridan 1984, 1992; Ruhe and Fruhwirth 1990; Tammer 1992;
Vályi 1987; White 1998).

The ε-efficiency set obtained according to the Kutateladze’s definition is some-
times too big, which has some undesirable consequences. For example, it is possible
to attain as a limit of ε-efficient solutions when ε tends to zero, a weak efficient
solution a long way from the efficiency set. So, several authors have proposed other
ε-efficiency concepts (see for example Helbig 1992; Németh 1986; Tanaka 1995;
Vályi 1985; White 1986), in order to achieve better features.

In this work, we introduce a new concept of approximate solution for a multiob-
jective program that allows us to study various well-known ε-efficiency notions in
a unified way. We characterize this new ε-efficiency notion in convex multiobjec-
tive mathematical programs via linear scalarization, i.e., by means of approximate
solutions of associated scalar optimization problems. As a consequence of this char-
acterization, we extend the classical Weighting Method to approximate efficiency
sets obtained through different ε-efficiency notions and we deduce parametric rep-
resentations of these ε-efficiency sets via a notion of parametric representation for
ε-efficiency sets introduced by the authors in (Gutiérrez et al. 2006a,b).

The outline of the paper is as follows. In Sect. 2, the multiobjective mathemat-
ical program and the preference relation are fixed. Moreover, we describe some
notations used in the sequel. In Sect. 3, we propose a new ε-efficiency concept
and we prove some properties of this notion when ε tends to zero. In Sect. 4, it is
shown that our concept extends and unifies several ε-efficiency notions introduced
previously in the literature by Kutateladze (1979), Németh (1986), Helbig (1992)
and Tanaka (1995). In Sect. 5, we characterize and give parametric representations
of the ε-efficiency set in convex multiobjective mathematical programs through
approximate solutions of scalar optimization problems. The scalarization process
is based on the Weighting Method. In the last part of Sect. 5, the results attained
previously are applied to obtain parametric representations of several ε-efficiency
sets in a convex Paretian context. Finally, in Sect. 6, conclusions are presented that
summarize this work.

2 Preliminaries

We denote by int(C) , cl(C) , bd(C) and Cc the interior, the closure, the bound-
ary and the complement of a set C ⊂ R

p, respectively. A cone is a set K ⊂ R
p
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such that αK ⊂ K , ∀α > 0. We do not require that 0 ∈ K . Therefore, the cone
generated by a set C is defined as

cone(C) :=
⋃

α>0

αC.

We say that a set C is proper (resp. solid) if ∅ �= C �= R
p (resp. int(C) �= ∅). We

denote the nonnegative orthant in R
p by R

p
+.

For a cone K ⊂ R
p, its positive polar cone (resp. strict positive polar cone) is

K + = {h ∈ R
p : 〈h, d〉 ≥ 0,∀d ∈ K }

(resp. K s+ = {h ∈ R
p : 〈h, d〉 > 0,∀d ∈ K\{0}}).

In this paper, we consider the multiobjective mathematical program

Min{ f (x) : x ∈ S}, (P)

where f : R
n → R

p and S ⊂ R
n, S �= ∅. As usual, to solve (P) the following

preference relation ≤ defined in R
p by a solid convex cone D ⊂ R

p is used, which
models the preferences stated by the decision-maker:

y, z ∈ R
p, y ≤ z ⇐⇒ y − z ∈ −D.

We suppose that D is a pointed cone, i.e., a cone such that D ∩ (−D) ⊂ {0}.
Definition 2.1 It is said that a feasible point x0 ∈ S is an efficient solution of (P)
with respect to D (or an efficient solution for short) if

( f (x0) − D) ∩ f (S) ⊂ { f (x0)}. (2.1)

Let us note that if 0 ∈ D (resp. 0 /∈ D) then (2.1) becomes

( f (x0) − D) ∩ f (S) = { f (x0)}
(resp. ( f (x0) − D) ∩ f (S) = ∅). We denote the set of efficient solutions of (P)
with respect to D by E( f, S, D) and with respect to int(D) by WE( f, S, D) (these
last efficient solutions of (P) are called weakly-efficient solutions). It is obvious
that E( f, S, D) ⊂ WE( f, S, D).

3 ε-efficiency in multiobjective programming

It is clear that an approximate solution of (P) is a feasible point x0 ∈ S such that for
all feasible point x ∈ S whose image f (x) is better than f (x0), the improvement
f (x0) − f (x) is near to zero.

To make this idea a useful ε-efficiency notion for multiobjective mathemati-
cal programs (see Definition 3.2), we consider a solid pointed (C ∩ (−C) ⊂ {0})
convex set C ⊂ R

p and we assume that C is co-radiant, i.e., a set such that
αd ∈ C, ∀d ∈ C , ∀α > 1. Notice that a cone is a co-radiant set. Moreover, we
denote C(ε) := εC, ∀ε > 0 and

C(0) :=
⋃

ε>0

C(ε) . (3.1)
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Lemma 3.1

(i) C(ε) is a solid pointed convex co-radiant set, ∀ε > 0.
(ii) C(ε2) ⊂ C(ε1), ∀ε1, ε2 > 0, ε1 < ε2.

(iii) C + C(α) ⊂ C, ∀α > 0.
(iv) C(ε) + C(δ) ⊂ C(ε), ∀ε, δ > 0.
(v) C(ε) + C(0) ⊂ C(ε), ∀ε > 0.

(vi) C(0) is a solid pointed convex cone.

Proof Part (i). Consider ε > 0. It is obvious that C(ε) is a solid pointed convex set,
since C is a solid pointed convex set. Let y ∈ C(ε) and α > 1. There exists d ∈ C
such that y = εd . As C is a co-radiant set, it follows that αy = ε(αd) ∈ C(ε) and
C(ε) is a co-radiant set.

Part (ii). Let ε1, ε2 > 0, ε1 < ε2 and y ∈ C(ε2). There exists d ∈ C such that
y = ε2d . For

α := 1 + (ε2 − ε1)/ε1

we have that y = α(ε1d) ∈ C(ε1), since α > 1 and C(ε1) is a co-radiant set. Then,
C(ε2) ⊂ C(ε1).

Part (iii). For each d1, d2 ∈ C and α > 0 it follows that

d1 + αd2 = (1 + α)

((
1 − α

1 + α

)
d1 + α

1 + α
d2

)

and d1 + αd2 ∈ C , since C is a co-radiant convex set.
Part (iv). For each ε, δ > 0 it follows from part (iii) that

C(ε) + C(δ) = ε(C + C(δ/ε)) ⊂ εC = C(ε) .

Part (v). By part (iv) we see that

C(ε) + C(0) =
⋃

δ>0

(C(ε) + C(δ)) ⊂ C(ε) , ∀ε > 0.

Part (vi). It is clear that C(0) = cone(C), and so we have that C(0) is a cone.
If y ∈ C(0)∩(−C(0)) then there exist δ, ν > 0 such that y ∈ C(δ)∩(−C(ν)).

Consider β = min{δ, ν} > 0. By parts (i)-(ii) we see that y ∈ C(β) ∩ (−C(β)) ⊂
{0}, and therefore, C(0) is a pointed set. Moreover, by a similar reasoning, if
y1, y2 ∈ C(0) then there exists β > 0 such that y1, y2 ∈ C(β) and it follows that
λy1 + (1 − λ)y2 ∈ C(β) , ∀λ ∈ (0, 1), since C(β) is a convex set. Consequently,
C(0) is convex. ��
Definition 3.2 Let ε ≥ 0. We say that a feasible point x0 ∈ S is an ε-efficient
solution of (P) with respect to C (or an ε-efficient solution for short) if

( f (x0) − C(ε)) ∩ f (S) ⊂ { f (x0)}. (3.2)

We denote by AE( f, S, C, ε) the set of ε-efficient solutions of (P) with respect
to C . Let us observe that when ε = 0 we have AE( f, S, C, 0) = E( f, S, C(0)).

Taking p = 1 and C = (1, ∞) in Definition 3.2 we obtain the classical con-
cept of approximate solution in (scalar) mathematical programming. We recall this
notion in the following definition.
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Definition 3.3 Consider p = 1 in program (P) and ε ≥ 0. It is said that x0 ∈ S is
an ε-solution of (P) if

f (x0) − ε ≤ f (x), ∀x ∈ S.

We denote the set of all ε-solutions of (P) when p = 1 by AMin( f, S, ε).
As C is a solid pointed convex co-radiant set, it follows that int(C) is a

nonempty pointed convex co-radiant set and we can also consider the set of all
ε-efficient solutions of (P) with respect to int(C) (or weakly ε-efficient solutions
for short):

{x ∈ S : ( f (x) − int(C) (ε)) ∩ f (S) ⊂ { f (x)}}.
We denote this set by WAE( f, S, C, ε). Notice that

int(C) (0) =
⋃

ε>0

ε int(C) =
⋃

ε>0

int(C(ε)) (3.3)

is an open cone. Moreover, as C is a solid convex set it follows that (see Jiménez
and Novo 2003, Proposition 2.3(ii))

int(C) (0) = cone(int(C)) = int(cone(C)) = int(C(0)) ⊂ C(0) . (3.4)

Therefore,

AE( f, S, C, ε) ⊂ WAE( f, S, C, ε) , ∀ε ≥ 0 (3.5)

and

WAE( f, S, C, 0) = E( f, S, int(C(0))) = WE( f, S, C(0)) .

To illustrate we give now an example (see Sect. 4 for more important notions).

Example 3.4 Let h ∈ D+\{0} and define

C := {y ∈ R
p : 〈h, y〉 > 1}.

It is clear that C is a proper solid pointed convex co-radiant set and C(ε) = {y ∈
R

p : 〈h, y〉 > ε}. Then we have for each ε ≥ 0 and x ∈ S

x ∈ AE( f, S, C, ε) ⇐⇒ ( f (x) − f (S)) ⊂ C(ε)c

⇐⇒ ∀z ∈ S, 〈h, f (z)〉 ≥ 〈h, f (x)〉 − ε.

This means that x is an ε-efficient solution with respect to 〈h, ·〉 in the sense intro-
duced by Vályi (1985).

Theorem 3.5 shows several properties of the family {AE( f, S, C, ε)}ε≥0.

Theorem 3.5

(i) AE( f, S, C, 0) ⊂ AE( f, S, C, ε), ∀ε > 0.
(ii) AE( f, S, C, ε1) ⊂ AE( f, S, C, ε2), ∀ε1, ε2 > 0, ε1 < ε2.

(iii)
⋂

ε>0 AE( f, S, C, ε) = AE( f, S, C, 0).
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(iv) Let (xn) ⊂ S, (εn) ⊂ R+ and y ∈ R
p such that xn ∈ AE( f, S, C, εn) , εn ↓ 0

and f (xn) → y. Then f −1(y) ∩ S ⊂ WAE( f, S, C, 0).
(v) Let (xn) ⊂ S and (εn) ⊂ R+ such that xn ∈ AE( f, S, C, εn) and εn ↓ 0.

Consider

K :=
⋂

n

( f (xn) − C(εn)).

Then f −1(K ) ∩ S ⊂ AE( f, S, C, 0).

Proof Part (i). Let ε > 0 and x ∈ AE( f, S, C, 0). It follows that

( f (x) − C(ε)) ∩ f (S) ⊂
(

f (x) −
⋃

δ>0

C(δ)

)
∩ f (S)

= ( f (x) − C(0)) ∩ f (S) ⊂ { f (x)}
and x ∈ AE( f, S, C, ε).

Part (ii). Let ε1, ε2 > 0, ε1 < ε2 and x ∈ AE( f, S, C, ε1). By Lemma 3.1(ii)
we have that C(ε2) ⊂ C(ε1) and we deduce that

( f (x) − C(ε2)) ∩ f (S) ⊂ ( f (x) − C(ε1)) ∩ f (S) ⊂ { f (x)}.
Then, x ∈ AE( f, S, C, ε2).

Part (iii). From part (i) it follows that

AE( f, S, C, 0) ⊂
⋂

ε>0

AE( f, S, C, ε) .

Conversely, if x ∈ ⋂
ε>0 AE( f, S, C, ε) then

( f (x) − C(ε)) ∩ f (S) ⊂ { f (x)}, ∀ε > 0.

Therefore, we have that

( f (x) − C(0)) ∩ f (S) =
⋃

ε>0

(
( f (x) − C(ε)) ∩ f (S)

) ⊂ { f (x)},

and so x ∈ AE( f, S, C, 0).
Part (iv). Let x ∈ f −1(y) ∩ S and suppose that there exists z ∈ S such that

f (z) ∈ f (x) − int(C) (0). From (3.3) it follows that there exists ε > 0 verifying
f (z) ∈ f (x) − int(C(ε)). As f (xn) → y we deduce that there exists n0 ∈ N such
that

f (z) + y − f (xn) ∈ f (x) − C(ε) , ∀n ≥ n0.

As εn ↓ 0 it follows from Lemma 3.1(ii) that there exists n1 ≥ n0 such that

f (z) ∈ f (xn) − C(εn) , ∀n ≥ n1

and therefore f (z) = f (xn), ∀n ≥ n1, since xn ∈ AE( f, S, C, εn). Then, taking
the limit, we have f (z) = y = f (x),

( f (x) − int(C) (0)) ∩ f (S) ⊂ { f (x)}
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and x ∈ WAE( f, S, C, 0).
Part (v). Consider x ∈ f −1(K ) ∩ S. As f (x) ∈ K and xn ∈ AE( f, S, C, εn)

we have that

f (x) ∈ ( f (xn) − C(εn)) ∩ f (S) ⊂ { f (xn)}, ∀n

and we deduce that f (x) = f (xn), ∀n. Therefore,

( f (x) − C(εn)) ∩ f (S) = ( f (xn) − C(εn)) ∩ f (S) ⊂ { f (xn)} = { f (x)}, ∀n.

Thus, by (3.1) we see that

( f (x) − C(0)) ∩ f (S) ⊂ { f (x)}
and we conclude that x ∈ AE( f, S, C, 0). ��
Remark 3.6 From Theorem 3.5(iv) it is clear that if f is continuous at x0 ∈ S and
there exist (xn) ⊂ S and (εn) ⊂ R+ such that xn ∈ AE( f, S, C, εn), xn → x0 and
εn ↓ 0 then x0 ∈ WAE( f, S, C, 0).

Remark 3.7 Theorem 3.5 holds if we change C by int(C) and AE( f, S, C, ε) by
WAE( f, S, C, ε), since int(C) is also a nonempty solid pointed convex co-radiant
set. In this case, let us observe that WAE( f, S, int(C) , 0) = WAE( f, S, C, 0).

4 Relations with other ε-efficiency concepts

In this section, we suppose that 0 ∈ D and we prove that several well-known
ε-efficiency concepts are particular cases of our ε-efficiency notion by choosing
suitable sets C in Definition 3.2.

4.1 ε-efficiency in the senses of Kutateladze and Németh

Let q ∈ D\{0}. It is clear that

C := q + D

is a solid pointed convex co-radiant set, since int(C) = q + int(D) , C ⊂ D and

αC = q + ((α − 1)q + αD) ⊂ q + D = C, ∀α > 1.

Moreover, C(ε) = εq + D, ∀ε > 0. Then, we can consider the set of ε-efficient
solutions of (P) with respect to C and for each ε > 0 we have

x ∈ AE( f, S, C, ε) ⇐⇒ x ∈ S, ( f (x) − εq − D) ∩ f (S) ⊂ { f (x)}. (4.1)

As D is a pointed cone, it follows that (4.1) is equivalent to

x ∈ AE( f, S, C, ε) ⇐⇒ x ∈ S, ( f (x) − εq − D) ∩ f (S) = ∅. (4.2)

This concept was introduced by Kutateladze (1979) and it is the most popular
notion of ε-efficiency (see Helbig and Pateva 1994; Kutateladze 1979; Staib 1988;
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White 1986; Yokoyama 1999, for more details about it). We denote the set of ε-effi-
cient (resp. weak ε-efficient) solutions of (P) in this sense by AEKu( f, S, D, q, ε)
(resp. WAEKu( f, S, D, q, ε)).

Next, let us consider

C := H + D,

where H ⊂ D\{0} is a nonempty D-convex set, i.e., such that H + D is a convex
set. This set C becomes the previous one considering H = {q}. C is a pointed
convex set, since C ⊂ D and D is a pointed cone. Moreover, as

C =
⋃

q∈H

(q + D)

and q + D is a solid co-radiant set, ∀q ∈ H , then C is a solid co-radiant set,

C(ε) =
⋃

q∈H

ε(q + D) =
⋃

q∈H

(εq + D) = εH + D, ∀ε > 0 (4.3)

and an ε-efficiency notion can be deduced from Definition 3.2 by taking C =
H + D. With this notion, for each ε > 0 the following ε-efficiency set is obtained:

x ∈ AE( f, S, C, ε) ⇐⇒ x ∈ S, ( f (x)−εH −D)∩ f (S) ⊂{ f (x)}. (4.4)

As D is a pointed cone, for each ε > 0 condition (4.4) becomes

x ∈ AE( f, S, C, ε) ⇐⇒ x ∈ S, ( f (x) − εH − D) ∩ f (S) = ∅.

This notion was introduced by Németh (1986). We denote the set of ε-efficiency
(resp. weak ε-efficiency) in the sense of Németh by AENe( f, S, D, H, ε)
(resp. WAENe( f, S, D, H, ε)), i.e., AENe( f, S, D, H, ε) = AE( f, S, C, ε) (resp.
WAENe( f, S, D, H, ε) = WAE( f, S, C, ε)), ∀ε ≥ 0, with C = H + D.

Some properties of this kind of approximate solutions are collected in Propo-
sition 4.3. The following lemma is necessary.

Lemma 4.1

(i) int(D) ⊂ C(0) ⊂ D\{0}.
(ii) H ⊂ int(D) ⇐⇒ C(0) = int(D).

(iii) bd(D) ∩ (D\{0}) ⊂ cone(H) ⇒ C(0) = D\{0}.
(iv) int(C) (0) = int(D).

Proof Part (i). Let d ∈ int(D). Taking a point q ∈ H we deduce that there exists
ε > 0 such that d − εq ∈ D. Therefore, d ∈ εq + D ⊂ εH + D and we see that
int(D) ⊂ C(0). Moreover, for each ε > 0 it is clear that εH + D ⊂ D\{0}, since
H ⊂ D\{0} and D is a pointed convex cone. Thus, by (3.1) and (4.3) we have that
C(0) ⊂ D\{0}.

Part (ii). Suppose that H ⊂ int(D). As D is a solid convex cone, it follows that

C(ε) = εH + D ⊂ ε int(D) + D ⊂ int(D) , ∀ε > 0,

and C(0) ⊂ int(D). By part (i) we have the converse inclusion and so int(D) =
C(0).
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Next, suppose C(0) = int(D). Then, taking ε = 1 in (4.3) we deduce that
H ⊂ H + D ⊂ C(0) = int(D).

Part (iii). From part (i) we see that int(D) ⊂ C(0) and by the hypothesis,

bd(D) ∩ (D\{0}) ⊂ cone(H) =
⋃

α>0

α H ⊂ C(0) (4.5)

Thus, it follows that D\{0} = int(D) ∪ (bd(D) ∩ (D\{0})) ⊂ C(0).
Finally, part (iv) is a direct consequence of part (i) and (3.4). ��

Example 4.2 In R
3, consider H = {(α, 1 − α, 0) : 0 ≤ α ≤ 1}.

(a) If D = R
3+\{(0, 0, y3) : y3 > 0} then these data show that the converse of

Lemma 4.1(iii) is false.
(b) If D = R

3+, then these data show that the inclusions in Lemma 4.1(i) can be
strict.

Proposition 4.3
(i) If H ⊂ int(D) then

⋂

ε>0

AENe( f, S, D, H, ε) = WE( f, S, D) ,

if bd(D) ∩ (D\{0}) ⊂ cone(H) then
⋂

ε>0

AENe( f, S, D, H, ε) = E( f, S, D) ,

otherwise

E( f, S, D) ⊂
⋂

ε>0

AENe( f, S, D, H, ε) ⊂ WE( f, S, D) .

(ii) Let (xn) ⊂ S, (εn) ⊂ R+ and y ∈ R
p such that xn ∈ AENe( f, S, D, H, εn),

εn ↓ 0 and f (xn) → y. Then f −1(y) ∩ S ⊂ WE( f, S, D).
(iii) Let (xn) ⊂ S and (εn) ⊂ R+ such that xn ∈ AENe( f, S, D, H, εn) and

εn ↓ 0. Consider

K :=
⋂

n

( f (xn) − εn H − D).

Then f −1(K ) ∩ S ⊂ WE( f, S, D) and if bd(D) ∩ (D\{0}) ⊂ cone(H) then
f −1(K ) ∩ S ⊂ E( f, S, D).

Proof If H ⊂ int(D), then by Lemma 4.1(ii) we deduce that C(0) = int(D),
and so AENe( f, S, D, H, 0) = WE( f, S, D). From Lemma 4.1(iv), it follows
that int(C) (0) = int(D) and we have WAENe( f, S, D, H, 0) = WE( f, S, D). If
bd(D)∩ (D\{0}) ⊂ cone(H), we deduce from Lemma 4.1(iii) that C(0) = D\{0}
and AENe( f, S, D, H, 0) = E( f, S, D). Then properties (i)-(iii) follow from The-
orem 3.5(iii)-(v) taking into account that E( f, S, D) ⊂ AENe( f, S, D, H, 0) ⊂
WE( f, S, D) by Lemma 4.1(i). ��

In Proposition 4.3 we have extended several properties proved in the litera-
ture for the ε-efficiency set in the sense of Kutateladze (see for example Helbig
and Pateva 1994, Lemma 3.3 and Theorem 3.4) to the approximate solutions in
the sense of Németh. We can deduce these properties by considering H = {q} in
Proposition 4.3.
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4.2 ε-efficiency in the sense of Helbig

Let h ∈ D+\{0}. For each α ∈ R we denote

[h > α] = {y ∈ R
p : 〈h, y〉 > α}.

Consider the following set:

C := D ∩ [h > 1]. (4.6)

Lemma 4.4

(i) C is a solid pointed convex co-radiant set.
(ii) C(ε) = D ∩ [h > ε], ∀ε ≥ 0.

(iii) int(D) = int(C) (0) ⊂ C(0) ⊂ D\{0}.
(iv) If h ∈ Ds+ then C(0) = D\{0}.
Proof Part (i). It is obvious that C is a pointed convex co-radiant set and we prove
just that C is solid. Indeed, as D is a proper solid cone, there exists d ∈ int(D)
such that 〈h, d〉 = α > 0. Then (2/α)d ∈ int(D) ∩ [h > 1] = int(C) and C is
solid.

Part (ii). For ε > 0 it follows easily since D is a cone and 〈h, ·〉 is a linear
function. For ε = 0 it is clear.

Part (iii). Let d ∈ int(D). As h ∈ D+\{0} we see that 〈h, d〉 > 0. Then, there
exists ε > 0 such that d ∈ [h > ε] and we deduce that d ∈ C(ε). Thus, it follows
that int(D) ⊂ C(0).

By part (ii) it is obvious that C(0) ⊂ D\{0}. Hence we deduce that int(D) =
int(C(0)) and by (3.4) we see that int(C(0)) = int(C) (0). Therefore it follows
that int(D) = int(C) (0) ⊂ C(0).

Part (iv). If h ∈ Ds+ then 〈h, d〉 > 0, ∀d ∈ D\{0} and we see that D\{0} ⊂
C(0). By part (iii) we have the converse inclusion and so C(0) = D\{0}. ��

By Definition 3.2, for each ε ≥ 0 we obtain the following ε-efficiency set:

x ∈ AE( f, S, C, ε) ⇐⇒ x ∈ S, ( f (x) − (D ∩ [h > ε])) ∩ f (S) = ∅
⇐⇒ x ∈ S, ( f (x) − f (S)) ∩ (D ∩ [h > ε]) = ∅

⇐⇒ x ∈ S, 〈h, f (x)〉 − ε ≤ 〈h, f (z)〉, ∀z ∈ S, f (z) ∈ f (x) − D.

This notion was introduced by Helbig (1992). We denote the set of ε-efficient
(resp. weak ε-efficient) solutions in this sense by AEHe( f, S, D, h, ε)
(resp. WAEHe( f, S, D, h, ε)). Their elements satisfy the following properties.

Proposition 4.5

(i) If h ∈ D+\{0} then

E( f, S, D) ⊂
⋂

ε>0

AEHe( f, S, D, h, ε) ⊂ WE( f, S, D) ,

and if h ∈ Ds+ then
⋂

ε>0

AEHe( f, S, D, h, ε) = E( f, S, D) .



On approximate efficiency in multiobjective programming 175

(ii) Let (xn) ⊂ S, (εn) ⊂ R+ and y ∈ R
p such that xn ∈ AEHe( f, S, D, h, εn) ,

εn ↓ 0 and f (xn) → y. Then f −1(y) ∩ S ⊂ WE( f, S, D).
(iii) Let (xn) ⊂ S and (εn) ⊂ R+ such that xn ∈ AEHe( f, S, D, h, εn) and

εn ↓ 0. Consider

K :=
⋂

n

( f (xn) − (D ∩ [h > εn])).

If h ∈ D+\{0} then f −1(K ) ∩ S ⊂ WE( f, S, D), and if h ∈ Ds+ then
f −1(K ) ∩ S ⊂ E( f, S, D).

Proof From Lemma 4.4(iii) we deduce that

E( f, S, D) ⊂ AEHe( f, S, D, h, 0) ⊂ WE( f, S, D) , ∀h ∈ D+\{0}.
Moreover, by Lemma 4.4(iii)–(iv), we have that AEHe( f, S, D, h, 0)= E( f, S, D) ,
∀h ∈ Ds+ and for each h ∈ D+\{0} we see that WAEHe( f, S, D, h, 0) =
WE( f, S, D). Then, parts (i)-(iii) follow easily from Theorem 3.5(iii)–(v). ��
Remark 4.6 As an example of Definition 3.2, let us introduce a new ε-efficiency
concept, which extends the previous one due to Helbig. Consider h1, h2, . . . , hm ∈
D+\{0} and let h : R

p → R be the function h(y) := min{hi (y) : i = 1, 2, . . . , m}.
It is clear that C := D ∩ [h > 1] is a solid pointed convex co-radiant set and

C(ε) = D ∩ [h > ε], ∀ε ≥ 0.

Then, from Definition 3.2 the following ε-efficiency concept is obtained: x ∈ S is
an ε-efficient solution of (P) with respect to C if and only if for each z ∈ S such that
f (z) ∈ f (x)− D there exists i ∈ {1, 2, . . . , m} such that hi ( f (x))−ε ≤ hi ( f (z)).

Lemma 4.4 and Proposition 4.5 can be easily generalized in order to obtain
several properties of these ε-efficient solutions.

4.3 ε-efficiency in the sense of Tanaka

Next, we suppose that D ⊂ R
p
+ and we define the set

C := D ∩ Bc,

where B denotes the unit open ball in R
p,

B = {y ∈ R
p : ‖y‖1 < 1},

and ‖ · ‖1 is the l1 norm in R
p.

Lemma 4.7

(i) C is a solid pointed convex co-radiant set.
(ii) C(ε) = D ∩ (εB)c, ∀ε > 0.

(iii) C(0) = D\{0} and int(C) (0) = int(D).
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Proof Part (i). It is obvious that C is convex. Moreover, C is a pointed set, since
C ⊂ D and D is a pointed cone. Let y ∈ C and α > 1. As D is a cone, we have that
αy ∈ D. Moreover, ‖αy‖1 = α‖y‖1 > 1 since α > 1 and y /∈ B. Then αy ∈ C
and it follows that C is a co-radiant set.

Next, we prove that C is a solid set. Indeed, there exists a point q ∈ int(D) , q �=
0, since D is a solid cone. Then, 2q/‖q‖1 ∈ int(D) ∩ int(Bc) = int(C) and C is a
solid set.

Part (ii). Let y ∈ C and ε > 0. It is clear that εy ∈ D and ‖εy‖1 = ε‖y‖1 ≥ ε
since y ∈ Bc. It follows that εy ∈ D ∩ (εB)c and C(ε) ⊂ D ∩ (εB)c. Similarly, if
y ∈ D ∩ (εB)c then y/ε ∈ D ∩ Bc = C . Thus, y ∈ εC and C(ε) = D ∩ (εB)c.

Part (iii). By part (ii) it is clear that

C(0) =
⋃

ε>0

D ∩ (εB)c = D ∩
(

⋂

ε>0

εB

)c

= D\{0}.

Analogously,

int(C) (0) =
⋃

ε>0

int
(
D ∩ (εB)c) =

⋃

ε>0

int(D) ∩ int
(
(εB)c)

= int(D) ∩
(

⋂

ε>0

cl(εB)

)c

= int(D) .

��
The set of all approximate solutions (resp. weak approximate solutions) with

respect to this set C is denoted by AETa( f, S, D, ε) (resp. WAETa( f, S, D, ε)). It
follows that

x ∈ AETa( f, S, D, ε) ⇐⇒ x ∈ S, ( f (x) − (D ∩ (εB)c)) ∩ f (S) ⊂ { f (x)}
⇐⇒ x ∈ S, ( f (x) − D) ∩ f (S) ⊂ f (x) + εB.

This ε-efficiency concept was introduced by Tanaka (1995) and it is equivalent to
other previous one due to White (1986) when the open ball B is given by the l∞
norm (see Yokoyama 1996, Proposition 3.2, for more details).

Next, we give several properties of this notion, which extend others previously
proved by Tanaka 1995, Proposition 3.3.

Proposition 4.8

(i)
⋂

ε>0 AETa( f, S, D, ε) = E( f, S, D).
(ii) Let (xn) ⊂ S, (εn) ⊂ R+ and y ∈ R

p such that xn ∈ AETa( f, S, D, εn) , εn ↓
0 and f (xn) → y. Then f −1(y) ∩ S ⊂ WE( f, S, D).

(iii) Let (xn) ⊂ S and (εn) ⊂ R+ such that xn ∈ AETa( f, S, D, εn) , εn ↓ 0 and

K :=
⋂

n

( f (xn) − (D ∩ (εnB)c)).

Then f −1(K ) ∩ S ⊂ E( f, S, D).

Proof By Lemma 4.7(iii) we deduce that AETa( f, S, D, 0) = E( f, S, D) and
WAETa( f, S, D, 0) = WE( f, S, D). Then, the proposition is a consequence of
Theorem 3.5(iii)–(v). ��
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5 Linear scalarization, ε-efficiency and parametric representation in convex
multiobjective programs

In the literature, approximate solutions of (P) are usually studied in convex prob-
lems via the Kutateladze’s definition (see for example White 1986, Lemma 3.2;
Deng 1997, Theorem 2.1; Liu and Yokoyama 1999, Theorems 1 and 2; Liu 1999,
Lemma 2.1; Dutta and Vetrivel 2001, Theorem 2.1). However, results about ε-
efficiency notions different to the Kutateladze’s concept are very limited (see
Yokoyama 1996, Lemmas 4.1 and 4.2; Gutiérrez et al. 2005b, Lemma 3.1).

Our objective in this section is to characterize the ε-efficient solutions with
respect to a set C , in order to obtain additional results about ε-efficiency concepts
different to the Kutateladze’s notion by applying this characterization to suitable
sets C .

5.1 Necessary conditions

Next, necessary conditions for the approximate solutions of (P) with respect to a
set C are obtained via approximate solutions of linear scalarizations, i.e., by the
Weighting Method. With this aim, we suppose that the objective function of (P)
satisfies the following generalized convexity condition.

Definition 5.1 (Frenk and Kassay 1999, Definition 2.4) It is said that f : S ⊂
R

n → R
p is a subconvexlike function on S with respect to a solid convex cone

K ⊂ R
p if the set f (S) + int(K ) is convex.

Let us observe that if M ⊂ R
p is a solid convex cone such that int(M) = int(K )

and f is subconvexlike on S with respect to K , then f is also subconvexlike on S
with respect to M .

It is well-known that if f : R
n → R

p is K -convex then f is subconvexlike on
S with respect to K for each convex set S ⊂ R

n (see Frenk and Kassay 1999).
For each K ⊂ R

p and y ∈ R
p we denote d(y, K ) = inf{‖y − z‖ : z ∈ K },

where ‖ · ‖ is the Euclidean norm.

Theorem 5.2 Consider program (P) and suppose that f is subconvexlike on S
with respect to C(0) and d(0, C) ≤ δ. Then, ∀ε ≥ 0,

WAE( f, S, C, ε) ⊂
⋃

l∈C(0)+,‖l‖=1

AMin(l ◦ f, S, εδ) ,

where l ◦ f : R
n → R is the function 〈l, f (·)〉.

Proof Let ε > 0 and x0 ∈ WAE( f, S, C, ε). Then x0 ∈ S and

( f (x0) − int(C) (ε)) ∩ f (S) = ∅,

since 0 /∈ int(C) (ε). By Lemma 3.1(v) it follows that

( f (x0) − int(C) (ε)) ∩ ( f (S) + int(C) (0)) = ∅,

and by Definition 5.1 we see that f (S) + int(C) (0) is a convex set, since from
(3.4) we have that int(C) (0) = int(C(0)) and f is a subconvexlike function on
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S with respect to C(0). Then, by the Separation Theorem (see, for example, Jahn
2004, Theorem 3.14) we deduce that there exists l ∈ R

p\{0} such that

〈l, f (x0)−εd1〉≤〈l, f (x)+d2〉, ∀d1 ∈C, ∀d2 ∈ int(C) (0), ∀x ∈ S. (5.1)

We can suppose that ‖l‖ = 1 since l �= 0. Moreover, by continuity, (5.1) holds
∀d2 ∈ cl(C(0)) since C(0) is convex. As C(0) is a cone we deduce that l ∈ C(0)+
and by (3.4) we see that

cl(int(C) (0)) = cl(int(C(0))) = cl(C(0)) .

Taking d2 = 0 ∈ cl(C(0)) in (5.1) we obtain

〈l, f (x0)〉 − ε〈l, d1〉 ≤ 〈l, f (x)〉, ∀d1 ∈ C, ∀x ∈ S,

and by the Cauchy–Schwartz inequality we have that

〈l, f (x0)〉 − ε‖d1‖ ≤ 〈l, f (x)〉, ∀d1 ∈ C, ∀x ∈ S.

By assumption and by the definition of d(0, C) we derive that

〈l, f (x0)〉 − εδ ≤ 〈l, f (x0)〉 − εd(0, C) ≤ 〈l, f (x)〉, ∀x ∈ S,

and it follows that x0 ∈ AMin(l ◦ f, S, εδ).
If ε = 0 and x0 ∈ AE( f, S, C, 0) then, repeating the same reasoning we deduce

that

〈l, f (x0)〉 ≤ 〈l, f (x)〉, ∀x ∈ S,

since (5.1) is true for all ε > 0. Therefore, it follows that x0 ∈ AMin(l ◦ f, S, 0)
with l ∈ C(0)+ and ‖l‖ = 1. ��

5.2 Sufficient conditions

Next, we obtain sufficient conditions for ε-efficient solutions of (P) with respect
to a set C . For this we need the following result (see Bolintineanu 2001, Lemma
2.7 for more detail).

Lemma 5.3 Let K ⊂ R
p be a convex cone such that K + is solid. If l ∈ int

(
K +)

then

d(l, R
p\K +) ≤ inf{〈l, y〉 : y ∈ K , ‖y‖ = 1}.

Theorem 5.4 Suppose that 0 /∈ cl(C) , C(0)+ is solid and consider l ∈ int
(
C(0)+

)

and δ ≥ 0. Then

AMin(l ◦ f, S, δ) ⊂ AE( f, S, C, ε) , ∀ε > δ/c,

AMin(l ◦ f, S, δ) ⊂ WAE( f, S, C, ε) , ∀ε ≥ δ/c,

where c = d(0, C) · d(l, R
p\C(0)+).
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Proof Let x0 ∈ AMin(l ◦ f, S, δ) and ε > δ/c. Reasoning “ad absurdum”, let us
suppose that x0 /∈ AE( f, S, C, ε). Then there exist x ∈ S and d ∈ C(ε) , d �= 0,
such that f (x0) − d = f (x). As l is a linear function and x0 ∈ AMin(l ◦ f, S, δ)
we deduce that

〈l, f (x)〉 = 〈l, f (x0)〉 − 〈l, d〉 ≤ 〈l, f (x)〉 + δ − 〈l, d〉
and it follows that 〈l, d〉 ≤ δ. By Lemma 5.3 we have that

〈l, d〉 ≥ ‖d‖d(l, R
p\C(0)+) ≥ εd(0, C)d(l, R

p\C(0)+) = εc > δ,

which is a contradiction. Therefore, x0 ∈ AE( f, S, C, ε).
By the same reasoning we see that if ε ≥ δ/c and x0 /∈ WAE( f, S, C, ε) then

there exists d ∈ int(C) (ε) such that 〈l, d〉 ≤ δ. If ε > 0 then ‖d‖ > εd(0, C)
since (1/ε)d ∈ int(C), and by Lemma 5.3 it follows that

〈l, d〉 ≥ ‖d‖d(l, R
p\C(0)+) > εd(0, C)d(l, R

p\C(0)+) = εc ≥ δ,

which is a contradiction. If ε = 0 then δ = 0 and so 〈l, d〉 = 0, which is contrary
to

〈l, d〉 ≥ ‖d‖d(l, R
p\C(0)+) > 0.

Therefore, we conclude that x0 ∈ WAE( f, S, C, ε). ��
There are some particular ε-efficiency notions for which it is possible to obtain

other results similar to Theorem 5.4, because for a fixed l ∈ C(0)+ there exists
a specific positive lower bound for the images 〈l, d〉 when d ∈ C . The following
theorem shows one of them.

Theorem 5.5 Let H ⊂ int(D) be a nonempty compact D-convex set. Consider
0 ∈ D, l ∈ D+\{0} and δ ≥ 0. Then

AMin(l ◦ f, S, δ) ⊂ AENe( f, S, D, H, ε) , ∀ε > δ/ml ,

AMin(l ◦ f, S, δ) ⊂ WAENe( f, S, D, H, ε) , ∀ε ≥ δ/ml ,

where ml = min{〈l, d〉 : d ∈ H}.
Proof Firstly, notice that AENe( f, S, D, H, ε) is the ε-efficiency set with respect
to C = H + D. Let x0 ∈ AMin(l ◦ f, S, δ) , ε > δ/ml and suppose that x0 /∈
AENe( f, S, D, H, ε). As in the proof of Theorem 5.4, we see that there exists
d ∈ C(ε) such that 〈l, d〉 ≤ δ. By (4.3) we have that C(ε) = εH + D and we
deduce that there exists q ∈ H such that d ∈ εq + D. As l ∈ D+ it follows that

〈l, d〉 ≥ ε〈l, q〉 ≥ ε ml > δ

which is a contradiction.
By the same reasoning we have that if x0 /∈ WAENe( f, S, D, H, ε), ε ≥

δ/ml and ε > 0 then there exists d ∈ D\{0} such that 〈l, d〉 ≤ δ and (1/ε)d ∈
int(H + D). As D is a solid convex cone, by Frenk and Kassay (1999, Theo-
rem 3.2) it follows that int(H + D) = int(H + int(D)), and since H + int(D) =
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∪q∈H (q + int(D)) is an open set, we obtain that int(H + D) = H + int(D). Hence
there exists q ∈ H such that d ∈ εq + int(D) and

〈l, d〉 > ε〈l, q〉 ≥ ε ml ≥ δ

which is a contradiction. If ε = 0 then δ = 0 and d ∈ int(C) (0). From Lemma
4.1(iv) we see that int(C) (0) = int(D) and so 〈l, d〉 > 0, which is contrary to
〈l, d〉 ≤ δ = 0. ��
Corollary 5.6 Let H ⊂ int(D) be a nonempty compact D-convex set, 0 ∈ D and
δ ≥ 0. Then

⋃

l∈D+, ‖l‖=1

AMin(l ◦ f, S, δ) ⊂ AENe( f, S, D, H, ε) , ∀ε > δ/m,

⋃

l∈D+, ‖l‖=1

AMin(l ◦ f, S, δ) ⊂ WAENe( f, S, D, H, ε) , ∀ε ≥ δ/m,

where m = min{〈l, d〉 : l ∈ D+, ‖l‖ = 1, d ∈ H}.
Proof By Theorem 5.5 and Theorem 3.5(ii) we deduce that

⋃

l∈D+, ‖l‖=1

AMin(l ◦ f, S, δ) ⊂ AENe( f, S, D, H, ε) , ∀ε > k, (5.2)

⋃

l∈D+, ‖l‖=1

AMin(l ◦ f, S, δ) ⊂ WAENe( f, S, D, H, ε) , ∀ε ≥ k, (5.3)

where k = δ/ inf{ml : l ∈ D+, ‖l‖ = 1}. As {(l, d) ∈ R
p × R

p : l ∈ D+, ‖l‖ =
1, d ∈ H} is a compact set, by the Weierstrass’ Theorem we deduce that

m =min{〈l, d〉 : l ∈ D+, ‖l‖=1, d ∈ H}= inf{ml ∈ R+ : l ∈ D+, ‖l‖ = 1} > 0,

and so k = δ/m and we obtain the conclusion from (5.2) and (5.3). ��

5.3 Parametric representations

In the literature, necessary and sufficient conditions on the efficient solutions of
multiobjective mathematical programs obtained via scalarization are frequently
used to attain parametric representations of the efficiency set (see for example
Wierzbicki 1986, Sect. 2). Next, following this idea, we provide parametric rep-
resentations of the ε-efficiency sets via linear scalarizations and Theorems 5.2
and 5.4 in multiobjective mathematical programs whose objective functions are
subconvexlike on the feasible set.

Previously, we recall a definition of parametric representation introduced by
the authors in (Gutiérrez et al. 2006a,b), which extends the notion of parametric
representation of efficiency sets to ε-efficiency sets.

Let C ⊂ R
p be a solid pointed convex co-radiant set and let {ϕα}α∈P be a fam-

ily of scalar functions ϕα : R
p → R, where P is a parametric index set. Consider

the following two properties:
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(P1) There exist a subset Ps of P and cs > 0 such that
⋃

α∈Ps

AMin(ϕα ◦ f, S, δ) ⊂ AE( f, S, C, csδ) , ∀δ ≥ 0. (5.4)

(P2) There exist a subset Pn of P and cn > 0 such that

AE( f, S, C, ε) ⊂
⋃

α∈Pn

AMin(ϕα ◦ f, S, cnε) , ∀ε ≥ 0. (5.5)

Definition 5.7 We say that {ϕα}α∈P gives a parametric representation of
AE( f, S, C, ε) if properties (P1) and (P2) hold. We say that a parametric rep-
resentation of AE( f, S, C, ε) is complete when Ps = Pn = P .

Theorem 5.8 Suppose that 0 /∈ cl(C) and C(0)+ is solid. Consider

P = {l ∈ C(0)+ : ‖l‖ = 1},
and a nonempty compact set F ⊂ {l ∈ int

(
C(0)+

) : ‖l‖ = 1}. If f is a subcon-
vexlike function on S with respect to C(0), then the family {〈l, ·〉}l∈P gives a para-
metric representation of WAE( f, S, C, ε) and AE( f, S, C, ε) with Pn = P, cn =
d(0, C), Ps = F, cs = ks := 1/(m d(0, C)) and Pn = P , cn = d(0, C), Ps =
F, cs > ks , respectively, where m := min{d(l, R

p\C(0)+) : l ∈ F}.
Proof By Theorem 5.2 we see that

AE( f, S, C, ε) ⊂ WAE( f, S, C, ε) ⊂
⋃

l∈P
AMin(l ◦ f, S, εd(0, C)) , ∀ε ≥ 0

and condition (5.5) holds for the ε-efficiency and weak ε-efficiency sets taking
Pn = P and cn = d(0, C).

As F is a compact set it follows that m > 0 and by Theorems 5.4 and 3.5(ii)
we deduce that

⋃

l∈F
AMin(l ◦ f, S, δ) ⊂ AE( f, S, C, ε) , ∀ε > δ/(m d(0, C)),

⋃

l∈F
AMin(l ◦ f, S, δ) ⊂ WAE( f, S, C, ε) , ∀ε ≥ δ/(m d(0, C)).

Therefore, condition (5.4) holds for the weak ε-efficiency set taking Ps = F and
cs = ks and for the ε-efficiency set taking Ps = F and cs > ks . ��

For the Németh’s ε-efficiency notion we have the following complete paramet-
ric representation.

Theorem 5.9 Assume that 0 ∈ D and H ⊂ int(D) is a nonempty compact D-
convex set. If f is a subconvexlike function on S with respect to D then the family
{〈l, ·〉}l∈P , where

P = {l ∈ D+ : ‖l‖ = 1},
gives a complete parametric representation of WAENe( f, S, D, H, ε) and
AENe( f, S, D, H, ε) with cn = d(0, H + D), cs = 1/m and cn = d(0, H +
D), cs > 1/m, respectively, where m := min{〈l, d〉 : l ∈ D+, ‖l‖ = 1, d ∈ H}.
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Proof Approximate solutions of (P) in the sense of Németh are ε-efficient solu-
tions with respect to C = H + D. By Lemma 4.1(ii) we see that C(0) = int(D).
Then C(0)+ = D+ and from Theorem 5.2 and (3.5) we deduce that (5.5) holds for
the weak ε-efficiency and ε-efficiency sets taking Pn = P and cn = d(0, H + D).

By Corollary 5.6 we see that (5.4) holds for the weak ε-efficiency and
ε-efficiency sets taking Ps = P, cs = 1/m and Ps = P, cs > 1/m, respectively.

Thus, the family {〈l, ·〉}l∈P gives a complete parametric representation of
WAENe( f, S, D, H, ε) and AENe( f, S, D, H, ε). ��
Remark 5.10 If ‖ · ‖ is monotone on D whit respect to the preference relation
defined by D, i.e. ‖v + d‖ ≥ ‖v‖, ∀v, d ∈ D, then d(0, H + D) = d(0, H) and
we can replace d(0, H + D) by d(0, H) in the previous theorem.

5.4 Application to convex Pareto programs

In this subsection we consider that (P) is a Pareto multiobjective mathematical pro-
gram (i.e., D = R

p
+) and we assume that the objective function f : S ⊂ R

n → R
p

is subconvexlike on S with respect to R
p
+. Under these hypotheses we apply The-

orems 5.8 and 5.9 to obtain parametric representations of the ε-efficiency sets in
the senses of Németh, Helbig and Tanaka via linear scalarizations.

We denote the components of a vector y ∈ R
p by yi , i = 1, 2, . . . , p, and we

define the following solid pointed convex co-radiant sets:

CNe = H + R
p
+, CHe = R

p
+ ∩ [〈h, ·〉 > 1], CTa = R

p
+ ∩ Bc,

where H ⊂ R
p
+\{0} is a nonempty compact R

p
+-convex set and h ∈ R

p
+\{0}.

Notice that these sets define the Németh, Helbig and Tanaka’s ε-efficiency notions,
respectively.

Theorem 5.11 Consider P = {l ∈ R
p
+ : ‖l‖ = 1}, a nonempty compact set

F ⊂ {l ∈ int
(
R

p
+
) : ‖l‖ = 1} and m = min1≤i≤p{li : l ∈ F}. The family

{〈l, ·〉}l∈P gives a parametric representation of

(i) WAENe
(

f, S, R
p
+, H, ε

)
and AENe

(
f, S, R

p
+, H, ε

)
with Pn = P, cn =

d(0, H), Ps = F, cs = 1/(m d(0, H)) and Pn = P, cn = d(0, H), Ps = F ,
cs > 1/(m d(0, H)), respectively.

(ii) WAEHe
(

f, S, R
p
+, h, ε

)
and AEHe

(
f, S, R

p
+, h, ε

)
with Pn =P, cn =1/‖h‖,

Ps = F, cs = ‖h‖/m and Pn = P, cn = 1/‖h‖, Ps = F, cs > ‖h‖/m,
respectively.

(iii) WAETa
(

f, S, R
p
+, ε

)
and AETa

(
f, S, R

p
+, ε

)
withPn = P, cn = 1/

√
p, Ps =

F, cs = √
p/m and Pn = P, cn = 1/

√
p, Ps = F, cs >

√
p/m, respec-

tively.

Proof By (3.4) and Lemma 4.1(iv), Lemma 4.4(iii) and Lemma 4.7(iii) we see that

int(CNe(0)) = int(CHe(0)) = int(CTa(0)) = int
(
R

p
+
)

(5.6)

and so

CNe(0)+ = CHe(0)+ = CTa(0)+ = R
p
+. (5.7)
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Moreover, easy calculations give

d(0, CNe) = d(0, H), (5.8)

d(0, CHe) = 1/‖h‖, (5.9)

d(0, CTa) = 1/
√

p, (5.10)

m = min{d(l, R
p\R

p
+) : l ∈ F} = min

1≤i≤p
{li : l ∈ F}. (5.11)

By (5.6) we see that the hypotheses of Theorem 5.8 hold. Then, parts (i)–(iii) follow
from Theorem 5.8 and Eqs. (5.8)-(5.11). ��

In (Gutiérrez et al. 2006b, Theorem 3.4(b)) we have obtained a complete para-
metric representation of AEKu

(
f, S, R

p
+, q, ε

)
and WAEKu

(
f, S, R

p
+, q, ε

)
in Pa-

reto multiobjective programs whose feasible set and objective function are convex.
Next, we extend this result to the Németh’s ε-efficiency set in Pareto programs
whose objective function is subconvexlike on S with respect to R

p
+.

Theorem 5.12 Let H ⊂ int
(
R

p
+
)

be a nonempty compact R
p
+-convex set and

P = {l ∈ R
p
+ : ‖l‖ = 1}. The family {〈l, ·〉}l∈P gives a complete parametric

representation of WAENe
(

f, S, R
p
+, H, ε

)
and AENe

(
f, S, R

p
+, H, ε

)
with cn =

d(0, H), cs = 1/m and cn = d(0, H), cs > 1/m, respectively, where m :=
min{〈l, d〉 : l ∈ R

p
+, ‖l‖ = 1, d ∈ H}.

Proof By (5.6)–(5.8) we have that int(CNe(0)) = int
(
R

p
+
)
, CHe(0)+ = R

p
+ and

d(0, CNe) = d(0, H). Now, the theorem follows easily from Theorem 5.9. ��

6 Conclusions

In this work, a new ε-efficiency notion in multiobjective mathematical program-
ming has been defined. We have proved that several well-known ε-efficiency con-
cepts can be studied in a unified way via this new notion. Actually, we have seen
under mild assumptions that our concept unifies the Németh, Helbig and Tanaka’s
ε-efficiency notions.

We have proved some properties of this new concept and we have characterized
it in a convex framework via approximate solutions of associated scalar optimi-
zation problems. We show that approximate solutions of (P) obtained through the
Weighting Method are ε-efficiency solutions in the senses of Németh, Helbig and
Tanaka. In other words, these ε-efficient solutions and approximate solutions of
linear scalarizations whose error is less than or equal to δ are related just via their
precisions ε and δ respectively.

As final conclusion, we think that several results of this work will be useful
in order to improve the actual resolution techniques and develop new methods to
solve multiobjective mathematical programs.
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