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Abstract A new smoothing approach was given for solving the mathematical
programs with complementarity constraints (MPCC) by using the aggregation tech-
nique. As the smoothing parameter tends to zero, if the KKT point sequence gen-
erated from the smoothed problems satisfies the second-order necessary condition,
then any accumulation point of the sequence is a B-stationary point of MPCC if
the linear independence constraint qualification (LICQ) and the upper level strict
complementarity (ULSC) condition hold at the limit point. The ULSC condition
is weaker than the lower level strict complementarity (LLSC) condition gener-
ally used in the literatures. Moreover, the method can be easily extended to the
mathematical programs with general vertical complementarity constraints.
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1 Introduction

We consider the mathematical programs with complementarity constraints (MPCC):

minimize  f(z)

subjectto  G1(z) >0, G2(z) >0,
G1(2)" Ga(2) =0, (1)
g(2) <0,
h(z) =0,

wherez e R", f:R" > R, G; : R" - R"(j =1,2), g: R" - R, and
h : R" — RY are twice continuously differentiable functions. As an important
subclass of mathematical programs with equilibrium constrains (MPEC), MPCC
is very useful for the study of bilevel programming problems and a large number
of engineering design problems, see Luo et al. (1996a) and the references therein.
In the past two decades, optimal conditions and algorithms for MPEC were deeply
studied by some authors, and various stationarity concepts were introduced, see
Fukushima and Pang (1999), Luo et al. (1996a,b), Outrata et al. (1998), Pang
and Fukushima (1999), Scheel and Scholtes (2000), Scholtes (2001), Scholtes and
Stiihr (1999, 2001), Ye and Ye (1997) and Ye (1999, 2000) for example. Among
them, Bouligand stationarity conditions (B-stationary) introduced by Luo et al.
(1996a) provides the strongest first-order optimality conditions for a local mini-
mizer of MPCC. Scheel and Scholtes (2000) made an excellent clarification on
these concepts and elucidated their connections. On the other hand, many efforts
have also been made to produce the robust algorithms for MPEC. As we known,
most of the methods are based on the non-smooth approach or the nonlinear pro-
gram relaxation approach (Fukushima and Tseng 2002; Liu and Sun 2004; Luo
et al. 1996a,b; Outrata et al. 1998; Outrata and Zowe 1995; Raghunathan and
Biegler 2005; Scholtes and Stiihr 1999). Recently, the smoothing continuous func-
tion methods, which have been widely used for solving complementarity and var-
iational inequality problems, were also proposed for solving MPCC with some
special complementarity constraints, see Faccinei et al. (1999), Fukushima and
Pang (1999), Fukushima et al. (1998) and Jiang and Ralph (2000). However, some
of these methods require the nondegeneracy ( that is, the lower level strict comple-
mentarity ) condition at a limit point so as to guarantee the methods converge to a
B-stationary point, and some can only converge to a point satisfying some weak
stationarity conditions such as the Clarke stationarity condition. Fukushima and
Pang (1999) gave a smoothing continuation method for solving MPCC by using the
perturbed Fischer—Burmeister function. They proved that the second-order station-
ary point sequence of the smoothed problems converges to a B-stationary point of
the MPCC as the smoothing parameter tends to zero. The basic assumptions they
need are the linear independence constraint qualification (LICQ) and the asymp-
totic weak nondegeneracy at a limit point. The later condition means that for some
i €{l,...,m},ifboth G; and G,; are equal to zero at the limit point, then G, (z)
and G;(z) tend to zero in the same order of magnitude. Jiang and Ralph (2000)
proposed two smooth SQP methods for MPCC. Global convergence of the methods
depend on the lower level strict complementarity condition amongst some other
conditions, such as the LICQ or the Mangasarian-Fromovitz constrained qualifi-
cation (MFCQ).
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In this paper, we propose a new smoothing approximation method for MPCC by
using the aggregation technique. Aggregation function is a well known smoothing
function for max-type functions. Let w : R" — R, w(x) = max{w;(x), wa(x),
.oy Wy (x)}, where w;, i = 1, ..., m, are continuously differentiable functions,
it is clear that w(-) is continuous in R” but not differentiable everywhere. For any
t > 0, the aggregation function of w(x),notedas w(t, x) : R"T! — R, is defined
by

m

w(t, x) = tanexp(wi(x)/t). 2)

i=1
Function (2), viewed as the exponential penalty function, has been studied and
employed as the multiplier method for nonlinear programming (Goldstein 1997,
Kachiyan 1996; Tseng and Bertsekas 1993). According to Goldstein (1997), Chang
(1980) first introduced the function (2). Independently, Li (1991, 1992) studied (2)
and named it as the aggregation function. Recently, some authors investigated the
differentiable properties of the function, and used it to propose smoothing methods
for generalized (extended) linear complementarity problems and some nonlinear
complementarity problems (Peng and Lin 1999; Qi and Liao 1999; Qi et al. 2000).
Noticing that G1(z) > 0, G2(z) > 0 and G1()TG1(z) = 0 if and only if

G(z) = min{G(z), G2(2)} = 0, we define

—tIn(exp(—=G11(2)/t) + exp(=G21(2)/1))
—tIn(exp(—=G12(2)/t) + exp(—G22(2))/1))

G(t,z) = 3)

—tIn(exp(=G 1 (2)/1) + exp(—Gam (2)/1))

for t > 0. It is easy to see that G (¢, z) is continuously differentiable with respect
to t for all + > 0, and lim, o G(¢,z) = G(z). As such, it is natural to define
G(0,z) = G(z2). Then we produce the following parametric nonlinear program-
ming problems (Py):
minimize  f(z)
subjectto  G(t,z) =0,
8(2) =0,
h(z) =0.

Fort > 0, (4) is said to be the smoothing approximation of MPCC (1). Obviously,
the solution of (P¢) tends to the solution of MPCC (1) as the smoothing parameter
¢t tends to 0. Under the LICQ and a condition called upper level strict comple-
mentarity (ULSC)(see section 2), we prove that any limit point of the sequence
generated from solving the smooth approximation problem (4) (as t — 0) must be
a B-stationary point of MPCC (1), if the sequence satisfies the second-order neces-
sary conditions. It is shown that ULSC condition is weaker than the generally used
lower level strict complementarity (LLSC) condition. Therefore, the convergence
condition of this paper is weaker than that of Jiang and Ralph (2000), and in some
sense, weaker than that of Fukushima and Pang (1999).

The paper is organized as follows. In section 2 we recall some concepts and
propositions about the MPCC and investigate the properties of the aggregation
function G (t, z) for establishing the relationship of a B-stationary point of MPCC
(1) with the solution of (P¢). Section 3 is devoted to the convergence analysis of

“4)
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our smooth approximation method. Further remarks on the extension of the method
will be drawn in section 4.

Some notations: denote R+ as the set of all nonnegative real numbers, R+ the
set of all positive real numbers. Let Z and J be the subindex set of the inequality
constraints g(z) < 0 and the subindex set of the equality constraints h(z) = 0,
respectively. |Z| is the number of elements in the index set Z. For a vector v € R™
and an index set ¢ C {1, 2, ..., m}, vy denotes the subvector of v with compo-
nents v;, [ € .

2 Preliminaries

A feasible point z of MPCC is a B-stationary point if 7 f(z)Td > 0 for every d
satisfying
min{ij,-(Z)Td| j:Gj(@)=0, j=12}=0,i=12,...,m.
ver@'d <0, re{r:g@=0rell 5)
vh(z)'d = 0.
Clearly, any local optimal solution of MPCC (1) is a B-stationary point. Fur-
thermore, we define the following index sets at z:

{i] G1i(2) =0 < G2 (2)},

{i] G1i(z) =0 = G2 (2)}, ©)
{i] G1i(2) > 0 = G2 (2)},

T ={r| g =0}

If the vectors {vG1;(2)|i € @ U B} U{vGa ()i € BUPIU{vg @)|r € T} U
{vhi ()|l € J} arelinearly independent, we say the LICQ holds at 7 . In particular,
we say that 7 satisfies the lower level strict complementarity (LLSC) condition if

B=10,ie.,G;(z2)+ Gy(z) >0foralli =1, ..., m.Inthis case Z is also said to
be nondegenerate.

IR KR!

Proposition 2.1 Fukushima and Pang (1999) and Luo et al. (1996a) assume 7 is
a feasible point of MPCC, and the LICQ holds at z. If there exist vectors v €

R™ e R", &eRE, i € R’ such that 7 satisfies the conditions:
Vi@ =20 vGii@) - 2 0iv G — 2 o v Gu@)

i€a iep iep

— 2o vG@D+ X ve@+ X uvh@ =0,

i€y reZ leg
G1a(2) =0, Gy5(2) =0, h(z)=0, A
7520, G =0, VG 5() =0,

@520, Gyp() 20, @;Gyp(E) =0,

A>0, g2) <0, ATg@ =0,
then 7 is a B-stationary point of MPCC.
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LICQ is a generic constraint qualification for MPCC, many optimal theories
and algorithms for MPCC are established under this condition. The point satis-
fying system (7) is called the Karush—Kuhn-Tucher (KKT) point of MPCC (1).
Moreover, according to Scheel and Scholtes (2000), a point 7 is said to satisfy the
upper level strict complementarity condition (ULSC) if v; and w;, the multipliers
correspondence to G; and Gy; respectively, satisfy v;w; # 0 foralli € 8. Itis
well known that a point 7 satisfies the lower level strict complementarity condition
(LLSC) if G1; + Go; > 0 hold for all i € {1,2,...,m}. We can see from the
following example that the ULSC condition is considerably weaker than the LLSC
condition, and in practice, it may make more sense than the later one.

Example 2.1 Scheel and Scholtes (2000)

min (z1 — )% + (22 — 1)?

st. 7122 =0,
z1 >0, ®)
22 >0,

where 71, 72 € R, t < 01is a parameter.

Obviously, (0, 0) is the optimal solution of (8). The LLSC condition is vio-
lated at (0, 0) for every ¢ < 0, while the ULSC condition is only violated at (0, 0)
for t = 0. From the KKT system for problem (8), it is not difficult to see that,
for (z1,22) = (0,0) and r < 0, we may take the multipliers v and w in (7) as
v = w = —2¢. Hence, v = 4¢2, which means that the ULSC condition holds for
any t < 0.

In the next part of this section, we investigate the properties of aggregation
function G (¢, z) in (3). From Proposition 3.2 in Qi and Liao (1999) and by simple
calculation, we can get the following properties of G (t, z) with respect to ¢ and z,
respectively.

Lemma 2.1 (i) G(t, z) is a locally Lipschitz continuous function on R4 X R".
(i1) (G(t,z)); is a continuously differentiable decreasing and convex function
with respectto t(t > 0), and forany i =1,2,...,m,

(G(2)i —tIln2 < (G(t,2)i = (G(2)i, €))

v/(G(t,2))i = —In (w) +exp (@ )

1
—;[mi(t, 2)G1i(2) +m2i (1, 2)G2i(2)],  (10)

where

exp(—G1;(2)/1)
o= 0, 1),
mi(t, 2) exp(—G1i(2)/1) + exp(=G2i(2)/1) =0

exp(—G2;i(2)/1)
o= 0, 1),
mi(, 2) exp(—G1;(2)/1) + exp(—G2i(2) /1) < @D

with n;(t,2) +n2i(t,2) = 1.

(1)
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(ii1) If G1(z) and Go(z) are twice continuously differentiable functions, then
G(t, z) is at least twice continuously differentiable on R4 x R", and for
all i=1,2,...,m,

V(G(t,2)i = mit,2) v G1i(2) + n2i(t, 2) v G2i(2),

V2(G(t,2)i = mi(t,2) V2G1i(2) + i (t, 2) vV *G2i (2)

_;nli(tyZ)UZi(th) vG1i () (VG (2)T
+9 62 @ GHE) | (12
+%711i(t» 2mi(t, z) —véu(z)(szi @)’
+v G2i(Z)(VG1i(Z)-)T_,
and | )
}LII(I)Vz(G(LZ))i = Bo Z vG;i(2), (13)

JEBi(2)
where Bi(z) = {j1G;i(z) = Gi(2), j = 1,2}, |Bi(z)| is the element number
of the index set B;(z).

Since G(0, z) = G(z), we have the following lemma which is useful for estab-
lishing our convergence result in Section 3.

Lemma 2.2 Letz € R", z; — Zast — 0. Then
)
Bi(z) € Bi(z) (i=12,....m),
(i)
I(z) €I, I(z) = {rl gr(z;) =0}
holds for all t sufficiently small.

Proof (i) We assume, by contradiction, that there exists a sequence {r*} € R
with 7f — 0 as k — oo and an index j(k) € Bi(z;x) but j(k) ¢ B;(z) for
some i € {1,2,...,m}. From the definition of B;(z), there is at most two
elements in each B;(z). We suppose that j (k) = j for all k without loss of
generality. Then we have G j; (z;c) = G;(z;x). Noticing the continuity of G j;
and G;, we obtain that G j; (z) = G, (z) from the fact that z;x — z as = 0.
Therefore, j € B;(z). This contradiction establishes (i).

(i1) Similar to the proof of (i). m|

We now recall the Clarke generalized gradient/Jacobian.

Definition 2.1 Let the operator G : R" — R™ be Lipschitz continuous near
z0 € R" and let oG denote the set of points at which G fails to be differentiable.
The generalized Jacobian of G at z is

3G (z0) = conv { lim vG (") — z0, Z* ¢ o). (14)
k— 00

Form =1, 0G(z¢) is termed the generalized gradient of G at z.



Convergence of smooth approximation method for MPCC 261

The following theorem is important for deriving the global convergence of our
smoothing method for MPCC.

Theorem 2.1 Assume G(z), G2(z2) are continuously differentiable functions. Let
{tX} be a sequence of positive scalars tending to zero, {z*} be a sequence tending
toz. Thenforalli =1,2,...,m,

lim dist{v, (G (%, 25))i, 3(G (@)} = 0. (15)

th—0

Proof From the definition of G(-) and dG (-), we have that, foralli = 1,2, ..., m,

3(G(2)); = conv{limi_ oo V(G(Z"))ilF — Z, G1; () # G ()}

= {Mi v G1i@) + 02 v G2 ()| 71i, 72i € [0, 1], (16)
and 71; + 72 = 1}.
Since t* > 0, G (t, z) is continuously differentiable at (tk , zk), and
(G, )i = i, ) v G () + i (1K, ) v Gai (), (17)
where
i (k. 25y = exp(=G1i(z")/1%)
o exp(—G1;(z5)/1F) + exp(—Ga; () /15)
_ exp((G(z5))i — Gy () /%) € (0.1
exp((G(Z%))i — G1;(ZF)/1%) + exp((G(ZK))i — Gai(zK) /%) Y s
ni (1K, 28y = exp(—Gai(z") /%)
e exp(—G1; (%) /1%) + exp(—Gai (5) /1)
_ exp((G(zK))i — Gai () /%) cO.1)
exp((G(zK)i — G1:(zK)/t%) + exp((G(zK));i — Gai(zK) /1K) '
and
mi (5, 25 + i (F, 25 = 1. (19)
Furthermore, for j € {1, 2},
exp((G(ZF)i — Gji(2%)/iF) =1, if j € BN,
(20)

lim exp(G(i = G/t =0, if j ¢ BE).
th—

If G1;(2) # G2i(2), then (G(2)); = G1;(z) (or G2;(z)) near z. Hence, (G(z));
is continuously differentiable near z, which implies that lim_, - v(G(0, i =
v(G(2));. Since ||Bi(z)|| = 1, by Lemma 2.2 we have that B; (%) ¢ Bi(%) for



262 H. Yin and J. Zhang

all k big enough. Hence, from (13), limy_,( v.(G(t*, 25)); = vG ;i (z*) for all
Jj € B; (zk). Therefore,

lim dist{v:(G(*, 25); = H(G@i} = lim || 72(G(*, )i = 9G]

kz z
tk—0 tk—0
< 1im {| 7 2(G(*, )i = 9(GENil + 11 7 (G = vGEl)
=0
=0.
1)
If G1;(2) = G2 (2), from (17), (18), ( 19) and Lemma 2.2, we have that
lim v(G(r*. 25); € 3G Q@) (22)
;’C:Z)
Therefore, (15) is true for alli = 1, 2, ..., m. The proof is complete. O

3 Global convergence of smoothing method for MPCC

Let z; be a local optimal solution of problem (P¢). Since (P¢) is an ordinary
nonlinear programming problem, under some constraint qualifications, there ex-
ist Lagrange multipliers v, € R™, A, € R?, and u; € R? such that the vector
(z¢, vr, Ar, iy) satisfies the following KKT conditions for problem (Py):

V) — % Wi v (G 2+ 3 O ¥ 80 (20)

reZ;

+I%(Mt)l v hi(z:) =0, (23)
€
G(t,z:) =0, h(z)=0,

A)r =0, gr(z1) =0, (Ao)rgr(z) =0.

Moreover, (z;, vt, Ar, [4;) satisfies the inequalities

dl 7 2L(ze, v A, wo)dy = 0 forall dy € T (z), (24)

where

Lz, v, h ) = (@) + D (G, 2)i + D hrgr@) + D hiz),  (25)

i=1 reZ; leg

with 7, = {rlgr(z1) = 0} and Ts(2) = {d € R"| v G(1,2)"d = 0, vgz,(2)"d =
0, vh(z)"d = 0}.

Conditions (23) and (24) are called the second order necessary conditions of
problem (P¢). The next lemma shows the relationship of the feasibility between
MPCC (1) and problem (P¢) when ¢ > 0 is sufficiently small, which is crucial for
proving our main result.
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Lemma 3.1 For eacht > 0, let z; be a feasible point of problem (Py). Suppose
that z; — z ast — 0, then z is a feasible point of MPCC (1). Moreover, if LICQ
holds at 7, then the gradients

{(Vo(G(t,z)ili = 1,2, ... ,m}U{vgr@)Ir € L} U{vhi(z)Il € T} (26)
are linearly independent for all t > 0 small enough.

Proof From (9), (10) and the continuity of G (7, z), g(z) and h(z), it is easy to see
that 7 is a feasible point of MPCC (1).

We now prove the second part of the lemma. By Lemma 2.1 (iii), v, (G (¢, 2));
is continuously differentiable with respect to z for each ¢+ > 0 and any i €

{1,2,...,m}, so there exists a constant L such that
v (G, 2:))i — V(G 2)ill = Lllzr — Zl 27)
holds forallr > Oandi € {1,2,...,m}. Since z; — z ast — 0, we have
tli_I)% IV (G, z1))i — V(G (2, 2)ill = 0. (28)

By Lemma 2.1(iii) we obtain that

vG;i(2)

=0. 29
|Bi (2)] ” )

lim | v (G, D)~ Y

JE€Bi(2)

From (6), G1;(Z) = 0 < G7;(2) fori € &, which implies that G;(Z) = G1;(2),
B;i(z) = {1} and | B; ()| = 1. Hence, (28) and (29) imply that

lim || v :(G(7, 20))i = VG (@]
< tlg% | v (G, 2))i — v (G, )il + tlg% I v:(GE 2)i —vGu@l

=0,
(30)
Similarly, we can prove that fori € y,
lim v (G (¢, z1))i = VG2 (2). (31)
t—0
Fori e ,E_f , by Theorem 2.1 we have
}ET(I) dist{v (G (t, z1))i, 3(G(2));} = 0. (32)

From the continuous differentiability of functions g(z) and h(z), it is clear that
lim vg,(2/) = vg,(2), forrel, (33)

and
lim wvh;(z;) = wvhi(z), forle J. (34)
t—0
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Therefore, from (16) and the equations (30), (31), (31), (33) and (34) above we
have

D0 v G + D&l v G + i v G2i(D)]

ica icp (35)
+> 0 VG @)+ D v @)+ D v hi(?) =0,
i€y rel leg

Since LICQ holds at Z, (35) implies that v; = @; = &1 = il = Ay =
i = 0.Fromny; > 0, 2; > 0and 71; +72; = 1, we have that §; = 0. Therefore,
VoGO, D)l i = 1,2,....m}U{ve, G r e 1) U{vh(D|] € J) are lincarly
independent. By Lemma 2 2 7, € I forallt > 0small enough. Furthermore, from
the twice continuous differentiability of G (¢, z), g(z) and h(z), we deduce that the
gradients {v (G (t,z:))ili = 1,2,...,m}U{vg,z)lr € I;} U{vhi(z)|l € T}
are linearly independent for all # > 0 small enough. O

We now prove the global convergence of the smoothing method for MPCC (1).

Theorem 3.1 Let {t¥} be a sequence of positive scalars tending to zero, (5, vE, A¥,
w1k satisfy the second order necessary conditions (23) and (24) for problem (Ptk)
Suppose that (25, vk, 2%, uby — (Z, 9, X, i) as t* — 0. If LICQ and ULSC hold

at z, then 7 is a B-stationary point of MPCC (1).

Proof Since 2k, vk, Ak, wk) satisfy the second-order necessary conditions (23)
and (24) for problem (P ), then we have

v (@) - Zv v (G, )i+ > Ak g g ()

1—1 reIk

+l§7 wy v hiz*) =0, (36)
G(*, 7 =0, h(*) =0,
=0, 6@ <0, Mgk =o0.
and
d*T 7 2L (5 0 0K 1hdE > 0 forall @b e T (Z5). (37)

By Lemma 2.2 we know that B;(zX) € B;(Z) (i = 1,2,...,m)andZ(z") € T
for all k sufficiently large. It is easy to verify that A, > O for r € Zand A, = 0 for
r ¢ 7.

From the proof of Lemma 3.1 we have that

(i) fori € @, lim . v(G(*. ") = vG1i(2).

th—0
(i) fori € 7,lim . v(G(t*, 25); = VG (2).
_ k=0
(ili) fori € B, Letii; = lim . vFny; (tF, 2%), w; = lim 4 vFno; (¢5, 25).

th—0 th—0
Then from (i), (ii), (iii), equality (17), by taking limit on system (36), we get
V@) =2 0ivGL() =2 0 vGuR — 2 i vGii2)
ica i€y iep
2 wivGi@+ X A ve@+ X uvh@E =0, (38)
iep rel leg
G(@) =0, h(z)=0,

>0, g@) <0, MTgz) =0.
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pr we need to prove u; > 0, w; > Ofori € ,8_ . By contradiction, we assume that
u/ < 0 for some j € B. Since LICQ holds at z, from Lemma 3.1 we may choose
a vector d* € R such that, for k big enough,

VG () Td* = ek, 25,
vG1i(Z)Tadk =0, ieaUB\ {j},
VG2 b = 1 (F, 2N,

VG () Tdk =0, i ey UB\{j}.
ver(Td =0, r ek,
vhi(ZHTdk =0, 1 e J.

39)

Therefore, v(G (2)); " d* = n1;(t*, 25) v G1;(Z)Td* + na (1%, 2) v G2, (25T
d* = 0, which implies that dk T (zk). Furthermore,

a5 LR VR K, uhydt
=d"I D+ D v e@) + D v hE

reZ(z%) leJ
m

- Zl V,{( v ?(G(tk, Zk))i]dk- (40)
1=
It follows from (12) that
d"T g 2G @k, 2)dk
= 01 (5, ¥ v 2G i () + o (1K, 29dKT v 2 Gy () d*
1
=i, 2mi (i, 29[ v G (v G at @n
+d*T 7 G2i () (v Gai ()T d¥]

1
i, 2 (1, 29[ v G ) (v G (@)t
+d*T 7 Goi () (v G (2T dH].
Hence, for i = j, from (39), (41) and Lemma 2.1 we have that
d*T 7 2(G @k, %)) jdk

= 115, VAT 7261 ()N 4 (rF, 2T v 2Goj(e)d
1
= (6 Zmy (903 8 2 4 (= . 29 42)

1
+t—kmj(t", (%, 25 [(—mj(t", )y (ek, 2F)

12 (15, 29 (= (5, Zk))]
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= (5, T 7 3Gy (ZR)dF + (kL 2T 7 2Gaj(2R)d*

1
_t_knlj(fk, (k. 2.
Similarly, for i # j, we have
d"" v 2(G ", id" = mi*, 29 v 261t
+mi (1%, 29d" v 2 Gai(2)d . 43)
Equations (40), (42) and (43) imply that

dT 5 ALK VR K, byt

— dkT vZf(zk)dk + Z )\.]:dkT vzg(zk)dk + Z,ugcdkT Vzh(Zk)dk
rezk leJ

m
= > v, 29d v 2 G EHat + i (f, AT v 2 Gai(zha]
i=1

1
+t—kvfmj(tk, a2k, Z5).
_ (44)
Since ULSC condition holds at z, i.e., u;w; # 0 for all i € 8, we have that

lim mj(tk, zk)nzj(tk, zk) > 0. Moreover, u; < Oimplies that lim v? =v; <0.
th—0 tk—0
Hence

1
ko ky. ok _k _ k
t—kvjmj(t ,Z2m(t",z2") - —o0 as " — 0.

Noticing the boundedness of d*, nii()and 2 ()G =1, ..., m), we have dr7 2
f@Ha* aid 72 g (2Mdb ufdtt 72 h(2b)a  and vE [ (%, 2aM T G (2 dk
+ 12 (15, 2d*T 72 Go; (ZX)d¥1 (i = 1, ..., m) are bounded as ¥ — 0. It follows
that

d*T g2 L vF 0k 1hdd — —co as tf — 0, (45)

which contradicts the assumption that (zk, vk, Ak, uk) satisfies the second-order
necessary conditions. Hence we proved that #; > 0 holds for all i € 8.

Similarly, w; > 0 holds for all i € B. By taking v = {Z i 2; =
[ k]
[ :_j)."’ i 2 g’ Ar = A, forr € Z and p; = j1; for I € J, we have the equation (7)
[l ’

hold at z. That is, zZ is a B-stationary point of MPCC (1). O

From (22) in the proof of Theorem 2.1, we know that, for each i € B, any accu-
mulation point of {(V(G(t*, 25} (as X — 7, tF — 0) belongs to G (z); and has
the form of

F=n1; v G1;(2) +mi v G2(2), (46)

where 711;, n2; € [0, 1], and 11; + 172; = 1. Furthermore, from the last part of the
proof of Theorem 3.1, we can see that the ULSC condition can be replaced by a
much weaker condition.
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Corollary 3.1 Let{t*} be asequence of positive scalars tending to zero, (X, vK, A,
k) satisfy the second-order necessary condttlons (23) and (24) for problem (P ).
Suppose that (zF, vk, Ak, " by > @z, 7, A, L) as k= 0. If LICQ hold at 7, and for
i € B, the llmltatzons ofnll(tk Z5) and n,l(tk ZX) in (18), denoted as 1j1; and ;i
respectively, satisfy n1;12; # 0, then Z is a B-stationary point of MPCC (1).

{z*} is saied to be asymptotically weakly nondegenerate if 7j1;7; # Ofori € f8
in Fukushima and Pang (1999). For the smoothing technique used in Fukushima
and Pang (1999), this condition means that G1; (zF) and Go; (z5) approach to zero
in the same order of magnitude. However, from (18) we can easy to see that, by
using the aggregation technique, it is not necessary to request G 1; (zX) and Go; (z)
approaching to zero in the same order of magmtude for guaranteeing 171;12; ;é 0 for
i € B.For example let G1(z) = z and G»(z) = z2, and suppose that X =t*, then
ast* — 0, G1(z) — 0and G2 (zF) — 0, butin dlfferent order of magmtude And
in this case, 71 (z5) — exp(—1)/(exp(—1) + 1) and 72(zF) — 1/(exp(—1) + 1),
which implies that 771772 # 0. In this sense, the convergence condition in Corollary
3.1 is weaker than that in Fukushima and Pang (1999).

4 Further remarks

In this paper, we give a new smoothing method for solving MPCC. By using the
aggregation technique, we approximate the MPCC (1) with a sequence of para-
metric smooth nonlinear programming problem. Under some mild conditions, the
sequence generated from solving the smooth problems converges to a B-stationary
point of MPCC.

By defining

k
(G(t,2)i = —tIn(Q>_exp(=Gij(2)/1), fori=1,2,....m
j=1
the method in this paper can be easily extended to solve the mathematical pro-

gramming with general vertical complementarity constraints (Scheel and Scholtes
2000):

minimize  f(z)

s.t. min{G;{(2), Gi2(2), ..., Gix(2)} =0, i =1,2,...,m,
8(x) =0,
h(z) = 0.

The concepts for MPCC in section 2, such as the B-stationary point, KKT point,
LICQ, ULSC condition etc., could be extended to problem (47) but would be much
complicated, see Scheel and Scholtes (2000) for reference. We also noticed that the
Fischer—Burmeister smoothing methods for MPCC Fukushima and Pang (1999) is
much difficult to be extended to handle this kind of problems.

(47)
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