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Abstract We consider the classical Cramér-Lundberg model with dynamic pro-
portional reinsurance and solve the problem of finding the optimal reinsurance
strategy which minimizes the expected quadratic distance of the risk reserve to a
given benchmark. This result is extended to a mean-variance problem.
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1 Introduction

A milestone in mathematical finance is Markowitz’s quantitative approach to the
problem of wealth allocation among a number of (risky) assets in order to achieve a
given expected return with minimal variance. This problem has also become well-
known under the name mean-variance portfolio problem. The contribution of the
present paper is to point out that this criterion could also be of interest in insurance
applications. For example a static mean-variance approach can be used to obtain
the optimal form of reinsurance (see e.g. Kaluszka (2004)). In the present paper
we investigate a simple (dynamic) Cramér-Lundberg model with proportional rein-
surance and solve the problem of finding the optimal reinsurance strategy which
minimizes the expected quadratic distance of the risk reserve to a given benchmark.
This result can then be used to solve the corresponding mean-variance problem, i.e.
to find the optimal reinsurance strategy which minimizes the variance of the risk
reserve under the condition that the expected risk reserve reaches a certain bench-
mark. This question is also part of the dynamic financial analysis of an insurance
company.
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By now there exist numerous papers on the mean-variance problem and its
extensions in finance. Among others, Zhou/Li (2000) (see Zhou (2003) for an over-
view) investigate the continuous-time version of this problem where stock prices
follow a diffusion process. Mean-variance problems with jump-diffusions have
been investigated in Øksendal/Sulem (2005), chapter 3.3 (see also Framstadt et al.
(1999)) and Guo/Xu (2004). So far all the applications focus on classical financial
portfolio allocation problems. In the simple reinsurance model we consider, we
assume non-negativity constraints on the control. Because of this additional fea-
ture we were not able to use the previously published results. In Li et al. (2002) the
authors also deal with non-negativity constraints on the control but their model is
a pure diffusion. Essentially the benchmark problem we consider is a linear-qua-
dratic (LQ) problem and there are at least three different solution techniques: (i)
completion of squares (see e.g. Zhou/Li (2000)), (ii) the Hamiltonian approach (see
e.g. Øksendal/Sulem (2005)), (iii) the approach via the Hamilton-Jacobi-Bellman
(HJB) equation (see e.g. Guo/Xu (2004)). Due to the non-negativity constraints on
the control we solve our problem with the last approach and the Langrange theory.

The paper is organized as follows. In Section 2 the reinsurance model is intro-
duced and a benchmark optimization problem is formulated. Section 3 contains
the solution of the benchmark problem. This result is then extended in section 4 to
the mean-variance problem.

2 A benchmark problem for the risk reserve process

We consider the random evolution of the risk reserve of an insurance company like
in the Cramér Lundberg model. This means that claims arrive according to a Poisson
process (Nt) with intensity λ > 0 and that the claim sizes Z1, Z2, . . . are indepen-
dent and identically distributed with distribution Q.We assume that µ := ∫

zQ(dz)

and µ2 := ∫
z2Q(dz) are both finite. Premiums are calculated according to the

expectation principle and the premium rate is thus given by (1 + η1)λµ, where
η1 > 0 is the safety load of the insurance company. The risk reserve at time t ≥ 0
is then defined by

Xt := x0 + (1 + η1)λµt −
Nt∑

n=1

Zn

where x0 > 0 is the initial risk reserve.
Throughout, we assume that (�, F, � = {Ft , 0 ≤ t ≤ T }, P ) is a filtered

probability space, all appearing processes are adapted w.r.t. � and T > 0 is a fixed
time horizon.

The risk reserve process can now be controlled by the insurance company by
effecting a proportional reinsurance and/or by acquiring new business. We define
by

U :=
{
u = (us)0≤s≤T | us ≥ 0, (us) is � − predictable, (us) is bounded from above

}

the set of all admissible reinsurance strategies over the time horizon [0, T ]. The
premium rate for the reinsurance product is given by (1 + η2)λµ(1 − ut) where
η2 > 0 is the safety load of the reinsurer. Thus, the risk reserve under control u ∈ U
is given by
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Xu
t = x0 + (1 + η1)λµt − (1 + η2)λµ

∫ t

0
(1 − us)ds −

Nt∑

n=1

ZnuTn

where T1, T2, . . . are the claim arrival time points. If we introduce θ := (η2−η1)λµ
and c := (1 + η2)λµ, then

Xu
t = x0 − θt + c

∫ t

0
usds −

Nt∑

n=1

ZnuTn
.

Note that us ∈ [0, 1] corresponds to a reinsurance cover and us > 1 corresponds to
acquiring new business. Typically θ > 0, but we do not need to assume this here.
The aim now is to control the risk reserve in such a way that it is at time T close to
a certain predefined benchmark b ∈ R+. When we measure deviations from b by
the squared distance we arrive at the following constraint optimization problem:

(BM)

{
Ex0(Xu

T − b)2 → min
u ∈ U

where Ex0 is the expectation given that we start at time 0 with risk reserve x0 ∈ R.
This is a so-called LQ-problem. Problems of this type have been studied extensively
already. However we were not able to use a general result like e.g. in Øksendal/
Sulem (2005) chapter 3.3 since we have non-negativity constraints on the control
variable. In Li et al. (2002) the authors also deal with non-negativity constraints
on the control but their model is a pure diffusion. In the next section we show how
to solve this problem with the help of the HJB-equation. To this end, we define by

V (t, x) := inf
u∈U

E
[
(Xu

T − b)2 | Xu
t = x

]

the value function of the problem for t ∈ [0, T ] and x ∈ R. Obviously we have
V (T , x) = (x − b)2.

3 The HJB equation and a verification theorem

The HJB equation of this problem is

0 = min
u≥0

{

vt + vx(cu − θ) + λ

∫
v(t, x − uz) − v(t, x)Q(dz)

}

(1)

with boundary condition v(T , x) = (x − b)2. We will first show that there exists
a classical smooth solution of the HJB equation which is in contrast to the results
in Li et al. (2002). There the authors had to deal with viscosity solutions to solve
the problem. At the end of this section we will verify that the solution of (1) is the
solution of our control problem. In what follows we define the two regions

Ub := {(t, x) ∈ [0, T ] × R | x ≥ −Ab(t)}

Db := {(t, x) ∈ [0, T ] × R | x < −Ab(t)}
where Ab(t) := θ(t − T ) − b.
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Theorem 1 (Solution of the HJB equation) The following function v ∈ C1,1 is a
solution of the HJB equation (1):

v(t, x) =
{

(x + Ab(t))
2, for (t, x) ∈ Ub

eρ(t−T )(x + Ab(t))
2, for (t, x) ∈ Db

where ρ = (c−λµ)2

λµ2
and Ab(t) = θ(t − T ) − b. The minimum points u∗(t, x) are

given by

u∗(t, x) =
{

0, for (t, x) ∈ Ub
λµ−c

λµ2
(x + Ab(t)), for (t, x) ∈ Db

Proof It is easy to see that v ∈ C1,1. Note in particular that on {(t, x) ∈ [0, T ] ×
R | x = −Ab(t)} we have v(t, x) = vt (t, x) = vx(t, x) = 0. Obviously the value
function satisfies the boundary condition and is for all (t, x) of the form

v(t, x) = P(t)x2 + Q(t)x + R(t).

Plugging this into the HJB equation gives

0 = min
u≥0

{
Ptx

2 + Qtx + Rt + (2Px + Q)((c − λµ)u − θ) + Pλµ2u
2
}
. (2)

In order to show that v solves this problem we have to use the Karush-Kuhn-Tucker
conditions. The Lagrange function of this problem is

L(u, y) = u2Pλµ2 + (2Px + Q)(c − λµ)u − yu,

where y ≥ 0 is the Lagrange multiplier. u∗ is the minimizing point in (2) if and
only if there exists an y∗ such that the following Karush-Kuhn-Tucker conditions
are satisfied:

1. ∂L
∂u

= 0 ⇔ 2u∗Pλµ2 + (2Px + Q)(c − λµ) − y∗ = 0.
2. y∗u∗ = 0
3. y∗, u∗ ≥ 0.

Case 1: (t, x) ∈ Ub

In this case we have to choose u∗ = 0 and y∗ = (2Px + Q)(c − λµ) which yields
1. and 2. Inserting the expressions for P, Q and R gives that y∗ ≥ 0 if and only if
x ≥ −Ab(t) which is satisfied since (t, x) ∈ Ub.

Case 2: (t, x) ∈ Db

In this case we have to choose y∗ = 0 and u∗ = (2Px+Q)(λµ−c)

2Pλµ2
which yields 1.

and 2. Inserting the expressions for P, Q and R we obtain u∗ = λµ−c

λµ2
(x + Ab(t)).

Since c > λµ and (t, x) ∈ Db we have u∗ > 0.
The validity of the HJB equation in both cases follows directly by inserting the

expressions for P, Q, R and u∗. ��
Finally we verify that the solution of the HJB equation given in Theorem 1 is

indeed the solution of our control problem.
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Theorem 2 (Verification Theorem) Let v and u∗ be given as in Theorem 1. It holds
that V (t, x) = v(t, x) for all (t, x) ∈ [0, T ]×R and the optimal control u∗ = (u∗

t )
is given in feedback form by u∗

t = u∗(t, X∗
t ) where (X∗

t ) is the risk reserve under u∗.

Proof Let u ∈ U be arbitrary. Applying Itô’s Lemma to v ∈ C1,1 and (Xu
t ) we

obtain:

v(T , Xu
T ) = v(t, x) +

∫ T

t

vt (s, X
u
s ) + vx(s, X

u
s )(cus − θ)ds +

∫ T

t

∫

R+

(
v(s, Xu

s− − usz) − v(s−, Xu
s−)

)
M(ds, dz)

+λ

∫ T

t

∫

R+

(
v(s, Xu

s− − usz) − v(s−, Xu
s−)

)
Q(dz)ds

where N([0, t] × B) := ∑
n∈N

I[Tn≤t,Zn∈B] is the Poisson random measure and
M(dt, dz) = N(dt, dz) − λdtQ(dz) a martingale w.r.t. �. Making use of the fact
that v satisfies the HJB equation gives

v(T , Xu
T ) ≥ v(t, x) +

∫ T

t

∫

R+

(
v(s, Xu

s− − usz) − v(s−, Xu
s−)

)
M(ds, dz)

and equality is obtained in the case u = u∗. Note that

Ex0

[∫ t

0

∫

R+
|v(s, Xu

s− − usz)|Q(dz)ds

]

< ∞

and thus the integral process is a martingale with zero expectation. Since v(T , x) =
(x − b)2, taking the conditional expectation on both sides yields

E
[
(Xu

T − b)2 | Xt = x
] ≥ v(t, x)

E
[
(X∗

T − b)2 | Xt = x
] = v(t, x)

which implies the statement. ��

4 A mean-variance problem with constraints

In this section we consider as in the classical Markowitz setting the aim of the
insurance company to minimize the risk of the terminal reserve measured by the
variance over all admissible reinsurance strategies which yield the same expected
terminal reserve b ∈ R. This problem can be formulated as

(MV )






Ex0(Xu
T − b)2 → min

Ex0Xu
T = b
u ∈ U
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The value of this problem is denoted by J (x0). This problem can be solved via the
well-known Lagrange multiplier technique. To this end, we define for y ∈ R

Ju(x0, y) := Ex0
[
(Xu

T − b)2 + 2y(Xu
T − b)

]

= Ex0
[
(Xu

T − (b − y))2
] − y2

The duality theory implies

J (x0) = sup
y∈R

inf
u∈U

Ju(x0, y).

infu∈U Ju(x0, y) has been solved in section 2. Thus, it remains to find y∗ ∈ R

which maximizes y 
→ infu∈U Ju(x0, y). The insurance strategy which yields the
solution of problem (MV ) is called efficient for return b. (b,

√
V (x0)) ∈ R

2 is
called efficient point and the set of all those points is called efficient frontier. Thus,
the efficient frontier gives the line of the minimum risk reserve standard deviation
as a function of the expected return. It is usually nicely illustrated in text books
on the classical Markowitz problem (see e.g. Luenberger (1998)). We obtain the
following statement:

Theorem 3 Assume that x0 ≤ b + θT . Then the optimal reinsurance strategy for
the mean-variance problem is given by u∗

t = u∗(t, X∗
t ) where

u∗(t, x) = c − λµ

λµ2

(
x0 − eρT (b + θT )

1 − eρT
− θt − x

)

.

The efficient frontier is given by

V arX∗
T = (x0 − θT − b)2 1

eρT − 1
.

Proof The solution of infu∈U Ju(x0, y) is given in Theorem 1 where we have to
replace b by b − y. Suppose first that x0 ≤ θT + b − y. Note that in this case
the region Db−y is never left, since whenever the line −Ab−y(t) is reached, we set
u∗ = 0 (full reinsurance) for the remaining period and arrive at time T in b − y.
Thus we have

inf
u∈U

Ju(x0, y) = e−ρT (x − θT − b + y)2 − y2.

Minimizing this expression over y (note that it is concave) gives y∗ = b+θT −x0
1−eρT .

Inserting y∗ in the result of Theorem 1 gives the solution of the mean-variance
problem:

u∗(t, x) = −c − λµ

λµ2
(x + Ab−y∗(t))

V arX∗
T = e−ρT (x0 + Ab−y∗(0))2 − (y∗)2.

Note also that x0 ≤ θT + b − y∗ is equivalent to x0 ≤ θT + b. ��
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Though the solution of the quadratic benchmark problem in Theorem 1 consists
of two regions, the solution of the mean-variance problem does not. The reason
is the assumption x0 ≤ b + θT which ensures that the constraint Ex0Xu

T = b
can be satisfied. Under this assumption the down region Db−y∗ is never left by the
risk reserve process, since once the boundary x = −Ab(t) is reached, we apply
full reinsurance (u∗ = 0) for the remaining time and the risk reserve falls on the
straight line to b at time T . Note also that the efficient frontier is a straight line as
in the case of mean-variance portfolio selection with a risk free asset.

In conclusion, the model is rather simple, however, in the LQ-setting the prob-
lem can easily be solved and the solution is quite simple and depends only on the
first and second moment of the claim sizes. Moreover, it does not matter if one
wants to solve a diffusion or a jump(-diffusion) problem. Both are equally easy
to solve which is not the case for other risk measures. As long as one stays in the
LQ-setting even much more general models can be solved.
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occasion of his 60th birthday.
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