
Math. Meth. Oper. Res (2005) 62: 99–122
DOI 10.1007/s00186-005-0443-4

ORIGINAL ARTI CLE

Eugene A. Feinberg · Michael T. Curry

Generalized Pinwheel Problem

Received: November 2004 / Revised: April 2005
© Springer-Verlag 2005

Abstract This paper studies a non-preemptive infinite-horizon scheduling problem
with a single server and a fixed set of recurring jobs. Each job is characterized by
two given positive numbers: job duration and maximum allowable time between
the job completion and its next start. We show that for a feasible problem there
exists a periodic schedule. We also provide necessary conditions for the feasibility,
formulate an algorithm based on dynamic programming, and, since this problem is
NP-hard, formulate and study heuristic algorithms. In particular, by applying the
theory of Markov Decision Process, we establish natural necessary conditions for
feasibility and develop heuristics, called frequency based algorithms, that outper-
form standard scheduling heuristics.

1 Introduction

Suppose there are n ∈ N = {1, 2, . . . } recurring jobs. Each job i = 1, . . . , n is
characterized by two positive numbers: τi, the duration of job i, and ui, the maxi-
mum amount of the time that can transpire between epochs when job i is completed
and is started again. We call them the duration and revisit time respectively. These
jobs are to be completed by a single server. There is no preemption and setups are
instantaneous. A schedule is a sequence in which the jobs should be performed. A
schedule is feasible if each time job i is completed, it will be started again within
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ui units of time. A problem is feasible if a feasible schedule exists. We call this
problem the Generalized Pinwheel Problem, (GPP). The GPP is to find a feasible
schedule or to prove that it does not exist.

Our interest in this problem was initiated by applications. In particular, Feinberg,
et al [12] studied the so-called radar sensor management problem, the mathemat-
ical formulation of which is the GPP. Since the GPP is generic, there are various
other engineering applications such as mobile communications, wired and wireless
networks, satellite transmissions, database support. In addition, though the GPP
is a deterministic problem, the methods of Markov Decision Processes (MDPs),
an area to which Professor Ulrich Rieder made many important contributions, are
useful to study this problem. From the methodological point of view, this paper
continues the line of research initiated by Filar and Krass [14] that deals with appli-
cations of MDP methods to discrete optimization problems; see also [1,5,8,11]
and references therein.

If all of the τi are equal to 1, the problem becomes the Pinwheel Problem (PP)
introduced by Holte, et al [16,17]. In particular, it was shown there that the PP is
infeasible when the density ρ∗ := ∑n

i=1
1

1+ui
> 1. Holte, et al [16,17] also proved

that any instance with ρ∗ ≤ .5 can be scheduled in polynomial time. Chan and
Chin [7,6] improved this result to 2

3 and then to .7. For only three distinct numbers
of revisit times, Lin and Lin [20] proved a similar result for ρ∗ < .83. Holte, et al
[16] claimed that the PP is NP-hard when ρ∗ = 1. However, the proof of this fact
has not been published as far as we know. We notice that, in general, none of the
known algorithms and methodologies for the PP are applicable to the GPP.

In this paper we show that if the GPP is feasible, a periodic schedule exists.
The GPP is NP-hard, at least in the case when ρ := ∑n

i=1
τi

τi+ui
= 1. We provide

a relaxation of the GPP based on constrained Semi-Markov Decision Processes
(SMDP). This relaxation implies that if ρ > 1 then the problem is infeasible.
Unlike the PP, the GPP may not be feasible when ρ is small. We also find sufficient
conditions when the GPP is infeasible and ρ < 1.

Since the GPP is NP-hard, at least for ρ = 1, we study heuristic approaches
in this paper. In particular, we develop a so-called frequency based algorithm that
uses a constrained SMDP corresponding to the GPP as a starting point. In fact, we
introduce a sequence of approximations of the GPP by SMDPs. The approximation
is tighter if the system remembers a larger sequence of jobs previously performed.
The first and simplest heuristic of this type deals with the situation when the system
has no memory.

This paper is organized in the following way. Section 2 describes some prelim-
inary results as well as the strong NP-hardness of the GPP. In that section we prove
the existence of periodic schedules. Section 3 describes some necessary conditions
for the GPP to be scheduled and introduces some structural properties of GPPs. We
establish the link between the GPP and a particular deterministic SMDP. By using
this link, we apply the linear programming approach to the constrained SMDPs
with average rewards per unit time [9] and prove that ρ ≤ 1 is a necessary condition
for feasibility.

In Section 4 we provide a tighter relaxation based on a larger SMDP than
the relaxation described in Section 3. Unlike the relaxation in Section 3, where
stationary policies have no memory, we consider an SMDP when the stationary
policies remember the last completed job. We provide a tighter linear programming
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relaxation of the GPP. For example, this relaxation also implies that ρ ≤ 1 is a
necessary condition for feasibility. However, the new relaxation provides more
detailed linear constraints that can indicate the conditions for ρ < 1 and the GPP
being infeasible. In Section 5 we consider the SMDP models when stationary pol-
icies remember the k last jobs performed, k ∈ N. We show that, if we do not
exclude from the state space the possible last k-job subsequences that clearly can-
not be a part of a feasible schedule, then the relaxations for different positive k are
equivalent.

In Section 6 we provide a dynamic programming formulation. We show that
a schedule can be presented as a function of the vector of residual times and for-
mulate a value iteration algorithm based on Negative Dynamic Programming. We
prove that this algorithm converges in a finite number of iterations. In particular,
we apply this dynamic programming algorithm and construct an example of a PP
that is infeasible when ρ∗ < 1.

Section 7 formulates standard scheduling heuristics: due date, critical ratio,
and round robin algorithms. In Section 8 we develop a frequency based heuristic
based on the SMDP representation of the GPP and on the time-sharing approach
for constructing nonrandomized optimal policies for a Markov Decision Process
(MDP) with constraints [23,2].

In Section 9 we construct linear constraints that are tighter when the parameter
k increases. We also formulate the frequency based algorithm for an arbitrary k.
In addition, we provide an exact algorithm, which is based on frequency based
algorithms with increasing k, in Section 9.

2 Structural results

First, we show that if a feasible schedule exists, it can be expressed as a periodic
feasible schedule. A finite sequence of jobs ī = i1, . . . , im is called a period of a
schedule s if s = ī, ī, ī . . . . A schedule is called periodic if it has a period.

Theorem 2.1 For a feasible problem there exists a feasible periodic schedule.

Proof Let t be a positive number. We say that a finite sequence i1, . . . , i� with
values in {1, . . . , n} crosses the level t if

∑�
k=1 τik ≥ t and

∑�−1
k=1 τik < t. Since all

τi > 0, the set of all sequences that cross a given level t > 0 is finite.
Now let u = max{u1, . . . , un}. Consider a feasible schedule b = b1, b2, . . . .

For each i ∈ N we consider a unique finite sequence bi = bi, bi+1, . . . , bi+k(i)

such that bi crosses the level u. Since the number of all sequences that cross the
level u is finite, there are two integers i and j with the following properties: (i)
j > i + k(i), and (ii) bi = bj .

Let ī = bi, bi+k(i)+1, . . . , bj−1, where bi is an instance of a job. Then ī, ī, ī, . . .
is a feasible schedule. We remark that, in fact, this proof provides an algorithm that
converts a feasible schedule into a periodic feasible schedule. ��

Next we formulate the complexity result. We recall that a class of problems
is strongly NP-hard if it remains NP-hard even when all numbers in the input are
bounded by some polynomial in the length of the input.
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Theorem 2.2 [[12, Theorem 2.2]] The GPP is strongly NP-hard when ρ = 1.

If ρ is small, a PP has a feasible solution and can be scheduled in polynomial
time [6,7,17,16]. The following example illustrates that the GPP may not have a
feasible schedule for any small ρ. We do not know if the GPP is polynomial for
small ρ.

Example 2.3 Let n = 2, τ1 = 2ε, τ2 = ε2, u1 = 2, and u2 = ε, where ε > 0.
Then ρ = 2ε/(ε + 1) → 0 as ε → 0. However, since τ1 > u2, there is no feasible
schedule.

3 Necessary condition for schedulability

Since, in view of Theorem 2.1, a feasible problem always has a periodic schedule,
we are interested only in finding periodic schedules. For periodic schedules, there
exist average intervals between the same job executions. We re-formulate the prob-
lem and will try to find a schedule in which the average intervals between the job is
completed and started again is limited above by ūi , where ūi ≤ ui, i = 1, . . . , n.
This is a reasonable re-formulation of the original problem. Indeed, if a feasible
schedule exists, for its periodic version these average variables exist and they are
not greater than ui. When ūi = ui for all i = 1, . . . , n, the new problem is a
relaxation of the original one.

Let s = i1i2, . . . be a periodic schedule containing all the jobs 1, . . . , n and
let i1, . . . , im be its period. Consider any job i = 1, . . . , n and let Ks(i) be the
number of instances of job i in the period,

Ks(i) =
m∑

j=1

δij ,i , (1)

where δi,j is the Kronneker symbol.
Let ws

i be the average interval between the epochs when job i is completed and
started again. Since s is periodic,

ws
i = lim

N→∞




N∑

j=1

τij (1 − δij ,i )



 /

N∑

j=1

δij ,i =



m∑

j=1

τij − τiK
s(i)



 /Ks(i). (2)

Consider a weaker problem: find a periodic schedule s such that it contains all the
jobs 1, . . . , n and, in addition, ws

i ≤ ūi for all i = 1, . . . , n.
Let

vs
i = lim

N→∞




N∑

j=1

τiδij ,i



 /

N∑

j=1

τij =



m∑

j=1

τiδij ,i



 /

m∑

j=1

τij =


τiK
s(i)/

m∑

j=1

τij





(3)

be the proportion of time performing job i. Straightforward calculations applied to
(2) and (3) imply that

vs
i = τi/(w

s
i + τi). (4)

The following lemma follows from (4).
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Lemma 3.1 Let s be a periodic schedule containing a job i = 1, . . . , n. Then
ws

i ≤ ūi if and only if vs
i ≥ τi/(ūi + τi). Therefore, finding a periodic schedule

s containing all the jobs 1, . . . , n and such that ws
i ≤ ūi for all i = 1, . . . , n is

equivalent to finding a periodic schedule s satisfying

vs
i ≥ τi/(ūi + τi), i = 1, . . . , n. (5)

If, in addition to periodic schedules, we consider schedules generated by ran-
domized and past-dependent procedures, the weaker version of our problem can be
naturally formulated as a constrained SMDP; see [9]. Though SMDPs are stochas-
tic systems, here we deal with a particular case of a deterministic SMDP that, of
course, can have stochastic trajectories when a randomized policy is implemented.
The results on constrained SMDPs needed for this paper are presented in the end
of this section.

Now we describe the constrained SMDP for the GPP. The state space I consists
of one state. Thus, there are no transition probabilities. We omit the notations for
this state, e.g., rk(i, a) = rk(a). The set of actions A = {1, . . . , n}, i.e. it is the set
of jobs. If a job j is selected, the deterministic sojourn time is τj . The number of
constraints K = n and rk(j) = δk,j τj . Since we do not have an objective function,
we set r0(j) = 0. For this SMDP, we consider the values vπ

k defined in (10).

Relaxed GPP. Find a policy π such that

vπ
i ≥ τi/(ūi + τi), i = 1, . . . , n. (6)

In view of Lemma 3.1, the relaxed GPP is consistent with finding a possibly
randomized strategy which is feasible in terms of average revisit times. We consider
equations (13 – 17) for this problem with lk set to equal τk/(ūk +τk), k = 1, . . . , n.
Since the objective function is 0 for all policies, our goal is to find a feasible solu-
tion. Thus, (13) should be dropped. Equations (14) become the identities zi = zi ,
i = 1, . . . , n, and should be dropped as well. The remaining constraints become

zi ≥ (ūi + τi)
−1, i = 1, . . . , n, (7)

n∑

i=1

τizi = 1. (8)

Let

ρ =
n∑

i=1

τi/(ui + τi). (9)

If ūi = ui for all i, it is easy to see that the constraints (7, 8) are feasible if and only
if ρ ≤ 1. This observation and the above explanation imply the following result.

Theorem 3.2 The relaxed GPP is feasible for ūi = ui, i = 1, . . . , n, if and only
if ρ ≤ 1. Therefore, the GPP is infeasible when ρ > 1.
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We present in a concentrated form the major concepts and results on constrained
Semi-Markov Decision Processes (SMDPs) with average rewards per unit time
used in this paper. The details can be found in [9].

A finite state and action constrained SMDP with average rewards per unit time
is defined by the set {I, A, A(·), p, τ, K, r·, l·}, where

I is a finite state set;
A is a finite action set;
A(i) are action sets available in states i ∈ I , A(i) ⊂ A;
p(j |i, a) is the probability that the next state is j ∈ I if an action a ∈ A(i) is

selected at state i ∈ I ;
τi,a > 0 is the expectation of the time spent in state i if an action a ∈ A(i) is

selected;
K is the number of constraints (the number of reward criteria is (K + 1));
rk(i, a) is the reward for criterion k = 0, 1, . . . K when an action a ∈ A(i) is

selected in a state i;
lk is the constraint for criterion k = 1, . . . , K.
In general, for an SMDP, a system changes states in jumps and an action is

selected at a jump epoch. Unlike MDPs, the sojourn times may not be identically
equal to 1. Let hN = i0, a0, ξ0, i1, a1, ξ1, . . . , iN be the history up to and including
N th jump, when ij are states, aj are selected actions, and ξj are sojourn times
respectively. Let HN be the set of all histories up to and including N th jump; H0 =
I.A (randomized) strategy π = {π0, π1, π2, . . . } is a sequence of regular transition
probabilities from HN to I such that πN(A(xN)|hN) = 1, N = 0, 1, . . . . A strat-
egy is called a randomized stationary policy if {π0, π1, π2, . . . } = {π, π, π, . . . },
where πN(·|hN) = π(·|xN), N = 0, 1, . . . . Here, as it is standard for MDPs, we
denote by π both the π the conditional probability and the sequence of identical
transition probabilities. A stationary policy is a mapping ϕ from I to A such that
ϕ(i) ∈ A(i).

A strategy π and an initial state i define average rewards per unit time for
criteria k = 0, 1, . . . , K ,

vπ
k (i) = lim inf

t→∞ t−1Eπ
i

N(t)∑

j=0

rk(ij , aj ), (10)

where Eπ
i is the expectation operator defined by the initial state i and strategy π,

and N(t) is the number of jumps up to and including time t . In addition, if π is a
randomized stationary policy, then the limits exist in (10).

The problem is: for a given initial state i

maximize vπ
0 (i) (11)

s.t.vπ
k (i) ≥ lk, k = 1, 2, . . . , K. (12)

A problem is called unichain if any nonrandomized stationary policy defines a
Markov chain with one ergodic class. According to Theorem 9.2 in [9], a unichain
problem is feasible if and only if the following Linear Program (LP)

maximize
∑

i∈I

∑

a∈A(i)

r0(i, a)zi,a (13)
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subject to
∑

a∈A(j)

zj,a −
∑

i∈I

∑

a∈A(i)

p(j |i, a)zi,a = 0, j ∈ I, (14)

∑

i∈I

∑

a∈A(i)

rk(i, a)zi,a ≥ lk, k = 1, . . . , K, (15)

∑

i∈I

∑

a∈A(i)

τ (i, a)zi,a = 1, (16)

zi,a ≥ 0, i ∈ I, a ∈ A(i). (17)

is feasible. In addition, if this LP is feasible then there exists an optimal strategy
which is a randomized stationary policy. This policy does not depend on the initial
state i in (11) and (12). If z is an optimal solution of the LP (13 – 17) then the
formula

π(a|i) =
{

zi,a/zi, if zi > 0;
arbitrary, otherwise; (18)

where

zi =
∑

a∈A(i)

zi,a, i ∈ I, (19)

defines a stationary optimal policy.
In fact in this paper we are interested in solving a feasibility problem. Therefore,

the objective function (13) is unimportant. For MDPs, τ(i, a) = 1 for all i and a. Let

xi,a = zi,a/
∑

j∈I

∑

b∈A(j)

zj,b, i ∈ I. (20)

Which is equivalent to

zi,a = xi,a/
∑

j∈I

∑

b∈A(j)

xj,b, i ∈ I. (21)

Then, (14–17) can be rewritten as
∑

a∈A(j)

xj,a −
∑

i∈I

∑

a∈A(i)

p(j |i, a)xi,a = 0, j ∈ I, (22)

∑

i∈I

∑

a∈A(i)

r ′
k(i, a)xi,a ≥ 0, k = 1, . . . , K, (23)

∑

i∈I

∑

a∈A(i)

xi,a = 1, (24)

xi,a ≥ 0, i ∈ I, a ∈ A(i). (25)
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where r ′
k(i, a) = rk(i, a) − lkτi,a. This is an LP constraint for a similar problem

with the process being an MDP instead of an SMDP.
In fact, utilizing equation (20), (18) can be rewritten as

π(a|i) =
{

xi,a/xi, if xi > 0;
arbitrary, otherwise. (26)

Note that x satisfies (22–25), if and only if z satisfies (13–17).

4 First order relaxation

In the previous sections we considered a simple relaxation of the GPP when the
state of the corresponding SMDP consists of one point. For randomized stationary
policies, no information can be used regarding previously selected jobs. Now we
consider the situation when the decision maker remembers the last executed job.
We call the relaxation resulted in this approach the first order relaxation. We remark
that the decision maker could implement the policies that remember the last job
performed in the SMDP described in the previous section. However, these policies
are not stationary and stationary policies do not use this information.

Obviously, if the problem is feasible, a periodic schedule s = (i1, i2, . . . , im),
where m is the number of jobs in the period, can be selected in a way that sequential
jobs are distinct, i.e. ij+1 �= ij , j = 1, . . . , m−1, and i1 �= im. Indeed, if a feasible
schedule contains repeated jobs, i.e. ij+1 = ij , the job ij+1 can be removed in all
such instances and the remaining schedule is feasible and it does not have identical
consecutive jobs. The model when the last job is remembered leads to stationary
policies that do not repeat jobs consecutively.

We introduce an SMDP with stationary policies remembering the last executed
job; see Section 3 for general SMDP definitions. The state and action sets are
I = A = {1, . . . , n}. The set of actions available at state i is A(i) = A \ {i}. If
an action j is selected at state i, the system spends time τj at i and the next state
is j. We recall that the state of the system in our approach is the last completed
job. The rewards, for the kth criterion are defined by rk(i, j) = δk,j τj . We also set
lk = τk/(ūk + τk), k = 1, . . . , n.

We formulate the LP for this approach, where the formulas (27 – 30) are the
formulas (13 – 17) applied to this SMDP:

n∑

j = 1
j �= i

zij =
n∑

j = 1
j �= i

zji , i = 1, . . . , n, (27)

n∑

j=1

τj

n∑

i = 1
i �= j

zij = 1, (28)

n∑

i = 1
i �= j

zij ≥ 1

ūj + τj

, j = 1, . . . , n, (29)
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zij ≥ 0, i, j = 1, . . . , n, j �= i. (30)

We cannot apply directly the results of Section 3 to justify that (27 – 30) provide
a relaxation of our problem because this SMDP may not be unichain (see example
4.3). However, we shall provide an indirect proof by using the results of Filar and
Guo [13] on communicating MDPs.

Theorem 4.1 If the GPP is feasible then the system of linear constraints (27 – 30)
with ūj = uj , j = 1, . . . , n, has a solution.

Proof Consider a feasible schedule. According to theorem 2.1, this schedule has
a period i1, . . . , im. Therefore, this schedule can be represented as some nonran-
domized policy s in the SMDP with state space I described above. The policy s
remembers m− 1 last states including the current state and it reproduces the given
periodic schedule. This policy s is formally defined by s(i0, i1, . . . , it ) = it+1 when
t < m − 1 and by s(it−m+2, . . . , it ) = i�+1, t ≥ m − 1, where � = t (mod m). We
observe that

vs
k =

∑m
j=1 τkδij ,k

∑m
j=1 τjk

≥ τk

τk + uk

, k = 1, . . . , n, (31)

where the equality follows from (3) and the inequality follows from lemma 3.1.
The inequality in (31) is equivalent to

m∑

j=1

τk

(
δij ,k − τjk

/(uk + τk)
) ≥ 0, (32)

which implies

lim
N→∞

1

N

N∑

j=1

τk

(
δij ,k − τjk

/(uk + τk)
) = 1

m

m∑

j=1

τk

(
δij ,k − τjk

/(uk + τk)
) ≥ 0.

(33)

Therefore, the policy s is feasible for the MDP with the state space I, action
sets A(i), i ∈ I, deterministic transitions from state i to j when the action j is

selected at i, the one-step rewards r ′
k(i, a) = τk

(
δi,k − τk

τk+uk

)
, k = 1, . . . , n, and

n non-negativity constraints. For each reward function r ′
k , consider average rewards

per unit time. Since it is possible to move this MDP from any state i ∈ I to any
state j ∈ I , j �= i, in one step, this MDP is communicating; see Filar and Guo [13]
for details on communicating MDPs. Theorem 4.1 and Lemma 3.1 in Filar and
Guo [13] imply that the problem (11, 12) is feasible for a communicating MDP
if and only if the system of linear constraints (22 – 25) is feasible. Formula (21)
transforms (22 – 25) into constraints (14–17) which are (27 – 30) in our case. Since
s is a feasible policy, constraints (27–30) are feasible. ��

We remark that if ρ > 1 then Theorems 3.2 and 4.1 imply that the system of
constraints (27 – 30) is infeasible. However, if this system is infeasible, then the
GPP is infeasible even when ρ ≤ 1. The following example illustrates that con-
straints (27 – 30) can provide a better relaxation of the problem than constraints
(7, 8).
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Example 4.2 Let n = 2 and ūi = ui, i = 1,2. According to Theorem 3.2, the
feasibility of constraints (7, 8) is equivalent to ρ ≤ 1. This is a necessary condi-
tion for the feasibility of the GPP. According to Example 2.3, this condition is not
sufficient. Obviously, for n = 2 the GPP is feasible if and only if the round robin
schedule is feasible. This is equivalent to u1 ≥ τ2 and u2 ≥ τ1. Simple calculations
imply that the feasibility of (27 – 30) is equivalent to the validity of these two
inequalities. Thus, for n = 2 the feasibility of (7, 8) is the necessary condition for
the feasibility of the GPP while the feasibility of (27 – 30) is the necessary and
sufficient condition.

The following example illustrates that the SMDP described in this section
indeed may not be unichain. Therefore, if we have a vector zi satisfying constraints
(27 – 30), the results from [9] do not imply that the stationary policy defined by
(18) is feasible.

Example 4.3 Consider a PP (τi ≡ 1) with 4 jobs. We want to schedule them in
a way that the time between executions of the same job does not exceed 3. We
relax this problem and try to find a policy that satisfies these constraints on aver-
age. This leads us to (27 – 30) with τi = 1 and ūi = 3, i = 1, 2, 3, 4. Let
z12 = z21 = z34 = z43 = 1/4 and the remaining zij = 0, i, j = 1, 2, 3, 4. This
vector z satisfies (27 – 30). Formula (18) defines a stationary policy that prescribes
action 2 in state 1, action 1 in state 2, action 4 in state 3, and action 3 in state
4. If the system is in state 1, jobs 3 and 4 will never be executed. If the system
is in state 3, jobs 1 and 2 will never be executed. In fact, the solution z of (27 –
30), that defines a unichain Markov chain in the search algorithm proposed later,
is zij = 1/12 when i �= j.

Theorem 4.4 Let a vector z satisfy the constraints (27 – 30). Consider a random-
ized stationary policy π defined by (18) with the parameter a substituted with j ,
j �= i, j = 1, . . . , n. Define a Markov chain on the state space I with the tran-
sition probabilities π(j |i) from i to j , i, j = 1, . . . , n. If this Markov chain is
unichain (i.e. has one recurrent class) then for this chain the average time between
consecutive visits to each state i = 1, . . . , n is less than or equal to ūi .

Proof Let zi = ∑
j zij . Formulas (27) and (18) imply that

∑
i π(j |i)zi = zj ,

j = 1, . . . , n. Therefore z̃i = zi/
∑n

j=1 zj , i = 1, . . . , n, is the stationary dis-
tribution of the Markov chain with the transition probabilities π(j |i) defined in
Section 3. In view of (29), z̃i > 0 for all i. Therefore, this Markov chain has no
transient states. From (2 – 4) and standard renewal theory arguments we have that
the constraints (29) imply that the average revisit time for each job j = 1, . . . , n
is not greater than ūj . ��

5 Higher order relaxations

In Section 4 we developed the linear constraints when the stationary policy
remembers the last performed job. We have demonstrated that the solution for
this approach is tighter than the solution when the decision maker has no infor-
mation about previous jobs. It is natural to ask whether further improvement can
be found by remembering the sequence of the last k jobs where k > 1. In this
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section we develop this concept. In order to utilize the results of Section 3 we need
a unichain SMDP. However, as Example 4.3 demonstrates, unlike the case k = 0,
the unichain condition for k ≥ 1 usually does not hold. We remark that the unichain
condition holds when n ≤ 3 and k = 1.

Similarly to the previous section we define an SMDP that remembers the last
k executed jobs. This SMDP has a state space I = Ik, where Ik is the set of
finite sequences i1i2, . . . ik which elements take values in {1, . . . , n} and such that
ij �= ij+1, j = 1, . . . , k − 1. The set Ik consists of at most n(n − 1)k−1 ele-
ments. The action set is A = {1, . . . , n}. The set A(ī) of actions available at state
ī = (i1, . . . , ik) ∈ Ik is A\ {ik}. If an action j is selected at state ik of ī, the system
spends time τj in this state and then it moves to the state i2, . . . , ik, j. The rewards
are r�(ik, j) = δ�,j τj . We also consider l� = τ�/(ū� + τ�). Similarly to (27 – 30)
when we dealt with k = 1, we write the constraints (13 – 17) for this SMDP:

n∑

j = 1
j �= ik

zīj =
n∑

j = 1
j �= i1

zj ī , ī ∈ Ik, (34)

∑

ī=(i1,i2,... ,ik)∈Ik

n∑

j = 1
j �= ik

zīj τj = 1, (35)

∑

ī = (i1, i2, . . . , ik) ∈ Ik

ik �= j

zīj ≥ 1

ūj + τj

, j = 1, . . . , n, (36)

zīj ≥ 0, ī = (i1, . . . , ik) ∈ Ik, j = 1, . . . , n, j �= ik. (37)

The natural question is whether the constraints (34 – 37) for k ≥ 2 are tighter
relaxations of the original problem than the similar constraints for k−1. The answer
is somewhat surprising: these constraints are equivalent. However, in Section 9 we
shall correct the constraints (34 – 37) in a way that higher values of k lead to tighter
relaxations.

Given the variables zīj when ī ∈ Ik , we define the variables

zi2i3...ikj =
n∑

i1 = 1
i1 �= i2

zi1i2...ikj (i2, . . . , ik) ∈ Ik−1, and j �= ik. (38)

Straightforward calculations yield that, if zi1i2...ik ,j satisfy the constraints (34 –
37) for i1i2 . . . ik ∈ Ik , j = 1, . . . , n, and j �= ik , then the variable zi2...ik ,j , defined
in (38) satisfy the same constraints for k − 1. The following theorem presents this
fact.
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Theorem 5.1 If z is a solution of the linear constraints (34 – 37) for some k =
2, 3, . . . then formula (38) defines a solution of the same linear constraints for
k − 1.

Let zi1i2...ik ik+1 be a solution to the linear constraints (34 – 37) for some k ∈ N.
For i ∈ N \ {ik+1} we define

zi1i2...ik+1j = zi1i2...ik ik+1 · zi2...ik ik+1,j /zi2...ik+1, (39)

where

zi2...ik+1 =
n∑

j = 1
j �= ik+1

zi2...ik+1j . (40)

Straightforward calculations yield that if zi1i2...ikj satisfy the constraints (34 –
37) for i1i2 . . . ik ∈ Ik , j = 1, . . . , n, and j �= ik then the variables zi2...ik+1j ,
defined in (38), satisfy the same constraints for k + 1. Thus we have the following
result.

Theorem 5.2 If the variables zi1i2...ikj satisfy the linear constraints (34 – 37) for
any k ∈ N then the variables zi1i2...ik+1j defined in (39) satisfy the same linear
constraints for k+1.

Theorems 5.1 and 5.2 imply the following corollary.

Corollary 5.3 The system of linear constraints (34 – 34) is feasible if and only if
this system for k = 1, formulated as (27 – 30), is feasible.

Theorem 4.1 and Corollary 5.3 yield the following corollary.

Corollary 5.4 If the GPP is feasible then the system of linear constraints (34 –
37) is feasible for any k ∈ N, with ūj = uj , j = 1, . . . , n.

We conclude this section with the theorem that is an extension of Theorem 4.4
for k > 1. The proof of this theorem is similar to the proof of Theorem 4.4.

Theorem 5.5 Let a vector z satisfy the constraints (34 – 37) for some k = 2, 3, . . . .
Consider a randomized stationary policy π defined by (18),

π(j |i1, . . . , ik) =
{

zi1...ikj /zi1...ik , if zi > 0;
arbitrary, otherwise; (41)

where

zi1...ik =
n∑

j = 1
j �= ik

zi1...ikj , i ∈ I. (42)

Define a Markov chain on the state space Ik with the transition probabilities pīj̄

from ī ∈ Ik to j̄ ∈ Ik ,

pī j̄ =
{

π(j |i1, . . . , ik), if ī = (i1, i2, . . . , ik), j̄ = (i2, . . . , ik, j) ;
0 otherwise.

(43)
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If this Markov chain is unichain (i.e. has one recurrent class) then for this chain
the average time between two consecutive occurrences of i = 1, . . . , n in each
trajectory i1, i2, . . . is less than or equal to ūi .

At first glance, the results of this section are disappointing because there is no
advantage to considering the constraints for k > 1. However, in Section 9 we shall
reduce the state spaces Ik and develop a sequence of relaxations that are tighter for
higher values of k.

In the next section, we provide the first of two exact algorithms presented in
this paper. The second, which makes use of the results of this section, can be found
in Section 9.

6 Dynamic programming approach

A feasible schedule, if it exists, can be defined as a function of a residual vector.
Each coordinate x(i) of a residual vector x = (x(1), . . . , x(n)) is ui − ti , where ti
is the time elapsed since the last completion of job i. By setting x0 = (u1, . . . , un)
in the beginning, any schedule defines a sequence of residual vectors. A schedule
is feasible if and only if the corresponding sequence of residual vectors consists of
vectors with nonnegative coordinates.

Let Rn be the n-dimensional Euclidean space. For i = 1, . . . , n and for x ∈ Rn

we define g(x, i) = y ∈ Rn, where y = (y(1), . . . y(n)) with y(k) = (1 −
δi,k)(x(k) − τk) + δi,kuk, where δ is the Kronneker symbol.

Let a schedule s = i1, i2, . . . be given. Starting with x0, the sequence of resid-
ual times xk is defined by xk = g(xk−1, ik). Thus, indeed, any schedule i1, i2, . . .
defines a sequence of residual vectors x0, x1, . . . .

We provide the characterization of feasible schedules by using a deterministic
version of Negative Dynamic Programming with a finite set of actions; see [24,21,
10]. Here we construct a Negative Dynamic Program for the GPP.

Let Un = ×n
i=1[0, ui]. We define the state set X = Un ∪ {g}, where g ∈ Rn

and g /∈ Un. The state g is an absorbing state. If the underlying process generated
by a schedule hits the state g, this schedule is not feasible. We also define the action
set A = {1, . . . , n} which is also an action set available at each state x ∈ X. If the
state is x ∈ Un, it means that the residual vector is (x(1), . . . , x(n)).

The transition function f is defined by f (x, a) = g(x, a). if x ∈ Un and
g(x, i) ∈ Un. Otherwise, f (x, a) = g. In other words, if the decision to process
job i is feasible, the residual time changes in a way explained above (all coordi-
nates, except the coordinate i, decrease by the corresponding job duration and the
coordinate i becomes ui). If the decision is not feasible or an infeasible decision
was used earlier, the system moves to or remains in g.

The reward function is r(x, a, x ′) = −1, if x ∈ Un and x ′ = g. Otherwise,
r(x, a, x ′) = 0. In other words, the reward is 0 as long as the system stays in Un,
the reward is −1 when the system jumps to g, and the reward is 0 again at g.

Any schedule can be defined recursively by selecting a job i1 as a function
of x0 = (u1, . . . , un) and then by selecting job ik+1 as a function of the his-
tory (i1, . . . , ik), k > 1. Thus, any schedule defines a nonrandomized policy, say
π, for the defined dynamic programming problem with the initial state x0. Let
v(x, π) be the infinite-horizon expected total reward for a policy π and initial
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state π. Let V (x) = supπ v(x, π). Then the schedule is feasible if and only if
v(x0, π) = 0. Since V (x) ≤ 0 for all x ∈ X, V (x0) = 0 if and only if there
exists a stationary policy ϕ with v(x0, ϕ) = 0; Theorem 6.2(iv). In our case, a
stationary policy is a mapping of X to A. We observe that any stationary policy
ϕ with v(x0, ϕ) = 0 defines a feasible schedule i1, i2, ..., where i1 = ϕ(x0) and
ik+1 = ϕ(xk+1), xk+1 = f (xk, ik+1), k = 0, 1, . . . . Thus, we have proved the
following result.

Theorem 6.1 (i) If a GPP is feasible then there is a function ϕ : Un →
{1, . . . , n} of the residual time vector, which defines a feasible schedule.

(ii) A GPP is feasible if and only if V (u1, . . . , un) = 0.

It is not clear whether, in general, any function ϕ defines a periodic schedule.
However, Theorem 2.1 describes the procedure how to obtain a periodic solution
from a general schedule. Thus, the next natural question is: how can one construct
a stationary optimal policy?

This can be done by value iteration, which is described as follows. For any non-
positive Borel function G on X we define the optimality operator T by T G(x) =
maxa∈A T aG(x), x ∈ X, where T a , T aG(x) = r(x, a, f (x, a)) + G(f (x, a)),
a ∈ A.

We consider the sequence Vk , k = 0,1, . . . , of nonpositive functions on I defined
with V0 ≡ 0 and Vk = T Vk−1. The meaning of V is the maximal total reward that
can be achieved over the infinite horizon and Vk is the maximal total reward that
can be achieved over k steps. It is easy to see by standard monotonicity arguments
that Vk+1(i) ≤ Vk(i); Strauch [24, pp. 887].

Theorem 6.2 (i) V (x) = limk→∞ Vk(x) for all x ∈ X; [24, Theorem 9.1(a)].
(ii) V = T V ; [24, Theorem 8.2].

(iii) If T ϕ(x)V (x) = T V (x) for all x ∈ X then the stationary policy ϕ is optimal;
[24, pp. 887].

(iv) there exists a stationary optimal policy; [24, Theorem 9.1(b)].

We notice that in our particular case, all values of Vk(x) are defined recursively
and therefore, all values of V (x) = limk→∞ Vk(x0) are equal to either 0 or -1. The
value iteration consists of the following major steps:
Value Iteration Algorithm

1. Calculate V (x) = limk→∞ Vk(x), x ∈ X.
2. If V (x0) = −1, where x0 = (u1, . . . , un), then there is no feasible schedule.
3. Otherwise (when V (x0) = −1) calculate a stationary policy ϕ such that

T ϕ(x)V (x) = V (x) for all x ∈ X.

A function with only two values 0 and -1 is completely characterized by a subset
of its domain on which this function equals 0. For functions V and Vk, k ∈ N, we
denote these subsets by U and Uk respectively; U, Uk ⊆ Un.

For two vectors s, t ∈ Rn, we write s ≺ t if t − s is a vector with nonnegative
coordinates. The following lemma describes the properties of the sets Uk and U .

Lemma 6.3 (i) Uk+1 ⊆ Uk, k ∈ N.
(ii) U = ∩∞

k=0Uk.
(iii) If x ∈ U (or x ∈ Uk) and x ≺ t then t ∈ U ( t ∈ Uk .)
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(iv) The GPP has a feasible schedule if and only if (u1, . . . , un) ∈ U which is
equivalent to U �= ∅.

Proof Statements (i) and (ii) follow from Vk+1(x) ≤ Vk(x), x ∈ X, and from The-
orem 6.2(i). We observe that U0 = Un and therefore (iii) holds for k = 0. Let (iii)
hold for some k. Then x ∈ Uk+1 if and only if f (x, i) ∈ Uk for some i = 1, . . . , n.
If x ≺ t then f (x, i) ≺ f (t, i). By induction, this implies f (t, i) ∈ Uk . Thus,
t ∈ Uk+1. For the set U , we apply (ii). Statement (iv) follows from Theorem 6.1
and (iii). ��

We remark that it is easier to deal with the sets Uk than with the functions Vk in
a computer implementation of step 1 of the above algorithm. Let all the numbers ui

and τi, i = 1, . . . , n, be rational as it always holds in computer implementations.
Then it is easy to see that the value iteration algorithm converges after a finite
number of steps.

Indeed, without loss of generality, we assume that all the numbers ui and τi,
i = 1, . . . , n, are integers. If all coordinates of a vector x are integer then f (x, i)
is either equal to g or is a vector with integer coordinates. Therefore Un can be
defined as ×n

i=1{0, . . . , ui} in the definition of X. In this case, all sets Uk and U
become finite and we have that Uk = Uk+1 for some k0. Now, if we fix any k ≥ k0
a feasible schedule exists if and only if Uk �= ∅. Thus, we obtained the following
result.

Theorem 6.4 If all the numbers τi and ui , i = 1, . . . , n, are rational then the
value iteration algorithm converges in a finite number of steps.

Let ui = u, i = 1, . . . , and all the parameters be integer. Since the state space
consists of un elements, this algorithm is exponential in n. This was to be expected,
since according to Theorem 2.2, the GPP is NP-hard for ρ = 1. Hence, any exact
algorithm that does not take into an account the value of ρ cannot be efficient. The
fact that the size of the state space grows exponentially with the size of the problem
in dynamic programming applications is known as Bellman’s curse of dimension-
ality. We were able to implement the value iteration algorithm for n ≤ 6. However,
this is not good enough for the radar sensor management problem when in natural
applications n can be up to 12; see [12].

The papers on the PP (τi ≡ 1) [3,4,6,7,20,16,17,22] do not contain an exam-
ple when the PP is not scheduleable when ρ < 1. By employing the value iteration
algorithm, we have analyzed the following example.

Example 6.5 Consider the PP with n = 5 and u1 = 2, u2 = u3 = u4 = 4, and
u5 = 44. This problem is not feasible and ρ = 43/45 < 1. If we consider u5 as
a parameter, this problem is feasible when u5 > 443 and it is not feasible when
u5 ≤ 443. We observe that ρ = 1 when u5 = 14 and ρ < 1 when u5 > 14.
Verification that this problem is not feasible without a computer is not trivial even
for small u5 = 15 or 16.

We conclude this section by commenting on the situation when the server is
permitted to idle. It is obvious that if a feasible schedule that keeps a server idle
exists then there exists a feasible schedule that never keeps it idle. Indeed, consider
a feasible schedule that allows a server to idle at least once. If we remove all of the
instances when the server idles, the schedule will remain feasible. Thus, there is no
need to utilize the idling option. The remainder of this paper deals with heuristics
for the GPP.
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7 Simple heuristics

In this section, we consider three simple heuristics: round robin, due date, and
critical ratio algorithms.

Due date algorithm. This heuristic always selects a job with the minimal residual
time and uses an arbitrary tie breaker rule.

Critical ratio algorithm. The critical ratio is: ui+τi

x(i)+τi
, i = 1, . . . , n, where x(i)

is the residual time of job i. The algorithm selects a job with the smallest critical
ratio and uses an arbitrary tie breaker rule.

Round robin algorithm. The jobs are processed periodically and the period is a
natural sequence (1, 2, . . . , n). Obviously, this schedule is feasible if and only if
for all i = 1, 2, . . . , n

n∑

j = 1
j �= i

τj ≤ ui. (44)

Also, if (44) holds for all i = 1, . . . , n, any permutation of (1, . . . , n) can be
selected as a period.

We remark that

τi ≤ uj , i, j = 1, . . . , n, i �= j, (45)

is a simple necessary condition for a problem to be feasible. Since this condition is
easy, its verification can be added to each of the above heuristics. The verification
of ρ ≤ 1 can be also be added to any heuristic. In fact, the verification of these two
conditions is incorporated into our implementations of all the heuristics considered
in this paper.

8 Frequency based heuristic

As previously explained, the problem is infeasible if ρ > 1. If ρ ≤ 1, the prob-
lem may be feasible and we can try to find a feasible solution. In particular, we
set zi = (τi + ui)

−1, i = 1, . . . , n. Utilizing the results from Section 3, we then
select the probability qj to start job j = 1, . . . , n according to (19) and (18) such

that qj ≥ zj (
∑n

i=1
1

τi+ui
)−1 and

n∑

j=1
qj = 1. Of course, qj = zj (

∑n
i=1

1
τi+ui

)−1 is

the only choice when ρ = 1. If ρ < 1, it is not clear what is the best selection of
qj , j = 1, . . . , n. For example, it is possible to conduct search in the space of all
feasible vectors q. However, in our implementation of the algorithm we selected

qj = τj

τj + αuj

, (46)
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where α ≤ 1 is selected in a way that

n∑

i=1

τi

τi + αui

= 1. (47)

The intuitive justification for such a choice of q is the following. We are trying
to find a schedule in which the time between the completion and restart of job i is
always limited above by ui . Instead of this, we are finding a policy in the relaxation
for which the expectation of these times are limited by ūi where ūi ≤ ui . In other
words, we decrease all ui to ūi with the hope to extract the appropriate sequence
from the strategy for which the expectations of these times are decreased. If we
decrease all ui proportionally, we have that ūi = αui and there is a unique α for
which (47) holds.

After qj , j = 1, . . . , n, are selected, they define a randomized stationary policy
for which the expected intervals between consequent instances of job i = 1, . . . , n
are equal to ūi . Since there is only one state, this randomized stationary policy is
very simple: jobs are selected independently and job i is always selected with the
probability qi, i = 1, . . . , n.

Our next step is to find a nonrandomized policy for which these expectations
are equal to ūi . This can be done by using the time sharing approaches of Ross [23]
and Altman and Shwartz [2]. Suppose we have a finite schedule seq1, . . . , seqN of
length N . Let Ni be the number of times the job i = 1, . . . , n has been executed,
N = N1 + . . . + Nn. We select seqN+1 = argmax {qi − (Ni + 1)/(N + 1)} with
an arbitrary tie breaker rule. We obtain the sequence seq1, seq2, . . . , seqk . . . .

Our initial conjecture was that in most cases, the sequence becomes periodic.
Computational results showed that this is not the case. We introduce a heuristic
whereby we try to cut a feasible interval from the sequence seqk, seqk+1, . . . ,
seqk+j that can be used as a period. In pseudo-code the algorithm is as follows:

Frequency based algorithm

1. Define sum to be the total number of iterations to be simulated.
2. If either condition (45) does not hold or

∑n
i=1

τi

τi+ui
> 1, the problem is infea-

sible and the algorithm ends.
3. If for each i = 1, . . . , n, the inequality (44) holds, the round robin sequence

1, 2, . . . , n, repeated an infinite number of times, forms a feasible sequence
and the algorithm ends.

4. Select zi ≥ τi

τi+ui
, i = 1, . . . , n, such that

∑n
i=1 zi = 1 (this can be imple-

mented in a number of ways, e.g. zi = τi(τi +ui)
−1/

∑n
j=1

τj

τj +ui
or zi = 1

τi+αui

with a constant α ≤ 1).
5. Let qi = zi∑n

j=1 zj
. i = 1, . . . , n. The value of qi is the probability that the next

selection is job i, i = 1, . . . , n.
6. • Initialize N1, . . . , Nn and N to zero. The variable Ni counts the number

of times job i was performed. The variable N counts the total number of
jobs performed.

• Define a one-dimensional array called seq.This array will store the sequence
of jobs. The size of this array is the maximum length of the generated se-
quence (sum). In other words, sum is an upper limit for N.
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• Define a one-dimensional array called d. This array will store the difference
between the theoretical frequency of executing job j = 1, . . . , n and the
actual frequency. The dimension of v is n. Initialize di := 0, i = 1, . . . , n.

7. For (N = 1 to sum)
Let j = argmaxi=1,... ,ndi . If there is a tie, implement an arbitrary tie breaking
rule, e.g select j as the job with the maximal number for which the tie takes
place. Set:
Nj := Nj + 1, di := qi − Ni

N
, i = 1, . . . , n, seqN := j.

(The result is the array seq will now store the sequence of jobs performed to
approximate the probabilities prescribed by qi , i = 1, . . . , n. The remainder
of the algorithm searches the array seq for a feasible fragment.)

8. Initialize variables a and b. Let a = M and b = a, where M is a “large”
integer which is a small fraction of sum. The variable a is the beginning of
the fragment being tested for feasibility and b is the end of this fragment.

9. Define a two-dimensional array called x. This array will be used to store the
residual values at each iteration. This array will have dimensions n by sum.
Set xa

i = ui, i = 1, . . . , n.
10. Increase b := b + 1 and calculate

xb
i :=

{
ui, if i = seqb;
xi − τi, otherwise. i = 1, . . . , n.

11. If xb
i < 0 at least for one i = 1, . . . , n, go to step 16.

12. If seqa �= seqb then go to step 11.
13. If there is at least one job that has not been performed at least once between

iteration a and b inclusive, then go to step 11.
14. Repeat the fragment l = seqa, seqa+1, . . . , seqb−1, seqb and check if the

resulted fragment l, l satisfies the condition that the sum of all job durations be-
tween any two sequential completion and beginning of each job i = 1, . . . , n
is not greater than ui. If yes then l, l, l, . . . is a feasible schedule (see the proof
of Theorem 2.1 where the similar idea was used).

15. Increase a = a + 1 and set b = a.
16. If a > sum − n, the algorithm stops without finding a feasible schedule.

Otherwise go to step 10.

9 Improved algorithms

The sets Ik introduced in Section 5 consist of the sequences of k jobs i1, . . . , ik
such that any two consecutive jobs are different. However, if k is large, some of
these sequences cannot be continued to form periodic schedules. For example, if a
total length of all jobs in the finite sequence ī ∈ Ik is longer than uj and the job j is
absent in this sequence, the sequence ī cannot be continued as a feasible schedule
for the GPP.

First, we shall introduce the subsets Jk ⊆ Ik such that if ī ∈ Jk we cannot say
immediately that the sequence ī cannot be continued as a feasible schedule for the
GPP. By replacing the set of possible indices Ik in (34 – 37) with Jk we shall obtain
tighter constraints that will possess the properties that the constraints for k + 1 are
tighter that those for k.
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Let us consider the following conditions for sequences i1, . . . , ik of integers
between 1 and n:

(i) ij �= ij+1, j = 1, . . . , k − 1;
(ii) if

∑k
�=1 i� > uj , j = 1, . . . , n, then i� = j for some � = 1, . . . , k;

(iii) For each job j = 1, . . . , n such that i� = j for some � = 1, . . . , k the
following conditions hold:

�∗(j)−1∑

m=1

τm ≤ uj , where �∗(j) = min{� = 1, . . . , k : i� = j}, (48)

k∑

m=�∗(j)+1

τm ≤ uj , where �∗(j) = max{� = 1, . . . , k : i� = j}, (49)

and if there is more than one instance of the job j then for any two consequent
instances � and �′ of j, where 1 ≤ � < �′ ≤ k,

�′−1∑

m=�+1

τm ≤ uj . (50)

We say that a finite sequence i1, . . . , ik is acceptable if: (a) it satisfies prop-
erties (i)–(iii), and (b) there exists j = 1, . . . , n such that the finite sequence
s = i1, . . . , ik, j satisfies these conditions as well for k := k+1.A finite sequence
i1, . . . , ik is called complete if it is acceptable and for any j = 1, . . . , n there exists
� = 1, . . . , k such that i� = j. Of course, any complete sequence contains at least
n elements. If we double a finite complete sequence s and the resulting finite
sequence s, s is acceptable then the periodic schedule s, s, . . . is feasible; see the
proof of Theorem 2.1.

Let Jk be the set of all acceptable sequences with k elements. For a sequence
i1, . . . , ik ∈ Jk and for j = 1, . . . we denote by �∗(j) the maximal m = 1, . . . , k
such that im = j. If at least one of the elements of this sequence is equal to j , the
value of �∗(j) was defined in (49). Otherwise, we set �∗(j) = 0. We observe that

Jk+1 = {i1, . . . , ik, i|i1, . . . , ik ∈ Jk, i �= ik, i = 1, . . . , n, and there exists
j = 1, . . . , n for which τi + ∑k

m=�∗(j)+1 τm ≤ uj and τi + τj

+ ∑k
m=�∗(j ′)+1 τm ≤ uj ′

for any j ′ = 1, . . . , n such that j ′ �= i and j ′ �= j}.
(51)

Expression (51) defines a recursion to construct Jk+1 from Jk . Of course, J1 =
I1 = {1, . . . , n}.

Similar to (19), if s is a periodic schedule, the corresponding value of zīj , where
i ∈ Ik for some k and j = 1, . . . , n, is the proportion of time the schedule of jobs
ī, j is performed by the sequence s. Therefore, if ī ∈ Ik \Jk , this sequence ī, j can-
not be a part of a feasible schedule and the corresponding variables zī,j = 0. There-
fore, if the GPP is feasible, the constraints (34 – 37) are feasible even if the additional
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constraints zī,j = 0 when ī ∈ Ik \Jk are imposed. This leads us to a tighter version
of the constraints (34 – 37) with the set Ik replaced with the smaller set Jk:

n∑

j = 1
j �= ik

zīj =
n∑

j = 1
j �= i1

(j, i1, . . . , ik−1) ∈ Jk

zj ī , ī = (i1, . . . , ik) ∈ Jk, (52)

∑

ī=(i1,i2,... ,ik)∈Jk

n∑

j = 1
j �= ik

zīj τj = 1, (53)

∑

ī = (i1, i2, . . . , ik) ∈ Jk

ik �= j

zīj ≥ 1

ūj + τj

, j = 1, . . . , n, (54)

zīj ≥ 0, ī ∈ Jk, j = 1, . . . , n, j �= ik. (55)

We observe that if i1, . . . , ik ∈ Jk for some k = 2, 3, . . . then i1, . . . , ik−1 ∈
Jk−1. Therefore, Theorem 5.1 implies the following result.

Theorem 9.1 If z is a solution of the linear constraints (52 – 55) for some k ∈ N

then formula (38) defines a solution of the same linear constraints for k − 1.

We remark that a statement similar to Theorem 5.2 does not hold because
it is possible that the sequences i1, . . . , ik and i2, . . . , ik+1 belong to Jk but the
sequence i1, . . . , ik+1 does not belong to Jk+1. For example, consider the PP with
n = 3 and ui = 2, i = 1, 2, 3. Then the sequences (1, 2) and (2, 1) are acceptable
for k = 2 but the sequence (1, 2, 1) is not acceptable. Therefore the constraints (52
– 55) are tighter for higher values of k.

Next, we present the frequency based algorithms for k ∈ N

Frequency Based Algorithms FBk

1. Define sum to be the total number of iterations to be simulated.
2. If either condition (45) does not hold or the system of constraints (52 – 55) is

infeasible, the GPP is infeasible and the algorithm ends.
3. If for each i = 1, . . . , n the inequality (44) holds, the round robin sequence

1, 2, . . . , n repeated an infinite number of times, forms a feasible sequence and
the algorithm ends.

4. Select the vector (ū1, . . . , ūn). This can be done iteratively by using various
search techniques. Similar to FB, we have implemented an approach when we
select ūi = αui with α ≤ 1 being the minimal constant such that the system
of constraints (52 – 55) is feasible. The value of α can be found by bisection.
Once the vector (ū1, . . . , ūn) is defined, compute a solution zīj of the system
of linear constraints (52 – 55). Set zī = ∑n

j = 1
j �= ik

zīj for all ī = (i1 . . . ik) ∈ Jk.

Let Ĵk = {ī ∈ Jk| zī > 0}.
5. Set qīj = zīj /zī for all ī ∈ Jk and for all j = 1, . . . , n, j �= ik . If the transition

probabilities qīj define a Markov chain with more than one recurrent class [18,
Algorithm 1], a feasible schedule is not found.
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6. • Initialize Nīj , Nī , and N to zero, where ī = (i1 . . . ik) ∈ Ĵk, j = 1, . . . , n,
and j �= ik. The variable Nī and Nīj respectively count the number of times
each of the strings ī and (i1 . . . ikj) were observed. The variable N counts
the total number of jobs performed.

• Define a one-dimensional array called seq.This array will store the sequence
of jobs. The size of this array is the maximum length of the generated se-
quence (sum). In other words, sum is an upper limit for N. Initialize N = k

and set seq = ī for some ī = (i1 . . . ik) ∈ Ĵk. Let M be the number of ele-
ments in Ĵk.

• Define a two-dimensional array called d. This array will store the difference
between the theoretical frequency of executing job j = 1, . . . , n at states
ī ∈ Ĵk and the actual frequency. The dimensions of v are M by n. Initialize
all elements of d equal to 0.

• Define a two-dimensional array called r . This array will be used to store the
residual values at each iteration. This array will have dimensions n by sum.

• Select any ī ∈ Ĵk. Let ī = (i1 . . . ik).
7. For (N = 1 to sum)

Let j = argmax{j=1,... ,n;j �=ik}dīj . If there is a tie, implement an arbitrary tie
breaking rule, e.g select j as the job with the maximal number for which the tie
takes place. Set: Nīj := Nīj + 1, Nī := Nī + 1, ī := (i2 . . . ikj), seqN := j,

dīj := qīj − Nīj

Nī
, j = 1, . . . , n. The remainder of the algorithm searches the

array seq for a feasible fragment as is in the frequency based algorithm, Steps
8 – 16, described in Section 8.

We remark that, though the transition probabilities calculated at step 5 theoret-
ically can define a Markov chain with multiple recurrent classes, we have never
experienced this in the thousands of calculations performed.

Using the heuristics FBk we can formulate the second exact algorithm as fol-
lows (the first exact algorithm is the value iteration algorithm from Section 6).

1. Apply the frequency based algorithm from Section 8. Stop if a feasible schedule
is found or the problem is detected to be infeasible.

2. Set k = 1, Jk = {1, . . . , n}, and apply the frequency based algorithm FBk
from Section 9. Stop if a feasible schedule is found or the problem is detected
to be infeasible.

3. Increase the value of k by 1. Calculate the set Jk by using the recursion (51).
If Jk = ∅ then the problem is infeasible. Otherwise, let Ck be the subset of
the complete sequences of Jk. Sequentially double each ī sequence in Ck. If
the sequence ī, ī satisfies the condition that the time between all consecutive
instances of job j = 1, . . . , n is not greater than uj , then ī, ī, ī, . . . is a feasible
periodic schedule. If the feasible schedule is not found, go to Step 2.

Since, according to Theorem 2.2, the GPP is NP-hard, the latter algorithm is
not efficient. Its convergence follows from the following arguments. Leaving apart
the possibility that the heuristics at Steps 1 or 2 solve the problem, consider the
following two possibilities: (i) the problem is feasible, and (ii) the problem is not
feasible. If the problem is feasible and its shortest (in terms of the number of jobs
in it) period consists of k jobs, it will be detected at Step 3 when the appropriate
element of Ck is doubled unless a feasible schedule has been found earlier. If the
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problem is infeasible, it is easy to see from the proof of Theorem 2.1 that the set
Jk will become empty for large k.

We remark than among all FBk algorithms with k > 1, the case k = 1 appears
to be the most interesting in terms of its applicability. The reason is that FBk
algorithms require solutions of linear constraints with up to n(n − 1)k variables.
However, as Corollary 5.3 implies, the constraints (52 – 55) become tighter when
the set Jk is smaller than the set Ik. For reasonable n this happens with relatively
large values of k. For example, typically I2 = J2 and FB2 probably should not
significantly outperform FB1. This is the reason we implemented FBk heuristics
for k = 0 and k = 1. Our simulations indicated that FB1 solves roughly 5% cases
more than FB (k = 0).

10 Simulation results

We provide simulation results for one of the two data sets considered in [12] for the
radar sensor management problem. We conducted a simulation of the job durations
of 0.0587, 0.175, 0.223, and 0.299 that were randomly and independently assigned
to each of the jobs with the probability 1

4 . Revisit times of 1, 3, or 4 were also
randomly and independently assigned to each of the jobs with the probability 1

3 .
Each simulation of 1000 cases has been conducted for n = 4, 5, . . . , 12. The RR,
CR, FB, and FB1 were applied to the simulated data for comparison. It was found
that the frequency based FB algorithm outperformed significantly both the critical
ratio and round robin algorithms. The frequency based algorithm for k = 1, FB1,
demonstrated even better results than FB. It found a feasible schedule in a higher
percentage of cases. In addition, FB1 detected more cases when the problem is
infeasible. For the RR, CR, and FB heuristics we used the condition ρ > 1 to
detect the cases that cannot be feasible. The FB1 heuristic checks the feasibility
of the constraints (27 – 30) which is a more powerful criterion. The results of this
simulation are shown in table 9.1 below. According to these results, FB1 is better
than FB and FB outperforms CR. Of course, RR is the most primitive heuristic.

Table 9.1 Simulation results

#jobs RR CR FB FB1 RR CR FB FB1 FB FB1
4 100 100 100 100 92.4 100 100 100 0 0
5 92.4 100 100 100 92.4 100 100 100 0 0
6 55.3 97.2 100 100 55.3 97.2 100 100 0 0
7 22.5 89.1 98.4 99.1 22.5 89.1 98.4 99.3 0 .2
8 10.3 76.7 92.7 95.4 12.9 79.3 95.3 98.6 2.6 3.2
9 3.4 53.6 79.5 83.5 8.8 59.0 84.9 91.0 5.4 7.5
10 2.7 27.3 62.3 64.5 16.2 40.8 75.8 81.2 13.5 16.7
11 2.3 18.2 41.6 44.6 32.4 48.3 71.7 79.8 30.1 35.2
12 2 8.1 22.3 25.3 47.8 53.9 68.1 78.5 45.8 53.2

Percentage of scheduled *Percentage of cases Percentage of cases
cases using (RR), (CR), where a solution could that were found to be
(FB), and (FB1). be found using (RR), infeasible using

(CR), (FB), and (FB1). (FB) and (FB1).
*Includes the case when infeasible cases are detected.
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11 Conclusions and open questions

This paper studied a Generalized Pinwheel Problem (GPP) which is to find a
feasible infinite sequence of jobs from a set of n recurring jobs with durations τi,
i = 1, . . . , n. Each time job i is completed, it should be restarted within ui units of
time. According to Theorem 2.2, his problem is NP-hard, at least when the density
ρ equals 1. When all τi = 1, this problem becomes the Pinwheel Problem (PP)
studied in [3,4,6,7,20,16,17,22].

The GPP can be applied to many problems that involve repetitive executions
of tasks with non-uniform durations and deadlines. The examples of applications
include: the radar sensor management, machine refuelling, database support, and
inspection scheduling problems.

We have shown that a feasible GPP has a feasible periodic schedule. In this
paper we established a link between relaxed versions of the GPP and constrained
undiscounted Semi-Markov Decision Process. By using this link, we developed
relaxations of the GPP and formulated the so-called frequency based algorithms
that outperform other known heuristics. These relaxations become tighter when
the parameter k, that is relevant to the memory used by the algorithms, increases.
The simplest relaxation for k = 0 implies that ρ ≤ 1 is a necessary condition for a
problem to be feasible. Other relaxations, for k = 1, 2 . . . provide more accurate
necessary conditions that may detect that the problem is not feasible in some cases
when ρ ≤ 1. We also provided computational results that illustrate the efficiency
of the introduced algorithms.

In general, a feasible schedule, if it exists, can be presented as a function of a
vector of residual times. We have developed a value iteration algorithm based on
Dynamic Programming. Though this algorithm converges, it is computationally
intractable for large n, which is consistent with NP-complexity of the GPP. The
implementation of this algorithm allowed us to construct the example of an infea-
sible PP with ρ < 1. We also showed in this paper that, unlike the PP, the GPP can
be infeasible when ρ is small.

There are several interesting open questions for the PP and for the GPP. When
Holte et al [16] introduced the PP, they stated without the proof that the PP is
NP-hard when ρ = 1. However their detailed paper [17] did not mention this
fact. Chan and Chin [7] provided a polynomial algorithm that always constructs
a schedule for a PP with ρ ≤ 0.7. Nothing is known about the complexity of PP
when ρ > 0.7. It would be interesting to have the boundaries on ρ when the PP
is always feasible, when it is polynomial, and when it is NP-hard. The interesting
question is whether the GPP is NP-hard for ρ < 1 and whether it is possible to
develop a polynomial algorithm for the GPP when ρ ≤ α for some α < 1. Of
course, an interesting question is whether it is possible to develop better heuristics
than the frequency based algorithms.
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